1
|
Otaka N, Uchida HA, Okuyama M, Hada Y, Onishi Y, Kakio Y, Takeuchi H, Umebayashi R, Tanabe K, Subramanian V, Daugherty A, Sato Y, Wada J. Vasohibin-2 Aggravates Development of Ascending Aortic Aneurysms but not Abdominal Aortic Aneurysms nor Atherosclerosis in ApoE-Deficient Mice. Am J Hypertens 2021; 34:467-475. [PMID: 33180898 DOI: 10.1093/ajh/hpaa181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/18/2020] [Accepted: 11/09/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Vasohibin-2 (VASH2) has been isolated as a homologue of vasohibin-1 (VASH1) that promotes angiogenesis counteracting with VASH1. Chronic angiotensin II (AngII) infusion promotes both ascending and abdominal aortic aneurysms (AAs) in mice. The present study aimed to investigate whether exogenous VASH2 influenced AngII-induced vascular pathology in apolipoprotein E-deficient (ApoE-/-) mice. METHODS Male, ApoE-/- mice (9-14 weeks old) were injected with Ad LacZ or Ad VASH2. After a week, saline or AngII (1,000 ng/kg/minute) was infused into the mice subcutaneously via mini-osmotic pumps for 3 weeks. Consequently, all these mice were divided into 4 groups: saline + LacZ (n = 5), saline + VASH2 (n = 5), AngII + LacZ (n = 18), and AngII + VASH2 (n = 17). RESULTS Exogenous VASH2 had no significant effect on ex vivo maximal diameters of abdominal aortas (AngII + LacZ: 1.67 ± 0.17 mm, AngII + VASH2: 1.52 ± 0.16 mm, n.s.) or elastin fragmentation and accumulation of inflammatory cells. Conversely, exogenous VASH2 significantly increased intima areas of aortic arches (AngII + LacZ: 16.6 ± 0.27 mm2, AngII + VASH2: 18.6 ± 0.64 mm2, P = 0.006). VASH2 effect of AngII-induced ascending AAs was associated with increased cleaved caspase-3 abundance. AngII-induced atherosclerosis was not altered by VASH2. CONCLUSIONS The present study demonstrated that augmented VASH2 expression had no effect of AngII-induced abdominal AAs or atherosclerosis, while increasing dilation in the ascending aorta.
Collapse
Affiliation(s)
- Nozomu Otaka
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Haruhito A Uchida
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Michihiro Okuyama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Yoshiko Hada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuhiro Onishi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuki Kakio
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hidemi Takeuchi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ryoko Umebayashi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Katsuyuki Tanabe
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Venkateswaran Subramanian
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Alan Daugherty
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
2
|
Ren J, Zhou T, Pilli VSS, Phan N, Wang Q, Gupta K, Liu Z, Sheibani N, Liu B. Novel Paracrine Functions of Smooth Muscle Cells in Supporting Endothelial Regeneration Following Arterial Injury. Circ Res 2020; 124:1253-1265. [PMID: 30739581 DOI: 10.1161/circresaha.118.314567] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Regeneration of denuded or injured endothelium is an important component of vascular injury response. Cell-cell communication between endothelial cells and smooth muscle cells (SMCs) plays a critical role not only in vascular homeostasis but also in disease. We have previously demonstrated that PKCδ (protein kinase C-delta) regulates multiple components of vascular injury response including apoptosis of SMCs and production of chemokines, thus is an attractive candidate for a role in SMC-endothelial cells communication. OBJECTIVE To test whether PKCδ-mediated paracrine functions of SMCs influence reendothelialization in rodent models of arterial injury. METHODS AND RESULTS Femoral artery wire injury was performed in SMC-conditional Prkcd knockout mice, and carotid angioplasty was conducted in rats receiving transient Prkcd knockdown or overexpression. SMC-specific knockout of Prkcd impaired reendothelialization, reflected by a smaller Evans blue-excluding area in the knockout compared with the wild-type controls. A similar impediment to reendothelialization was observed in rats with SMC-specific knockdown of Prkcd. In contrast, SMC-specific gene transfer of Prkcd accelerated reendothelialization. In vitro, medium conditioned by AdPKCδ-infected SMCs increased endothelial wound closure without affecting their proliferation. A polymerase chain reaction-based array analysis identified Cxcl1 and Cxcl7 among others as PKCδ-mediated chemokines produced by SMCs. Mechanistically, we postulated that PKCδ regulates Cxcl7 expression through STAT3 (signal transducer and activator of transcription 3) as knockdown of STAT3 abolished Cxcl7 expression. The role of CXCL7 in SMC-endothelial cells communication was demonstrated by blocking CXCL7 or its receptor CXCR2, both significantly inhibited endothelial wound closure. Furthermore, insertion of a Cxcl7 cDNA in the lentiviral vector that carries a Prkcd shRNA overcame the adverse effects of Prkcd knockdown on reendothelialization. CONCLUSIONS SMCs promote reendothelialization in a PKCδ-dependent paracrine mechanism, likely through CXCL7-mediated recruitment of endothelial cells from uninjured endothelium.
