1
|
Sato H, Taketomi Y, Murase R, Park J, Hosomi K, Sanada TJ, Mizuguchi K, Arita M, Kunisawa J, Murakami M. Group X phospholipase A 2 links colonic lipid homeostasis to systemic metabolism via host-microbiota interaction. Cell Rep 2024; 43:114752. [PMID: 39298315 DOI: 10.1016/j.celrep.2024.114752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 07/30/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
The gut microbiota influences physiological functions of the host, ranging from the maintenance of local gut homeostasis to systemic immunity and metabolism. Secreted phospholipase A2 group X (sPLA2-X) is abundantly expressed in colonic epithelial cells but is barely detectable in metabolic and immune tissues. Despite this distribution, sPLA2-X-deficient (Pla2g10-/-) mice displayed variable obesity-related phenotypes that were abrogated after treatment with antibiotics or cohousing with Pla2g10+/+ mice, suggesting the involvement of the gut microbiota. Under housing conditions where Pla2g10-/- mice showed aggravation of diet-induced obesity and insulin resistance, they displayed increased colonic inflammation and epithelial damage, reduced production of polyunsaturated fatty acids (PUFAs) and lysophospholipids, decreased abundance of several Clostridium species, and reduced levels of short-chain fatty acids (SCFAs). These obesity-related phenotypes in Pla2g10-/- mice were reversed by dietary supplementation with ω3 PUFAs or SCFAs. Thus, colonic sPLA2-X orchestrates ω3 PUFA-SCFA interplay via modulation of the gut microbiota, thereby secondarily affecting systemic metabolism.
Collapse
Affiliation(s)
- Hiroyasu Sato
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Remi Murase
- Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, School of Pharmacy, Showa University, Tokyo 142-8555, Japan
| | - Jonguk Park
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, Osaka 567-0085, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Takayuki Jujo Sanada
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Kenji Mizuguchi
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, Osaka 567-0085, Japan; Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan; Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan.
| |
Collapse
|
2
|
Xing Y, Xie SY, Deng W, Tang QZ. Cardiolipin in myocardial ischaemia-reperfusion injury: From molecular mechanisms to clinical strategies. Biomed Pharmacother 2024; 176:116936. [PMID: 38878685 DOI: 10.1016/j.biopha.2024.116936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024] Open
Abstract
Myocardial reperfusion injury occurs when blood flow is restored after ischemia, an essential process to salvage ischemic tissue. However, this phenomenon is intricate, characterized by various harmful effects. Tissue damage in ischemia-reperfusion injury arises from various factors, including the production of reactive oxygen species, the sequestration of proinflammatory immune cells in ischemic tissues, the induction of endoplasmic reticulum stress, and the occurrence of postischemic capillary no-reflow. Secretory phospholipase A2 (sPLA2) plays a crucial role in the eicosanoid pathway by releasing free arachidonic acid from membrane phospholipids' sn-2 position. This liberated arachidonic acid serves as a substrate for various eicosanoid biosynthetic enzymes, including cyclooxygenases, lipoxygenases, and cytochromes P450, ultimately resulting in inflammation and an elevated risk of reperfusion injury. Therefore, the activation of sPLA2 directly correlates with the heightened and accelerated damage observed in myocardial ischemia-reperfusion injury (MIRI). Presently, clinical trials are in progress for medications aimed at sPLA2, presenting promising avenues for intervention. Cardiolipin (CL) plays a crucial role in maintaining mitochondrial function, and its alteration is closely linked to mitochondrial dysfunction observed in MIRI. This paper provides a critical analysis of CL modifications concerning mitochondrial dysfunction in MIRI, along with its associated molecular mechanisms. Additionally, it delves into various pharmacological approaches to prevent or alleviate MIRI, whether by directly targeting mitochondrial CL or through indirect means.
Collapse
Affiliation(s)
- Yun Xing
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Sai-Yang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China.
| |
Collapse
|
3
|
Lin S, Hou L, Wang Y, Lin H, Deng J, Li S, Long H, Zhao G. Antagonism of let-7c reduces atherosclerosis and macrophage lipid accumulation by promoting PGC-1α/LXRα/ABCA1/G1 pathway. Gene 2024; 909:148302. [PMID: 38401833 DOI: 10.1016/j.gene.2024.148302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Changes in circulating let-7c were significantly associated with the alter in lipid profile, but its role in intracellular lipid metabolism remains unknown. This work was conducted to explore the effects of let-7c on the lipid accumulation in macrophages and uncover the underlying mechanism. Our results showed that let-7c inhibition relieved atherosclerosis progression in apoE-/- mice. In ox-LDL-treatment macrophages, let-7c knockdown suppressed lipid accumulation but does no affect cholesterol intake. Consistent with this, overexpression of let-7c promoted lipid accumulation by reducing the expression of LXRα and ABCA1/G1. Mechanistically, let-7c targeted PGC-1α to repress the expression of LXRα and ABCA1/G1, thereby regulating cholesterol homeostasis in macrophages. Taken together, these findings suggest that antagonism of let-7c reduces atherosclerosis and macrophage lipid accumulation through the PGC-1α/LXRα/ABCA1/G1 axis.
Collapse
Affiliation(s)
- Shuyun Lin
- Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511500, China
| | - Lianjie Hou
- Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511500, China
| | - Yu Wang
- Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511500, China
| | - Huiling Lin
- Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Jiefeng Deng
- College of Pharmacy, Dali University, Dali 671000, China
| | - Shuang Li
- College of Pharmacy, Dali University, Dali 671000, China
| | - Haijiao Long
- Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511500, China
| | - Guojun Zhao
- Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511500, China.
| |
Collapse
|
4
|
Romero-Becera R, Santamans AM, Arcones AC, Sabio G. From Beats to Metabolism: the Heart at the Core of Interorgan Metabolic Cross Talk. Physiology (Bethesda) 2024; 39:98-125. [PMID: 38051123 DOI: 10.1152/physiol.00018.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/26/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023] Open
Abstract
The heart, once considered a mere blood pump, is now recognized as a multifunctional metabolic and endocrine organ. Its function is tightly regulated by various metabolic processes, at the same time it serves as an endocrine organ, secreting bioactive molecules that impact systemic metabolism. In recent years, research has shed light on the intricate interplay between the heart and other metabolic organs, such as adipose tissue, liver, and skeletal muscle. The metabolic flexibility of the heart and its ability to switch between different energy substrates play a crucial role in maintaining cardiac function and overall metabolic homeostasis. Gaining a comprehensive understanding of how metabolic disorders disrupt cardiac metabolism is crucial, as it plays a pivotal role in the development and progression of cardiac diseases. The emerging understanding of the heart as a metabolic and endocrine organ highlights its essential contribution to whole body metabolic regulation and offers new insights into the pathogenesis of metabolic diseases, such as obesity, diabetes, and cardiovascular disorders. In this review, we provide an in-depth exploration of the heart's metabolic and endocrine functions, emphasizing its role in systemic metabolism and the interplay between the heart and other metabolic organs. Furthermore, emerging evidence suggests a correlation between heart disease and other conditions such as aging and cancer, indicating that the metabolic dysfunction observed in these conditions may share common underlying mechanisms. By unraveling the complex mechanisms underlying cardiac metabolism, we aim to contribute to the development of novel therapeutic strategies for metabolic diseases and improve overall cardiovascular health.
