1
|
Johnson D, Colijn S, Richee J, Yano J, Burns M, Davis AE, Pham VN, Saric A, Jain A, Yin Y, Castranova D, Melani M, Fujita M, Grainger S, Bonifacino JS, Weinstein BM, Stratman AN. Angiogenesis is limited by LIC1-mediated lysosomal trafficking. Angiogenesis 2024:10.1007/s10456-024-09951-7. [PMID: 39356418 DOI: 10.1007/s10456-024-09951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024]
Abstract
Dynein cytoplasmic 1 light intermediate chain 1 (LIC1, DYNC1LI1) is a core subunit of the dynein motor complex. The LIC1 subunit also interacts with various cargo adaptors to regulate Rab-mediated endosomal recycling and lysosomal degradation. Defects in this gene are predicted to alter dynein motor function, Rab binding capabilities, and cytoplasmic cargo trafficking. Here, we have identified a dync1li1 zebrafish mutant, harboring a premature stop codon at the exon 12/13 splice acceptor site, that displays increased angiogenesis. In vitro, LIC1-deficient human endothelial cells display increases in cell surface levels of the pro-angiogenic receptor VEGFR2, SRC phosphorylation, and Rab11-mediated endosomal recycling. In vivo, endothelial-specific expression of constitutively active Rab11a leads to excessive angiogenesis, similar to the dync1li1 mutants. Increased angiogenesis is also evident in zebrafish harboring mutations in rilpl1/2, the adaptor proteins that promote Rab docking to Lic1 to mediate lysosomal targeting. These findings suggest that LIC1 and the Rab-adaptor proteins RILPL1 and 2 restrict angiogenesis by promoting degradation of VEGFR2-containing recycling endosomes. Disruption of LIC1- and RILPL1/2-mediated lysosomal targeting increases Rab11-mediated recycling endosome activity, promoting excessive SRC signaling and angiogenesis.
Collapse
Affiliation(s)
- Dymonn Johnson
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Sarah Colijn
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Jahmiera Richee
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Joseph Yano
- Division of Developmental Biology, Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Margaret Burns
- Division of Developmental Biology, Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrew E Davis
- Division of Developmental Biology, Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Van N Pham
- Division of Developmental Biology, Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amra Saric
- Section On Intracellular Protein Trafficking, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Akansha Jain
- Section On Intracellular Protein Trafficking, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ying Yin
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Daniel Castranova
- Division of Developmental Biology, Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mariana Melani
- Division of Developmental Biology, Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Fundación Instituto Leloir, Buenos Aires, Argentina
- Consejo Nacional De Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires, Buenos Aires, Argentina
| | - Misato Fujita
- Division of Developmental Biology, Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Kanagawa University, Kanagawa, 221-8686, Japan
| | - Stephanie Grainger
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Juan S Bonifacino
- Section On Intracellular Protein Trafficking, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brant M Weinstein
- Division of Developmental Biology, Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Amber N Stratman
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
2
|
Liu T, Zhang J, Chang F, Sun M, He J, Ai D. Role of endothelial Raptor in abnormal arteriogenesis after lower limb ischaemia in type 2 diabetes. Cardiovasc Res 2024; 120:1218-1234. [PMID: 38722901 DOI: 10.1093/cvr/cvae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 09/03/2024] Open
Abstract
AIMS Proper arteriogenesis after tissue ischaemia is necessary to rebuild stable blood circulation; nevertheless, this process is impaired in type 2 diabetes mellitus (T2DM). Raptor is a scaffold protein and a component of mammalian target of rapamycin complex 1 (mTORC1). However, the role of the endothelial Raptor in arteriogenesis under the conditions of T2DM remains unknown. This study investigated the role of endothelial Raptor in ischaemia-induced arteriogenesis during T2DM. METHODS AND RESULTS Although endothelial mTORC1 is hyperactive in T2DM, we observed a marked reduction in the expression of endothelial Raptor in two mouse models and in human vessels. Inducible endothelial-specific Raptor knockout severely exacerbated impaired hindlimb perfusion and arteriogenesis after hindlimb ischaemic injury in 12-week high-fat diet fed mice. Additionally, we found that Raptor deficiency dampened vascular endothelial growth factor receptor 2 (VEGFR2) signalling in endothelial cells (ECs) and inhibited VEGF-induced cell migration and tube formation in a PTP1B-dependent manner. Furthermore, mass spectrometry analysis indicated that Raptor interacts with neuropilin 1 (NRP1), the co-receptor of VEGFR2, and mediates VEGFR2 trafficking by facilitating the interaction between NRP1 and Synectin. Finally, we found that EC-specific overexpression of the Raptor mutant (loss of mTOR binding) reversed impaired hindlimb perfusion and arteriogenesis induced by endothelial Raptor knockout in high-fat diet fed mice. CONCLUSION Collectively, our study demonstrated the crucial role of endothelial Raptor in promoting ischaemia-induced arteriogenesis in T2DM by mediating VEGFR2 signalling. Thus, endothelial Raptor is a novel therapeutic target for promoting arteriogenesis and ameliorating perfusion in T2DM.