Collapse
Affiliation(s)
- Jun Ren
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| | - Ting Zhou
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| | - Vijaya Satish Sekhar Pilli
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| | - Noel Phan
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| | - Qiwei Wang
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| | - Kartik Gupta
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| | - Zhenjie Liu
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.).,Department of Vascular Surgery, 2nd Affiliated Hospital School of Medicine, Zhejiang University (Z.L.)
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison (N.S.)
| | - Bo Liu
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| |
Collapse
|
3
|
Bowler E, Oltean S. Alternative Splicing in Angiogenesis. Int J Mol Sci 2019; 20:E2067. [PMID: 31027366 PMCID: PMC6540211 DOI: 10.3390/ijms20092067] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
Alternative splicing of pre-mRNA allows the generation of multiple splice isoforms from a given gene, which can have distinct functions. In fact, splice isoforms can have opposing functions and there are many instances whereby a splice isoform acts as an inhibitor of canonical isoform function, thereby adding an additional layer of regulation to important processes. Angiogenesis is an important process that is governed by alternative splicing mechanisms. This review focuses on the alternative spliced isoforms of key genes that are involved in the angiogenesis process; VEGF-A, VEGFR1, VEGFR2, NRP-1, FGFRs, Vasohibin-1, Vasohibin-2, HIF-1α, Angiopoietin-1 and Angiopoietin-2.
Collapse
Affiliation(s)
- Elizabeth Bowler
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Exeter EX4 4PY, UK.
| | - Sebastian Oltean
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Exeter EX4 4PY, UK.
| |
Collapse
|
4
|
Bayesian Semiparametric Model for Pathway-Based Analysis with Zero-Inflated Clinical Outcomes. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS 2016. [DOI: 10.1007/s13253-016-0264-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Ringvold HC, Khalil RA. Protein Kinase C as Regulator of Vascular Smooth Muscle Function and Potential Target in Vascular Disorders. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:203-301. [PMID: 28212798 PMCID: PMC5319769 DOI: 10.1016/bs.apha.2016.06.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vascular smooth muscle (VSM) plays an important role in maintaining vascular tone. In addition to Ca2+-dependent myosin light chain (MLC) phosphorylation, protein kinase C (PKC) is a major regulator of VSM function. PKC is a family of conventional Ca2+-dependent α, β, and γ, novel Ca2+-independent δ, ɛ, θ, and η, and atypical ξ, and ι/λ isoforms. Inactive PKC is mainly cytosolic, and upon activation it undergoes phosphorylation, maturation, and translocation to the surface membrane, the nucleus, endoplasmic reticulum, and other cell organelles; a process facilitated by scaffold proteins such as RACKs. Activated PKC phosphorylates different substrates including ion channels, pumps, and nuclear proteins. PKC also phosphorylates CPI-17 leading to inhibition of MLC phosphatase, increased MLC phosphorylation, and enhanced VSM contraction. PKC could also initiate a cascade of protein kinases leading to phosphorylation of the actin-binding proteins calponin and caldesmon, increased actin-myosin interaction, and VSM contraction. Increased PKC activity has been associated with vascular disorders including ischemia-reperfusion injury, coronary artery disease, hypertension, and diabetic vasculopathy. PKC inhibitors could test the role of PKC in different systems and could reduce PKC hyperactivity in vascular disorders. First-generation PKC inhibitors such as staurosporine and chelerythrine are not very specific. Isoform-specific PKC inhibitors such as ruboxistaurin have been tested in clinical trials. Target delivery of PKC pseudosubstrate inhibitory peptides and PKC siRNA may be useful in localized vascular disease. Further studies of PKC and its role in VSM should help design isoform-specific PKC modulators that are experimentally potent and clinically safe to target PKC in vascular disease.
