1
|
Garcia-Arguinzonis M, Diaz-Riera E, Peña E, Escate R, Juan-Babot O, Mata P, Badimon L, Padro T. Alternative C3 Complement System: Lipids and Atherosclerosis. Int J Mol Sci 2021; 22:ijms22105122. [PMID: 34066088 PMCID: PMC8151937 DOI: 10.3390/ijms22105122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Familial hypercholesterolemia (FH) is increasingly associated with inflammation, a phenotype that persists despite treatment with lipid lowering therapies. The alternative C3 complement system (C3), as a key inflammatory mediator, seems to be involved in the atherosclerotic process; however, the relationship between C3 and lipids during plaque progression remains unknown. The aim of the study was to investigate by a systems biology approach the role of C3 in relation to lipoprotein levels during atherosclerosis (AT) progression and to gain a better understanding on the effects of C3 products on the phenotype and function of human lipid-loaded vascular smooth muscle cells (VSMCs). By mass spectrometry and differential proteomics, we found the extracellular matrix (ECM) of human aortas to be enriched in active components of the C3 complement system, with a significantly different proteomic signature in AT segments. Thus, C3 products were more abundant in AT-ECM than in macroscopically normal segments. Furthermore, circulating C3 levels were significantly elevated in FH patients with subclinical coronary AT, evidenced by computed tomographic angiography. However, no correlation was identified between circulating C3 levels and the increase in plaque burden, indicating a local regulation of the C3 in AT arteries. In cell culture studies of human VSMCs, we evidenced the expression of C3, C3aR (anaphylatoxin receptor) and the integrin αMβ2 receptor for C3b/iC3b (RT-PCR and Western blot). C3mRNA was up-regulated in lipid-loaded human VSMCs, and C3 protein significantly increased in cell culture supernatants, indicating that the C3 products in the AT-ECM have a local vessel-wall niche. Interestingly, C3a and iC3b (C3 active fragments) have functional effects on VSMCs, significantly reversing the inhibition of VSMC migration induced by aggregated LDL and stimulating cell spreading, organization of F-actin stress fibers and attachment during the adhesion of lipid-loaded human VSMCs. This study, by using a systems biology approach, identified molecular processes involving the C3 complement system in vascular remodeling and in the progression of advanced human atherosclerotic lesions.
Collapse
MESH Headings
- Adult
- Atherosclerosis/immunology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Case-Control Studies
- Cell Adhesion
- Cells, Cultured
- Complement C3/metabolism
- Female
- Humans
- Hyperlipoproteinemia Type II/immunology
- Hyperlipoproteinemia Type II/metabolism
- Hyperlipoproteinemia Type II/pathology
- Male
- Middle Aged
- Muscle, Smooth, Vascular/immunology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/immunology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Proteome/analysis
- Proteome/metabolism
- Vascular Remodeling
- Wound Healing
- Young Adult
Collapse
Affiliation(s)
- Maisa Garcia-Arguinzonis
- Cardiovascular Program-ICCC, Research Institute-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain; (M.G.-A.); (E.D.-R.); (E.P.); (R.E.); (O.J.-B.); (L.B.)
| | - Elisa Diaz-Riera
- Cardiovascular Program-ICCC, Research Institute-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain; (M.G.-A.); (E.D.-R.); (E.P.); (R.E.); (O.J.-B.); (L.B.)
| | - Esther Peña
- Cardiovascular Program-ICCC, Research Institute-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain; (M.G.-A.); (E.D.-R.); (E.P.); (R.E.); (O.J.-B.); (L.B.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rafael Escate
- Cardiovascular Program-ICCC, Research Institute-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain; (M.G.-A.); (E.D.-R.); (E.P.); (R.E.); (O.J.-B.); (L.B.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Oriol Juan-Babot
- Cardiovascular Program-ICCC, Research Institute-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain; (M.G.-A.); (E.D.-R.); (E.P.); (R.E.); (O.J.-B.); (L.B.)
