1
|
Huynh TNM, Yamazaki F, Konrad RJ, Nishikawa Y, Tanaka A, Son Y, Ozaki Y, Takehana K, Tanizaki H. Circulating CD31 and resistin levels reflect different stages of coronary atherosclerosis in patients with psoriasis. J Dermatol 2024. [PMID: 39436026 DOI: 10.1111/1346-8138.17450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/24/2024] [Accepted: 08/18/2024] [Indexed: 10/23/2024]
Abstract
Psoriasis is a skin disease with a complicated pathophysiology that includes an extensive inflammatory cytokine network. Nevertheless, the relationship between psoriasis severity, cytokine levels, and coronary artery atherosclerosis remains poorly understood. Our aim was to find serum markers as potential candidates for cardiovascular disease (CVD) risk monitoring in patients with psoriasis. Therefore, we examined coronary artery atherosclerosis via coronary computed tomography angiography (CCTA), serum cytokine levels via multiple immunoassays, and the patients' psoriasis state. Our findings reveal for the first time that the mainstream psoriasis cytokines interleukin 17A (IL-17A), IL-19, and IL-36 in the sera of Japanese patients with psoriasis showed a linear regression association with the Psoriasis Area and Severity Index score. Furthermore, the serum level of IL-19 was remarkably correlated to Th2-related serum cytokines such as IL-4 and IL-17E. When we investigated potential markers to monitor CVD in patients with psoriasis, circulating cluster of differentiation 31 (CD31) and resistin, but not psoriasis-related cytokines, were expressed differently at each stage of coronary atherosclerosis by CCTA. CD31 and resistin levels rose dramatically in individuals with psoriasis vulgaris (PV) and noncalcified atherosclerosis. In contrast, CD31 was negatively correlated with the coronary artery calcification score (CACS) in patients with PV, whereas resistin was inversely correlated with CACS in patients with psoriatic arthritis. In conclusion, the axis of IL-17A, IL-19, and IL-36 remains associated with the severity of psoriasis during the chronic phase of the disease, regardless of the application of topical or systemic treatment. Monitoring the levels of these cytokines can accurately determine the severity of skin inflammation. Resistin and CD31 are linked to coronary artery lesions and might be good candidates for tracking the progression of coronary atherosclerosis in patients with psoriasis.
Collapse
Affiliation(s)
| | - Fumikazu Yamazaki
- Psoriasis Center, Kansai Medical University, Osaka, Japan
- Department of Dermatology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Yumiko Nishikawa
- Japan Drug Development and Medical Affairs, Eli Lilly Japan K.K, Hyogo, Japan
| | - Akihiro Tanaka
- Psoriasis Center, Kansai Medical University, Osaka, Japan
- Division of Rheumatology, Department of Medicine I, Kansai Medical University, Osaka, Japan
| | - Yonsu Son
- Psoriasis Center, Kansai Medical University, Osaka, Japan
- Division of Rheumatology, Department of Medicine I, Kansai Medical University, Osaka, Japan
| | - Yoshio Ozaki
- Psoriasis Center, Kansai Medical University, Osaka, Japan
- Division of Rheumatology, Department of Medicine I, Kansai Medical University, Osaka, Japan
| | - Kazuya Takehana
- Psoriasis Center, Kansai Medical University, Osaka, Japan
- Division of Cardiology, Department of Medicine II, Kansai Medical University, Osaka, Japan
| | - Hideaki Tanizaki
- Department of Dermatology, Kansai Medical University, Osaka, Japan
- Psoriasis Center, Kansai Medical University, Osaka, Japan
| |
Collapse
|
2
|
Haybar H, Bandar B, Torfi E, Mohebbi A, Saki N. Cytokines and their role in cardiovascular diseases. Cytokine 2023; 169:156261. [PMID: 37413877 DOI: 10.1016/j.cyto.2023.156261] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 07/08/2023]
Abstract
The evaluation of diagnostic and prognostic biomarkers has always been a hot topic in various diseases. Considering that cardiovascular diseases (CVDs) have the highest mortality and morbidity rates in the world, various studies have been conducted so far to find CVD associated biomarkers, including cardiac troponin (cTn) and NT-proBNP. Cytokines are components of the immune system that are involved in the pathogenesis of CVD due to their contribution to the inflammation process. The level of cytokines varies in many cardiovascular diseases. For instance, the plasma level of IL-1α, IL-18, IL-33, IL-6 and IL-8 is positively correlated with atherosclerosis and that of some other interleukins such as IL-35 is negatively correlated with acute myocardial infarction or cardiac angina. Due to its pivotal role in the inflammation process, IL-1 super family is involved in many CVDs, including atherosclerosis. IL-20 among the interleukins of IL-10 family has a pro-atherogenic role, while others, such as IL-10 and IL-19, play an anti-atherogenic role. In the present review, we have collected the latest published evidence in this respect to discuss valuable cytokines from the diagnostic and prognostic stand point in CVDs.
Collapse
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bita Bandar
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ekhlas Torfi
- Department of Cardiovascular Disease, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Mohebbi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
3
|
Corbett CB, St Paul A, Leigh T, Kelemen SE, Peluzzo AM, Okune RN, Eguchi S, Haines DS, Autieri MV. Genetic Deletion of FXR1 Reduces Intimal Hyperplasia and Induces Senescence in Vascular Smooth Muscle Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:638-653. [PMID: 37080662 PMCID: PMC10155270 DOI: 10.1016/j.ajpath.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/21/2022] [Accepted: 01/12/2023] [Indexed: 04/22/2023]
Abstract
Vascular smooth muscle cells (VSMC) play a critical role in the development and pathogenesis of intimal hyperplasia indicative of restenosis and other vascular diseases. Fragile-X related protein-1 (FXR1) is a muscle-enhanced RNA binding protein whose expression is increased in injured arteries. Previous studies suggest that FXR1 negatively regulates inflammation, but its causality in vascular disease is unknown. In the current study, RNA-sequencing of FXR1-depleted VSMC identified many transcripts with decreased abundance, most of which were associated with proliferation and cell division. mRNA abundance and stability of a number of these transcripts were decreased in FXR1-depleted hVSMC, as was proliferation (P < 0.05); however, increases in beta-galactosidase (P < 0.05) and γH2AX (P < 0.01), indicative of senescence, were noted. Further analysis showed increased abundance of senescence-associated genes with FXR1 depletion. A novel SMC-specific conditional knockout mouse (FXR1SMC/SMC) was developed for further analysis. In a carotid artery ligation model of intimal hyperplasia, FXR1SMC/SMC mice had significantly reduced neointima formation (P < 0.001) after ligation, as well as increases in senescence drivers p16, p21, and p53 compared with several controls. These results suggest that in addition to destabilization of inflammatory transcripts, FXR1 stabilized cell cycle-related genes in VSMC, and absence of FXR1 led to induction of a senescent phenotype, supporting the hypothesis that FXR1 may mediate vascular disease by regulating stability of proliferative mRNA in VSMC.
Collapse
Affiliation(s)
- Cali B Corbett
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Amanda St Paul
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Tani Leigh
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Sheri E Kelemen
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Amanda M Peluzzo
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Rachael N Okune
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Dale S Haines
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Michael V Autieri
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania.
| |
Collapse
|
4
|
Deletion of LDLRAP1 Induces Atherosclerotic Plaque Formation, Insulin Resistance, and Dysregulated Insulin Response in Adipose Tissue. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1092-1108. [PMID: 35460615 PMCID: PMC9253916 DOI: 10.1016/j.ajpath.2022.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022]
Abstract
Dyslipidemia, vascular inflammation, obesity, and insulin resistance often overlap and exacerbate each other. Mutations in low density lipoprotein receptor adaptor protein-1 (LDLRAP1) lead to LDLR malfunction and are associated with the autosomal recessive hypercholesterolemia disorder in humans. However, direct causality on atherogenesis in a defined preclinical model has not been reported. The objective of this study was to test the hypothesis that deletion of LDLRAP1 will lead to hypercholesteremia and atherosclerosis. LDLRAP1-/- mice fed a high-fat Western diet had significantly increased plasma cholesterol and triglyceride concentrations accompanied with significantly increased plaque burden compared with wild-type controls. Unexpectedly, LDLRAP1-/- mice gained significantly more weight compared with controls. Even on a chow diet, LDLRAP1-/- mice were insulin-resistant, and calorimetric studies suggested an altered metabolic profile. The study showed that LDLRAP1 is highly expressed in visceral adipose tissue, and LDLRAP1-/- adipocytes are significantly larger, have reduced glucose uptake and AKT phosphorylation, but have increased CD36 expression. Visceral adipose tissue from LDLRAP1-/- mice was hypoxic and had gene expression signatures of dysregulated lipid storage and energy homeostasis. These data are the first to indicate that lack of LDLRAP1 directly leads to atherosclerosis in mice and also plays an unanticipated metabolic regulatory role in adipose tissue. LDLRAP1 may link atherosclerosis and hypercholesterolemia with common comorbidities of obesity and insulin resistance.
Collapse
|
5
|
Pharmacological Inhibition of Glutaminase 1 Attenuates Alkali-Induced Corneal Neovascularization by Modulating Macrophages. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1106313. [PMID: 35345831 PMCID: PMC8957416 DOI: 10.1155/2022/1106313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022]
Abstract
Corneal neovascularization (CoNV) in response to chemical burns is a leading cause of vision impairment. Although glutamine metabolism plays a crucial role in macrophage polarization, its regulatory effect on macrophages involved in chemical burn-induced corneal injury is not known. Here, we elucidated the connection between the reprogramming of glutamine metabolism in macrophages and the development of alkali burn-induced CoNV. Glutaminase 1 (GLS1) expression was upregulated in the mouse corneas damaged with alkali burns and was primarily located in F4/80-positive macrophages. Treatment with a selective oral GLS1 inhibitor, CB-839 (telaglenastat), significantly decreased the distribution of polarized M2 macrophages in the alkali-injured corneas and suppressed the development of CoNV. In vitro studies further demonstrated that glutamine deprivation or CB-839 treatment inhibited the proliferation, adhesion, and M2 polarization of bone marrow-derived macrophages (BMDMs) from C57BL/6J mice. CB-839 treatment markedly attenuated the secretion of proangiogenic factors, including vascular endothelial growth factor-A (VEGF-A) and platelet-derived growth factor-BB (PDGF-BB) from interleukin-4- (IL-4-) regulated M2 macrophages. Our findings revealed that GLS1 inhibition or glutamine deprivation prevented alkali-induced CoNV by inhibiting the infiltration and M2 polarization of macrophages. This work suggests that pharmacological GLS1 inhibition is a feasible and effective treatment strategy for chemical burn-related CoNV in humans.