Collapse
Affiliation(s)
- H C Ringvold
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - R A Khalil
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
6
|
Distinctive roles of PKC delta isozyme in platelet function. Curr Res Transl Med 2016; 64:135-139. [PMID: 27765273 DOI: 10.1016/j.retram.2016.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/15/2016] [Accepted: 05/20/2016] [Indexed: 12/15/2022]
Abstract
Platelet activation is a complex balance of positive and negative signaling pathways. Several protein kinase C (PKC) isoforms are expressed in human platelets. They are a major regulator of platelet granule secretion, activation and aggregation activity. One of those isoforms is the PKCδ isozyme, it has a central yet complex role in platelets such as opposite signaling functions depending on the nature of the agonist, it concentration and pathway. In fact, it has been shown that PKCδ has an overall negative influence on platelet function in response to collagen, while, following PAR stimulation, PKCδ has a positive effect on platelet function. Understanding the crucial role of PKCδ in platelet functions is recently emerging in the literature, therefore, further investigations should shed light into its specific role in hemostasis. In this review, we focus on the different roles of PKCδ in platelet activation, aggregation and thrombus formation.
Collapse
|
7
|
Malavez Y, Voss OH, Gonzalez-Mejia ME, Parihar A, Doseff AI. Distinct contribution of protein kinase Cδ and protein kinase Cε in the lifespan and immune response of human blood monocyte subpopulations. Immunology 2015; 144:611-20. [PMID: 25322815 DOI: 10.1111/imm.12412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 02/06/2023] Open
Abstract
Monocytes, key components of the immune system, are a heterogeneous population comprised of classical monocytes (CD16(-) ) and non-classical monocytes (CD16(+) ). Monocytes are short lived and undergo spontaneous apoptosis, unless stimulated. Dysregulation of monocyte numbers contribute to the pathophysiology of inflammatory diseases, yet the contribution of each subset remains poorly characterized. Protein kinase C (PKC) family members are central to monocyte biology; however, their role in regulating lifespan and immune function of CD16(-) and CD16(+) monocytes has not been studied. Here, we evaluated the contribution of PKCδ and PKCε in the lifespan and immune response of both monocyte subsets. We showed that CD16(+) monocytes are more susceptible to spontaneous apoptosis because of the increased caspase-3, -8 and -9 activities accompanied by higher kinase activity of PKCδ. Silencing of PKCδ reduced apoptosis in both CD16(+) and CD16(-) monocytes. CD16(+) monocytes express significantly higher levels of PKCε and produce more tumour necrosis factor-α in CD16(+) compared with CD16(-) monocytes. Silencing of PKCε affected the survival and tumour necrosis factor-α production. These findings demonstrate a complex network with similar topography, yet unique regulatory characteristics controlling lifespan and immune response in each monocyte subset, helping define subset-specific coordination programmes controlling monocyte function.
Collapse
Affiliation(s)
- Yadira Malavez
- Department of Molecular Genetics, Department of Internal Medicine, Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
8
|
Shaifta Y, Snetkov VA, Prieto-Lloret J, Knock GA, Smirnov SV, Aaronson PI, Ward JPT. Sphingosylphosphorylcholine potentiates vasoreactivity and voltage-gated Ca2+ entry via NOX1 and reactive oxygen species. Cardiovasc Res 2015; 106:121-30. [PMID: 25661082 PMCID: PMC4362402 DOI: 10.1093/cvr/cvv029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aims Sphingosylphosphorylcholine (SPC) elicits vasoconstriction at micromolar concentrations. At lower concentrations (≤1 µmol/L), however, it does not constrict intrapulmonary arteries (IPAs), but strongly potentiates vasoreactivity. Our aim was to determine whether this also occurs in a systemic artery and to delineate the signalling pathway. Methods and results Rat mesenteric arteries and IPAs mounted on a myograph were challenged with ∼25 mmol/L [K+] to induce a small vasoconstriction. SPC (1 µmol/L) dramatically potentiated this constriction in all arteries by ∼400%. The potentiation was greatly suppressed or abolished by inhibition of phospholipase C (PLC; U73122), PKCε (inhibitory peptide), Src (PP2), and NADPH oxidase (VAS2870), and also by Tempol (superoxide scavenger), but not by inhibition of Rho kinase (Y27632). Potentiation was lost in mesenteric arteries from p47phox–/–, but not NOX2−/–, mice. The intracellular superoxide generator LY83583 mimicked the effect of SPC. SPC elevated reactive oxygen species (ROS) in vascular smooth muscle cells, and this was blocked by PP2, VAS2870, and siRNA knockdown of PKCε. SPC (1 µmol/L) significantly reduced the EC50 for U46619-induced vasoconstriction, an action ablated by Tempol. In patch-clamped mesenteric artery cells, SPC (200 nmol/L) enhanced Ba2+ current through L-type Ca2+ channels, an action abolished by Tempol but mimicked by LY83583. Conclusion Our results suggest that low concentrations of SPC activate a PLC-coupled and NOX1-mediated increase in ROS, with consequent enhancement of voltage-gated Ca2+ entry and thus vasoreactivity. We speculate that this pathway is not specific for SPC, but may also contribute to vasoconstriction elicited by other G-protein coupled receptor and PLC-coupled agonists.