Collapse
Affiliation(s)
| | | | - Alba C Arcones
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| |
Collapse
|
5
|
Murakami M, Sato H, Taketomi Y. Modulation of immunity by the secreted phospholipase A 2 family. Immunol Rev 2023; 317:42-70. [PMID: 37035998 DOI: 10.1111/imr.13205] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Among the phospholipase A2 (PLA2 ) superfamily, which typically catalyzes the sn-2 hydrolysis of phospholipids to yield fatty acids and lysophospholipids, the secreted PLA2 (sPLA2 ) family contains 11 isoforms in mammals. Individual sPLA2 s have unique enzymatic specificity toward fatty acids and polar heads of phospholipid substrates and display distinct tissue/cellular distributions, suggesting their distinct physiological functions. Recent studies using knockout and/or transgenic mice for a full set of sPLA2 s have revealed their roles in modulation of immunity and related disorders. Application of mass spectrometric lipidomics to these mice has enabled to identify target substrates and products of individual sPLA2 s in given tissue microenvironments. sPLA2 s hydrolyze not only phospholipids in the plasma membrane of activated, damaged or dying mammalian cells, but also extracellular phospholipids such as those in extracellular vesicles, microbe membranes, lipoproteins, surfactants, and dietary phospholipids, thereby exacerbating or ameliorating various diseases. The actions of sPLA2 s are dependent on, or independent of, the generation of fatty acid- or lysophospholipid-derived lipid mediators according to the pathophysiological contexts. In this review, we make an overview of our current understanding of the roles of individual sPLA2 s in various immune responses and associated diseases.
Collapse
Affiliation(s)
- Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Hiroyasu Sato
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Connecting Cholesterol Efflux Factors to Lung Cancer Biology and Therapeutics. Int J Mol Sci 2021; 22:ijms22137209. [PMID: 34281263 PMCID: PMC8268178 DOI: 10.3390/ijms22137209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/17/2022] Open
Abstract
Cholesterol is a foundational molecule of biology. There is a long-standing interest in understanding how cholesterol metabolism is intertwined with cancer biology. In this review, we focus on the known connections between lung cancer and molecules mediating cholesterol efflux. A major take-home lesson is that the roles of many cholesterol efflux factors remain underexplored. It is our hope that this article would motivate others to investigate how cholesterol efflux factors contribute to lung cancer biology.
Collapse
|
7
|
Morris G, Berk M, Walder K, O'Neil A, Maes M, Puri BK. The lipid paradox in neuroprogressive disorders: Causes and consequences. Neurosci Biobehav Rev 2021; 128:35-57. [PMID: 34118292 DOI: 10.1016/j.neubiorev.2021.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 04/27/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
Chronic systemic inflammation is associated with an increased risk of cardiovascular disease in an environment of low low-density lipoprotein (LDL) and low total cholesterol and with the pathophysiology of neuroprogressive disorders. The causes and consequences of this lipid paradox are explored. Circulating activated neutrophils can release inflammatory molecules such as myeloperoxidase and the pro-inflammatory cytokines interleukin-1 beta, interleukin-6 and tumour necrosis factor-alpha. Since activated neutrophils are associated with atherosclerosis and cardiovascular disease and with major depressive disorder, bipolar disorder and schizophrenia, it seems reasonable to hypothesise that the inflammatory molecules released by them may act as mediators of the link between systemic inflammation and the development of atherosclerosis in neuroprogressive disorders. This hypothesis is tested by considering the association at a molecular level of systemic inflammation with increased LDL oxidation; increased small dense LDL levels; increased lipoprotein (a) concentration; secretory phospholipase A2 activation; cytosolic phospholipase A2 activation; increased platelet activation; decreased apolipoprotein A1 levels and function; decreased paroxonase-1 activity; hyperhomocysteinaemia; and metabolic endotoxaemia. These molecular mechanisms suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand
| | | |
Collapse
|
8
|
Lu X, Yang B, Yang H, Wang L, Li H, Chen S, Lu X, Gu D. MicroRNA-320b Modulates Cholesterol Efflux and Atherosclerosis. J Atheroscler Thromb 2021; 29:200-220. [PMID: 33536383 PMCID: PMC8803562 DOI: 10.5551/jat.57125] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim:
ATP-binding cassette (ABC) transporters and endonuclease-exonuclease-phosphatase family domain containing 1 (EEPD1) are reported to regulate cellular cholesterol efflux in macrophages. Bioinformatics analysis has revealed that ABCG1 and EEPD1 might be potential targets of microRNA (miR)-320b. This study aimed to elucidate the roles of miR-320b in cholesterol efflux from macrophages and the pathogenesis of atherosclerosis.
Methods:
Microarray was conducted to profile microRNA (miRNA) expression, and quantitative real-time PCR (qPCR) was used to validate the differentially expressed miRNAs in peripheral blood mononuclear cells of coronary artery disease (CAD) patients and healthy controls. Luciferase assay was conducted to evaluate the activity of reporter construct containing the 3´-untranslated region (3´-UTR) of target genes. Besides, NBD-cholesterol efflux induced by high-density lipoprotein (HDL) and lipid-free apolipoprotein A1 (apoA1) was detected using fluorescence intensity, respectively.
Apoe−/−
mice were injected with adeno-associated virus (AAV)2-miR-320b or control via tail vein, thereafter fed with 14 week atherogenic diet to study the roles of miR-320b
in vivo
.
Results:
MiR-320b was highly expressed in CAD patients compared with that in the healthy controls in both the microarray analysis and qPCR analysis.
In vitro
study showed that miR-320b decreased HDL- and apoA1-mediated cholesterol efflux from macrophages partly by directly targeting
ABCG1
and
EEPD1
genes and partly via suppressing the LXRα-ABCA1/G1 pathway. Consistently,
in vivo
administration of AAV2-miR-320b into
Apoe−/−
mice attenuated cholesterol efflux from peritoneal macrophages, which showed reduced expression of ABCA1/G1 and EEPD1, and increased lipid LDL-C level, with a down-regulation of hepatic LDLR and ABCA1. AAV2-miR-320b treatment also increased atherosclerotic plaque size and lesional macrophage content and enhanced pro-inflammatory cytokines levels through the elevated phosphorylation level of nuclear factor-κB p65 in macrophages.
Conclusion:
We identify miR-320b as a novel modulator of macrophage cholesterol efflux and that it might be a promising therapeutic target for atherosclerosis treatment.