Collapse
Affiliation(s)
- Ting Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| | - Jiachen Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| | - Fangyuan Chang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| | - Mengyu Sun
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jinlong He
- Department of Physiology and Pathophysiology, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| | - Ding Ai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
- Department of Physiology and Pathophysiology, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| |
Collapse
|
3
|
Johnson D, Colijn S, Richee J, Yano J, Burns M, Davis AE, Pham VN, Saric A, Jain A, Yin Y, Castranova D, Melani M, Fujita M, Grainger S, Bonifacino JS, Weinstein BM, Stratman AN. Regulation of angiogenesis by endocytic trafficking mediated by cytoplasmic dynein 1 light intermediate chain 1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587559. [PMID: 38903077 PMCID: PMC11188074 DOI: 10.1101/2024.04.01.587559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Dynein cytoplasmic 1 light intermediate chain 1 (LIC1, DYNC1LI1) is a core subunit of the dynein motor complex. The LIC1 subunit also interacts with various cargo adaptors to regulate Rab-mediated endosomal recycling and lysosomal degradation. Defects in this gene are predicted to alter dynein motor function, Rab binding capabilities, and cytoplasmic cargo trafficking. Here, we have identified a dync1li1 zebrafish mutant, harboring a premature stop codon at the exon 12/13 splice acceptor site, that displays increased angiogenesis. In vitro, LIC1-deficient human endothelial cells display increases in cell surface levels of the pro-angiogenic receptor VEGFR2, SRC phosphorylation, and Rab11-mediated endosomal recycling. In vivo, endothelial-specific expression of constitutively active Rab11a leads to excessive angiogenesis, similar to the dync1li1 mutants. Increased angiogenesis is also evident in zebrafish harboring mutations in rilpl1/2, the adaptor proteins that promote Rab docking to Lic1 to mediate lysosomal targeting. These findings suggest that LIC1 and the Rab-adaptor proteins RILPL1 and 2 restrict angiogenesis by promoting degradation of VEGFR2-containing recycling endosomes. Disruption of LIC1- and RILPL1/2-mediated lysosomal targeting increases Rab11-mediated recycling endosome activity, promoting excessive SRC signaling and angiogenesis.
Collapse
Affiliation(s)
- Dymonn Johnson
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110
| | - Sarah Colijn
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110
| | - Jahmiera Richee
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110
| | - Joseph Yano
- Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
- Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Margaret Burns
- Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
| | - Andrew E. Davis
- Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
| | - Van N. Pham
- Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
| | - Amra Saric
- Section on Intracellular Protein Trafficking, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Akansha Jain
- Section on Intracellular Protein Trafficking, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
| | - Ying Yin
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110
| | - Daniel Castranova
- Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
| | - Mariana Melani
- Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
- Fundación Instituto Leloir, Buenos Aires, Argentina
- Consejo Nacional De Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires, Buenos Aires, Argentina
| | - Misato Fujita
- Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
- Kanagawa University, Kanagawa, 221-8686, Japan
| | - Stephanie Grainger
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, 49503
| | - Juan S. Bonifacino
- Section on Intracellular Protein Trafficking, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
| | - Brant M. Weinstein
- Section on Vertebrate Organogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
| | - Amber N. Stratman
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110
| |
Collapse
|
4
|
Pinto TS, Gomes AM, de Morais PB, Zambuzzi WF. Adipogenesis-Related Metabolic Condition Affects Shear-Stressed Endothelial Cells Activity Responding to Titanium. J Funct Biomater 2023; 14:jfb14030162. [PMID: 36976086 PMCID: PMC10052724 DOI: 10.3390/jfb14030162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
PURPOSE Obesity has increased around the world. Obese individuals need to be better assisted, with special attention given to dental and medical specialties. Among obesity-related complications, the osseointegration of dental implants has raised concerns. This mechanism depends on healthy angiogenesis surrounding the implanted devices. As an experimental analysis able to mimic this issue is currently lacking, we address this issue by proposing an in vitro high-adipogenesis model using differentiated adipocytes to further investigate their endocrine and synergic effect in endothelial cells responding to titanium. MATERIALS AND METHODS Firstly, adipocytes (3T3-L1 cell line) were differentiated under two experimental conditions: Ctrl (normal glucose concentration) and High-Glucose Medium (50 mM of glucose), which was validated using Oil Red O Staining and inflammatory markers gene expression by qPCR. Further, the adipocyte-conditioned medium was enriched by two types of titanium-related surfaces: Dual Acid-Etching (DAE) and Nano-Hydroxyapatite blasted surfaces (nHA) for up to 24 h. Finally, the endothelial cells (ECs) were exposed in those conditioned media under shear stress mimicking blood flow. Important genes related to angiogenesis were then evaluated by using RT-qPCR and Western blot. RESULTS Firstly, the high-adipogenicity model using 3T3-L1 adipocytes was validated presenting an increase in the oxidative stress markers, concomitantly with an increase in intracellular fat droplets, pro-inflammatory-related gene expressions, and also the ECM remodeling, as well as modulating mitogen-activated protein kinases (MAPKs). Additionally, Src was evaluated by Western blot, and its modulation can be related to EC survival signaling. CONCLUSION Our study provides an experimental model of high adipogenesis in vitro by establishing a pro-inflammatory environment and intracellular fat droplets. Additionally, the efficacy of this model to evaluate the EC response to titanium-enriched mediums under adipogenicity-related metabolic conditions was analyzed, revealing significant interference with EC performance. Altogether, these data gather valuable findings on understanding the reasons for the higher percentage of implant failures in obese individuals.