Collapse
Affiliation(s)
- Yasin Shaifta
- Division of Asthma, Allergy, and Lung Biology, King's College London, 5th Floor Tower Wing, Guy's Campus, London SE1 9RT, UK
| | - Vladimir A Snetkov
- Division of Asthma, Allergy, and Lung Biology, King's College London, 5th Floor Tower Wing, Guy's Campus, London SE1 9RT, UK
| | - Jesus Prieto-Lloret
- Division of Asthma, Allergy, and Lung Biology, King's College London, 5th Floor Tower Wing, Guy's Campus, London SE1 9RT, UK
| | - Greg A Knock
- Division of Asthma, Allergy, and Lung Biology, King's College London, 5th Floor Tower Wing, Guy's Campus, London SE1 9RT, UK
| | - Sergey V Smirnov
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Philip I Aaronson
- Division of Asthma, Allergy, and Lung Biology, King's College London, 5th Floor Tower Wing, Guy's Campus, London SE1 9RT, UK
| | - Jeremy P T Ward
- Division of Asthma, Allergy, and Lung Biology, King's College London, 5th Floor Tower Wing, Guy's Campus, London SE1 9RT, UK
| |
Collapse
|
9
|
Redundant role of protein kinase C delta and epsilon during mouse embryonic development. PLoS One 2014; 9:e103686. [PMID: 25084151 PMCID: PMC4118884 DOI: 10.1371/journal.pone.0103686] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 07/07/2014] [Indexed: 01/28/2023] Open
Abstract
Protein Kinase C delta and epsilon are mediators of important cellular events, such as cell proliferation, migration or apoptosis. The formation of blood vessels, i.e., vasculo- and angiogenesis, is a process where these isoforms have also been shown to participate. However, mice deficient in either Protein Kinase C delta or epsilon are viable and therefore their individual contribution to the formation of the vasculature appeared so far dispensable. In this study, we show that double null mutation of Protein Kinase C delta and epsilon causes embryonic lethality at approximately E9.5. At this stage, whole mount staining of the endothelial marker CD31 in double null embryos revealed defective blood vessel formation. Moreover, culture of double deficient mouse allantois showed impaired endothelial cell organization, and analyses of double deficient embryo sections showed dilated vessels, decreased endothelial-specific adherent junctions, and decreased contact of endothelial cells with mural cells. Protein kinase C delta and epsilon also appeared essential for vascular smooth muscle cell differentiation, since α-smooth muscle actin, a classical marker for vascular smooth muscle cells, was almost undetectable in double deficient embryonic aorta at E9.5. Subsequent qPCR analyses showed decreased VE-cadherin, Vegfr2, Cd31, Cdh2, Ets1, and Fli-1, among other angiogenesis related transcripts in double deficient embryos. Taken together, these data suggest for the first time an in vivo redundant role between members of the novel Protein Kinase C subfamily that allows for mutual compensation during mouse embryonic development, with vasculogenesis/angiogenesis as an obvious common function of these two Protein Kinase Cs. Protein Kinase C delta and epsilon might therefore be useful targets for inhibiting vasculo- and/or angiogenesis.