Collapse
Affiliation(s)
- Xiaomei Lu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Bin Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Huijun Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Laiyuan Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Hongfan Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Shufeng Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Xiangfeng Lu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Dongfeng Gu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| |
Collapse
|
9
|
Dahik VD, Frisdal E, Le Goff W. Rewiring of Lipid Metabolism in Adipose Tissue Macrophages in Obesity: Impact on Insulin Resistance and Type 2 Diabetes. Int J Mol Sci 2020; 21:ijms21155505. [PMID: 32752107 PMCID: PMC7432680 DOI: 10.3390/ijms21155505] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity and its two major comorbidities, insulin resistance and type 2 diabetes, represent worldwide health issues whose incidence is predicted to steadily rise in the coming years. Obesity is characterized by an accumulation of fat in metabolic tissues resulting in chronic inflammation. It is now largely accepted that adipose tissue inflammation underlies the etiology of these disorders. Adipose tissue macrophages (ATMs) represent the most enriched immune fraction in hypertrophic, chronically inflamed adipose tissue, and these cells play a key role in diet-induced type 2 diabetes and insulin resistance. ATMs are triggered by the continuous influx of dietary lipids, among other stimuli; however, how these lipids metabolically activate ATM depends on their nature, composition and localization. This review will discuss the fate and molecular programs elicited within obese ATMs by both exogenous and endogenous lipids, as they mediate the inflammatory response and promote or hamper the development of obesity-associated insulin resistance and type 2 diabetes.
Collapse
|
10
|
Ogden HL, Lai Y, Nolin JD, An D, Frevert CW, Gelb MH, Altemeier WA, Hallstrand TS. Secreted Phospholipase A 2 Group X Acts as an Adjuvant for Type 2 Inflammation, Leading to an Allergen-Specific Immune Response in the Lung. THE JOURNAL OF IMMUNOLOGY 2020; 204:3097-3107. [PMID: 32341057 DOI: 10.4049/jimmunol.2000102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/05/2020] [Indexed: 11/19/2022]
Abstract
Secreted phospholipase A2 (sPLA2) enzymes release free fatty acids, including arachidonic acid, and generate lysophospholipids from phospholipids, including membrane phospholipids from cells and bacteria and surfactant phospholipids. We have shown that an endogenous enzyme sPLA2 group X (sPLA2-X) is elevated in the airways of asthmatics and that mice lacking the sPLA2-X gene (Pla2g10) display attenuated airway hyperresponsiveness, innate and adaptive immune responses, and type 2 cytokine production in a model of airway sensitization and challenge using a complete allergen that induces endogenous adjuvant activity. This complete allergen also induces the expression of sPLA2-X/Pla2g10 In the periphery, an sPLA2 found in bee venom (bee venom PLA2) administered with the incomplete Ag OVA leads to an Ag-specific immune response. In this study, we demonstrate that both bee venom PLA2 and murine sPLA2-X have adjuvant activity, leading to a type 2 immune response in the lung with features of airway hyperresponsiveness and Ag-specific type 2 airway inflammation following peripheral sensitization and subsequent airway challenge with OVA. Further, the adjuvant effects of sPLA2-X that result in the type 2-biased OVA-specific adaptive immune response in the lung were dependent upon the catalytic activity of the enzyme, as a catalytically inactive mutant form of sPLA2-X does not elicit the adaptive component of the immune response, although other components of the immune response were induced by the inactive enzyme, suggesting receptor-mediated effects. Our results demonstrate that exogenous and endogenous sPLA2s play an important role in peripheral sensitization, resulting in airway responses to inhaled Ags.
Collapse
Affiliation(s)
- Herbert Luke Ogden
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, University of Washington, Seattle, WA 98109
| | - Ying Lai
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, University of Washington, Seattle, WA 98109
| | - James D Nolin
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, University of Washington, Seattle, WA 98109
| | - Dowon An
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, University of Washington, Seattle, WA 98109
| | - Charles W Frevert
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, University of Washington, Seattle, WA 98109.,Department of Comparative Medicine, University of Washington, Seattle, WA 98109
| | - Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, WA 98195; and.,Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - William A Altemeier
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, University of Washington, Seattle, WA 98109
| | - Teal S Hallstrand
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, University of Washington, Seattle, WA 98109;
| |
Collapse
|
11
|
Jarc E, Petan T. A twist of FATe: Lipid droplets and inflammatory lipid mediators. Biochimie 2020; 169:69-87. [DOI: 10.1016/j.biochi.2019.11.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
|
12
|
Thomas C, Jalil A, Magnani C, Ishibashi M, Queré R, Bourgeois T, Bergas V, Ménégaut L, Patoli D, Le Guern N, Labbé J, Gautier T, de Barros JPP, Lagrost L, Masson D. LPCAT3 deficiency in hematopoietic cells alters cholesterol and phospholipid homeostasis and promotes atherosclerosis. Atherosclerosis 2018; 275:409-418. [PMID: 29866392 DOI: 10.1016/j.atherosclerosis.2018.05.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/04/2018] [Accepted: 05/16/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIMS LPCAT3 plays a major role in phospholipid metabolism in the liver and intestine. However, the impact of LPCAT3 on hematopoietic cell and macrophage functions has yet to be described. Our aim was to understand the functions of LPCAT3 in macrophages and to investigate whether LPCAT3 deficiency in hematopoietic cells may affect atherosclerosis development. METHODS Mice with constitutive Lpcat3 deficiency (Lpcat3-/-) were generated. We used fetal hematopoietic liver cells to generate WT and Lpcat3-/- macrophages in vitro and to perform hematopoietic cell transplantation in recipient Ldlr-/- mice. RESULTS Lpcat3-deficient macrophages displayed major reductions in the arachidonate content of phosphatidylcholines, phosphatidylethanolamines and, unexpectedly, plasmalogens. These changes were associated with altered cholesterol homeostasis, including an increase in the ratio of free to esterified cholesterol and a reduction in cholesterol efflux in Lpcat3-/- macrophages. This correlated with the inhibition of some LXR-regulated pathways, related to altered cellular availability of the arachidonic acid. Indeed, LPCAT3 deficiency was associated with decreased Abca1, Abcg1 and ApoE mRNA levels in fetal liver cells derived macrophages. In vivo, these changes translated into a significant increase in atherosclerotic lesions in Ldlr-/- mice with hematopoietic LPCAT3 deficiency. CONCLUSIONS This study identifies LPCAT3 as a key factor in the control of phospholipid homeostasis and arachidonate availability in myeloid cells and underlines a new role for LPCAT3 in plasmalogen metabolism. Moreover, our work strengthens the link between phospholipid and sterol metabolism in hematopoietic cells, with significant consequences on nuclear receptor-regulated pathways and atherosclerosis development.