Collapse
|
6
|
Peluzzo AM, Autieri MV. Challenging the Paradigm: Anti-Inflammatory Interleukins and Angiogenesis. Cells 2022; 11:cells11030587. [PMID: 35159396 PMCID: PMC8834461 DOI: 10.3390/cells11030587] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023] Open
Abstract
Angiogenesis is a vital biological process, and neovascularization is essential for the development, wound repair, and perfusion of ischemic tissue. Neovascularization and inflammation are independent biological processes that are linked in response to injury and ischemia. While clear that pro-inflammatory factors drive angiogenesis, the role of anti-inflammatory interleukins in angiogenesis remains less defined. An interleukin with anti-inflammatory yet pro-angiogenic effects would hold great promise as a therapeutic modality to treat many disease states where inflammation needs to be limited, but revascularization and reperfusion still need to be supported. As immune modulators, interleukins can polarize macrophages to a pro-angiogenic and reparative phenotype, which indirectly influences angiogenesis. Interleukins could also potentially directly induce angiogenesis by binding and activating its receptor on endothelial cells. Although a great deal of attention is given to the negative effects of pro-inflammatory interleukins, less is described concerning the potential protective effects of anti-inflammatory interleukins on various disease processes. To focus this review, we will consider IL-4, IL-10, IL-13, IL-19, and IL-33 to be anti-inflammatory interleukins, all of which have recognized immunomodulatory effects. This review will summarize current research concerning anti-inflammatory interleukins as potential drivers of direct and indirect angiogenesis, emphasizing their role in future therapeutics.
Collapse
|
7
|
Ferhat E, Karabekir E, Gultekin K, Orhan K, Onur Y, Nilnur E. Evaluation of the relationship between anti-inflammatory cytokines and adverse cardiac remodeling after myocardial infarction. KARDIOLOGIIA 2021; 61:61-70. [PMID: 34763640 DOI: 10.18087/cardio.2021.10.n1749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/16/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Aim To clarify the role of interleukin (IL) - 10 and members of its subfamily (IL-19 and IL-26) in cardiac remodeling during the post-myocardial infarction (MI) period.Material and methods A total of 45 patients with ST-segment elevation MI were enrolled. Serum cytokine concentrations were measured at the first day and 14 days post-MI. Left ventricular (LV) reverse remodeling (RR) was defined as the reduction of LV end-diastolic volume or LV end-systolic volume by ≥ 12 % in cardiac magnetic resonance images at 6‑mo follow-up. A 12 % increase was defined as adverse remodeling (AR).Results The post-MI first-day median IL-10 (9.7 pg / ml vs. 17.6 pg / ml, p<0.001), median IL-19 (28.7 pg / ml vs. 36.9 pg / ml, p<0.001), and median IL-26 (47.8 pg / ml vs. 90.7 pg / ml, p<0.001) were lower in the RR group compared to the AR group. There was a significant decrease in the concentration of anti-inflammatory cytokines in the AR group from the first to the 14 days post-MI. However, no significant change was observed in the RR group. Regression analysis revealed that a low IL-10 concentration on the post-MI first day was related to RR (OR=0.76, p=0.035). A 1 % increase in change of IL-10 concentration increased the probability of RR by 1.07 times.Conclusion The concentrations of cytokines were higher in the AR group, but this elevation was not sustained and significantly decreased for the 14 days post-MI. In the RR group, the concentrations of cytokines did not change and stable for the 14 days post-MI. As a reflection of this findings, stable IL-10 concentration may play a role the improvement of cardiac functions.
Collapse
Affiliation(s)
- Eyyupkoca Ferhat
- Dr.Nafiz Korez Sincan State Hospital, Department of Cardiology, Ankara, Turkey
| | - Ercan Karabekir
- Ankara Bilkent City Hospital, Department of Radiology, Ankara, Turkey
| | - Karakus Gultekin
- Acibadem Mehmet Ali Aydinlar University School of Medicine, Department of Cardiology, Istanbul, Turkey
| | - Karayigit Orhan
- Ministry of Health Yozgat City Hospital, Department of Cardiology, Yozgat, Turkey
| | - Yildirim Onur
- Dr.Nafiz Korez Sincan State Hospital, Department of Cardiology, Ankara, Turkey
| | - Eyerci Nilnur
- Faculty of Medicine, Ataturk University, Department of Medical Biology, Erzurum, Turkey
| |
Collapse
|
8
|
Chen W, Xing J, Liu X, Wang S, Xing D. The role and transformative potential of IL-19 in atherosclerosis. Cytokine Growth Factor Rev 2021; 62:70-82. [PMID: 34600839 DOI: 10.1016/j.cytogfr.2021.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/19/2022]
Abstract
Atherosclerotic cardiovascular disease is the leading cause of death worldwide. Traditionally, IL-19 was thought to be expressed in only immune cells, but studies revealed that IL-19 is also expressed in multiple atherosclerotic plaque cell types, but not normal arteries, in humans and mice. IL-19 reduces the development of atherosclerosis via multiple mechanisms, including balancing cholesterol metabolism; enhancing Th2 immune cell polarization; reducing the inflammatory response; and reducing the proliferation, migration and chemotaxis of vascular smooth muscle cells (VSMCs). Clinical and/or animal studies have primarily aimed to achieve regression and/or stabilization of atherosclerotic plaques, with regression in particular indicating a very good drug response. Most antiatherosclerotic drugs in current clinical use, including atorvastatin and alirocumab, target hyperlipidemia. Several other drugs have also been investigated in clinical trials as anti-inflammatory agents; the development of some of these agents has been terminated (canakinumab, darapladib, varespladib, losmapimod, atreleuton, setileuton, PF-04191834, veliflapon, and methotrexate), but others remain in development (ziltivekimab, tocilizumab, Somalix, IFM-2427, anakinra, mesenchymal stem cells (MSCs), colchicine, everolimus, allopurinol, and montelukast). Most of the tested drugs have shown a limited ability to reverse atherosclerosis in animal studies. Interestingly, recombinant IL-19 (rIL-19) was shown to reduce atherosclerosis development in a time- and dose-dependent manner. A low dose of rIL-19 (1 ng/g/day) reduced aortic arch and root plaque areas by 70.1% and 32.1%, respectively, in LDLR-/- mice. At 10 ng/g/day, rIL-19 completely eliminated atherosclerotic plaques. There were no sex differences in the effects of rIL-19 on atherosclerotic mice. Thus, low-dose rIL-19 is an effective antiatherosclerotic agent, in addition to its efficacy in intimal hyperplasia, spinal cord injury, stroke, and multiple sclerosis. We propose that IL-19 is a promising biomarker and target for the diagnosis and treatment of atherosclerosis. This review considers the role and mechanism of action of IL-19 in atherosclerosis and discusses whether IL-19 is a potential therapeutic target for this condition.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Jiyao Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Xinlin Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Shuai Wang
- School of Medical Imaging, Radiotherapy Department, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261053, China.
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Tanaka H, Xu B, Xuan H, Ge Y, Wang Y, Li Y, Wang W, Guo J, Zhao S, Glover KJ, Zheng X, Liu S, Inuzuka K, Fujimura N, Furusho Y, Ikezoe T, Shoji T, Wang L, Fu W, Huang J, Unno N, Dalman RL. Recombinant Interleukin-19 Suppresses the Formation and Progression of Experimental Abdominal Aortic Aneurysms. J Am Heart Assoc 2021; 10:e022207. [PMID: 34459250 PMCID: PMC8649236 DOI: 10.1161/jaha.121.022207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Interleukin-19 is an immunosuppressive cytokine produced by immune and nonimmune cells, but its role in abdominal aortic aneurysm (AAA) pathogenesis is not known. This study aimed to investigate interleukin-19 expression in, and influences on, the formation and progression of experimental AAAs. Methods and Results Human specimens were obtained at aneurysm repair surgery or from transplant donors. Experimental AAAs were created in 10- to 12-week-old male mice via intra-aortic elastase infusion. Influence and potential mechanisms of interleukin-19 treatment on AAAs were assessed via ultrasonography, histopathology, flow cytometry, and gene expression profiling. Immunohistochemistry revealed augmented interleukin-19 expression in both human and experimental AAAs. In mice, interleukin-19 treatment before AAA initiation via elastase infusion suppressed aneurysm formation and progression, with attenuation of medial elastin degradation, smooth-muscle depletion, leukocyte infiltration, neoangiogenesis, and matrix metalloproteinase 2 and 9 expression. Initiation of interleukin-19 treatment after AAA creation limited further aneurysmal degeneration. In additional experiments, interleukin-19 treatment inhibited murine macrophage recruitment following intraperitoneal thioglycolate injection. In classically or alternatively activated macrophages in vitro, interleukin-19 downregulated mRNA expression of inducible nitric oxide synthase, chemokine C-C motif ligand 2, and metalloproteinases 2 and 9 without apparent effect on cytokine-expressing helper or cytotoxic T-cell differentiation, nor regulatory T cellularity, in the aneurysmal aorta or spleen of interleukin-19-treated mice. Interleukin-19 also suppressed AAAs created via angiotensin II infusion in hyperlipidemic mice. Conclusions Based on human evidence and experimental modeling observations, interleukin-19 may influence the development and progression of AAAs.
Collapse
Affiliation(s)
- Hiroki Tanaka
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA.,Division of Vascular Surgery Hamamatsu University School of Medicine Hamamatsu Shizuoka Japan
| | - Baohui Xu
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| | - Haojun Xuan
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| | - Yingbin Ge
- Department of Physiology Nanjing Medical University Nanjing Jiangsu China
| | - Yan Wang
- Peking University Third HospitalMedical Research Center Haidian Beijing China
| | - Yankui Li
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| | - Wei Wang
- Department of Surgery Xiangya HospitalSouth Central University School of Medicine Changsha Hunan China
| | - Jia Guo
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| | - Sihai Zhao
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| | - Keith J Glover
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| | - Xiaoya Zheng
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| | - Shuai Liu
- Department of Surgery Xiangya HospitalSouth Central University School of Medicine Changsha Hunan China
| | - Kazunori Inuzuka
- Division of Vascular Surgery Hamamatsu University School of Medicine Hamamatsu Shizuoka Japan
| | - Naoki Fujimura
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| | - Yuko Furusho
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| | - Toru Ikezoe
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| | - Takahiro Shoji
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| | - Lixin Wang
- Department of Vascular Surgery Zhongshan HospitalFudan University Shanghai China
| | - Weiguo Fu
- Department of Vascular Surgery Zhongshan HospitalFudan University Shanghai China
| | - Jianhua Huang
- Department of Surgery Xiangya HospitalSouth Central University School of Medicine Changsha Hunan China
| | - Naoki Unno
- Division of Vascular Surgery Hamamatsu University School of Medicine Hamamatsu Shizuoka Japan
| | - Ronald L Dalman
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| |
Collapse
|
10
|
Ricciardi A, Nutman TB. IL-10 and Its Related Superfamily Members IL-19 and IL-24 Provide Parallel/Redundant Immune-Modulation in Loa loa Infection. J Infect Dis 2021; 223:297-305. [PMID: 32561912 DOI: 10.1093/infdis/jiaa347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/12/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Interleukin-10 (IL-10) has been implicated as the major cytokine responsible for the modulation of parasite-specific responses in filarial infections; however, the role of other IL-10 superfamily members in filarial infection is less well studied. METHODS Peripheral blood mononuclear cells from loiasis patients were stimulated with or without filarial antigen. Cytokine production was quantified using a Luminex platform and T-cell expression patterns were assessed by flow cytometry. RESULTS All patients produced significant levels of IL-10, IL-13, IL-5, IL-4, and IL-9 in response to filarial antigen, indicating a common infection-driven response. When comparing microfilaria (mf)-positive and mf-negative patients, there were no significant differences in spontaneous cytokine nor in parasite-driven IL-10, IL-22, or IL-28a production. In marked contrast, mf-positive individuals had significantly increased filarial antigen-driven IL-24 and IL-19 compared to mf-negative subjects. mf-positive patients also demonstrated significantly higher frequencies of T cells producing IL-19 in comparison to mf-negative patients. T-cell expression of IL-19 and IL-24 was positively regulated by IL-10 and IL-1β. IL-24 production was also regulated by IL-37. CONCLUSION These data provide an important link between IL-10 and its related family members IL-19 and IL-24 in the modulation of the immune response in human filarial infections. CLINICAL TRIALS REGISTRATION NCT00001230.