Collapse
|
10
|
Zhang JM, Wang Y, Miao YJ, Zhang Y, Wu YN, Jia LX, Qi YF, Du J. Knockout of CD8 delays reendothelialization and accelerates neointima formation in injured arteries of mouse via TNF-α inhibiting the endothelial cells migration. PLoS One 2013; 8:e62001. [PMID: 23658704 PMCID: PMC3642119 DOI: 10.1371/journal.pone.0062001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/17/2013] [Indexed: 01/26/2023] Open
Abstract
Objective Delayed or impaired reendothelialization is a major cause of stent thrombosis in the interventional treatment of coronary heart disease. T cells are involved in neointima formation of injured arteries. However, the regulated mechanism of reendothelialization and the role of CD8 T cell in reendothelialization are unclear. Methods and Results Immunofluorescence staining showed that CD8 positive cells were increased in wire injured femoral artery of mice. On day 21 after injury, elastin staining showed that knockout of CD8 (CD8−/−) significantly increased intimal thickness and a ratio of intima to media by 1.8 folds and 1.9 folds respectively in injured arteries. Evans blue staining showed that knockout of CD8 delayed the reendothelialization area on day 7 after injury (18.8±0.5% versus 42.1±5.6%, p<0.05). In vitro, a migration assay revealed that CD8−/− T cells co-cultured with WT macrophages significantly inhibited the migration of the endothelial cells (ECs); compared to CD4+ T cells, and CD8+ T cells could promote the ECs migration. Furthermore, real-time PCR analysis showed that knockout of CD8 increased the level of tumor necrosis factor α (TNF-α) in injured arteries and cytometric bead cytokine array showed that TNF-α was elevated in cultured CD8−/− T cells. Finally, a wound-healing assay showed that recombinant TNF-α significantly inhibited the migration of ECs. Conclusion Our study suggested that CD8+ T cells could promote the reendothelialization and inhibit the neointima formation after the artery wire injury, and this effect is at least partly dependent on decreasing TNF-α production promoting ECs migration.
Collapse
Affiliation(s)
- Jun-Meng Zhang
- Beijing An Zhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Ying Wang
- Beijing An Zhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Yan-Ju Miao
- Beijing An Zhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Yi Zhang
- Beijing An Zhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Yi-Na Wu
- Beijing An Zhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Li-Xin Jia
- Beijing An Zhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Yong-Fen Qi
- Beijing An Zhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Jie Du
- Beijing An Zhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- * E-mail:
| |
Collapse
|
11
|
Abstract
Angiogenesis, a formation of neovessels, is regulated by the local balance between angiogenesis stimulators and inhibitors. A number of such endogenous regulators of angiogenesis have been found in the body. Recently, vasohibin-1 (VASH1) was isolated as a negative feedback regulator of angiogenesis produced by endothelial cells (ECs) and subsequently vasohibin-2 (VASH2) as a homologue of VASH1. It was then explored that VASH1 is expressed in ECs to terminate angiogenesis, whereas VASH2 is expressed in cells other than ECs to promote angiogenesis in the mouse model of angiogenesis. This review will focus on the vasohibin family members, which are novel regulators of angiogenesis.
Collapse
Affiliation(s)
- Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Sendai 980-8575, Japan.
| |
Collapse
|
12
|
Yang F, Cai W, Yang K, Chen M. PKCδ knockdown inhibits free fatty acid induction of endothelial cell apoptosis. Cell Biochem Funct 2012; 31:380-4. [PMID: 23086745 DOI: 10.1002/cbf.2908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/16/2012] [Accepted: 09/10/2012] [Indexed: 11/11/2022]
Abstract
The mechanisms whereby free fatty acids induce endothelial cell apoptosis are not yet understood. The present study aimed to investigate the role of PKCδ in free fatty acid-induced endothelial cell apoptosis. In addition, we looked for evidence of apoptosis-related interactions between PKCδ and Fas signal pathway. Human umbilical vein endothelial cells were treated with various concentrations of free fatty acids and transiently transfected with PKCδ siRNA or Fas siRNA to inhibit PKCδ or Fas expression. Cell proliferation was determined through colorimetric assays, and apoptosis was quantified using flow cytometry. Protein expression was determined from cell lysates using Western blots with antibodies against p-PKCδTyr512, PKCδ, and Fas. Statistical analyses were performed. Free fatty acids had multiple effects on human umbilical vein endothelial cells, including concentration-dependent inhibition of cell proliferation, induction of apoptosis, increased Fas expression, and increased PKCδ expression and phosphorylation. Inhibition of PKCδ mRNA expression by PKCδ siRNA led to a reduction in both free fatty acid-induced apoptosis and Fas expression. However, Fas siRNA treatment inhibited Fas, but not PKCδ, expression in human umbilical vein endothelial cells. The free fatty acid-induced apoptosis in endothelial cells are possibly mediated by PKCδ and may involve upregulation of its downstream Fas.