Collapse
Affiliation(s)
- Charles Thomas
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Antoine Jalil
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Charlène Magnani
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Minako Ishibashi
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Ronan Queré
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Thibaut Bourgeois
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Victoria Bergas
- Lipidomic analytic plate-forme, UBFC, Batiment B3, Bvd Maréchal de Lattre de Tassigny, 21000, Dijon, France
| | - Louise Ménégaut
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France; CHU Dijon, laboratoire de Biochimie, F-21000, Dijon, France
| | - Danish Patoli
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Naig Le Guern
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Jérôme Labbé
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Thomas Gautier
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Jean Paul Pais de Barros
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France; Lipidomic analytic plate-forme, UBFC, Batiment B3, Bvd Maréchal de Lattre de Tassigny, 21000, Dijon, France
| | - Laurent Lagrost
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France; CHU Dijon, laboratoire de Biochimie, F-21000, Dijon, France
| | - David Masson
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France; CHU Dijon, laboratoire de Biochimie, F-21000, Dijon, France.
| |
Collapse
|
13
|
Ravindran S, Kurian GA. The role of secretory phospholipases as therapeutic targets for the treatment of myocardial ischemia reperfusion injury. Biomed Pharmacother 2017; 92:7-16. [DOI: 10.1016/j.biopha.2017.05.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 04/27/2017] [Accepted: 05/08/2017] [Indexed: 01/22/2023] Open
|
14
|
Hernandez-Anzaldo S, Brglez V, Hemmeryckx B, Leung D, Filep JG, Vance JE, Vance DE, Kassiri Z, Lijnen RH, Lambeau G, Fernandez-Patron C. Novel Role for Matrix Metalloproteinase 9 in Modulation of Cholesterol Metabolism. J Am Heart Assoc 2016; 5:JAHA.116.004228. [PMID: 27694328 PMCID: PMC5121519 DOI: 10.1161/jaha.116.004228] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background The development of atherosclerosis is strongly linked to disorders of cholesterol metabolism. Matrix metalloproteinases (MMPs) are dysregulated in patients and animal models with atherosclerosis. Whether systemic MMP activity influences cholesterol metabolism is unknown. Methods and Results We examined MMP‐9–deficient (Mmp9−/−) mice and found them to have abnormal lipid gene transcriptional responses to dietary cholesterol supplementation. As opposed to Mmp9+/+ (wild‐type) mice, Mmp9−/− mice failed to decrease the hepatic expression of sterol regulatory element binding protein 2 pathway genes, which control hepatic cholesterol biosynthesis and uptake. Furthermore, Mmp9−/− mice failed to increase the expression of genes encoding the rate‐limiting enzymes in biliary cholesterol excretion (eg, Cyp7a and Cyp27a). In contrast, MMP‐9 deficiency did not impair intestinal cholesterol absorption, as shown by the 14C‐cholesterol and 3H‐sitostanol absorption assay. Similar to our earlier study on Mmp2−/− mice, we observed that Mmp9−/− mice had elevated plasma secreted phospholipase A2 activity. Pharmacological inhibition of systemic circulating secreted phospholipase A2 activity (with varespladib) partially normalized the hepatic transcriptional responses to dietary cholesterol in Mmp9−/− mice. Functional studies with mice deficient in other MMPs suggested an important role for the MMP system, as a whole, in modulation of cholesterol metabolism. Conclusions Our results show that MMP‐9 modulates cholesterol metabolism, at least in part, through a novel MMP‐9–plasma secreted phospholipase A2 axis that affects the hepatic transcriptional responses to dietary cholesterol. Furthermore, the data suggest that dysregulation of the MMP system can result in metabolic disorder, which could lead to atherosclerosis and coronary heart disease.
Collapse
Affiliation(s)
- Samuel Hernandez-Anzaldo
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Vesna Brglez
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Côte d'Azur, Nice, France
| | - Bianca Hemmeryckx
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Dickson Leung
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Janos G Filep
- The Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Canada
| | - Jean E Vance
- Department of Medicine, Cardiovascular Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Dennis E Vance
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Roger H Lijnen
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Gérard Lambeau
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Côte d'Azur, Nice, France
| | - Carlos Fernandez-Patron
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Murakami M, Yamamoto K, Miki Y, Murase R, Sato H, Taketomi Y. The Roles of the Secreted Phospholipase A 2 Gene Family in Immunology. Adv Immunol 2016; 132:91-134. [PMID: 27769509 PMCID: PMC7112020 DOI: 10.1016/bs.ai.2016.05.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Within the phospholipase A2 (PLA2) family that hydrolyzes phospholipids to yield fatty acids and lysophospholipids, secreted PLA2 (sPLA2) enzymes comprise the largest group containing 11 isoforms in mammals. Individual sPLA2s exhibit unique tissue or cellular distributions and enzymatic properties, suggesting their distinct biological roles. Although PLA2 enzymes, particularly cytosolic PLA2 (cPLA2α), have long been implicated in inflammation by driving arachidonic acid metabolism, the precise biological roles of sPLA2s have remained a mystery over the last few decades. Recent studies employing mice gene-manipulated for individual sPLA2s, in combination with mass spectrometric lipidomics to identify their target substrates and products in vivo, have revealed their roles in diverse biological events, including immunity and associated disorders, through lipid mediator-dependent or -independent processes in given microenvironments. In this review, we summarize our current knowledge of the roles of sPLA2s in various immune responses and associated diseases.
Collapse
Affiliation(s)
- M Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan.
| | - K Yamamoto
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Y Miki
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - R Murase
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - H Sato
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Y Taketomi
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
16
|
Sato H, Taketomi Y, Murakami M. Metabolic regulation by secreted phospholipase A 2. Inflamm Regen 2016; 36:7. [PMID: 29259680 PMCID: PMC5725825 DOI: 10.1186/s41232-016-0012-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/10/2016] [Indexed: 12/18/2022] Open
Abstract
Within the phospholipase A2 (PLA2) superfamily that hydrolyzes phospholipids to yield fatty acids and lysophospholipids, the secreted PLA2 (sPLA2) enzymes comprise the largest family that contains 11 isoforms in mammals. Individual sPLA2s exhibit unique distributions and specific enzymatic properties, suggesting their distinct biological roles. While sPLA2s have long been implicated in inflammation and atherosclerosis, it has become evident that they are involved in diverse biological events through lipid mediator-dependent or mediator-independent processes in a given microenvironment. In recent years, new biological aspects of sPLA2s have been revealed using their transgenic and knockout mouse models in combination with mass spectrometric lipidomics to unveil their target substrates and products in vivo. In this review, we summarize our current knowledge of the roles of sPLA2s in metabolic disorders including obesity, hepatic steatosis, diabetes, insulin resistance, and adipose tissue inflammation.
Collapse
Affiliation(s)
- Hiroyasu Sato
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 Japan
| | - Yoshitaka Taketomi
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 Japan
| | - Makoto Murakami
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, 100-0004 Japan
| |
Collapse
|
17
|
Dysfunctional High-Density Lipoprotein: An Innovative Target for Proteomics and Lipidomics. CHOLESTEROL 2015; 2015:296417. [PMID: 26634153 PMCID: PMC4655037 DOI: 10.1155/2015/296417] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 10/12/2015] [Accepted: 10/12/2015] [Indexed: 02/02/2023]
Abstract
High-Density Lipoprotein-Cholesterol (HDL-C) is regarded as an important protective factor against cardiovascular disease, with abundant evidence of an inverse relationship between its serum levels and risk of cardiovascular disease, as well as various antiatherogenic, antioxidant, and anti-inflammatory properties. Nevertheless, observations of hereditary syndromes featuring scant HDL-C concentration in absence of premature atherosclerotic disease suggest HDL-C levels may not be the best predictor of cardiovascular disease. Indeed, the beneficial effects of HDL may not depend solely on their concentration, but also on their quality. Distinct subfractions of this lipoprotein appear to be constituted by specific protein-lipid conglomerates necessary for different physiologic and pathophysiologic functions. However, in a chronic inflammatory microenvironment, diverse components of the HDL proteome and lipid core suffer alterations, which propel a shift towards a dysfunctional state, where HDL-C becomes proatherogenic, prooxidant, and proinflammatory. This heterogeneity highlights the need for further specialized molecular studies in this aspect, in order to achieve a better understanding of this dysfunctional state; with an emphasis on the potential role for proteomics and lipidomics as valuable methods in the search of novel therapeutic approaches for cardiovascular disease.