Collapse
Affiliation(s)
- Alessandra Ricciardi
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas B Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Xu S, Zhang J, Liu J, Ye J, Xu Y, Wang Z, Yu J, Ye D, Zhao M, Feng Y, Pan W, Wang M, Wan J. The role of interleukin-10 family members in cardiovascular diseases. Int Immunopharmacol 2021; 94:107475. [PMID: 33662690 DOI: 10.1016/j.intimp.2021.107475] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022]
Abstract
Interleukin (IL)-10 cytokine family members, including IL-10, IL-19, IL-20, IL-22, IL-24, IL-26 and the distantly related IL-28A, IL-28B, and IL-29, play critical roles in the regulation of inflammation. The occurrence and progression of cardiovascular diseases closely correlate with the regulation of inflammation, which may provide novel strategies for the treatment of cardiovascular diseases. In recent years, studies have focused on the association between the IL-10 cytokine family and the physiological and pathological progression of cardiovascular diseases. The aim of this review is to summarize relevant studies and clarify whether the IL-10 cytokine family contributes to the regulation of cardiovascular diseases.
Collapse
Affiliation(s)
- Shuwan Xu
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhen Wang
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Junping Yu
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Di Ye
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengmeng Zhao
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yongqi Feng
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Pan
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Jun Wan
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
12
|
IL-20R Activation via rIL-19 Enhances Hematoma Resolution through the IL-20R1/ERK/Nrf2 Pathway in an Experimental GMH Rat Pup Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5913424. [PMID: 33532035 PMCID: PMC7837781 DOI: 10.1155/2021/5913424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 12/11/2020] [Accepted: 01/02/2021] [Indexed: 11/17/2022]
Abstract
Aims Blood clots play the primary role in neurological deficits after germinal matrix hemorrhage (GMH). Previous studies have shown a beneficial effect in blood clot clearance after hemorrhagic stroke. The purpose of this study is to investigate interleukin-19's role in hematoma clearance after GMH and its underlying mechanism of IL-20R1/ERK/Nrf2 signaling pathway. Methods A total of 240 Sprague-Dawley P7 rat pups were used. GMH was induced by intraparenchymal injection of bacterial collagenase. rIL-19 was administered intranasally 1 hour post-GMH. IL-20R1 CRISPR was administered intracerebroventricularly, or Nrf2 antagonist ML385 was administered intraperitoneally 48 hours and 1 hour before GMH induction, respectively. Neurobehavior, Western blot, immunohistochemistry, histology, and hemoglobin assay were used to evaluate treatment regiments in the short- and long-term. Results Endogenous IL-19, IL-20R1, IL-20R2, and scavenger receptor CD163 were increased after GMH. rIL-19 treatment improved neurological deficits, reduced hematoma volume and hemoglobin content, reduced ventriculomegaly, and attenuated cortical thickness loss. Additionally, treatment increased ERK, Nrf2, and CD163 expression, whereas IL-20R1 CRISPR-knockdown plasmid and ML385 inhibited the effects of rIL-19 on CD163 expression. Conclusion rIL-19 treatment improved hematoma clearance and attenuated neurological deficits induced by GMH, which was mediated through the upregulation of the IL-20R1/ERK/Nrf2 pathways. rIL-19 treatment may provide a promising therapeutic strategy for the GMH patient population.
Collapse
|
13
|
Ono N, Azuma YT. [Therapeutic application utilizing the anti-inflammatory effect of IL-19]. Nihon Yakurigaku Zasshi 2021; 156:288-291. [PMID: 34470933 DOI: 10.1254/fpj.21021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Interleukin-19 (IL-19) is a member of the IL-10 family and is an anti-inflammatory cytokine produced mainly by macrophages, epithelial cells, and vascular smooth muscle cells. In addition, receptors for IL-19, IL-20 receptor 1 and IL-20 receptor 2, are also expressed in the cells mentioned above. The last 10 years from the finding of IL-19, investigations underline the anti-inflammatory role of IL-19 in the human diseases such as psoriasis, asthma, arteriosclerosis, and inflammatory bowel disease. If it is a pro-inflammatory cytokine, therapeutic applications may include the use of neutralizing antibodies, however, because IL-19 exhibits anti-inflammatory effects, recombinant products may be useful in therapeutic applications. However, the therapeutic applications of IL-19 for human disease have not yet been developed. In this review, we present the new findings on the preventive and therapeutic effects of IL-19 on various mouse disease models. Increasing knowledge about mouse disease models will increase the feasibility of future human disease applications.
Collapse
Affiliation(s)
- Naoshige Ono
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences
| | - Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences
| |
Collapse
|
14
|
Shen X, Zhang S, Guo Z, Xing D, Chen W. The crosstalk of ABCA1 and ANXA1: a potential mechanism for protection against atherosclerosis. Mol Med 2020; 26:84. [PMID: 32894039 PMCID: PMC7487582 DOI: 10.1186/s10020-020-00213-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis, characterized by the formation of fat-laden plaques, is a chronic inflammatory disease. ABCA1 promotes cholesterol efflux, reduces cellular cholesterol accumulation, and regulates anti-inflammatory activities in an apoA-I- or ANXA1-dependent manner. The latter activity occurs by mediating the efflux of ANXA1, which plays a critical role in anti-inflammatory effects, cholesterol transport, exosome and microparticle secretion, and apoptotic cell clearance. ApoA-I increases ANXA1 expression via the ERK, p38MAPK, AKT, and PKC pathways. ApoA-I regulates the signaling pathways by binding to ABCA1, suggesting that apoA-I increases ANXA1 expression by binding to ABCA1. Furthermore, ANXA1 may increase ABCA1 expression. ANXA1 increases PPARγ expression by modulating STAT6 phosphorylation. PPARγ also increases ANXA1 expression by binding to the promoter of ANXA1. Therefore, ABCA1, PPARγ, and ANXA1 may form a feedback loop and regulate each other. Interestingly, the ANXA1 needs to be externalized to the cell membrane or secreted into the extracellular fluids to exert its anti-inflammatory properties. ABCA1 transports ANXA1 from the cytoplasm to the cell membrane by regulating lipidization and serine phosphorylation, thereby mediating ANXA1 efflux, likely by promoting microparticle and exosome release. The direct role of ABCA1 expression and ANXA1 release in atherosclerosis has been unclear. In this review, we focus on the role of ANXA1 in atheroprogression and its novel interaction with ABCA1, which may be useful for providing basic knowledge for the development of novel therapeutic targets for atherosclerosis and cardiovascular disease.
Collapse
Affiliation(s)
- Xin Shen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Shun Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Zhu Guo
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.,Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266071, Shandong, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China. .,School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| |
Collapse
|
15
|
Leigh T, Scalia RG, Autieri MV. Resolution of inflammation in immune and nonimmune cells by interleukin-19. Am J Physiol Cell Physiol 2020; 319:C457-C464. [PMID: 32667867 PMCID: PMC7509264 DOI: 10.1152/ajpcell.00247.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022]
Abstract
The inflammatory response is a complex, tightly regulated process activated by tissue wounding, foreign body invasion, and sterile inflammation. Over the decades, great progress has been made to advance our understanding of this process. One often overlooked aspect of inflammation is its sequel: resolution. We know that dysregulated resolution often results in numerous chronic degenerative diseases such as arthritis, cancer, and asthma. However, identification of components and mechanisms of resolving pathways lags behind those of proinflammatory processes, yet represents overlooked therapeutic opportunities. One approach is identification of endogenous, negative compensatory mechanisms, which are activated in response to inflammation for the purpose of resolution of that inflammatory stimuli. This review will focus on literature that describes expression and function of interleukin-19, a proposed anti-inflammatory cytokine, in numerous inflammatory diseases. The literature concerning IL-19 is complex, context-dependent, and often contradictory. The expression and function of IL-19 in the inflammatory response are in no way settled. We will attempt to clarify the role that this interesting and understudied cytokine plays in resolution of inflammation and discuss its mechanisms of action in different cell types. We will present a hypothesis that endogenous IL-19 expression in response to inflammatory stimuli is a cellular compensatory mechanism to dampen inflammation. We further present studies suggesting that while endogenously expressed IL-19 may be a response to inflammation, pharmacological levels may be necessary to effectively resolve the inflammatory cascade.
Collapse
Affiliation(s)
- Tani Leigh
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lemole Center for Integrated Lymphatics Research, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Rosario G Scalia
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lemole Center for Integrated Lymphatics Research, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Michael V Autieri
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lemole Center for Integrated Lymphatics Research, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Qi L, Zhang J, Wu K, Shi S, Ji Q, Miao H, Que B. IL-19 as a Biomarker for the Severity of Acute Myocardial Infarction. Arch Med Res 2020; 51:160-166. [PMID: 32111500 DOI: 10.1016/j.arcmed.2020.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/06/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Interleukin-19 (IL-19) has been shown to be involved in coronary artery diseases and atherosclerosis, while its expression in myocardial infarction is poorly understood. In this study, the dynamic increase in circulating IL-19 in acute ST-segment elevation myocardial infarction (STEMI) patients was detected. METHOD Both plasma IL-19 levels and IL-19 mRNA expression in peripheral blood mononuclear cells (PBMCs) from STEMI patients and chest pain syndrome (CPS) patients were detected at different time points, including 1 d, 3 d, 7 d and 14 d after treatment and on admission. RESULTS Compared with the CPS patients, IL-19 levels and IL-19 gene expression were significantly increased in STEMI patients and peaked at 1 d. From 1-14 d, refocusing treatment, including emergency percutaneous coronary intervention (PCI) and thrombolysis, markedly reduced IL-19 expression and promoted its recovery; of the treatments, the effect of emergency PCI was most significant. In addition, similar trends were also observed with cTnI, NT-proBNP and C-reactive protein (CRP) levels. Furthermore, correlation analysis showed that IL-19 levels were positively correlated with cTnI, NT-proBNP, CRP levels and left ventricular ejection fraction (LVEF) in STEMI patients. CONCLUSIONS IL-19 is correlated with the severity of acute myocardial infarction, which may be a new idea for the clinical treatment of myocardial infarction.