Collapse
Affiliation(s)
- Feiyan Yang
- Department of Cardiology, The Central Hospital of Wuhan, Wuhan, Hubei Province, China, 430014
| | | | | | | |
Collapse
|
13
|
Bechler SL, Si Y, Yu Y, Ren J, Liu B, Lynn DM. Reduction of intimal hyperplasia in injured rat arteries promoted by catheter balloons coated with polyelectrolyte multilayers that contain plasmid DNA encoding PKCδ. Biomaterials 2012; 34:226-36. [PMID: 23069712 DOI: 10.1016/j.biomaterials.2012.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 09/04/2012] [Indexed: 10/27/2022]
Abstract
New therapeutic approaches that eliminate or reduce the occurrence of intimal hyperplasia following balloon angioplasty could improve the efficacy of vascular interventions and improve the quality of life of patients suffering from vascular diseases. Here, we report that treatment of arteries using catheter balloons coated with thin polyelectrolyte-based films ('polyelectrolyte multilayers', PEMs) can substantially reduce intimal hyperplasia in an in vivo rat model of vascular injury. We used a layer-by-layer (LbL) process to coat the surfaces of inflatable catheter balloons with PEMs composed of nanolayers of a cationic poly(β-amino ester) (polymer 1) and plasmid DNA (pPKCδ) encoding the δ isoform of protein kinase C (PKCδ), a regulator of apoptosis and other cell processes that has been demonstrated to reduce intimal hyperplasia in injured arterial tissue when administered via perfusion using viral vectors. Insertion of balloons coated with polymer 1/pPKCδ multilayers into injured arteries for 20 min resulted in local transfer of DNA and elevated levels of PKCδ expression in the media of treated tissue three days after delivery. IFC and IHC analysis revealed these levels of expression to promote downstream cellular processes associated with up-regulation of apoptosis. Analysis of arterial tissue 14 days after treatment revealed polymer 1/pPKCδ-coated balloons to reduce the occurrence of intimal hyperplasia by ~60% compared to balloons coated with films containing empty plasmid vectors. Our results demonstrate the potential therapeutic value of this nanotechnology-based approach to local gene delivery in the clinically important context of balloon-mediated vascular interventions. These PEM-based methods could also prove useful for other in vivo applications that require short-term, surface-mediated transfer of plasmid DNA.
Collapse
Affiliation(s)
- Shane L Bechler
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
14
|
Douglas G, Van Kampen E, Hale AB, McNeill E, Patel J, Crabtree MJ, Ali Z, Hoerr RA, Alp NJ, Channon KM. Endothelial cell repopulation after stenting determines in-stent neointima formation: effects of bare-metal vs. drug-eluting stents and genetic endothelial cell modification. Eur Heart J 2012; 34:3378-88. [PMID: 23008511 PMCID: PMC3827553 DOI: 10.1093/eurheartj/ehs240] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Aims Understanding endothelial cell repopulation post-stenting and how this modulates in-stent restenosis is critical to improving arterial healing post-stenting. We used a novel murine stent model to investigate endothelial cell repopulation post-stenting, comparing the response of drug-eluting stents with a primary genetic modification to improve endothelial cell function. Methods and results Endothelial cell repopulation was assessed en face in stented arteries in ApoE−/− mice with endothelial-specific LacZ expression. Stent deployment resulted in near-complete denudation of endothelium, but was followed by endothelial cell repopulation, by cells originating from both bone marrow-derived endothelial progenitor cells and from the adjacent vasculature. Paclitaxel-eluting stents reduced neointima formation (0.423 ± 0.065 vs. 0.240 ± 0.040 mm2, P = 0.038), but decreased endothelial cell repopulation (238 ± 17 vs. 154 ± 22 nuclei/mm2, P = 0.018), despite complete strut coverage. To test the effects of selectively improving endothelial cell function, we used transgenic mice with endothelial-specific overexpression of GTP-cyclohydrolase 1 (GCH-Tg) as a model of enhanced endothelial cell function and increased NO production. GCH-Tg ApoE−/− mice had less neointima formation compared with ApoE−/− littermates (0.52 ± 0.08 vs. 0.26 ± 0.09 mm2, P = 0.039). In contrast to paclitaxel-eluting stents, reduced neointima formation in GCH-Tg mice was accompanied by increased endothelial cell coverage (156 ± 17 vs. 209 ± 23 nuclei/mm2, P = 0.043). Conclusion Drug-eluting stents reduce not only neointima formation but also endothelial cell repopulation, independent of strut coverage. In contrast, selective targeting of endothelial cell function is sufficient to improve endothelial cell repopulation and reduce neointima formation. Targeting endothelial cell function is a rational therapeutic strategy to improve vascular healing and decrease neointima formation after stenting.