| | - Pedro Mata
- Fundación Hipercolesterolemia Familiar, 28010 Madrid, Spain;
| | - Lina Badimon
- Cardiovascular Program-ICCC, Research Institute-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain; (M.G.-A.); (E.D.-R.); (E.P.); (R.E.); (O.J.-B.); (L.B.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Cardiovascular Research Chair, UAB, 08025 Barcelona, Spain
| | - Teresa Padro
- Cardiovascular Program-ICCC, Research Institute-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain; (M.G.-A.); (E.D.-R.); (E.P.); (R.E.); (O.J.-B.); (L.B.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-935-565-886; Fax: +34-935-565-559
| |
Collapse
|
2
|
Lappalainen J, Yeung N, Nguyen SD, Jauhiainen M, Kovanen PT, Lee-Rueckert M. Cholesterol loading suppresses the atheroinflammatory gene polarization of human macrophages induced by colony stimulating factors. Sci Rep 2021; 11:4923. [PMID: 33649397 PMCID: PMC7921113 DOI: 10.1038/s41598-021-84249-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
In atherosclerotic lesions, blood-derived monocytes differentiate into distinct macrophage subpopulations, and further into cholesterol-filled foam cells under a complex milieu of cytokines, which also contains macrophage-colony stimulating factor (M-CSF) and granulocyte-macrophage-colony stimulating factor (GM-CSF). Here we generated human macrophages in the presence of either M-CSF or GM-CSF to obtain M-MØ and GM-MØ, respectively. The macrophages were converted into cholesterol-loaded foam cells by incubating them with acetyl-LDL, and their atheroinflammatory gene expression profiles were then assessed. Compared with GM-MØ, the M-MØ expressed higher levels of CD36, SRA1, and ACAT1, and also exhibited a greater ability to take up acetyl-LDL, esterify cholesterol, and become converted to foam cells. M-MØ foam cells expressed higher levels of ABCA1 and ABCG1, and, correspondingly, exhibited higher rates of cholesterol efflux to apoA-I and HDL2. Cholesterol loading of M-MØ strongly suppressed the high baseline expression of CCL2, whereas in GM-MØ the low baseline expression CCL2 remained unchanged during cholesterol loading. The expression of TNFA, IL1B, and CXCL8 were reduced in LPS-activated macrophage foam cells of either subtype. In summary, cholesterol loading converged the CSF-dependent expression of key genes related to intracellular cholesterol balance and inflammation. These findings suggest that transformation of CSF-polarized macrophages into foam cells may reduce their atheroinflammatory potential in atherogenesis.
Collapse
Affiliation(s)
| | | | - Su D Nguyen
- Wihuri Research Institute, Helsinki, Finland
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki, Finland
| | | | | |
Collapse
|
3
|
Allen PE, Martinez JJ. Modulation of Host Lipid Pathways by Pathogenic Intracellular Bacteria. Pathogens 2020; 9:pathogens9080614. [PMID: 32731350 PMCID: PMC7460438 DOI: 10.3390/pathogens9080614] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/17/2020] [Accepted: 07/25/2020] [Indexed: 12/22/2022] Open
Abstract
Lipids are a broad group of molecules required for cell maintenance and homeostasis. Various intracellular pathogens have developed mechanisms of modulating and sequestering host lipid processes for a large array of functions for both bacterial and host cell survival. Among the host cell lipid functions that intracellular bacteria exploit for infection are the modulation of host plasma membrane microdomains (lipid rafts) required for efficient bacterial entry; the recruitment of specific lipids for membrane integrity of intracellular vacuoles; and the utilization of host lipid droplets for the regulation of immune responses and for energy production through fatty acid β-oxidation and oxidative phosphorylation. The majority of published studies on the utilization of these host lipid pathways during infection have focused on intracellular bacterial pathogens that reside within a vacuole during infection and, thus, have vastly different requirements for host lipid metabolites when compared to those intracellular pathogens that are released into the host cytosol upon infection. Here we summarize the mechanisms by which intracellular bacteria sequester host lipid species and compare the modulation of host lipid pathways and metabolites during host cell infection by intracellular pathogens residing in either a vacuole or within the cytosol of infected mammalian cells. This review will also highlight common and unique host pathways necessary for intracellular bacterial growth that could potentially be targeted for therapeutic intervention.