Collapse
|
18
|
Pang Q, Xiong J, Hu XL, He JP, Liu HF, Zhang GY, Li YY, Chen FL. UFM1 Protects Macrophages from oxLDL-Induced Foam Cell Formation Through a Liver X Receptor α Dependent Pathway. J Atheroscler Thromb 2015; 22:1124-40. [PMID: 26040753 DOI: 10.5551/jat.28829] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Macrophage foam cell formation is the most prominent characteristic of the early stages of atherosclerosis. Ubiquitin Fold Modifier 1 (UFM1) is a new member of the ubiquitin-like protein family, and its underlying mechanism of action in macrophage foam cell formation is poorly understood. Our current study focuses on UFM1 and investigates its role in macrophage foam cell formation. METHODS Using real-time quantitative PCR (qRT-PCR) and western blot analysis, we first analyzed the UFM1 expression in mouse peritoneal macrophages (MPMs) from ApoE-/- mice in vivo and in human macrophages treated with oxLDL in vitro. Subsequently, the effects of UFM1 on macrophages foam cell formation were determined by Nile Red staining and direct lipid analysis. We then examined whether UFM1 affects the process of lipid metabolism in macrophages. Lastly, with the method of small interfering RNA (siRNA), we delineated the mechanism of UFM1 to attenuate lipid accumulation in THP-1 macrophages. RESULTS UFM1 is dramatically upregulated under atherosclerosis conditions both in vivo and in vitro. Moreover, UFM1 markedly decreased macrophage foam cell formation. Mechanistic studies revealed that UFM1 increased the macrophage cholesterol efflux, which was due to the increased expression of ATP-binding cassette transporters A1 (ABCA1) and G1 (ABCG1). Furthermore, the upregulation of ABCA1 and ABCG1 by UFM1 resulted from liver X receptor α (LXRα) activation, which was confirmed by the observation that LXRα siRNA prevented the expression of ABCA1 and ABCG1. Consistent with this, the UFM1-mediated attenuation of lipid accumulation was abolished by such inhibition. CONCLUSIONS Taken together, our results showed that UFM1 could suppress foam cell formation via the LXRα-dependent pathway.
Collapse
Affiliation(s)
- Qi Pang
- Department of Endocrinology, Shanghai 3rd People's Hospital, School of Medicine, Shanghai Jiao Tong University
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Tietge UJ. Extracellular Phospholipases. Atherosclerosis 2015. [DOI: 10.1002/9781118828533.ch23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Layne JD, Shridas P, Webb NR. Ectopically expressed pro-group X secretory phospholipase A2 is proteolytically activated in mouse adrenal cells by furin-like proprotein convertases: implications for the regulation of adrenal steroidogenesis. J Biol Chem 2015; 290:7851-60. [PMID: 25623068 DOI: 10.1074/jbc.m114.634667] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Group X secretory phospholipase A2 (GX sPLA2) hydrolyzes mammalian cell membranes, liberating free fatty acids and lysophospholipids. GX sPLA2 is produced as a pro-enzyme (pro-GX sPLA2) that contains an N-terminal 11-amino acid propeptide ending in a dibasic motif, suggesting cleavage by a furin-like proprotein convertase (PC). Although propeptide cleavage is clearly required for enzymatic activity, the protease(s) responsible for pro-GX sPLA2 activation have not been identified. We previously reported that GX sPLA2 negatively regulates adrenal glucocorticoid production, likely by suppressing liver X receptor-mediated activation of steroidogenic acute regulatory protein expression. In this study, using a FLAG epitope-tagged pro-GX sPLA2 expression construct (FLAG-pro-GX sPLA2), we determined that adrenocorticotropic hormone (ACTH) enhanced FLAG-pro-GX sPLA2 processing and phospholipase activity secreted by Y1 adrenal cells. ACTH increased the expression of furin and PCSK6, but not other members of the PC family, in Y1 cells. Overexpression of furin and PCSK6 in HEK 293 cells significantly enhanced FLAG-pro-GX sPLA2 processing, whereas siRNA-mediated knockdown of both PCs almost completely abolished FLAG-pro-GX sPLA2 processing in Y1 cells. Expression of either furin or PCSK6 enhanced the ability of GX sPLA2 to suppress liver X receptor reporter activity. The PC inhibitor decanoyl-Arg-Val-Lys-Arg-chloromethyl ketone significantly suppressed FLAG-pro-GX sPLA2 processing and sPLA2 activity in Y1 cells, and it significantly attenuated GX sPLA2-dependent inhibition of steroidogenic acute regulatory protein expression and progesterone production. These findings provide strong evidence that pro-GX sPLA2 is a substrate for furin and PCSK6 proteolytic processing and define a novel mechanism for regulating corticosteroid production in adrenal cells.
Collapse
Affiliation(s)
- Joseph D Layne
- From the Department of Pharmacology and Nutritional Sciences, Division of Nutritional Sciences, the Saha Cardiovascular Research Center, and
| | - Preetha Shridas
- the Department of Internal Medicine, University of Kentucky Medical Center, Lexington, Kentucky 40536
| | - Nancy R Webb
- the Department of Internal Medicine, University of Kentucky Medical Center, Lexington, Kentucky 40536
| |
Collapse
|
21
|
Shridas P, Zahoor L, Forrest KJ, Layne JD, Webb NR. Group X secretory phospholipase A2 regulates insulin secretion through a cyclooxygenase-2-dependent mechanism. J Biol Chem 2014; 289:27410-7. [PMID: 25122761 DOI: 10.1074/jbc.m114.591735] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Group X secretory phospholipase A2 (GX sPLA2) potently hydrolyzes membrane phospholipids to release arachidonic acid (AA). While AA is an activator of glucose-stimulated insulin secretion (GSIS), its metabolite prostaglandin E2 (PGE2) is a known inhibitor. In this study, we determined that GX sPLA2 is expressed in insulin-producing cells of mouse pancreatic islets and investigated its role in beta cell function. GSIS was measured in vivo in wild-type (WT) and GX sPLA2-deficient (GX KO) mice and ex vivo using pancreatic islets isolated from WT and GX KO mice. GSIS was also assessed in vitro using mouse MIN6 pancreatic beta cells with or without GX sPLA2 overexpression or exogenous addition. GSIS was significantly higher in islets isolated from GX KO mice compared with islets from WT mice. Conversely, GSIS was lower in MIN6 cells overexpressing GX sPLA2 (MIN6-GX) compared with control (MIN6-C) cells. PGE2 production was significantly higher in MIN6-GX cells compared with MIN6-C cells and this was associated with significantly reduced cellular cAMP. The effect of GX sPLA2 on GSIS was abolished when cells were treated with NS398 (a COX-2 inhibitor) or L-798,106 (a PGE2-EP3 receptor antagonist). Consistent with enhanced beta cell function, GX KO mice showed significantly increased plasma insulin levels following glucose challenge and were protected from age-related reductions in GSIS and glucose tolerance compared with WT mice. We conclude that GX sPLA2 plays a previously unrecognized role in negatively regulating pancreatic insulin secretion by augmenting COX-2-dependent PGE2 production.