Collapse
Affiliation(s)
- Liping Qi
- Department of Cardiology, The Second Clinical Center, Chinese PLA General Hospital, Beijing, China
| | - Jianwei Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Kui Wu
- Emergency and Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, and Beijing Lab for Cardiovascular Precision Medicine, Beijing, China
| | - Shutian Shi
- Emergency and Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, and Beijing Lab for Cardiovascular Precision Medicine, Beijing, China
| | - Qingwei Ji
- Emergency and Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, and Beijing Lab for Cardiovascular Precision Medicine, Beijing, China
| | - Huangtai Miao
- Emergency and Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, and Beijing Lab for Cardiovascular Precision Medicine, Beijing, China
| | - Bin Que
- Emergency and Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, and Beijing Lab for Cardiovascular Precision Medicine, Beijing, China.
| |
Collapse
|
17
|
D'Ardes D, Santilli F, Guagnano MT, Bucci M, Cipollone F. From Endothelium to Lipids, Through microRNAs and PCSK9: A Fascinating Travel Across Atherosclerosis. High Blood Press Cardiovasc Prev 2020; 27:1-8. [PMID: 31925708 DOI: 10.1007/s40292-019-00356-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/17/2019] [Indexed: 12/22/2022] Open
Abstract
Lipids and endothelium are pivotal players on the scene of atherosclerosis and their interaction is crucial for the establishment of the pathological processes. The endothelium is not only the border of the arterial wall: it plays a key role in regulating circulating fatty acids and lipoproteins and vice versa it is regulated by these lipidic molecules thereby promoting atherosclerosis. Inflammation is another important element in the relationship between lipids and endothelium. Recently, proprotein convertase subtilisin/kexin type 9 (PCSK9) has been recognized as a fundamental regulator of LDL-C and anti-PCSK9 monoclonal antibodies have been approved for therapeutic use in hypercholesterolemia, with the promise to subvert the natural history of the disease. Moreover, growing experimental and clinical evidence is enlarging our understanding of the mechanisms through which this protein may facilitate the genesis of atherosclerosis, independently of its impact on lipid metabolism. In addition, environmental stimuli may affect the post-transcriptional regulation of genes through micro-RNAs, which in turn play a key role in orchestrating the crosstalk between endothelium and cholesterol. Advances in experimental research, with development of high throughput techniques, have led, over the last century, to a tremendous progress in the understanding and fine tuning of the molecular mechanisms leading to atherosclerosis. Identification of pivotal keystone molecules bridging lipid metabolism, endothelial dysfunction and atherogenesis will provide the mechanistic substrate to test valuable targets for prediction, prevention and treatment of atherosclerosis-related disease.
Collapse
Affiliation(s)
- D D'Ardes
- Department of Medicine and Aging, "G. d'Annunzio" University, Chieti, Italy
- Clinica Medica Division and European Center of Excellence on Atherosclerosis, Hypertension and Dyslipidemia "SS. Annunziata" Hospital, Chieti, Italy
| | - F Santilli
- Department of Medicine and Aging, "G. d'Annunzio" University, Chieti, Italy
| | - M T Guagnano
- Department of Medicine and Aging, "G. d'Annunzio" University, Chieti, Italy
| | - M Bucci
- Department of Medicine and Aging, "G. d'Annunzio" University, Chieti, Italy
- Clinica Medica Division and European Center of Excellence on Atherosclerosis, Hypertension and Dyslipidemia "SS. Annunziata" Hospital, Chieti, Italy
| | - F Cipollone
- Department of Medicine and Aging, "G. d'Annunzio" University, Chieti, Italy.
- Clinica Medica Division and European Center of Excellence on Atherosclerosis, Hypertension and Dyslipidemia "SS. Annunziata" Hospital, Chieti, Italy.
| |
Collapse
|
18
|
Munjal A, Khandia R. Atherosclerosis: orchestrating cells and biomolecules involved in its activation and inhibition. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 120:85-122. [PMID: 32085889 DOI: 10.1016/bs.apcsb.2019.11.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The term atherosclerosis refers to the condition of deposition of lipids and other substances in and on the artery walls, called as plaque that restricts the normal blood flow. The plaque may be stable or unstable in nature. Unstable plaque can burst and trigger clot formation adding further adversities. The process of plaque formation involves various stages including fatty streak, intermediate or fibro-fatty lesion and advanced lesion. The cells participating in the formation of atherosclerotic plaque include endothelial cells, vascular smooth muscle cells (VSMC), monocytes, monocytes derived macrophages, macrophages and dendritic cells and regulatory T cells (TREG). The role of a variety of cytokines and chemokines have been studied which either help in progression of atherosclerotic plaque or vice versa. The cytokines involved in atherosclerotic plaque formation include IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12, IL-13, IL-15, IL-17, IL-18, IL-20, IL-25, IL-27, IL-33, IL-37, TNF-α, TGF-β and IFN-γ; whereas amongst the chemokines (family of small cytokines) are CCL2, CCL3, CXCL4, CCL5, CXCL1, CX3CL1, CCL17, CXCL8, CXCL10, CCL20, CCL19 and CCL21 and macrophage migration-inhibitory factor. These are involved in the atherosclerosis advancements, whereas the chemokine CXCL12 is play atheroprotective roles. Apart this, contradictory functions have been documented for few other chemokines such as CXCL16. Since the cytokines and chemokines are amongst the key molecules involved in orchestrating the atherosclerosis advancements, targeting them might be an effective strategy to encumber the atherosclerotic progression. Blockage of cytokines and chemokines via the means of broad-spectrum inhibitors, neutralizing antibodies, usage of decoy receptors or RNA interference have been proved to be useful intervention against atherosclerosis.
Collapse
Affiliation(s)
- Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, MP, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, MP, India
| |
Collapse
|
19
|
Herman AB, Silva Afonso M, Kelemen SE, Ray M, Vrakas CN, Burke AC, Scalia RG, Moore K, Autieri MV. Regulation of Stress Granule Formation by Inflammation, Vascular Injury, and Atherosclerosis. Arterioscler Thromb Vasc Biol 2019; 39:2014-2027. [PMID: 31462091 DOI: 10.1161/atvbaha.119.313034] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Stress granules (SGs) are dynamic cytoplasmic aggregates containing mRNA, RNA-binding proteins, and translation factors that form in response to cellular stress. SGs have been shown to contribute to the pathogenesis of several human diseases, but their role in vascular diseases is unknown. This study shows that SGs accumulate in vascular smooth muscle cells (VSMCs) and macrophages during atherosclerosis. Approach and Results: Immunohistochemical analysis of atherosclerotic plaques from LDLR-/- mice revealed an increase in the stress granule-specific markers Ras-G3BP1 (GTPase-activating protein SH3 domain-binding protein) and PABP (poly-A-binding protein) in intimal macrophages and smooth muscle cells that correlated with disease progression. In vitro, PABP+ and G3BP1+ SGs were rapidly induced in VSMC and bone marrow-derived macrophages in response to atherosclerotic stimuli, including oxidized low-density lipoprotein and mediators of mitochondrial or oxidative stress. We observed an increase in eIF2α (eukaryotic translation initiation factor 2-alpha) phosphorylation, a requisite for stress granule formation, in cells exposed to these stimuli. Interestingly, SG formation, PABP expression, and eIF2α phosphorylation in VSMCs is reversed by treatment with the anti-inflammatory cytokine interleukin-19. Microtubule inhibitors reduced stress granule accumulation in VSMC, suggesting cytoskeletal regulation of stress granule formation. SG formation in VSMCs was also observed in other vascular disease pathologies, including vascular restenosis. Reduction of SG component G3BP1 by siRNA significantly altered expression profiles of inflammatory, apoptotic, and proliferative genes. CONCLUSIONS These results indicate that SG formation is a common feature of the vascular response to injury and disease, and that modification of inflammation reduces stress granule formation in VSMC.
Collapse
Affiliation(s)
- Allison B Herman
- From the Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (A.B.H., S.E.K., M.R., C.N.V., R.G.S., M.V.A.)
| | - Milessa Silva Afonso
- New York University Langone Health, Leon H. Charney Division of Cardiology, New York (M.S.A., A.C.B., K.M.)
| | - Sheri E Kelemen
- From the Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (A.B.H., S.E.K., M.R., C.N.V., R.G.S., M.V.A.)
| | - Mitali Ray
- From the Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (A.B.H., S.E.K., M.R., C.N.V., R.G.S., M.V.A.)
| | - Christine N Vrakas
- From the Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (A.B.H., S.E.K., M.R., C.N.V., R.G.S., M.V.A.)
| | - Amy C Burke
- New York University Langone Health, Leon H. Charney Division of Cardiology, New York (M.S.A., A.C.B., K.M.)
| | - Rosario G Scalia
- From the Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (A.B.H., S.E.K., M.R., C.N.V., R.G.S., M.V.A.)
| | - Kathryn Moore
- New York University Langone Health, Leon H. Charney Division of Cardiology, New York (M.S.A., A.C.B., K.M.)
| | - Michael V Autieri
- From the Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (A.B.H., S.E.K., M.R., C.N.V., R.G.S., M.V.A.)
| |
Collapse
|
20
|
An W, Yu Y, Zhang Y, Zhang Z, Yu Y, Zhao X. Exogenous IL-19 attenuates acute ischaemic injury and improves survival in male mice with myocardial infarction. Br J Pharmacol 2019; 176:699-710. [PMID: 30460984 DOI: 10.1111/bph.14549] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 10/21/2018] [Accepted: 10/24/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Myocardial infarction (MI) is one of the leading causes of death in China and often results in the development of heart failure. In this work, we tested the therapeutic role of Interleukin-19 (IL-19) in mice with MI and investigated the underlying molecular mechanism. EXPERIMENTAL APPROACH Mice were subjected to MI by ligation of left anterior descending coronary artery (LAD) and treated with IL-19 (10ng g-1 ; i.p.). KEY RESULTS Protein expression of IL-19 and its receptor in myocardium were upregulated 24 hrs post-MI in male mice. IL-19 treatment decreased infarct and apoptosis in myocardium, accompanied by enhanced haem oxygenase-1 (HO-1) activities and reduced malondialdehyde (MDA) formation. Pretreatment with IL-19 upregulated HO-1 expression in cultured neonatal mouse ventricular myocytes and attenuated oxygen-glucose deprivation (OGD)-induced injuries in vitro. Furthermore, IL-19 preserved cardiac function and improved survival of mice with MI. IL-19 reduced inflammatory infiltrates and suppressed formation of TNF-α, IL-1β, and IL-6. More importantly, IL-19 inhibited polarization toward proinflammatory M1 macrophages and stimulated M2 macrophage polarization in myocardium of mice with MI. IL-19 enhanced protein levels of vascular endothelial growth factor (VEGF) and promoted angiogenesis in myocardium of mice with MI. In addition, IL-19 treatment increased DNA-binding of the transcription factor STAT3 in myocardium of mice with MI. CONCLUSIONS AND IMPLICATIONS Treatment with exogenous IL-19 attenuated acute ischemic injury and improved survival of mice with MI. The mechanisms underlying these effects involved induction of HO-1, M2 macrophage polarization, angiogenesis, and STAT3 activation.