Collapse
Affiliation(s)
- Thaís Silva Pinto
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP-São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Anderson Moreira Gomes
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP-São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Paula Bertin de Morais
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP-São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Willian F Zambuzzi
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP-São Paulo State University, Botucatu 18618-970, SP, Brazil
| |
Collapse
|
5
|
Precise assembly of inside-out cell membrane camouflaged nanoparticles via bioorthogonal reactions for improving drug leads capturing. Acta Pharm Sin B 2023; 13:852-862. [PMID: 36873174 PMCID: PMC9979189 DOI: 10.1016/j.apsb.2022.05.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/04/2022] [Accepted: 05/17/2022] [Indexed: 11/24/2022] Open
Abstract
Cell membrane camouflaged nanoparticles have been widely used in the field of drug leads discovery attribute to their unique biointerface targeting function. However, random orientation of cell membrane coating does not guarantee effective and appropriate binding of drugs to specific sites, especially when applied to intracellular regions of transmembrane proteins. Bioorthogonal reactions have been rapidly developed as a specific and reliable method for cell membrane functionalization without disturbing living biosystem. Herein, inside-out cell membrane camouflaged magnetic nanoparticles (IOCMMNPs) were accurately constructed via bioorthogonal reactions to screen small molecule inhibitors targeting intracellular tyrosine kinase domain of vascular endothelial growth factor recptor-2. Azide functionalized cell membrane acted as a platform for specific covalently coupling with alkynyl functionalized magnetic Fe3O4 nanoparticles to prepare IOCMMNPs. The inside-out orientation of cell membrane was successfully verified by immunogold staining and sialic acid quantification assay. Ultimately, two compounds, senkyunolide A and ligustilidel, were successfully captured, and their potential antiproliferative activities were further testified by pharmacological experiments. It is anticipated that the proposed inside-out cell membrane coating strategy endows tremendous versatility for engineering cell membrane camouflaged nanoparticles and promotes the development of drug leads discovery platforms.
Collapse
|
6
|
Saikia Q, Reeve H, Alzahrani A, Critchley WR, Zeqiraj E, Divan A, Harrison MA, Ponnambalam S. VEGFR endocytosis: Implications for angiogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 194:109-139. [PMID: 36631189 DOI: 10.1016/bs.pmbts.2022.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The binding of vascular endothelial growth factor (VEGF) superfamily to VEGF receptor tyrosine kinases (VEGFRs) and co-receptors regulates vasculogenesis, angiogenesis and lymphangiogenesis. A recurring theme is that dysfunction in VEGF signaling promotes pathological angiogenesis, an important feature of cancer and pro-inflammatory disease states. Endocytosis of basal (resting) or activated VEGFRs facilitates signal attenuation and endothelial quiescence. However, increasing evidence suggest that activated VEGFRs can continue to signal from intracellular compartments such as endosomes. In this chapter, we focus on the evolving link between VEGFR endocytosis, signaling and turnover and the implications for angiogenesis. There is much interest in how such understanding of VEGFR dynamics can be harnessed therapeutically for a wide range of human disease states.
Collapse
Affiliation(s)
- Queen Saikia
- School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Hannah Reeve
- School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Areej Alzahrani
- School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - William R Critchley
- School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Elton Zeqiraj
- School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Aysha Divan
- School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Michael A Harrison
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | | |
Collapse
|
7
|
Wang Y, Angom RS, Kulkarni TA, Hoeppner LH, Pal K, Wang E, Tam A, Valiunas RA, Dutta SK, Ji B, Jarzebska N, Chen Y, Rodionov RN, Mukhopadhyay D. Dissecting VEGF-induced acute versus chronic vascular hyperpermeability: Essential roles of dimethylarginine dimethylaminohydrolase-1. iScience 2021; 24:103189. [PMID: 34703990 PMCID: PMC8521174 DOI: 10.1016/j.isci.2021.103189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 07/12/2021] [Accepted: 09/27/2021] [Indexed: 01/01/2023] Open
Abstract
Vascular endothelial cell growth factor (VEGF) is a key regulator of vascular permeability. Herein we aim to understand how acute and chronic exposures of VEGF induce different levels of vascular permeability. We demonstrate that chronic VEGF exposure leads to decreased phosphorylation of VEGFR2 and c-Src as well as steady increases of nitric oxide (NO) as compared to that of acute exposure. Utilizing heat-inducible VEGF transgenic zebrafish (Danio rerio) and establishing an algorithm incorporating segmentation techniques for quantification, we monitored acute and chronic VEGF-induced vascular hyperpermeability in real time. Importantly, dimethylarginine dimethylaminohydrolase-1 (DDAH1), an enzyme essential for NO generation, was shown to play essential roles in both acute and chronic vascular permeability in cultured human cells, zebrafish model, and Miles assay. Taken together, our data reveal acute and chronic VEGF exposures induce divergent signaling pathways and identify DDAH1 as a critical player and potentially a therapeutic target of vascular hyperpermeability-mediated pathogenesis.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Tanmay A. Kulkarni
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Luke H. Hoeppner
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Krishnendu Pal
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Alexander Tam
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Rachael A. Valiunas
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Shamit K. Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Baoan Ji