Collapse
Affiliation(s)
- Preetha Shridas
- From Saha Cardiovascular Research Center and Departments of Internal Medicine and
| | - Lubna Zahoor
- From Saha Cardiovascular Research Center and Departments of Internal Medicine and
| | - Kathy J Forrest
- From Saha Cardiovascular Research Center and Departments of Internal Medicine and
| | - Joseph D Layne
- From Saha Cardiovascular Research Center and Pharmacology and Nutritional Sciences, Division of Nutritional Sciences, University of Kentucky Medical Center, Lexington Kentucky 40536
| | - Nancy R Webb
- From Saha Cardiovascular Research Center and Pharmacology and Nutritional Sciences, Division of Nutritional Sciences, University of Kentucky Medical Center, Lexington Kentucky 40536
| |
Collapse
|
22
|
Yan JQ, Tan CZ, Wu JH, Zhang DC, Chen JL, Zeng BY, Jiang YP, Nie J, Liu W, Liu Q, Dai H. Neopterin negatively regulates expression of ABCA1 and ABCG1 by the LXRα signaling pathway in THP-1 macrophage-derived foam cells. Mol Cell Biochem 2013; 379:123-31. [PMID: 23564066 DOI: 10.1007/s11010-013-1634-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 03/27/2013] [Indexed: 12/15/2022]
Abstract
To investigate the effects of neopterin on ABCA1 expression and cholesterol efflux in human THP-1 macrophage-derived foam cells, and to explore the role of the liver X receptor alpha (LXRα) involved. In the present study, THP-1 cells were pre-incubated with ox-LDL to become foam cells. The protein and mRNA expression were examined by Western blot assays and real-time quantitative PCR, respectively. Liquid scintillation counting and high performance liquid chromatography assays were used to test cellular cholesterol efflux and cholesterol content. Neopterin decreased ABCA1 expression and cholesterol efflux in a time- and concentration-dependent manner in THP-1 macrophage-derived foam cells, and the LXRα siRNA can reverse the inhibitory effects induced by neopterin. Neoterin has a negative regulation on ABCA1 expression via the LXRα signaling pathway, which suggests the aggravated effects of neopterin on atherosclerosis.
Collapse
Affiliation(s)
- Jin-quan Yan
- Affiliated Hospital of Shaoyang Medical College, Shaoyang, Hunan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ait-Oufella H, Herbin O, Lahoute C, Coatrieux C, Loyer X, Joffre J, Laurans L, Ramkhelawon B, Blanc-Brude O, Karabina S, Girard CA, Payré C, Yamamoto K, Binder CJ, Murakami M, Tedgui A, Lambeau G, Mallat Z. Group X Secreted Phospholipase A2 Limits the Development of Atherosclerosis in LDL Receptor–Null Mice. Arterioscler Thromb Vasc Biol 2013; 33:466-73. [DOI: 10.1161/atvbaha.112.300309] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Several secreted phospholipases A2 (sPLA2s), including group IIA, III, V, and X, have been linked to the development of atherosclerosis, which led to the clinical testing of A-002 (varespladib), a broad sPLA2 inhibitor for the treatment of coronary artery disease. Group X sPLA2 (PLA2G10) has the most potent hydrolyzing activity toward phosphatidylcholine and is believed to play a proatherogenic role.
Methods and Results—
Here, we show that
Ldlr
–/–
mice reconstituted with bone marrow from mouse group X–deficient mice (
Pla2g10
–/–
) unexpectedly display a doubling of plaque size compared with
Pla2g10
+/+
chimeric mice. Macrophages of
Pla2g10
–/–
mice are more susceptible to apoptosis in vitro, which is associated with a 4-fold increase of plaque necrotic core in vivo. In addition, chimeric
Pla2g10
–/–
mice show exaggerated T lymphocyte (Th)1 immune response, associated with enhanced T-cell infiltration in atherosclerotic plaques. Interestingly, overexpression of human PLA2G10 in murine bone marrow cells leads to significant reduction of Th1 response and to 50% reduction of lesion size.
Conclusion—
PLA2G10 expression in bone marrow cells controls a proatherogenic Th1 response and limits the development of atherosclerosis. The results may provide an explanation for the recently reported inefficacy of A-002 (varespladib) to treat patients with coronary artery disease. Indeed, A-002 is a nonselective sPLA2 inhibitor that inhibits both proatherogenic (groups IIA and V) and antiatherogenic (group X) sPLA2s. Our results suggest that selective targeting of individual sPLA2 enzymes may be a better strategy to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Hafid Ait-Oufella
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Olivier Herbin
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Charlotte Lahoute
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Christelle Coatrieux
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Xavier Loyer
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Jeremie Joffre
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Ludivine Laurans
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Bhama Ramkhelawon
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Olivier Blanc-Brude
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Sonia Karabina
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Christophe A. Girard
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Christine Payré
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Kei Yamamoto
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Christoph J. Binder
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Makoto Murakami
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Alain Tedgui
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Gérard Lambeau
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| | - Ziad Mallat
- From the Inserm U970, Paris Cardiovascular Research Center, Université René Descartes, Paris, France (H.A.-O., O.H., C.L., X.L., J.J., L.L., B.R., O.B.-B., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Université Pierre et Marie Curie, Paris, France (H.A.-O.); Institute of Molecular and Cellular Pharmacology (IPMC), UMR 7275 CNRS- and Université de Nice-Sophia Antipolis, Valbonne, France (C.C., C.A.G., C.P., G.L.); Inserm UMRS 937, Paris, France (S.K.); Lipid Metabolism
| |
Collapse
|
24
|
Emerging roles of secreted phospholipase A2 enzymes: An update. Biochimie 2013; 95:43-50. [DOI: 10.1016/j.biochi.2012.09.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/11/2012] [Indexed: 01/18/2023]
|
25
|
Iatan I, Palmyre A, Alrasheed S, Ruel I, Genest J. Genetics of cholesterol efflux. Curr Atheroscler Rep 2012; 14:235-46. [PMID: 22528521 DOI: 10.1007/s11883-012-0247-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Plasma levels of high-density lipoprotein cholesterol (HDL-C) show an inverse association with coronary heart disease (CHD). As a biological trait, HDL-C is strongly genetically determined, with a heritability index ranging from 40 % to 60 %. HDL represents an appealing therapeutic target due to its beneficial pleiotropic effects in preventing CHD. This review focuses on the genetic basis of cellular cholesterol efflux, the rate-limiting step in HDL biogenesis. There are several monogenic disorders (e.g., Tangier disease, caused by mutations within ABCA1) affecting HDL biogenesis. Importantly, many disorders of cellular cholesterol homeostasis cause a reduced HDL-C. We integrate information from family studies and linkage analyses with that derived from genome-wide association studies (GWAS) and review the recent identification of micro-RNAs (miRNA) involved in cellular cholesterol metabolism. The identification of genomic pathways related to HDL may help pave the way for novel therapeutic approaches to promote cellular cholesterol efflux as a therapeutic modality to prevent atherosclerosis.