Collapse
Affiliation(s)
- Gillian Douglas
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chichger H, Grinnell KL, Casserly B, Chung CS, Braza J, Lomas-Neira J, Ayala A, Rounds S, Klinger JR, Harrington EO. Genetic disruption of protein kinase Cδ reduces endotoxin-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2012; 303:L880-8. [PMID: 22983354 DOI: 10.1152/ajplung.00169.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The pathogenesis of acute lung injury and acute respiratory distress syndrome is characterized by sequestration of leukocytes in lung tissue, disruption of capillary integrity, and pulmonary edema. PKCδ plays a critical role in RhoA-mediated endothelial barrier function and inflammatory responses. We used mice with genetic deletion of PKCδ (PKCδ(-/-)) to assess the role of PKCδ in susceptibility to LPS-induced lung injury and pulmonary edema. Under baseline conditions or in settings of increased capillary hydrostatic pressures, no differences were noted in the filtration coefficients (k(f)) or wet-to-dry weight ratios between PKCδ(+/+) and PKCδ(-/-) mice. However, at 24 h after exposure to LPS, the k(f) values were significantly higher in lungs isolated from PKCδ(+/+) than PKCδ(-/-) mice. In addition, bronchoalveolar lavage fluid obtained from LPS-exposed PKCδ(+/+) mice displayed increased protein and cell content compared with LPS-exposed PKCδ(-/-) mice, but similar changes in inflammatory cytokines were measured. Histology indicated elevated LPS-induced cellularity and inflammation within PKCδ(+/+) mouse lung parenchyma relative to PKCδ(-/-) mouse lungs. Transient overexpression of catalytically inactive PKCδ cDNA in the endothelium significantly attenuated LPS-induced endothelial barrier dysfunction in vitro and increased k(f) lung values in PKCδ(+/+) mice. However, transient overexpression of wild-type PKCδ cDNA in PKCδ(-/-) mouse lung vasculature did not alter the protective effects of PKCδ deficiency against LPS-induced acute lung injury. We conclude that PKCδ plays a role in the pathological progression of endotoxin-induced lung injury, likely mediated through modulation of inflammatory signaling and pulmonary vascular barrier function.
Collapse
Affiliation(s)
- Havovi Chichger
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island 02908, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lin CS, Lin FY, Ho LJ, Tsai CS, Cheng SM, Wu WL, Huang CY, Lian CH, Yang SP, Lai JH. PKCδ signalling regulates SR-A and CD36 expression and foam cell formation. Cardiovasc Res 2012; 95:346-55. [PMID: 22687273 DOI: 10.1093/cvr/cvs189] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AIMS The formation of foam cells is crucial in the initiation and progression of atherosclerosis. One of the critical steps in foam cell formation is the uptake of low-density lipoprotein (LDL) by macrophages via scavenger receptors (SRs). This study examined the role of protein kinase C (PKC) isoforms on foam cell formation. METHODS AND RESULTS The effects of short-hairpin RNA (shRNA) and small interfering RNA (siRNA) against classical PKC and novel PKC isoforms were investigated in THP-1-derived macrophages and primary macrophages. The knockdown of PKCδ inhibited oxidized LDL (OxLDL) uptake and intracellular cholesterol accumulation in both cell models. The reduction of PKCδ resulted in decreased expression of SR-A and CD36. Similar conclusions were obtained in examining the effects of a PKCδ inhibitor, rottlerin. Molecular investigation revealed that a decrease in PKCδ inhibited protein kinase B (PKB/Akt) expression and extracellular-signal-regulated kinase (ERK) phosphorylation. Surprisingly, PKCδ-knockdown selectively decreased protein but not the mRNA level of PKCβI and PKCβII. We showed that the inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt upstream of ERK decreased SR-A and CD36 expression; however, the inhibition of ERK or PKCβ downstream of ERK attenuated SR-A but not CD36 expression. We further demonstrated that PKCδ could be induced by pro-atherogenic mediators, OxLDL and interferon-γ. Notably, PKCδ, phosphorylated ERK, Akt, and SR-A were highly expressed in human atherosclerotic arteries and CD68-positive macrophages as visualized by immunohistochemical staining. CONCLUSION Through regulating PI3K/Akt and ERK activity, PKCδ affects SR-A and CD36 expression and foam cell formation. The results suggest PKCδ as a potential target for atherosclerosis therapeutics.