Collapse
Affiliation(s)
- Weishuai An
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yongsheng Yu
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yuefan Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Zhigang Zhang
- Department of Cardiology, Putuo Center Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunhua Yu
- Department of Geriatrics, Fuzhou General Hospital, Fujian Medical University, Fuzhou, China
| | - Xianxian Zhao
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
21
|
Herman AB, Autieri MV. Cardiovascular disease, inflammation, and mRNA stability. Aging (Albany NY) 2018; 10:3046-3047. [PMID: 30365397 PMCID: PMC6286849 DOI: 10.18632/aging.101619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/25/2018] [Indexed: 12/05/2022]
Affiliation(s)
- Allison B. Herman
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Michael V. Autieri
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| |
Collapse
|
22
|
Herman AB, Vrakas CN, Ray M, Kelemen SE, Sweredoski MJ, Moradian A, Haines DS, Autieri MV. FXR1 Is an IL-19-Responsive RNA-Binding Protein that Destabilizes Pro-inflammatory Transcripts in Vascular Smooth Muscle Cells. Cell Rep 2018; 24:1176-1189. [PMID: 30067974 PMCID: PMC11004729 DOI: 10.1016/j.celrep.2018.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/18/2018] [Accepted: 07/01/2018] [Indexed: 12/22/2022] Open
Abstract
This work identifies the fragile-X-related protein (FXR1) as a reciprocal regulator of HuR target transcripts in vascular smooth muscle cells (VSMCs). FXR1 was identified as an HuR-interacting protein by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The HuR-FXR1 interaction is abrogated in RNase-treated extracts, indicating that their association is tethered by mRNAs. FXR1 expression is induced in diseased but not normal arteries. siRNA knockdown of FXR1 increases the abundance and stability of inflammatory mRNAs, while overexpression of FXR1 reduces their abundance and stability. Conditioned media from FXR1 siRNA-treated VSMCs enhance activation of naive VSMCs. RNA EMSA and RIP demonstrate that FXR1 interacts with an ARE and an element in the 3' UTR of TNFα. FXR1 expression is increased in VSMCs challenged with the anti-inflammatory cytokine IL-19, and FXR1 is required for IL-19 reduction of HuR. This suggests that FXR1 is an anti-inflammation responsive, HuR counter-regulatory protein that reduces abundance of pro-inflammatory transcripts.
Collapse
Affiliation(s)
- Allison B Herman
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Christine N Vrakas
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Mitali Ray
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Sheri E Kelemen
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Michael J Sweredoski
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Annie Moradian
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Dale S Haines
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University Philadelphia, PA 19140, USA
| | - Michael V Autieri
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
23
|
Modulation of Immune-Inflammatory Responses in Abdominal Aortic Aneurysm: Emerging Molecular Targets. J Immunol Res 2018; 2018:7213760. [PMID: 29967801 PMCID: PMC6008668 DOI: 10.1155/2018/7213760] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/18/2018] [Accepted: 03/31/2018] [Indexed: 12/24/2022] Open
Abstract
Abdominal aortic aneurysm (AAA), a deadly vascular disease in human, is a chronic degenerative process of the abdominal aorta. In this process, inflammatory responses and immune system work efficiently by inflammatory cell attraction, proinflammatory factor secretion and subsequently MMP upregulation. Previous studies have demonstrated various inflammatory cell types in AAA of human and animals. The majority of cells, such as macrophages, CD4+ T cells, and B cells, play an important role in the diseased aortic wall through phenotypic modulation. Furthermore, immunoglobulins also greatly affect the functions and differentiation of immune cells in AAA. Recent evidence suggests that innate immune system, especially Toll-like receptors, chemokine receptors, and complements are involved in the progression of AAAs. We discussed the innate immune system, inflammatory cells, immunoglobulins, immune-mediated mechanisms, and key cytokines in the pathogenesis of AAA and particularly emphasis on a further trend and application of these interventions. This current understanding may offer new insights into the role of inflammation and immune response in AAA.
Collapse
|
24
|
Guo J, Wang H, Li L, Yuan Y, Shi X, Hou S. Treatment with IL-19 improves locomotor functional recovery after contusion trauma to the spinal cord. Br J Pharmacol 2018; 175:2611-2621. [PMID: 29500933 DOI: 10.1111/bph.14193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE IL-19 skews the immune response towards a Th2 type and appears to stimulate angiogenesis. In the current study, we tested if IL-19 treatment could reduce secondary injury and improve functional recovery after contusion spinal cord injury (SCI). EXPERIMENTAL APPROACH Firstly, mice were given a moderate-severe thoracic SCI at the T9-10 level and expression of IL-19 and its receptor was measured in the injured spinal cord. Then SCI mice were treated with mouse recombinant IL-19 and its blocking antibody to investigate the therapeutic effect of IL-19. KEY RESULTS Protein expression of IL-19 and its receptor IL-20R1 and IL-20R2 was up-regulated in the injured spinal cord of mice. IL-19 treatment promoted the recovery of locomotor function dose-dependently and reduced loss of motor neurons and microglial and glial activation following SCI. Treatment of SCI mice with IL-19 attenuated macrophage accumulation, reduced protein levels of TNF-α and CCL2 and promoted Th2 response and M2 macrophage activation in the injured region. Treatment of SCI mice with IL-19 promoted angiogenesis through up-regulating VEGF in the injured region. Treatment of SCI mice with IL-19 up-regulated HO-1 expression and decreased oxidative stress in the injured region. The beneficial effect of IL-19 was abolished by coadministration of the blocking antibody. Additionally, IL-19 deficiency in mice delayed the recovery of locomotor function following SCI. CONCLUSIONS AND IMPLICATIONS IL-19 treatment reduced secondary injuries and improved locomotor functional recovery after contusion SCI, through diverse mechanisms including immune cell polarization, angiogenesis and anti-oxidative responses.
Collapse
Affiliation(s)
- Jidong Guo
- Institute of Orthopaedics, First Affiliated Hospital of CPLA General Hospital, Beijing, China
| | - Huadong Wang
- Institute of Orthopaedics, First Affiliated Hospital of CPLA General Hospital, Beijing, China
| | - Li Li
- Institute of Orthopaedics, First Affiliated Hospital of CPLA General Hospital, Beijing, China
| | - Yanli Yuan
- Institute of Orthopaedics, First Affiliated Hospital of CPLA General Hospital, Beijing, China
| | - Xiuxiu Shi
- Institute of Orthopaedics, First Affiliated Hospital of CPLA General Hospital, Beijing, China
| | - Shuxun Hou
- Institute of Orthopaedics, First Affiliated Hospital of CPLA General Hospital, Beijing, China
| |
Collapse
|
25
|
Ray M, Gabunia K, Vrakas CN, Herman AB, Kako F, Kelemen SE, Grisanti LA, Autieri MV. Genetic Deletion of IL-19 (Interleukin-19) Exacerbates Atherogenesis in Il19-/-× Ldlr-/- Double Knockout Mice by Dysregulation of mRNA Stability Protein HuR (Human Antigen R). Arterioscler Thromb Vasc Biol 2018; 38:1297-1308. [PMID: 29674474 DOI: 10.1161/atvbaha.118.310929] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 04/05/2018] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To test the hypothesis that loss of IL-19 (interleukin-19) exacerbates atherosclerosis. APPROACH AND RESULTS: Il19-/- mice were crossed into Ldlr-/- (low-density lipoprotein receptor knock out) mice. Double knockout (dKO) mice had increased plaque burden in aortic arch and root compared with Ldlr-/- controls after 14 weeks of high-fat diet (HFD). dKO mice injected with 10 ng/g per day rmIL-19 had significantly less plaque compared with controls. qRT-PCR and Western blot analysis revealed dKO mice had increased systemic and intraplaque polarization of T cells and macrophages to proinflammatory Th1 and M1 phenotypes, and also significantly increased TNF (tumor necrosis factor)-α expression in spleen and aortic arch compared with Ldlr-/- controls. Bone marrow transplantation suggests that immune cells participate in IL-19 protection. Bone marrow-derived macrophages and vascular smooth muscle cells isolated from dKO mice had a significantly greater expression of inflammatory cytokine mRNA and protein compared with controls. Spleen and aortic arch from dKO mice had significantly increased expression of the mRNA stability protein HuR (human antigen R). Bone marrow-derived macrophage and vascular smooth muscle cell isolated from dKO mice also had greater HuR abundance. HuR stabilizes proinflammatory transcripts by binding AU-rich elements in the 3' untranslated region. Cytokine and HuR mRNA stability were increased in dKO bone marrow-derived macrophage and vascular smooth muscle cell, which was rescued by addition of IL-19 to these cells. IL-19-induced expression of miR133a, which targets and reduced HuR abundance; miR133a levels were lower in dKO mice compared with controls. CONCLUSIONS These data indicate that IL-19 is an atheroprotective cytokine which decreases the abundance of HuR, leading to reduced inflammatory mRNA stability.
Collapse
Affiliation(s)
- Mitali Ray
- From the Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (M.R., K.G., C.N.V., A.B.H., F.K., S.E.K., M.V.A.)
| | - Khatuna Gabunia
- From the Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (M.R., K.G., C.N.V., A.B.H., F.K., S.E.K., M.V.A.)
| | - Christine N Vrakas
- From the Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (M.R., K.G., C.N.V., A.B.H., F.K., S.E.K., M.V.A.)
| | - Allison B Herman
- From the Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (M.R., K.G., C.N.V., A.B.H., F.K., S.E.K., M.V.A.)
| | - Farah Kako
- From the Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (M.R., K.G., C.N.V., A.B.H., F.K., S.E.K., M.V.A.)
| | - Sheri E Kelemen
- From the Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (M.R., K.G., C.N.V., A.B.H., F.K., S.E.K., M.V.A.)
| | - Laurel A Grisanti
- Department of Biomedical Sciences, University of Missouri, Columbia (L.A.G.)
| | - Michael V Autieri
- From the Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (M.R., K.G., C.N.V., A.B.H., F.K., S.E.K., M.V.A.)
| |
Collapse
|
26
|
Autieri MV. IL-19 and Other IL-20 Family Member Cytokines in Vascular Inflammatory Diseases. Front Immunol 2018; 9:700. [PMID: 29681905 PMCID: PMC5897441 DOI: 10.3389/fimmu.2018.00700] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/21/2018] [Indexed: 01/11/2023] Open
Abstract
Cardiovascular disease remains a major medical and socioeconomic burden in developed and developing countries and will increase with an aging and increasingly sedentary society. Many vascular diseases and atherosclerotic vascular disease, in particular, are essentially inflammatory disorders, involving multiple cell types. Communication between these cells is initiated and sustained by a complex network of cytokines and their receptors. The interleukin (IL)-20 family members, IL-19, IL-20, IL-22, and IL-24, initiate, sustain, and drive the progression of vascular disease. They are important in vascular disease as they facilitate a bidirectional cross-talk between resident vascular cells with immune cells. These cytokines are grouped into the same family based on shared common receptor subunits and signaling pathways. This communication is varied and can result in exacerbation, attenuation, and even repair of the vasculature. We will briefly review what is known about IL-20, IL-22, and IL-24 in cardiovascular biology. Because IL-19 is the most studied member of this family in terms of its role in vascular pathophysiological processes, the major emphasis of this review will focus on the expression and atheroprotective roles of IL-19 in vascular inflammatory disease.