Collapse
Affiliation(s)
- Iulia Iatan
- Cardiovascular Research Laboratories, Division of Cardiology, Department of Biochemistry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Research Advances of Cholesterol Efflux in Atherosclerosis*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G. Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev 2011; 111:6130-85. [PMID: 21910409 PMCID: PMC3196595 DOI: 10.1021/cr200085w] [Citation(s) in RCA: 846] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Edward A. Dennis
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Jian Cao
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Yuan-Hao Hsu
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Victoria Magrioti
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - George Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece
| |
Collapse
|
29
|
Watanabe K, Fujioka D, Saito Y, Nakamura T, Obata JE, Kawabata K, Watanabe Y, Mishina H, Tamaru S, Hanasaki K, Kugiyama K. Group X secretory PLA2 in neutrophils plays a pathogenic role in abdominal aortic aneurysms in mice. Am J Physiol Heart Circ Physiol 2011; 302:H95-104. [PMID: 21984544 DOI: 10.1152/ajpheart.00695.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Group X secretory PLA(2) (sPLA(2)-X) is expressed in neutrophils and plays a role in the pathogenesis of neutrophil-mediated tissue inflammation and injury. This study tested the hypothesis that sPLA(2)-X in neutrophils may contribute to the pathogenesis of abdominal aortic aneurysms (AAA) using sPLA(2)-X(-/-) mice. AAA was created by application of CaCl(2) to external surface of aorta. As a result, the aortas of sPLA(2)-X(-/-) mice had smaller diameters (percent increase from baseline; 24.8 ± 3.5% vs. 49.9 ± 9.1%, respectively; P < 0.01), a reduced grade of elastin degradation, and lower activities of elastase and gelatinase (26% and 19% lower, respectively) after CaCl(2) treatment compared with sPLA(2)-X(+/+) mice. In sPLA(2)-X(+/+) mice, immunofluorescence microscopic images showed that the immunoreactivity of sPLA(2)-X was detected only in neutrophils within aortic walls 3 days, 1, 2, and 6 wk after CaCl(2) treatment, whereas the immunoreactivity was not detected in macrophages or mast cells in aortic walls. sPLA(2)-X immunoreactivity also was colocalized in cells expressing matrix metalloproteinase (MMP)-9. Neutrophils isolated from sPLA(2)-X(-/-) mice had lower activities of elastase, gelatinase, and MMP-9 in response to stimuli compared with sPLA(2)-X(+/+) mice. The attenuated release of elastase and gelatinase from sPLA(2)-X(-/-) neutrophils was reversed by exogenous addition of mouse sPLA(2)-X protein. The adoptive transfer of sPLA(2)-X(+/+) neutrophils days 0 and 3 after CaCl(2) treatment reversed aortic diameters and elastin degradation grades in the lethally irradiated sPLA(2)-X(+/+) mice reconstituted with sPLA(2)-X(-/-) bone marrow to an extent similar to that seen in sPLA(2)-X(+/+) mice. In conclusion, sPLA(2)-X in neutrophils plays a pathogenic role in AAA in a mice model.
Collapse
Affiliation(s)
- Kazuhiro Watanabe
- Department of Internal Medicine II, University of Yamanashi, Chuo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Murakami M, Taketomi Y, Sato H, Yamamoto K. Secreted phospholipase A2 revisited. J Biochem 2011; 150:233-55. [PMID: 21746768 DOI: 10.1093/jb/mvr088] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phospholipase A(2) (PLA(2)) catalyses the hydrolysis of the sn-2 position of glycerophospholipids to yield fatty acids and lysophospholipids. So far, more than 30 enzymes that possess PLA(2) or related activity have been identified in mammals. About one third of these enzymes belong to the secreted PLA(2) (sPLA(2)) family, which comprises low molecular weight, Ca(2+) requiring, secreted enzymes with a His/Asp catalytic dyad. Individual sPLA(2)s display distinct localizations and enzymatic properties, suggesting their specialized biological roles. However, in contrast to intracellular PLA(2)s, whose roles in signal transduction and membrane homoeostasis have been well documented, the biological roles of sPLA(2)s in vivo have remained obscure until recently. Over the past decade, information fuelled by studies employing knockout and transgenic mice as well as specific inhibitors, in combination with lipidomics, has clarified when and where the different sPLA(2) isoforms are expressed, which isoforms are involved in what types of pathophysiology, and how they exhibit their specific functions. In this review, we highlight recent advances in PLA(2) research, focusing mainly on the physiological functions of sPLA(2)s and their modes of action on 'extracellular' phospholipid targets versus lipid mediator production.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | | | | | | |
Collapse
|
31
|
Shridas P, Bailey WM, Talbott KR, Oslund RC, Gelb MH, Webb NR. Group X secretory phospholipase A2 enhances TLR4 signaling in macrophages. THE JOURNAL OF IMMUNOLOGY 2011; 187:482-9. [PMID: 21622863 DOI: 10.4049/jimmunol.1003552] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Secretory phospholipase A(2)s (sPLA(2)) hydrolyze glycerophospholipids to liberate lysophospholipids and free fatty acids. Although group X (GX) sPLA(2) is recognized as the most potent mammalian sPLA(2) in vitro, its precise physiological function(s) remains unclear. We recently reported that GX sPLA(2) suppresses activation of the liver X receptor in macrophages, resulting in reduced expression of liver X receptor-responsive genes including ATP-binding cassette transporters A1 (ABCA1) and G1 (ABCG1), and a consequent decrease in cellular cholesterol efflux and increase in cellular cholesterol content (Shridas et al. 2010. Arterioscler. Thromb. Vasc. Biol. 30: 2014-2021). In this study, we provide evidence that GX sPLA(2) modulates macrophage inflammatory responses by altering cellular cholesterol homeostasis. Transgenic expression or exogenous addition of GX sPLA(2) resulted in a significantly higher induction of TNF-α, IL-6, and cyclooxygenase-2 in J774 macrophage-like cells in response to LPS. This effect required GX sPLA(2) catalytic activity, and was abolished in macrophages that lack either TLR4 or MyD88. The hypersensitivity to LPS in cells overexpressing GX sPLA(2) was reversed when cellular free cholesterol was normalized using cyclodextrin. Consistent with results from gain-of-function studies, peritoneal macrophages from GX sPLA(2)-deficient mice exhibited a significantly dampened response to LPS. Plasma concentrations of inflammatory cytokines were significantly lower in GX sPLA(2)-deficient mice compared with wild-type mice after LPS administration. Thus, GX sPLA(2) amplifies signaling through TLR4 by a mechanism that is dependent on its catalytic activity. Our data indicate this effect is mediated through alterations in plasma membrane free cholesterol and lipid raft content.