Collapse
|
4
|
Martin-Ventura JL, Martinez-Lopez D, Roldan-Montero R, Gomez-Guerrero C, Blanco-Colio LM. Role of complement system in pathological remodeling of the vascular wall. Mol Immunol 2019; 114:207-215. [PMID: 31377677 DOI: 10.1016/j.molimm.2019.06.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 11/28/2022]
Abstract
Cardiovascular diseases (CVD) remain the major cause of morbidity and mortality in Europe. The clinical complications associated to arterial wall rupture involve intimal cap rupture in complicated atherosclerotic plaques and medial rupture in abdominal aortic aneurysm (AAA). The mechanisms underlying pathological vascular remodeling include lipid accumulation, cell proliferation, redox imbalance, proteolysis, leukocyte infiltration, cell death, and eventually, thrombosis. The complement system could participate in vascular remodeling by several mechanisms, from an initial protective response that aims in the clearing of cell debris to a potential deleterious role participating in leukocyte chemotaxis and cell activation and bridging innate and adaptive immunity. We have reviewed the presence and distribution of complement components, as well as the triggers of complement activation in atherosclerotic plaques and AAA, to later assess the functional consequences of complement modulation in experimental models of pathological vascular remodeling and the potential role of complement components as potential circulating biomarkers of CVD. On the whole, complement system is a key mechanism involved in vascular remodelling, which could be useful in the diagnostic/prognostic setting, as well as a potential therapeutic target, of CVD.
Collapse
Affiliation(s)
- Jose Luis Martin-Ventura
- Vascular Research Lab, IIS-Fundación Jiménez Díaz, Universidad Autonoma de Madrid, and CIBERCV, Spain.
| | - Diego Martinez-Lopez
- Vascular Research Lab, IIS-Fundación Jiménez Díaz, Universidad Autonoma de Madrid, and CIBERCV, Spain
| | - Raquel Roldan-Montero
- Vascular Research Lab, IIS-Fundación Jiménez Díaz, Universidad Autonoma de Madrid, and CIBERCV, Spain
| | - Carmen Gomez-Guerrero
- Vascular Research Lab, IIS-Fundación Jiménez Díaz, Universidad Autonoma de Madrid, and CIBERDEM, Madrid, Spain
| | - Luis Miguel Blanco-Colio
- Vascular Research Lab, IIS-Fundación Jiménez Díaz, Universidad Autonoma de Madrid, and CIBERCV, Spain
| |
Collapse
|
5
|
Gibson MS, Domingues N, Vieira OV. Lipid and Non-lipid Factors Affecting Macrophage Dysfunction and Inflammation in Atherosclerosis. Front Physiol 2018; 9:654. [PMID: 29997514 PMCID: PMC6029489 DOI: 10.3389/fphys.2018.00654] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/14/2018] [Indexed: 01/08/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease and a leading cause of human mortality. The lesional microenvironment contains a complex accumulation of variably oxidized lipids and cytokines. Infiltrating monocytes become polarized in response to these stimuli, resulting in a broad spectrum of macrophage phenotypes. The extent of lipid loading in macrophages influences their phenotype and consequently their inflammatory status. In response to excess atherogenic ligands, many normal cell processes become aberrant following a loss of homeostasis. This can have a direct impact upon the inflammatory response, and conversely inflammation can lead to cell dysfunction. Clear evidence for this exists in the lysosomes, endoplasmic reticulum and mitochondria of atherosclerotic macrophages, the principal lesional cell type. Furthermore, several intrinsic cell processes become dysregulated under lipidotic conditions. Therapeutic strategies aimed at restoring cell function under disease conditions are an ongoing coveted aim. Macrophages play a central role in promoting lesional inflammation, with plaque progression and stability being directly proportional to macrophage abundance. Understanding how mixtures or individual lipid species regulate macrophage biology is therefore a major area of atherosclerosis research. In this review, we will discuss how the myriad of lipid and lipoprotein classes and products used to model atherogenic, proinflammatory immune responses has facilitated a greater understanding of some of the intricacies of chronic inflammation and cell function. Despite this, lipid oxidation produces a complex mixture of products and with no single or standard method of derivatization, there exists some variation in the reported effects of certain oxidized lipids. Likewise, differences in the methods used to generate macrophages in vitro may also lead to variable responses when apparently identical lipid ligands are used. Consequently, the complexity of reported macrophage phenotypes has implications for our understanding of the metabolic pathways, processes and shifts underpinning their activation and inflammatory status. Using oxidized low density lipoproteins and its oxidized cholesteryl esters and phospholipid constituents to stimulate macrophage has been hugely valuable, however there is now an argument that only working with low complexity lipid species can deliver the most useful information to guide therapies aimed at controlling atherosclerosis and cardiovascular complications.