Collapse
Affiliation(s)
- Michael V Autieri
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
27
|
Chen ZY, Chen F, Wang YG, Wang DH, Jang LL, Cheng LX. Down-regulation of Helios Expression in Tregs from Patients with Hypertension. Curr Med Sci 2018; 38:58-63. [PMID: 30074152 DOI: 10.1007/s11596-018-1846-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/07/2017] [Indexed: 02/07/2023]
Abstract
Regulatory T cells (Tregs) play a pivotal role in the pathological development of hypertension. Helios, a transcription factor from the Ikaros family, was recently reported to be a bona fide marker for natural Tregs or activated Tregs with suppression function, however, little has been known about its role in hypertension. This study was aimed to find whether Helios+ Tregs really play a vital role in hypertension. A total of 60 hypertension patients, and 46 normotension subjects were enrolled in this study. Frequencies of different Tregs subsets in peripheral blood were measured by flow cytometry. Plasma cytokine level was determined by ELISA. The mRNA expression of Foxp3 and Helios in purified CD4+ T cells was detected by RT-PCR. Proportion of CD4+Foxp3+Helios+ Tregs was decreased significantly in patients with hypertension (62.52%±1.18% vs. 71.89%±1.03%, P<0.01), and it was correlated with plasma level of IL-10 positively (a=0.505, P<0.05) and plasma level of IFN-gamma negatively (r=-0.551, P<0.05). The mRNA expression of Foxp3 (7.23±1.00 vs. 10.58±0.54, P<0.05) and Helios (8.47±0.95 vs. 15.52±2.0, P<0.05) was decreased in CD4+ T cells from patients with hypertension. Helios+ Tregs were decreased in patients with hypertension and may play a protective role in hypertension progression.
Collapse
Affiliation(s)
- Zhu-Yue Chen
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feng Chen
- Department of Adult Internal Medicine, Hubei Maternal and Child Health Hospital, Wuhan, 430070, China
| | - Yan-Ge Wang
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ding-Hang Wang
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li-Li Jang
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Long-Xian Cheng
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
28
|
The roles of interleukins in perfusion recovery after peripheral arterial disease. Biosci Rep 2018; 38:BSR20171455. [PMID: 29358309 PMCID: PMC5809615 DOI: 10.1042/bsr20171455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/02/2018] [Accepted: 01/20/2018] [Indexed: 11/22/2022] Open
Abstract
In peripheral arterial disease (PAD) patients, occlusions in the major arteries that supply the leg makes blood flow dependent on the capacity of neovascularization. There is no current medication that is able to increase neovascularization to the ischemic limb and directly treat the primary problem of PAD. An increasing body of evidence supports the notion that inflammation plays an important role in the vascular remodeling and perfusion recovery after PAD. Interleukins (ILs), a group of proteins produced during inflammation, have been considered to be important for angiogenesis and arteriogenesis after tissue ischemia. This review summarizes the latest clinical and experimental developments of the role of ILs in blood perfusion recovery after PAD.
Collapse
|
29
|
Ray M, Autieri MV. Regulation of pro- and anti-atherogenic cytokines. Cytokine 2017; 122:154175. [PMID: 29221669 DOI: 10.1016/j.cyto.2017.09.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/29/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022]
Abstract
Despite advances in prevention and treatment, vascular diseases continue to account for significant morbidity and mortality in the developed world. Incidence is expected to worsen as the number of patients with common co-morbidities linked with atherosclerotic vascular disease, such as obesity and diabetes, continues to increase, reaching epidemic proportions. Atherosclerosis is a lipid-driven vascular inflammatory disease involving multiple cell types in various stages of inflammation, activation, apoptosis, and necrosis. One commonality among these cell types is that they are activated and communicate with each other in a paracrine fashion via a complex network of cytokines. Cytokines mediate atherogenesis by stimulating expression of numerous proteins necessary for induction of a host of cellular responses, including inflammation, extravasation, proliferation, apoptosis, and matrix production. Cytokine expression is regulated by a number of transcriptional and post-transcriptional mechanisms. In this context, proteins that control and fine-tune cytokine expression can be considered key players in development of atherosclerosis and also represent targets for rational drug therapy to combat this disease. This review will describe the cellular and molecular mechanisms that drive atherosclerotic plaque progression and present key cytokines that participate in this process. We will also describe RNA binding proteins that mediate cytokine mRNA stability and regulate cytokine abundance. Identification and characterization of the cytokines and proteins that regulate their abundance are essential to our ability to identify therapeutic approaches to ameliorate atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Mitali Ray
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Michael V Autieri
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
30
|
Ye J, Ji Q, Liu J, Liu L, Huang Y, Shi Y, Shi L, Wang M, Liu M, Feng Y, Jiang H, Xu Y, Wang Z, Song J, Lin Y, Wan J. Interleukin 22 Promotes Blood Pressure Elevation and Endothelial Dysfunction in Angiotensin II-Treated Mice. J Am Heart Assoc 2017; 6:e005875. [PMID: 28974499 PMCID: PMC5721831 DOI: 10.1161/jaha.117.005875] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/26/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND CD4+ T helper (Th) cells, including Th1, Th2, and Th17 cells, play critical roles in angiotensin II-induced hypertension. Th22 cells, a novel subset of Th cells, take part in cardiovascular diseases by producing IL-22 (interleukin 22). This study aimed to investigate whether IL-22 is involved in hypertension. METHODS AND RESULTS Th22 cells and IL-22 levels were detected in angiotensin II-infused mice, and the results showed that Th22 cells and IL-22 levels significantly increased. To determine the effect of Th22/IL-22 on blood pressure regulation, angiotensin II-infused mice were treated with recombinant mouse IL-22, an anti-IL-22 neutralizing monoclonal antibody, or control. Treatment with recombinant IL-22 resulted in increased blood pressure, amplified inflammatory responses, and aggravated endothelial dysfunction, whereas the anti-IL-22 neutralizing monoclonal antibody decreased blood pressure, reduced inflammatory responses, and attenuated endothelial dysfunction. To determine whether the STAT3 (signal transducer and activator of transcription 3) pathway mediates the effect of IL-22 on blood pressure regulation, the special STAT3 pathway inhibitor S31-201 was administered to mice treated with recombinant IL-22. S31-201 treatment significantly ameliorated the IL-22 effects of increased blood pressure and endothelial dysfunction. In addition, serum IL-22 levels were significantly increased in hypertensive patients compared with healthy persons. Correlation analysis showed a positive correlation between IL-22 levels and blood pressure. CONCLUSIONS IL-22 amplifies the inflammatory response, induces endothelial dysfunction and promotes blood pressure elevation in angiotensin II-induced hypertensive mice. The STAT3 pathway mediates the effect of IL-22 on hypertension. Blocking IL-22 may be a novel therapeutic strategy to prevent and treat hypertension.
Collapse
Affiliation(s)
- Jing Ye
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qingwei Ji
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ling Liu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ying Huang
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ying Shi
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Lei Shi
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengling Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ying Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Huimin Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Junlong Song
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yingzhong Lin
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
31
|
Anti-inflammatory mechanisms of neovestitol from Brazilian red propolis in LPS-activated macrophages. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
32
|
The arterial microenvironment: the where and why of atherosclerosis. Biochem J 2017; 473:1281-95. [PMID: 27208212 DOI: 10.1042/bj20150844] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 02/15/2016] [Indexed: 12/11/2022]
Abstract
The formation of atherosclerotic plaques in the large and medium sized arteries is classically driven by systemic factors, such as elevated cholesterol and blood pressure. However, work over the past several decades has established that atherosclerotic plaque development involves a complex coordination of both systemic and local cues that ultimately determine where plaques form and how plaques progress. Although current therapeutics for atherosclerotic cardiovascular disease primarily target the systemic risk factors, a large array of studies suggest that the local microenvironment, including arterial mechanics, matrix remodelling and lipid deposition, plays a vital role in regulating the local susceptibility to plaque development through the regulation of vascular cell function. Additionally, these microenvironmental stimuli are capable of tuning other aspects of the microenvironment through collective adaptation. In this review, we will discuss the components of the arterial microenvironment, how these components cross-talk to shape the local microenvironment, and the effect of microenvironmental stimuli on vascular cell function during atherosclerotic plaque formation.
Collapse
|
33
|
Gabunia K, Herman AB, Ray M, Kelemen SE, England RN, DeLa Cadena R, Foster WJ, Elliott KJ, Eguchi S, Autieri MV. Induction of MiR133a expression by IL-19 targets LDLRAP1 and reduces oxLDL uptake in VSMC. J Mol Cell Cardiol 2017; 105:38-48. [PMID: 28257760 DOI: 10.1016/j.yjmcc.2017.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 10/20/2022]
Abstract
The transformation of vascular smooth muscle cells [VSMC] into foam cells leading to increased plaque size and decreased stability is a key, yet understudied step in atherogenesis. We reported that Interleukin-19 (IL-19), a novel, anti-inflammatory cytokine, attenuates atherosclerosis by anti-inflammatory effects on VSMC. In this work we report that IL-19 induces expression of miR133a, a muscle-specific miRNA, in VSMC. Although previously unreported, we report that miR133a can target and reduce mRNA abundance, mRNA stability, and protein expression of Low Density Lipoprotein Receptor Adaptor Protein 1, (LDLRAP1), an adaptor protein which functions to internalize the LDL receptor. Mutations in this gene lead to LDL receptor malfunction and cause the Autosomal Recessive Hypercholesterolemia (ARH) disorder in humans. Herein we show that IL-19 reduces lipid accumulation in VSMC, and LDLRAP1 expression and oxLDL uptake in a miR133a-dependent mechanism. We show that LDLRAP1 is expressed in plaque and neointimal VSMC of mouse and human injured arteries. Transfection of miR133a and LDLRAP1 siRNA into VSMC reduces their proliferation and uptake of oxLDL. miR133a is significantly increased in plasma from hyperlipidemic compared with normolipidemic patients. Expression of miR133a in IL-19 stimulated VSMC represents a previously unrecognized link between vascular lipid metabolism and inflammation, and may represent a therapeutic opportunity to combat vascular inflammatory diseases.
Collapse
Affiliation(s)
- Khatuna Gabunia
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - Allison B Herman
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - Mitali Ray
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - Sheri E Kelemen
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - Ross N England
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - Raul DeLa Cadena
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - William J Foster
- Departments of Ophthalmology & Bioengineering, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - Katherine J Elliott
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - Satoru Eguchi
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - Michael V Autieri
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States.
| |
Collapse
|
34
|
Zhang X, Huang F, Chen Y, Qian X, Zheng SG. Progress and prospect of mesenchymal stem cell-based therapy in atherosclerosis. Am J Transl Res 2016; 8:4017-4024. [PMID: 27829989 PMCID: PMC5095298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial intima, occurring usually in the aged populations who are suffering from hypertension, dyslipidemia and diabetes for a long time. Research on atherosclerosis has shown that macrophage foam cell formation, inflammation, dyslipidemia and immune cells infiltration are all involved in regulating the onset and progression of atherosclerosis. Mesenchymal stem cells (MSCs) originated from different kinds of tissue are a group of cells possessing well-established self-renewal and multipotent differentiation properties as well as immunomodulatory and anti-inflammatory roles. Recent studies have displayed their dyslipidemia regulation functions. Transplantation of MSCs to atherosclerotic patients might be a new multifactorial therapeutic strategy to improve atherosclerosis. This review updates the advancement on MSCs and atherosclerosis.