Collapse
Affiliation(s)
- Preetha Shridas
- University of Kentucky Medical Center, Lexington, KY 40536, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Yamamoto K, Isogai Y, Sato H, Taketomi Y, Murakami M. Secreted phospholipase A2, lipoprotein hydrolysis, and atherosclerosis: integration with lipidomics. Anal Bioanal Chem 2011; 400:1829-42. [PMID: 21445663 PMCID: PMC3098357 DOI: 10.1007/s00216-011-4864-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 02/14/2011] [Accepted: 03/01/2011] [Indexed: 01/22/2023]
Abstract
Phospholipase A2 (PLA2) is a group of enzymes that hydrolyze the sn-2 position of glycerophospholipids to yield fatty acids and lysophospholipids. Of many PLA2s or related enzymes identified to date, secreted PLA2s (sPLA2s) comprise the largest family that contains 10 catalytically active isozymes. Besides arachidonic acid released from cellular membranes for eicosanoid synthesis, several if not all sPLA2s have recently been implicated in hydrolysis of phospholipids in lipoprotein particles. The sPLA2-processed low-density lipoprotein (LDL) particles contain a large amount of lysophospholipids and exhibit the property of “small-dense” or “modified” LDL, which facilitates foam cell formation from macrophages. Transgenic overexpression of these sPLA2s leads to development of atherosclerosis in mice. More importantly, genetic deletion or pharmacological inhibition of particular sPLA2s significantly attenuates atherosclerosis and aneurysm. In this article, we will give an overview of current understanding of the role of sPLA2s in atherosclerosis, with recent lipidomics data showing the action of a subset of sPLA2s on lipoprotein phospholipids.
Collapse
Affiliation(s)
- Kei Yamamoto
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | | | | | | | | |
Collapse
|
33
|
Murakami M, Sato H, Taketomi Y, Yamamoto K. Integrated lipidomics in the secreted phospholipase A(2) biology. Int J Mol Sci 2011; 12:1474-95. [PMID: 21673902 PMCID: PMC3111613 DOI: 10.3390/ijms12031474] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 02/18/2011] [Accepted: 02/24/2011] [Indexed: 12/22/2022] Open
Abstract
Mammalian genomes encode genes for more than 30 phospholipase A(2)s (PLA(2)s) or related enzymes, which are subdivided into several subgroups based on their structures, catalytic mechanisms, localizations and evolutionary relationships. More than one third of the PLA(2) enzymes belong to the secreted PLA(2) (sPLA(2)) family, which consists of low-molecular-weight, Ca(2+)-requiring extracellular enzymes, with a His-Asp catalytic dyad. Individual sPLA(2) isoforms exhibit unique tissue and cellular localizations and enzymatic properties, suggesting their distinct pathophysiological roles. Recent studies using transgenic and knockout mice for several sPLA(2) isoforms, in combination with lipidomics approaches, have revealed their distinct contributions to various biological events. Herein, we will describe several examples of sPLA(2)-mediated phospholipid metabolism in vivo, as revealed by integrated analysis of sPLA(2) transgenic/knockout mice and lipid mass spectrometry. Knowledge obtained from this approach greatly contributes to expanding our understanding of the sPLA(2) biology and pathophysiology.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; E-Mails: (H.S.); (Y.T.); and (K.Y.)
| | - Hiroyasu Sato
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; E-Mails: (H.S.); (Y.T.); and (K.Y.)
| | - Yoshitaka Taketomi
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; E-Mails: (H.S.); (Y.T.); and (K.Y.)
| | - Kei Yamamoto
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; E-Mails: (H.S.); (Y.T.); and (K.Y.)
| |
Collapse
|
34
|
Yamamoto K, Taketomi Y, Isogai Y, Miki Y, Sato H, Masuda S, Nishito Y, Morioka K, Ishimoto Y, Suzuki N, Yokota Y, Hanasaki K, Ishikawa Y, Ishii T, Kobayashi T, Fukami K, Ikeda K, Nakanishi H, Taguchi R, Murakami M. Hair follicular expression and function of group X secreted phospholipase A2 in mouse skin. J Biol Chem 2011; 286:11616-31. [PMID: 21266583 DOI: 10.1074/jbc.m110.206714] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although perturbed lipid metabolism can often lead to skin abnormality, the role of phospholipase A(2) (PLA(2)) in skin homeostasis is poorly understood. In the present study we found that group X-secreted PLA(2) (sPLA(2)-X) was expressed in the outermost epithelium of hair follicles in synchrony with the anagen phase of hair cycling. Transgenic mice overexpressing sPLA(2)-X (PLA2G10-Tg) displayed alopecia, which was accompanied by hair follicle distortion with reduced expression of genes related to hair development, during a postnatal hair cycle. Additionally, the epidermis and sebaceous glands of PLA2G10-Tg skin were hyperplasic. Proteolytic activation of sPLA(2)-X in PLA2G10-Tg skin was accompanied by preferential hydrolysis of phosphatidylethanolamine species with polyunsaturated fatty acids as well as elevated production of some if not all eicosanoids. Importantly, the skin of Pla2g10-deficient mice had abnormal hair follicles with noticeable reduction in a subset of hair genes, a hypoplasic outer root sheath, a reduced number of melanin granules, and unexpected up-regulation of prostanoid synthesis. Collectively, our study highlights the spatiotemporal expression of sPLA(2)-X in hair follicles, the presence of skin-specific machinery leading to sPLA(2)-X activation, a functional link of sPLA(2)-X with hair follicle homeostasis, and compartmentalization of the prostanoid pathway in hair follicles and epidermis.
Collapse
Affiliation(s)
- Kei Yamamoto
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Murakami M, Taketomi Y, Miki Y, Sato H, Hirabayashi T, Yamamoto K. Recent progress in phospholipase A₂ research: from cells to animals to humans. Prog Lipid Res 2010; 50:152-92. [PMID: 21185866 DOI: 10.1016/j.plipres.2010.12.001] [Citation(s) in RCA: 368] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammalian genomes encode genes for more than 30 phospholipase A₂s (PLA₂s) or related enzymes, which are subdivided into several classes including low-molecular-weight secreted PLA₂s (sPLA₂s), Ca²+-dependent cytosolic PLA₂s (cPLA₂s), Ca²+-independent PLA₂s (iPLA₂s), platelet-activating factor acetylhydrolases (PAF-AHs), lysosomal PLA₂s, and a recently identified adipose-specific PLA. Of these, the intracellular cPLA₂ and iPLA₂ families and the extracellular sPLA₂ family are recognized as the "big three". From a general viewpoint, cPLA₂α (the prototypic cPLA₂ plays a major role in the initiation of arachidonic acid metabolism, the iPLA₂ family contributes to membrane homeostasis and energy metabolism, and the sPLA₂ family affects various biological events by modulating the extracellular phospholipid milieus. The cPLA₂ family evolved along with eicosanoid receptors when vertebrates first appeared, whereas the diverse branching of the iPLA₂ and sPLA₂ families during earlier eukaryote development suggests that they play fundamental roles in life-related processes. During the past decade, data concerning the unexplored roles of various PLA₂ enzymes in pathophysiology have emerged on the basis of studies using knockout and transgenic mice, the use of specific inhibitors, and information obtained from analysis of human diseases caused by mutations in PLA₂ genes. This review focuses on current understanding of the emerging biological functions of PLA₂s and related enzymes.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | | | | | | | | | | |
Collapse
|