Collapse
Affiliation(s)
- Mark S Gibson
- Lysosomes in Chronic Human Pathologies and Infection, Faculdade de Ciências Médicas, Centro de Estudos de Doenças Crónicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Neuza Domingues
- Lysosomes in Chronic Human Pathologies and Infection, Faculdade de Ciências Médicas, Centro de Estudos de Doenças Crónicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Otilia V Vieira
- Lysosomes in Chronic Human Pathologies and Infection, Faculdade de Ciências Médicas, Centro de Estudos de Doenças Crónicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
6
|
da Silva RF, Lappalainen J, Lee-Rueckert M, Kovanen PT. Conversion of human M-CSF macrophages into foam cells reduces their proinflammatory responses to classical M1-polarizing activation. Atherosclerosis 2016; 248:170-8. [DOI: 10.1016/j.atherosclerosis.2016.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 02/07/2016] [Accepted: 03/08/2016] [Indexed: 01/06/2023]
|
7
|
Abstract
Formation of foam cell macrophages, which sequester extracellular modified lipids, is a key event in atherosclerosis. How lipid loading affects macrophage phenotype is controversial, with evidence suggesting either pro- or anti-inflammatory consequences. To investigate this further, we compared the transcriptomes of foamy and non-foamy macrophages that accumulate in the subcutaneous granulomas of fed-fat ApoE null mice and normal chow fed wild-type mice in vivo. Consistent with previous studies, LXR/RXR pathway genes were significantly over-represented among the genes up-regulated in foam cell macrophages. Unexpectedly, the hepatic fibrosis pathway, associated with platelet derived growth factor and transforming growth factor-β action, was also over-represented. Several collagen polypeptides and proteoglycan core proteins as well as connective tissue growth factor and fibrosis-related FOS and JUN transcription factors were up-regulated in foam cell macrophages. Increased expression of several of these genes was confirmed at the protein level in foam cell macrophages from subcutaneous granulomas and in atherosclerotic plaques. Moreover, phosphorylation and nuclear translocation of SMAD2, which is downstream of several transforming growth factor-β family members, was also detected in foam cell macrophages. We conclude that foam cell formation in vivo leads to a pro-fibrotic macrophage phenotype, which could contribute to plaque stability, especially in early lesions that have few vascular smooth muscle cells.
Collapse
Affiliation(s)
- Anita C. Thomas
- Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
- * E-mail:
| | - Wouter J. Eijgelaar
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Mat J. A. P. Daemen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
- Academisch Medisch Centrum (AMC), Amsterdam, The Netherlands
| | - Andrew C. Newby
- Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
8
|
Affiliation(s)
- Ziad Mallat
- From the Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom; and Institut National de la Santé et de la Recherche Médicale, U970, Paris, France.
| |
Collapse
|
9
|
Getz GS, Reardon CA. The mutual interplay of lipid metabolism and the cells of the immune system in relation to atherosclerosis. ACTA ACUST UNITED AC 2014; 9:657-671. [PMID: 25705263 DOI: 10.2217/clp.14.50] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Atherosclerosis is a chronic inflammation in the arterial wall involving cells of the innate and adaptive immune system that is promoted by hyperlipidemia. In addition, the immune system can influence lipids and lipoprotein levels and cellular lipid homeostasis can influence the level and function of the immune cells. We will review the effects of manipulation of adaptive immune cells and immune cell products on lipids and lipoproteins, focusing mainly on studies performed in murine models of atherosclerosis. We also review how lipoproteins and cellular lipid levels, particularly cholesterol levels, influence the function of cells of the innate and adaptive immune systems. The overriding theme is that these interactions are driven by the need to provide the energy and membrane components for cell proliferation and migration, membrane expansion and other functions that are so important in the functioning of the immune cells.
Collapse
Affiliation(s)
- Godfrey S Getz
- Department of Pathology, University of Chicago, Box MC 1089, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | - Catherine A Reardon
- Department of Pathology, University of Chicago, Box MC 1089, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| |
Collapse
|
10
|
Zhang H, Temel RE, Martel C. Cholesterol and lipoprotein metabolism: Early Career Committee contribution. Arterioscler Thromb Vasc Biol 2014; 34:1791-4. [PMID: 25142876 DOI: 10.1161/atvbaha.114.304267] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hanrui Zhang
- From the Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (H.Z.); Department of Pharmacology and Nutritional Sciences, Saha Cardiovascular Research Center, University of Kentucky, Lexington (R.E.T.); and Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada (C.M.).
| | - Ryan E Temel
- From the Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (H.Z.); Department of Pharmacology and Nutritional Sciences, Saha Cardiovascular Research Center, University of Kentucky, Lexington (R.E.T.); and Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada (C.M.)