Collapse
Affiliation(s)
- Ximei Zhang
- Division of Cardiology, Third Affiliated Hospital at Sun Yat-sen UniversityGuangzhou 510630, Guangdong, China
- Center for Clinic Immunology, Third Affiliated Hospital at Sun Yat-sen UniversityGuangzhou 4510630, Guangdong, China
| | - Feng Huang
- Center for Clinic Immunology, Third Affiliated Hospital at Sun Yat-sen UniversityGuangzhou 4510630, Guangdong, China
| | - Yanming Chen
- Division of Endocrinology, Third Affiliated Hospital at Sun Yat-sen UniversityGuangzhou 510630, Guangdong, China
| | - Xiaoxian Qian
- Division of Cardiology, Third Affiliated Hospital at Sun Yat-sen UniversityGuangzhou 510630, Guangdong, China
- Center for Clinic Immunology, Third Affiliated Hospital at Sun Yat-sen UniversityGuangzhou 4510630, Guangdong, China
- Institute Integrated Traditional Chinese and Western Medicine, Sun Yat-sen UniversityGuangzhou 510630, Guangdong, China
| | - Song Guo Zheng
- Center for Clinic Immunology, Third Affiliated Hospital at Sun Yat-sen UniversityGuangzhou 4510630, Guangdong, China
- Division of Rheumatology, Penn State Milton S. Hershey Medical CenterHershey, PA 17033, USA
| |
Collapse
|
35
|
Xie W, Fang L, Gan S, Xuan H. Interleukin-19 alleviates brain injury by anti-inflammatory effects in a mice model of focal cerebral ischemia. Brain Res 2016; 1650:172-177. [PMID: 27608956 DOI: 10.1016/j.brainres.2016.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 09/01/2016] [Accepted: 09/04/2016] [Indexed: 11/17/2022]
Abstract
Stroke causes brain injury with neuroinflammation which exacerbates the neuronal damage. Recent studies show that anti-inflammatory cytokine interleukin-19 (IL-19) plays a critical part in the inflammatory and ischemic vascular diseases, yet its potential role in ischemic stroke is unknown. Here, we tested the hypothesis that IL-19 exerts protective effects against brain ischemia by modulating inflammation after stroke. Mice were injected intraperitoneally with 10ng/g per day recombinant mouse IL-19 starting pre-stroke, and were subjected to transient middle cerebral artery occlusion. Infarct volume was assessed by triphenyltetrazolium chloride and neurobehavioral outcome by neurological scores. Inflammation was measured using real-time quantitative PCR, immunochemistry, and fluorescence-activated cell sorting. Infarct volume at 72h after stroke was significantly smaller in IL-19 treated group and focal neurological score was significantly better. IL-19 treatment markedly attenuated elevation of the expression of TNF-α and IL-6 mRNA, suppressed increases in the number of microglia, macrophages, CD4+ T cells, CD8+ T cells as well as B cells, and blocked activation of macrophages and neutrophils in the ischemic brain. In peripheral blood, IL-19 injection helped to robustly preserve the reduced immune cells, including macrophages, CD4+ T cells, CD8+ T cells and B cells, compared to control group. IL-19 reduced brain infarction and attenuated neurological deficits following stroke in mice, probably by inhibiting infiltration and activation of immune cells, and by suppressing increases in gene expression of proinflammatory cytokines. This may identify IL-19 as a new therapeutic to limit neuroinflammation after stroke.
Collapse
Affiliation(s)
- Weiying Xie
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lili Fang
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shuyuan Gan
- Department of Anesthesiology, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Haojun Xuan
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, China.
| |
Collapse
|
36
|
Immune-inflammatory responses in atherosclerosis: Role of an adaptive immunity mainly driven by T and B cells. Immunobiology 2016; 221:1014-33. [PMID: 27262513 DOI: 10.1016/j.imbio.2016.05.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/06/2016] [Accepted: 05/23/2016] [Indexed: 01/22/2023]
Abstract
Adaptive immune response plays an important role in atherogenesis. In atherosclerosis, the proinflammatory immune response driven by Th1 is predominant but the anti-inflammatory response mediated mainly by regulatory T cells is also present. The role of Th2 and Th17 cells in atherogenesis is still debated. In the plaque, other T helper cells can be observed such as Th9 and Th22 but is little is known about their impact in atherosclerosis. Heterogeneity of CD4(+) T cell subsets presented in the plaque may suggest for plasticity of T cell that can switch the phenotype dependening on the local microenvironment and activating/blocking stimuli. Effector T cells are able to recognize self-antigens released by necrotic and apoptotic vascular cells and induce a humoral immune reaction. Tth cells resided in the germinal centers help B cells to switch the antibody class to the production of high-affinity antibodies. Humoral immunity is mediated by B cells that release antigen-specific antibodies. A variety of B cell subsets were found in human and murine atherosclerotic plaques. In mice, B1 cells could spontaneously produce atheroprotective natural IgM antibodies. Conventional B2 lymphocytes secrete either proatherogenic IgG, IgA, and IgE or atheroprotective IgG and IgM antibodies reactive with oxidation-specific epitopes on atherosclerosis-associated antigens. A small population of innate response activator (IRA) B cells, which is phenotypically intermediate between B1 and B2 cells, produces IgM but possesses proatherosclerotic properties. Finally, there is a minor subset of splenic regulatory B cells (Bregs) that protect against atherosclerotic inflammation through support of generation of Tregs and production of anti-inflammatory cytokines IL-10 and TGF-β and proapoptotic molecules.
Collapse
|
37
|
Gabunia K, Ellison S, Kelemen S, Kako F, Cornwell WD, Rogers TJ, Datta PK, Ouimet M, Moore KJ, Autieri MV. IL-19 Halts Progression of Atherosclerotic Plaque, Polarizes, and Increases Cholesterol Uptake and Efflux in Macrophages. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1361-74. [PMID: 26952642 DOI: 10.1016/j.ajpath.2015.12.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/01/2015] [Accepted: 12/22/2015] [Indexed: 01/04/2023]
Abstract
Atherosclerosis regression is an important clinical goal, and treatments that can reverse atherosclerotic plaque formation are actively being sought. Our aim was to determine whether administration of exogenous IL-19, a Th2 cytokine, could attenuate progression of preformed atherosclerotic plaque and to identify molecular mechanisms. LDLR(-/-) mice were fed a Western diet for 12 weeks, then administered rIL-19 or phosphate-buffered saline concomitant with Western diet for an additional 8 weeks. Analysis of atherosclerosis burden showed that IL-19-treated mice were similar to baseline, in contrast to control mice which showed a 54% increase in plaque, suggesting that IL-19 halted the progression of atherosclerosis. Plaque characterization showed that IL-19-treated mice had key features of atherosclerosis regression, including a reduction in macrophage content and an enrichment in markers of M2 macrophages. Mechanistic studies revealed that IL-19 promotes the activation of key pathways leading to M2 macrophage polarization, including STAT3, STAT6, Kruppel-like factor 4, and peroxisome proliferator-activated receptor γ, and can reduce cytokine-induced inflammation in vivo. We identified a novel role for IL-19 in regulating macrophage lipid metabolism through peroxisome proliferator-activated receptor γ-dependent regulation of scavenger receptor-mediated cholesterol uptake and ABCA1-mediated cholesterol efflux. These data show that IL-19 can halt progression of preformed atherosclerotic plaques by regulating both macrophage inflammation and cholesterol homeostasis and implicate IL-19 as a link between inflammation and macrophage cholesterol metabolism.
Collapse
Affiliation(s)
- Khatuna Gabunia
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Stephen Ellison
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Sheri Kelemen
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Farah Kako
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - William D Cornwell
- Center for Inflammation, Translational, and Clinical Lung Research, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Thomas J Rogers
- Center for Inflammation, Translational, and Clinical Lung Research, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Prasun K Datta
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Mireille Ouimet
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York
| | - Kathryn J Moore
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York
| | - Michael V Autieri
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
38
|
Affiliation(s)
- Emiel P C van der Vorst
- From the Institute for Cardiovascular Prevention, Department of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany (E.P.C.v.d.V., Y.D., C.W.); DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (Y.D., C.W.); and Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht, The Netherlands (C.W.)
| | - Yvonne Döring
- From the Institute for Cardiovascular Prevention, Department of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany (E.P.C.v.d.V., Y.D., C.W.); DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (Y.D., C.W.); and Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht, The Netherlands (C.W.)
| | - Christian Weber
- From the Institute for Cardiovascular Prevention, Department of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany (E.P.C.v.d.V., Y.D., C.W.); DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (Y.D., C.W.); and Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht, The Netherlands (C.W.).
| |
Collapse
|
39
|
Yang D, Liu X, Liu M, Chi H, Liu J, Han H. Protective effects of quercetin and taraxasterol against H 2O 2-induced human umbilical vein endothelial cell injury in vitro. Exp Ther Med 2015; 10:1253-1260. [PMID: 26622474 PMCID: PMC4578013 DOI: 10.3892/etm.2015.2713] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 11/28/2014] [Indexed: 12/22/2022] Open
Abstract
Due to the association between inflammation and endothelial dysfunction in atherosclerosis, the blockage of the inflammatory process that occurs on the endothelial cells may be a useful way of preventing atherosclerosis. In the present study, human umbilical vein endothelial cells (HUVECs) were used to investigate the protective effects of quercetin and taraxasterol against H2O2-induced oxidative damage and inflammation. HUVECs were pretreated with quercetin or taraxasterol at concentrations ranging between 0 and 210 µM for 12 h, prior to being administered different concentrations of H2O2 for 4 h. Cell viability and levels of apoptosis were assessed through cell counting kit-8 (CCK-8) and terminal deoxynucleotidyl transferase dUTP nick end labeling assays, respectively, to determine the injury to the HUVECs. The viability loss in the H2O2-induced HUVECs was markedly restored in a concentration-dependent manner by pretreatment with quercetin or taraxasterol. This effect was accompanied by significantly decreased expression of vascular cell adhesion molecule 1 (VCAM-1) and cluster of differentiation (CD)80 for taraxasterol and that of CD80 for quercetin. In conclusion, the present study showed the protective effects of quercetin and taraxasterol against cell injury and inflammation in HUVECs and indicated that the effects were mediated via the downregulation of VCAM-1 and CD80 expression. This study has therefore served as a preliminary investigation on the anti-atherosclerotic and cardiovascular protective effects of quercetin and taraxasterol as dietary supplements.
Collapse
Affiliation(s)
- Dongwei Yang
- Department of Cardiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Xinye Liu
- Department of Cardiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Min Liu
- Department of Cardiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Hao Chi
- Department of Cardiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Jirong Liu
- Department of Internal Medicine, North China Electric Power University Hospital, Beijing 102206, P.R. China
| | - Huamin Han
- Department of Cardiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| |
Collapse
|
40
|
Cytokines in atherosclerosis: Key players in all stages of disease and promising therapeutic targets. Cytokine Growth Factor Rev 2015; 26:673-85. [PMID: 26005197 PMCID: PMC4671520 DOI: 10.1016/j.cytogfr.2015.04.003] [Citation(s) in RCA: 327] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/27/2015] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, a chronic inflammatory disorder of the arteries, is responsible for most deaths in westernized societies with numbers increasing at a marked rate in developing countries. The disease is initiated by the activation of the endothelium by various risk factors leading to chemokine-mediated recruitment of immune cells. The uptake of modified lipoproteins by macrophages along with defective cholesterol efflux gives rise to foam cells associated with the fatty streak in the early phase of the disease. As the disease progresses, complex fibrotic plaques are produced as a result of lysis of foam cells, migration and proliferation of vascular smooth muscle cells and continued inflammatory response. Such plaques are stabilized by the extracellular matrix produced by smooth muscle cells and destabilized by matrix metalloproteinase from macrophages. Rupture of unstable plaques and subsequent thrombosis leads to clinical complications such as myocardial infarction. Cytokines are involved in all stages of atherosclerosis and have a profound influence on the pathogenesis of this disease. This review will describe our current understanding of the roles of different cytokines in atherosclerosis together with therapeutic approaches aimed at manipulating their actions.