- Department of Cancer Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Natalia Jarzebska
- Department of Internal Medicine III, Technische Universität Dresden, 01307 Dresden, Germany
| | - Yingjie Chen
- Department of Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Roman N. Rodionov
- Department of Internal Medicine III, Technische Universität Dresden, 01307 Dresden, Germany
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| |
Collapse
|
8
|
Xu J, Bian X, Zhao H, Sun Y, Tian Y, Li X, Tian W. Morphine Prevents Ischemia/Reperfusion-Induced Myocardial Mitochondrial Damage by Activating δ-opioid Receptor/EGFR/ROS Pathway. Cardiovasc Drugs Ther 2021; 36:841-857. [PMID: 34279751 DOI: 10.1007/s10557-021-07215-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The purpose of this study was to determine whether the epidermal growth factor receptor (EGFR), which is a classical receptor tyrosine kinase, is involved in the protective effect of morphine against ischemia/reperfusion (I/R)-induced myocardial mitochondrial damage. METHODS Isolated rats hearts were subjected to global ischemia followed by reperfusion. Cardiac H9c2 cells were exposed to a simulated ischemia solution followed by Tyrode's solution to induce hypoxia/reoxygenation (H/R) injury. Triphenyltetrazolium chloride (TTC) was used to measure infarct size. The mitochondrial morphological and functional changes were determined using transmission election microscopy (TEM), mitochondrial stress assay, and mitochondrial swelling, respectively. Mitochondrial fluorescence indicator JC-1, DCFH-DA, and Mitosox Red were used to determine mitochondrial membrane potential (△Ψm), intracellular reactive oxygen species (ROS) and mitochondrial superoxide. A TUNUL assay kit was used to detect the level of apoptosis. Western blotting analysis was used to measure the expression of proteins. RESULTS Treatment of isolated rat hearts with morphine prevented I/R-induced myocardial mitochondrial injury, which was inhibited by the selective EGFR inhibitor AG1478, suggesting that EGFR is involved in the mitochondrial protective effect of morphine under I/R conditions. In support of this hypothesis, the selective EGFR agonist epidermal growth factor (EGF) reduced mitochondrial morphological and functional damage similarly to morphine. Further study demonstrated that morphine may alleviate I/R-induced cardiac damage by inhibiting autophagy but not apoptosis. Morphine increased protein kinase B (Akt), extracellular regulated protein kinases (ERK) and signal transducer and activator of transcription-3 (STAT-3) phosphorylation, which was inhibited by AG1478, and EGF had similar effects, indicating that morphine may activate Akt, ERK, and STAT-3 via EGFR. Morphine and EGF increased intracellular reactive oxygen species (ROS) generation. This effect of morphine was inhibited by AG1478, indicating that morphine promotes intracellular ROS generation by activating EGFR. However, morphine did not increase ROS generation when cells were transfected with siRNA against EGFR. In addition, EGFR activity was markedly increased by morphine, but the effect of morphine was reversed by naltrindole. These results suggest that morphine may activate EGFR via δ-opioid receptor activation. CONCLUSIONS Morphine may prevent I/R-induced myocardial mitochondrial damage by activating EGFR through δ-opioid receptors, in turn increasing RISK and SAFE pathway activity via intracellular ROS. Moreover, morphine may reduce myocardial injury by regulating autophagy but not apoptosis.
Collapse
Affiliation(s)
- Jingman Xu
- School of Public Health, North China University of Science and Technology, 21 Bohai Avenue, Caofeidian District, Tangshan, 063000, Hebei, China.
| | - Xiyun Bian
- Central Laboratory, The Fifth Central Hospital of Tianjin, 300, Tianjin, ,450, China
| | - Huanhuan Zhao
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300, Tianjin, ,010, China
| | - Yujie Sun
- Department of Neurology, Kailuan Hospital, Tangshan, 063000, Hebei Province, China
| | - Yanyi Tian
- School of Public Health, North China University of Science and Technology, 21 Bohai Avenue, Caofeidian District, Tangshan, 063000, Hebei, China
| | - Xiaodong Li
- School of Public Health, North China University of Science and Technology, 21 Bohai Avenue, Caofeidian District, Tangshan, 063000, Hebei, China
| | - Wei Tian
- School of Public Health, North China University of Science and Technology, 21 Bohai Avenue, Caofeidian District, Tangshan, 063000, Hebei, China.
| |
Collapse
|
9
|
Zink J, Frye M, Frömel T, Carlantoni C, John D, Schreier D, Weigert A, Laban H, Salinas G, Stingl H, Günther L, Popp R, Hu J, Vanhollebeke B, Schmidt H, Acker-Palmer A, Renné T, Fleming I, Benz PM. EVL regulates VEGF receptor-2 internalization and signaling in developmental angiogenesis. EMBO Rep 2021; 22:e48961. [PMID: 33512764 PMCID: PMC7857432 DOI: 10.15252/embr.201948961] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Endothelial tip cells are essential for VEGF‐induced angiogenesis, but underlying mechanisms are elusive. The Ena/VASP protein family, consisting of EVL, VASP, and Mena, plays a pivotal role in axon guidance. Given that axonal growth cones and endothelial tip cells share many common features, from the morphological to the molecular level, we investigated the role of Ena/VASP proteins in angiogenesis. EVL and VASP, but not Mena, are expressed in endothelial cells of the postnatal mouse retina. Global deletion of EVL (but not VASP) compromises the radial sprouting of the vascular plexus in mice. Similarly, endothelial‐specific EVL deletion compromises the radial sprouting of the vascular plexus and reduces the endothelial tip cell density and filopodia formation. Gene sets involved in blood vessel development and angiogenesis are down‐regulated in EVL‐deficient P5‐retinal endothelial cells. Consistently, EVL deletion impairs VEGF‐induced endothelial cell proliferation and sprouting, and reduces the internalization and phosphorylation of VEGF receptor 2 and its downstream signaling via the MAPK/ERK pathway. Together, we show that endothelial EVL regulates sprouting angiogenesis via VEGF receptor‐2 internalization and signaling.