| | - Catherine Martel
- From the Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (H.Z.); Department of Pharmacology and Nutritional Sciences, Saha Cardiovascular Research Center, University of Kentucky, Lexington (R.E.T.); and Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada (C.M.)
| |
Collapse
|
11
|
Jorge I, Burillo E, Mesa R, Baila-Rueda L, Moreno M, Trevisan-Herraz M, Silla-Castro JC, Camafeita E, Ortega-Muñoz M, Bonzon-Kulichenko E, Calvo I, Cenarro A, Civeira F, Vázquez J. The human HDL proteome displays high inter-individual variability and is altered dynamically in response to angioplasty-induced atheroma plaque rupture. J Proteomics 2014; 106:61-73. [PMID: 24747125 DOI: 10.1016/j.jprot.2014.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/03/2014] [Accepted: 04/07/2014] [Indexed: 12/28/2022]
Abstract
Recent findings support potential roles for HDL in cardiovascular pathophysiology not related to lipid metabolism. We address whether HDL proteome is dynamically altered in atheroma plaque rupture. We used immunoaffinity purification of HDL samples from coronary artery disease patients before and after percutaneous transluminal coronary angioplasty (PTCA), a model of atheroma plaque disruption. Samples were analyzed by quantitative proteomics using stable isotope labeling and results were subjected to statistical analysis of protein variance using a novel algorithm. We observed high protein variability in HDL composition between individuals, indicating that HDL protein composition is highly patient-specific. However, intra-individual protein variances remained at low levels, confirming the reproducibility of the method used for HDL isolation and protein quantification. A systems biology analysis of HDL protein alterations induced by PTCA revealed an increase in two protein clusters that included several apolipoproteins, fibrinogen-like protein 1 and other intracellular proteins, and a decrease in antithrombin-III, annexin A1 and several immunoglobulins. Our results support the concept of HDL as dynamic platforms that donate and receive a variety of molecules and provide an improved methodology to use HDL proteome for the systematic analysis of differences among individuals and the search for cardiovascular biomarkers. Biological significance The HDL proteome is an interesting model of clinical relevance and has been previously described to be dynamically altered in response to pathophysiological conditions and cardiovascular diseases. Our study suggests that interindividual variability of HDL proteome is higher than previously thought and provided the detection of a set of proteins that changed their abundance in response to plaque rupture, supporting the concept of HDL as dynamic platforms that donate and receive a variety of molecules.
Collapse
Affiliation(s)
- Inmaculada Jorge
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Elena Burillo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain; Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria de Aragón, I+CS, Zaragoza, Spain
| | - Raquel Mesa
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Lucía Baila-Rueda
- Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria de Aragón, I+CS, Zaragoza, Spain
| | - Margoth Moreno
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Marco Trevisan-Herraz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Juan Carlos Silla-Castro
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Emilio Camafeita
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Elena Bonzon-Kulichenko
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Isabel Calvo
- Hospital Universitario Miguel Servet, Servicio de Cardiología, Zaragoza, Spain
| | - Ana Cenarro
- Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria de Aragón, I+CS, Zaragoza, Spain
| | - Fernando Civeira
- Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria de Aragón, I+CS, Zaragoza, Spain
| | - Jesús Vázquez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
| |
Collapse
|
12
|
Leitinger N, Schulman IG. Phenotypic polarization of macrophages in atherosclerosis. Arterioscler Thromb Vasc Biol 2013; 33:1120-6. [PMID: 23640492 DOI: 10.1161/atvbaha.112.300173] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Macrophages orchestrate the inflammatory response in inflamed tissues, and recent work indicates that these cells can alter their phenotypes and functions accordingly in response to changes in the microenvironment. Initial work in models of cardiovascular disease used immunologic markers to characterize macrophage phenotypes present in atherosclerotic plaque, and these studies have lately been extended through the use of markers that are more specific for atherosclerosis and metabolic disease. Together, these studies have led to a novel view of the function of macrophages in the development of atherosclerosis that suggests dynamic plasticity. Understanding this plasticity and the ensuing macrophage heterogeneity could lead to novel strategies of pharmacological intervention to combat chronic inflammation in metabolic diseases. Most importantly, revealing the functional characteristics of individual macrophage phenotypes will lead to a better understanding of their contribution to lesion development and plaque stability.
Collapse
Affiliation(s)
- Norbert Leitinger
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908-0735, USA.
| | | |
Collapse
|