Collapse
|
41
|
Affiliation(s)
- Catherine C Hedrick
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA.
| |
Collapse
|
42
|
Yan X, Sano M. God gives IL-19 with both hands: Anti-inflammatory but pro-angiogenic. J Mol Cell Cardiol 2015; 80:20-2. [DOI: 10.1016/j.yjmcc.2014.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/09/2014] [Accepted: 12/12/2014] [Indexed: 10/24/2022]
|
43
|
Rojas J, Salazar J, Martínez MS, Palmar J, Bautista J, Chávez-Castillo M, Gómez A, Bermúdez V. Macrophage Heterogeneity and Plasticity: Impact of Macrophage Biomarkers on Atherosclerosis. SCIENTIFICA 2015; 2015:851252. [PMID: 26491604 PMCID: PMC4600540 DOI: 10.1155/2015/851252] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/09/2015] [Indexed: 05/15/2023]
Abstract
Cardiovascular disease (CVD) is a global epidemic, currently representing the worldwide leading cause of morbidity and mortality. Atherosclerosis is the fundamental pathophysiologic component of CVD, where the immune system plays an essential role. Monocytes and macrophages are key mediators in this aspect: due to their heterogeneity and plasticity, these cells may act as either pro- or anti-inflammatory mediators. Indeed, monocytes may develop heterogeneous functional phenotypes depending on the predominating pro- or anti-inflammatory microenvironment within the lesion, resulting in classic, intermediate, and non-classic monocytes, each with strikingly differing features. Similarly, macrophages may also adopt heterogeneous profiles being mainly M1 and M2, the former showing a proinflammatory profile while the latter demonstrates anti-inflammatory traits; they are further subdivided in several subtypes with more specialized functions. Furthermore, macrophages may display plasticity by dynamically shifting between phenotypes in response to specific signals. Each of these distinct cell profiles is associated with diverse biomarkers which may be exploited for therapeutic intervention, including IL-10, IL-13, PPAR-γ, LXR, NLRP3 inflammasomes, and microRNAs. Direct modulation of the molecular pathways concerning these potential macrophage-related targets represents a promising field for new therapeutic alternatives in atherosclerosis and CVD.
Collapse
Affiliation(s)
- Joselyn Rojas
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
- Endocrinology Department, Maracaibo University Hospital, Maracaibo 4004, Venezuela
- *Joselyn Rojas:
| | - Juan Salazar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - María Sofía Martínez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Jim Palmar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Jordan Bautista
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Mervin Chávez-Castillo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Alexis Gómez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Valmore Bermúdez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| |
Collapse
|
44
|
Abstract
Atherosclerosis is an inflammatory disease of the vessel wall characterized by activation of the innate immune system, with macrophages as the main players, as well as the adaptive immune system, characterized by a Th1-dominant immune response. Cytokines play a major role in the initiation and regulation of inflammation. In recent years, many studies have investigated the role of these molecules in experimental models of atherosclerosis. While some cytokines such as TNF or IFNγ clearly had atherogenic effects, others such as IL-10 were found to be atheroprotective. However, studies investigating the different cytokines in experimental atherosclerosis revealed that the cytokine system is complex with both disease stage-dependent and site-specific effects. In this review, we strive to provide an overview of the main cytokines involved in atherosclerosis and to shed light on their individual role during atherogenesis.
Collapse
Affiliation(s)
- Pascal J H Kusters
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Academic Medical Center, L01-146.1, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU), Munich, Germany.
| |
Collapse
|
45
|
Rutz S, Wang X, Ouyang W. The IL-20 subfamily of cytokines--from host defence to tissue homeostasis. Nat Rev Immunol 2014; 14:783-95. [PMID: 25421700 DOI: 10.1038/nri3766] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The interleukin-20 (IL-20) subfamily of cytokines comprises IL-19, IL-20, IL-22, IL-24 and IL-26. These cytokines are all members of the larger IL-10 family, but have been grouped together to form the IL-20 subfamily based on their usage of common receptor subunits and similarities in their target-cell profiles and biological functions. Members of the IL-20 subfamily facilitate the communication between leukocytes and epithelial cells, thereby enhancing innate defence mechanisms and tissue repair processes at epithelial surfaces. In this Review, we describe the cellular sources and targets of the IL-20 subfamily cytokines, and we detail how their expression is regulated. Much of our understanding of the unique biology of this group of cytokines is still based on IL-22, which is the most studied member of the IL-20 subfamily. Nevertheless, we attempt a broader discussion of the emerging functions of IL-20 subfamily cytokines in host defence, inflammatory diseases, cancer and metabolism.
Collapse
Affiliation(s)
- Sascha Rutz
- Department of Immunology, Genentech, South San Francisco, California 94080, USA
| | - Xiaoting Wang
- Department of Immunology, Genentech, South San Francisco, California 94080, USA
| | - Wenjun Ouyang
- Department of Immunology, Genentech, South San Francisco, California 94080, USA
| |
Collapse
|
46
|
Fonseca-Camarillo G, Furuzawa-Carballeda J, Granados J, Yamamoto-Furusho JK. Expression of interleukin (IL)-19 and IL-24 in inflammatory bowel disease patients: a cross-sectional study. Clin Exp Immunol 2014; 177:64-75. [PMID: 24527982 DOI: 10.1111/cei.12285] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2014] [Indexed: 12/14/2022] Open
Abstract
Interleukin (IL)-19 and IL-24 belong to the IL-20 subfamily, and are involved in host defence against bacteria and fungi, tissue remodelling and wound healing. Nevertheless, no previous studies have explored their expression in Mexican mestizo patients with inflammatory bowel disease (IBD). The aim of the study was to characterize and to enumerate peripheral and tissue IL-19- and IL-24-producing cells, as well as gene expression in patients with IBD with regard to its clinical activity. We studied a total of 77 patients with ulcerative colitis (UC), 36 Crohn's disease (CD) and 33 patients as control group (without endoscopic evidence of intestinal inflammation). Gene expression was measured by real-time-polymerase chain reaction (RT-PCR). Protein expression was detected in biopsies by immunohistochemistry and in freshly isolated peripheral blood mononuclear cells by flow cytometry. IL-19 and IL-24 gene expression was elevated significantly in patients with active IBD versus the inactive disease and non-inflammatory control groups (P < 0·05). However, IL-19- and IL-24-producing cells were only increased in active CD versus active UC and non-inflammatory tissues (P < 0·05). IL-19 was produced conspicuously by circulating B cells and monocytes in patients with inactive disease (P < 0·05). Conversely, IL-24 was noticeably synthesized by peripheral B cells, CD4(+) T cells, CD8(+) T cells and monocytes in patients with active disease. In conclusion, IL-19- and IL-24-producing cells in active CD patients were increased compared with active UC and non-inflammatory tissues. These cytokines could significantly shape and differentiate inflammatory process, severity and tolerance loss between UC and CD pathophysiology.
Collapse
Affiliation(s)
- G Fonseca-Camarillo
- Inflammatory Bowel Disease Clinic, Department of Gastroenterology, México City, México; Posgrado Ciencias Biológicas, Universidad Nacional Autónoma de México, México City, México
| | | | | | | |
Collapse
|
47
|
Ait-Oufella H, Sage AP, Mallat Z, Tedgui A. Adaptive (T and B cells) immunity and control by dendritic cells in atherosclerosis. Circ Res 2014; 114:1640-60. [PMID: 24812352 DOI: 10.1161/circresaha.114.302761] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic inflammation in response to lipoprotein accumulation in the arterial wall is central in the development of atherosclerosis. Both innate and adaptive immunity are involved in this process. Adaptive immune responses develop against an array of potential antigens presented to effector T lymphocytes by antigen-presenting cells, especially dendritic cells. Functional analysis of the role of different T-cell subsets identified the Th1 responses as proatherogenic, whereas regulatory T-cell responses exert antiatherogenic activities. The effect of Th2 and Th17 responses is still debated. Atherosclerosis is also associated with B-cell activation. Recent evidence established that conventional B-2 cells promote atherosclerosis. In contrast, innate B-1 B cells offer protection through secretion of natural IgM antibodies. This review discusses the recent development in our understanding of the role of T- and B-cell subsets in atherosclerosis and addresses the role of dendritic cell subpopulations in the control of adaptive immunity.
Collapse
Affiliation(s)
- Hafid Ait-Oufella
- From INSERM UMR-S 970, Paris Cardiovascular Research Center (PARCC), Université Paris Descartes, Sorbonne Paris Cité, Paris, France (H.A.-O., Z.M., A.T.); Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Paris, France (H.A.-O.); and Department of Medicine, University of Cambridge, Cambridge, United Kingdom (A.P.S., Z.M.)
| | | | | | | |
Collapse
|
48
|
Ellison S, Gabunia K, Richards JM, Kelemen SE, England RN, Rudic D, Azuma YT, Munroy MA, Eguchi S, Autieri MV. IL-19 reduces ligation-mediated neointimal hyperplasia by reducing vascular smooth muscle cell activation. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2134-43. [PMID: 24814101 DOI: 10.1016/j.ajpath.2014.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/31/2014] [Accepted: 04/07/2014] [Indexed: 11/29/2022]
Abstract
We tested the hypothesis that IL-19, a putative member of the type 2 helper T-cell family of anti-inflammatory interleukins, can attenuate intimal hyperplasia and modulate the vascular smooth muscle cell (VSMC) response to injury. Ligated carotid artery of IL-19 knockout (KO) mice demonstrated a significantly higher neointima/intima ratio compared with wild-type (WT) mice (P = 0.04). More important, the increased neointima/intima ratio in the KO could be reversed by injection of 10 ng/g per day recombinant IL-19 into the KO mouse (P = 0.04). VSMCs explanted from IL-19 KO mice proliferated significantly more rapidly than WT. This could be inhibited by addition of IL-19 to KO VSMCs (P = 0.04 and P < 0.01). IL-19 KO VSMCs migrated more rapidly compared with WT (P < 0.01). Interestingly, there was no type 1 helper T-cell polarization in the KO mouse, but there was significantly greater leukocyte infiltrate in the ligated artery in these mice compared with WT. IL-19 KO VSMCs expressed significantly greater levels of inflammatory mRNA, including IL-1β, tumor necrosis factor α, and monocyte chemoattractant protein-1 in response to tumor necrosis factor α stimulation (P < 0.01 for all). KO VSMCs expressed greater adhesion molecule expression and adherence to monocytes. Together, these data indicate that IL-19 is a previously unrecognized counterregulatory factor for VSMCs, and its expression is an important protective mechanism in regulation of vascular restenosis.
Collapse
Affiliation(s)
- Stephen Ellison
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Khatuna Gabunia
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - James M Richards
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Sheri E Kelemen
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Ross N England
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Dan Rudic
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia
| | - Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Osaka Prefecture University Graduate School, Osaka, Japan
| | - M Alexandra Munroy
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Satoru Eguchi
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Michael V Autieri
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|