Collapse
Affiliation(s)
- Joana Zink
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Maike Frye
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timo Frömel
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Claudia Carlantoni
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David John
- German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany.,Insitute for Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - Danny Schreier
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Weigert
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University, Frankfurt am Main, Germany
| | - Hebatullah Laban
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Gabriela Salinas
- NGS-Integrative Genomics Core Unit (NIG), Institute of Human Genetics, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Heike Stingl
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Lea Günther
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Rüdiger Popp
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Jiong Hu
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Benoit Vanhollebeke
- Laboratory of Neurovascular Signaling, ULB Neuroscience Institute Department of Molecular Biology, University of Brussels, Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Brussels, Belgium
| | - Hannes Schmidt
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingrid Fleming
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Peter M Benz
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
10
|
Taskaeva I, Bgatova N. Microvasculature in hepatocellular carcinoma: An ultrastructural study. Microvasc Res 2021; 133:104094. [PMID: 33011171 DOI: 10.1016/j.mvr.2020.104094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most vascularized tumor types, and is characterized by development of heterogeneous immature vessels with increased permeability. Here, we analyzed morphology and vascular permeability-related structures in endothelial cells of HCC microvessels. METHODS Small (Type I) and large (Type II) peritumoral blood microvessels were assessed in HCC-bearing mice. By transmission electron microscopy, endothelial cell cytoplasm area, free transport vesicles, vesiculo-vacuolar organelles and clathrin-coated vesicles were measured. RESULTS The phenotypic changes in the HCC microvessels included presence of sinusoidal capillarization, numerous luminal microprocesses and abnormal luminal channels, irregular dilatations of interendothelial junctions, local detachment of basement membranes and widened extracellular space. Endothelial cells Type I microvessels showed increased vesicular trafficking-related structures. CONCLUSION Ultrastructural characteristics of microvessels Type I can associate with HCC new-formed microvessels. The morphological changes observed in HCC microvessels might explain the increased transcellular and paracellular permeability in HCC endothelial cells.
Collapse
Affiliation(s)
- Iuliia Taskaeva
- Laboratory of Ultrastructural research, Research Institute of Clinical and Experimental Lymphology, Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia; Laboratory of Boron-Neutron Capture Therapy, Department of Physics, Novosibirsk State University, Novosibirsk, Russia.
| | - Nataliya Bgatova
- Laboratory of Ultrastructural research, Research Institute of Clinical and Experimental Lymphology, Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
11
|
Kobayashi M, Wakabayashi I, Suzuki Y, Fujiwara K, Nakayama M, Watabe T, Sato Y. Tubulin carboxypeptidase activity of vasohibin-1 inhibits angiogenesis by interfering with endocytosis and trafficking of pro-angiogenic factor receptors. Angiogenesis 2020; 24:159-176. [PMID: 33052495 DOI: 10.1007/s10456-020-09754-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 01/25/2023]
Abstract
Receptor endocytosis is crucial for integrating extracellular stimuli of pro-angiogenic factors, including vascular endothelial growth factor (VEGF), into the cell via signal transduction. VEGF not only triggers various angiogenic events including endothelial cell (EC) migration, but also induces the expression of negative regulators of angiogenesis, including vasohibin-1 (VASH1). While we have previously reported that VASH1 inhibits angiogenesis in vitro and in vivo, its mode of action on EC behavior remains elusive. Recently VASH1 was shown to have tubulin carboxypeptidase (TCP) activity, mediating the post-translational modification of microtubules (MTs) by detyrosination of α-tubulin within cells. However, the role of VASH1 TCP activity in angiogenesis has not yet been clarified. Here, we showed that VASH1 detyrosinated α-tubulin in ECs and suppressed in vitro and in vivo angiogenesis. In cultured ECs, VASH1 impaired endocytosis and trafficking of VEGF receptor 2 (VEGFR2), which resulted in the decreased signal transduction and EC migration. These effects of VASH1 could be restored by tubulin tyrosine ligase (TTL) in ECs, suggesting that detyrosination of α-tubulin negatively regulates angiogenesis. Furthermore, we found that detyrosinated tubulin-rich MTs were not adequate as trafficking rails for VEGFR2 endocytosis. Consistent with these results, inhibition of TCP activity of VASH1 led to the inhibition of VASH1-mediated suppression of VEGF-induced signals, EC migration, and in vivo angiogenesis. Our results indicate a novel mechanism of VASH1-mediated inhibition of pro-angiogenic factor receptor trafficking via modification of MTs.
Collapse
Affiliation(s)
- Miho Kobayashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan. .,Department of Vascular Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, 980-8575, Japan.
| | - Ikumi Wakabayashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.,Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Yasuhiro Suzuki
- Department of Vascular Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, 980-8575, Japan.,New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, 980-8579, Japan
| | - Kashio Fujiwara
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Masanori Nakayama
- Laboratory for Cell Polarity and Organogenesis, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, 980-8575, Japan. .,New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, 980-8579, Japan.