Collapse
Affiliation(s)
- Chin-Sheng Lin
- Graduate Institute of Medical Science, National Defense Medical Center, No. 161 Sec. 6 Minquan E. Rd., Neihu, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gan X, Wang J, Wang C, Sommer E, Kozasa T, Srinivasula S, Alessi D, Offermanns S, Simon MI, Wu D. PRR5L degradation promotes mTORC2-mediated PKC-δ phosphorylation and cell migration downstream of Gα12. Nat Cell Biol 2012; 14:686-96. [PMID: 22609986 PMCID: PMC3389271 DOI: 10.1038/ncb2507] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/18/2012] [Indexed: 12/17/2022]
Abstract
Mammalian target of rapamycin complex (MTORC) 2 phosphorylates AGC protein kinases including PKC and regulates cellular functions including cell migration. However, its regulation remains poorly understood. Here we show that LPA induces two phases of PKCδ hydrophobic motif (HM) phosphorylation. The late phase is mediated by Gα12, which specifically activates ARAF, leading to upregulation of the expression of an E3 ubiquitin ligase RFFL and subsequent ubiquitination and degradation of PRR5L. Destabilization of PRR5L, a suppressor of mTORC2-mediated HM phosphorylation of PKCδ, but not AKT, results in PKCδ HM phosphorylation and activation. This Gα12-mediated pathway is critically important for fibroblast migration and pulmonary fibrosis development. Thus, our study unravels a signaling pathway for mTORC2 regulation and fibroblast migration.
Collapse
Affiliation(s)
- Xiaoqing Gan
- Department of Pharmacology and Program in Vascular Biology and Therapeutics, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lengfeld J, Wang Q, Zohlman A, Salvarezza S, Morgan S, Ren J, Kato K, Rodriguez-Boulan E, Liu B. Protein kinase C δ regulates the release of collagen type I from vascular smooth muscle cells via regulation of Cdc42. Mol Biol Cell 2012; 23:1955-63. [PMID: 22456512 PMCID: PMC3350558 DOI: 10.1091/mbc.e11-06-0531] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Both gene knockout and chemical inhibition show that PKCδ is critical for efficient secretion of type I collagen by arterial smooth muscle cells. The data suggest that PKCδ regulates trafficking of collagen I by controlling its exit from the trans-Golgi network through a mechanism involving Cdc42. Collagen type I is the most abundant component of extracellular matrix in the arterial wall. Mice knocked out for the protein kinase C δ gene (PKCδ KO) show a marked reduction of collagen I in the arterial wall. The lack of PKCδ diminished the ability of arterial smooth muscle cells (SMCs) to secrete collagen I without significantly altering the intracellular collagen content. Moreover, the unsecreted collagen I molecules accumulate in large perinuclear puncta. These perinuclear structures colocalize with the trans-Golgi network (TGN) marker TGN38 and to a lesser degree with cis-Golgi marker (GM130) but not with early endosomal marker (EEA1). Associated with diminished collagen I secretion, PKCδ KO SMCs exhibit a significant reduction in levels of cell division cycle 42 (Cdc42) protein and mRNA. Restoring PKCδ expression partially rescues Cdc42 expression and collagen I secretion in PKCδ KO SMCs. Inhibition of Cdc42 expression or activity with small interfering RNA or secramine A in PKCδ WT SMCs eliminates collagen I secretion. Conversely, restoring Cdc42 expression in PKCδ KO SMCs enables collagen I secretion. Taken together, our data demonstrate that PKCδ mediates collagen I secretion from SMCs, likely through a Cdc42-dependent mechanism.
Collapse
Affiliation(s)
- Justin Lengfeld
- Division of Peripheral Vascular Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | | | | | | | | | | | | | | |
Collapse
|