| |
Collapse
|
12
|
Kim DY, Park JA, Kim Y, Noh M, Park S, Lie E, Kim E, Kim YM, Kwon YG. SALM4 regulates angiogenic functions in endothelial cells through VEGFR2 phosphorylation at Tyr1175. FASEB J 2019; 33:9842-9857. [PMID: 31170000 PMCID: PMC6704462 DOI: 10.1096/fj.201802516rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Angiogenesis depends on VEGF-mediated signaling. However, the regulatory mechanisms and functions of individual VEGF receptor 2 (VEGFR2) phosphorylation sites remain unclear. Here, we report that synaptic adhesion-like molecule 4 (SALM4) regulates a specific VEGFR2 phosphorylation site. SALM4 silencing in HUVECs and Salm4 knockout (KO) in lung endothelial cells (ECs) of Salm4−/− mice suppressed phosphorylation of VEGFR2 tyrosine (Y) 1175 (Y1173 in mice) and downstream signaling upon VEGF-A stimulation. However, VEGFR2 phosphorylation at Y951 (Y949 in mice) and Y1214 (Y1212 in mice) remained unchanged. Knockdown and KO of SALM4 inhibited VEGF-A–induced angiogenic functions of ECs. SALM4 depletion reduced endothelial leakage, sprouting, and migratory activities. Furthermore, in an ischemia and reperfusion (I/R) model, brain injury was attenuated in Salm4−/− mice compared with wild-type (WT) mice. In brain lysates after I/R, VEGFR2 phosphorylation at Y949, Y1173, and Y1212 were induced in WT brains, but only Y1173 phosphorylation of VEGFR2 was reduced in Salm4−/− brains. Taken together, our results demonstrate that SALM4 specifically regulates VEGFR2 phosphorylation at Y1175 (Y1173 in mice), thereby fine-tuning VEGF signaling in ECs.—Kim, D. Y., Park, J. A., Kim, Y., Noh, M., Park, S., Lie, E., Kim, E., Kim, Y.-M., Kwon, Y.-G. SALM4 regulates angiogenic functions in endothelial cells through VEGFR2 phosphorylation at Tyr1175.
Collapse
Affiliation(s)
- Dong Young Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jeong Ae Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yeomyung Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Minyoung Noh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Songyi Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Eunkyung Lie
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon-si, South Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| |
Collapse
|
13
|
Raikwar NS, Shibuya M, Thomas CP. VEGF-A selectively inhibits FLT1 ectodomain shedding independent of receptor activation and receptor endocytosis. Am J Physiol Cell Physiol 2018; 315:C214-C224. [PMID: 29719170 PMCID: PMC6139503 DOI: 10.1152/ajpcell.00247.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/28/2018] [Accepted: 04/11/2018] [Indexed: 11/22/2022]
Abstract
Ectodomain shedding and regulated intracellular proteolysis can determine the fate or function of cell surface proteins. Fms-related tyrosine kinase (FLT) or VEGF receptor 1 is a high-affinity cell surface VEGF-A receptor tyrosine kinase that is constitutively cleaved to release an NH2-terminal VEGF-A binding ectodomain that, once shed, can antagonize the effects of VEGF-A in the extracellular milieu. We evaluated the effect of VEGF-A on FLT1 cleavage in native cells and in transient and stable expression systems. We demonstrate that VEGF-A inhibits FLT1 ectodomain cleavage in a time- and dose-dependent manner, whereas VEGF-A knockdown in HEK293 cells increases ectodomain shedding. Although kinase insert domain receptor (KDR) or VEGF receptor 2, analogous to FLT1, is also subject to extracellular and intracellular cleavage, VEGF-A does not inhibit KDR cleavage. VEGF-A inhibition of FLT1 cleavage is not dependent on FLT1 tyrosine kinase activity or the intracellular FLT1 residues. N-acetylleucylleucylnorleucinal (ALLN), a proteasomal inhibitor; bafilomycin A, an inhibitor of endosomal acidification; and dynasore, a dynamin inhibitor, all increase the abundance of FLT1 and the shed ectodomain, indicating that FLT1 is subject to dynamin-mediated endocytosis and susceptible to proteasomal and lysosomal degradation. VEGF-A inhibition of cleavage is not reversed by ALLN, bafilomycin A, or dynasore. However, a 30 AA deletion in the extracellular immunoglobulin 7 domain leads to enhanced cleavage of Flt1 with a significant reduction of the VEGF inhibitory effect. Our results indicate that the inhibition of FLT1 ectodomain cleavage by VEGF-A is dependent neither on receptor activation nor on internalization nor a consequence of receptor degradation and likely represents a direct inhibitory effect on receptor cleavage.
Collapse
Affiliation(s)
- Nandita S Raikwar
- Department of Internal Medicine, University of Iowa Carver College of Medicine , Iowa City, Iowa
| | - Masabumi Shibuya
- Institute of Physiology and Medicine, Jobu University, Takasaki, Gunma, Japan
| | - Christie P Thomas
- Department of Internal Medicine, University of Iowa Carver College of Medicine , Iowa City, Iowa
- Department of Pediatrics, University of Iowa Carver College of Medicine , Iowa City, Iowa
- Department of Obstetrics, University of Iowa Carver College of Medicine , Iowa City, Iowa
- Graduate Program in Molecular Medicine, University of Iowa Carver College of Medicine , Iowa City, Iowa
- Veterans Affairs Medical Center , Iowa City, Iowa
| |
Collapse
|
14
|
Tae N, Lee S, Kim O, Park J, Na S, Lee JH. Syntenin promotes VEGF-induced VEGFR2 endocytosis and angiogenesis by increasing ephrin-B2 function in endothelial cells. Oncotarget 2018; 8:38886-38901. [PMID: 28418925 PMCID: PMC5503580 DOI: 10.18632/oncotarget.16452] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 02/27/2017] [Indexed: 12/21/2022] Open
Abstract
Syntenin, a tandem PDZ-domain-containing scaffold protein, is involved in the regulation of diverse biological functions, including protein trafficking, exosome biogenesis, and cancer metastasis. Here, we present the first study to explore the significance of syntenin in endothelial cells. Syntenin knockdown in human umbilical vein endothelial cells (HUVECs) impaired vascular endothelial growth factor (VEGF)-mediated proliferation, migration, invasion, vascular permeability, and nitric oxide (NO) production. Syntenin knockdown also suppressed expression of the VEGFR2 target genes VEGF, MMP2, and Nurr77 as well as VEGF-induced angiogenesis in vitro and in vivo. And it decreased cell-surface levels of ephrin-B2. Biochemical analyses revealed that syntenin exists in complex with VEGFR2 and ephrin-B2. Syntenin knockdown abolished the association between VEGFR2 and ephrin-B2, suggesting syntenin functions as a scaffold protein facilitating their association in HUVECs. Consistent with these observations, knocking down syntenin or ephrin-B2 abolished VEGF-induced endocytosis and VEGFR2 phosphorylation and activation of its downstream signaling molecules. Treatment with MG132, a proteasome inhibitor, rescued the downregulation of ephrin-B2 and VEGFR2 signaling induced by syntenin knockdown. These findings demonstrate that syntenin promotes VEGF signaling and, through its PDZ-dependent interaction with ephrin-B2, enhances VEGF-mediated VEGFR2 endocytosis and subsequent downstream signaling and angiogenesis in endothelial cells.
Collapse
Affiliation(s)
- Nara Tae
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 243-41, Republic of Korea
| | - Suhyun Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 243-41, Republic of Korea
| | - Okwha Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 243-41, Republic of Korea
| | - Juhee Park
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 243-41, Republic of Korea
| | - Sunghun Na
- Department of Obstetrics and Gynecology, Kangwon National University Hospital, school of Medicine, Kangwon National University, Chuncheon, Gangwon-Do 243-41, Republic of Korea
| | - Jeong-Hyung Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 243-41, Republic of Korea
| |
Collapse
|
15
|
Wang X, Li Y, Mou Y, Yue Z, Zhang H, Li R, Sun H. Ethanol Extract from Brucea Javanica Seed Inhibits Angiogenesis Mediated by Platelet Derived Growth Factor Receptor-beta. Int J Med Sci 2018; 15:1517-1521. [PMID: 30443173 PMCID: PMC6216067 DOI: 10.7150/ijms.28337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/29/2018] [Indexed: 01/13/2023] Open
Abstract
The present study aimed to investigate the effects of ethanol extract from Brucea javanicaseed (EEBJS) on the angiogenesis of human umbilical vein endothelial cells (HUVECs) and the possible molecular signal involved. Firstly, a Matrigel-based in vitro angiogenesis assay demonstrated that EEBJS inhibited the angiogenesis of HUVECs in a dose-dependent manner. Then by using porcine aortic endothelial cells which stably express human PDGFR-beta, we found that the inhibition of angiogenesis was mediated by PDGFR-beta. Taken together, we conclude that EEBJS inhibited the angiogenesis function of the vascular endothelial cells mediated by PDGFR-beta, and postulate that it might contribute to the therapeutic effects of EEBJS on malignant tumors.
Collapse
Affiliation(s)
- Xiaotong Wang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China.,Current address: Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Yunyun Li
- People's Hospital of Jilin Province and Changchun University of Chinese Medicine, Changchun, P.R. China
| | - Yan Mou
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China.,Second Hospital of Jilin University, Changchun, China
| | - Zhen Yue
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Haiying Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Ronggui Li
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Hongxia Sun
- People's Hospital of Jilin Province and Changchun University of Chinese Medicine, Changchun, P.R. China
| |
Collapse
|
16
|
Zhu W, Shi DS, Winter JM, Rich BE, Tong Z, Sorensen LK, Zhao H, Huang Y, Tai Z, Mleynek TM, Yoo JH, Dunn C, Ling J, Bergquist JA, Richards JR, Jiang A, Lesniewski LA, Hartnett ME, Ward DM, Mueller AL, Ostanin K, Thomas KR, Odelberg SJ, Li DY. Small GTPase ARF6 controls VEGFR2 trafficking and signaling in diabetic retinopathy. J Clin Invest 2017; 127:4569-4582. [PMID: 29058688 DOI: 10.1172/jci91770] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 09/07/2017] [Indexed: 12/27/2022] Open
Abstract
The devastating sequelae of diabetes mellitus include microvascular permeability, which results in retinopathy. Despite clinical and scientific advances, there remains a need for new approaches to treat retinopathy. Here, we have presented a possible treatment strategy, whereby targeting the small GTPase ARF6 alters VEGFR2 trafficking and reverses signs of pathology in 4 animal models that represent features of diabetic retinopathy and in a fifth model of ocular pathological angiogenesis. Specifically, we determined that the same signaling pathway utilizes distinct GEFs to sequentially activate ARF6, and these GEFs exert distinct but complementary effects on VEGFR2 trafficking and signal transduction. ARF6 activation was independently regulated by 2 different ARF GEFs - ARNO and GEP100. Interaction between VEGFR2 and ARNO activated ARF6 and stimulated VEGFR2 internalization, whereas a VEGFR2 interaction with GEP100 activated ARF6 to promote VEGFR2 recycling via coreceptor binding. Intervening in either pathway inhibited VEGFR2 signal output. Finally, using a combination of in vitro, cellular, genetic, and pharmacologic techniques, we demonstrated that ARF6 is pivotal in VEGFR2 trafficking and that targeting ARF6-mediated VEGFR2 trafficking has potential as a therapeutic approach for retinal vascular diseases such as diabetic retinopathy.
Collapse
Affiliation(s)
- Weiquan Zhu
- Department of Medicine, Program in Molecular Medicine.,Department of Internal Medicine, Division of Cardiovascular Medicine.,Department of Pathology, and
| | - Dallas S Shi
- Department of Medicine, Program in Molecular Medicine.,Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | | | - Bianca E Rich
- Department of Medicine, Program in Molecular Medicine
| | - Zongzhong Tong
- Navigen Inc., Salt Lake City, Utah, USA.,Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China, China
| | | | - Helong Zhao
- Department of Medicine, Program in Molecular Medicine
| | - Yi Huang
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China, China
| | - Zhengfu Tai
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China, China
| | | | - Jae Hyuk Yoo
- Department of Medicine, Program in Molecular Medicine
| | | | - Jing Ling
- Department of Medicine, Program in Molecular Medicine
| | | | - Jackson R Richards
- Department of Medicine, Program in Molecular Medicine.,Department of Oncological Sciences and
| | - Amanda Jiang
- Department of Medicine, Program in Molecular Medicine
| | - Lisa A Lesniewski
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah, USA.,Geriatric Research Education and Clinical Center, VA Salt Lake City Health Care System, Salt Lake City, Utah, USA.,Department of Nutrition and Integrative Physiology
| | | | | | | | | | - Kirk R Thomas
- Department of Medicine, Program in Molecular Medicine.,Department of Internal Medicine, Division of Hematology, and
| | - Shannon J Odelberg
- Department of Medicine, Program in Molecular Medicine.,Department of Internal Medicine, Division of Cardiovascular Medicine.,Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, USA
| | - Dean Y Li
- Department of Medicine, Program in Molecular Medicine.,Department of Internal Medicine, Division of Cardiovascular Medicine.,Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA.,Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China, China.,Department of Oncological Sciences and.,Department of Cardiology, VA Salt Lake City Health Care System, Salt Lake City, Utah, USA
| |
Collapse
|
17
|
Zhu X, Ding S, Qiu C, Shi Y, Song L, Wang Y, Wang Y, Li J, Wang Y, Sun Y, Qin L, Chen J, Simons M, Min W, Yu L. SUMOylation Negatively Regulates Angiogenesis by Targeting Endothelial NOTCH Signaling. Circ Res 2017; 121:636-649. [PMID: 28760777 DOI: 10.1161/circresaha.117.310696] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 07/22/2017] [Accepted: 07/28/2017] [Indexed: 01/12/2023]
Abstract
RATIONALE The highly conserved NOTCH (neurogenic locus notch homolog protein) signaling pathway functions as a key cell-cell interaction mechanism controlling cell fate and tissue patterning, whereas its dysregulation is implicated in a variety of developmental disorders and cancers. The pivotal role of endothelial NOTCH in regulation of angiogenesis is widely appreciated; however, little is known about what controls its signal transduction. Our previous study indicated the potential role of post-translational SUMO (small ubiquitin-like modifier) modification (SUMOylation) in vascular disorders. OBJECTIVE The aim of this study was to investigate the role of SUMOylation in endothelial NOTCH signaling and angiogenesis. METHODS AND RESULTS Endothelial SENP1 (sentrin-specific protease 1) deletion, in newly generated endothelial SENP1 (the major protease of the SUMO system)-deficient mice, significantly delayed retinal vascularization by maintaining prolonged NOTCH1 signaling, as confirmed in cultured endothelial cells. An in vitro SUMOylation assay and immunoprecipitation revealed that when SENP1 associated with N1ICD (NOTCH1 intracellular domain), it functions as a deSUMOylase of N1ICD SUMOylation on conserved lysines. Immunoblot and immunoprecipitation analyses and dual-luciferase assays of natural and SUMO-conjugated/nonconjugated NOTCH1 forms demonstrated that SUMO conjugation facilitated NOTCH1 cleavage. This released N1ICD from the membrane and stabilized it for translocation to the nucleus where it functions as a cotranscriptional factor. Functionally, SENP1-mediated NOTCH1 deSUMOylation was required for NOTCH signal activation in response to DLL4 (Delta-like 4) stimulation. This in turn suppressed VEGF (vascular endothelial growth factor) receptor signaling and angiogenesis, as evidenced by immunoblotted signaling molecules and in vitro angiogenesis assays. CONCLUSIONS These results establish reversible NOTCH1 SUMOylation as a regulatory mechanism in coordinating endothelial angiogenic signaling; SENP1 acts as a critical intrinsic mediator of this process. These findings may apply to NOTCH-regulated biological events in nonvascular tissues and provide a novel therapeutic strategy for vascular diseases and tumors.
Collapse
Affiliation(s)
- Xiaolong Zhu
- From the Institute of Genetics and Regenerative Biology, College of Life Sciences (X.Z., S.D., C.Q., Y. Shi, L.S., Yueyue Wang, Yuewen Wang, J.L., Yiran Wang, Y. Sun, L.Y.), Research Center for Air Pollution and Health (X.Z., S.D., C.Q., Y. Shi, L.S., Yuewen Wang, J.L., Yiran Wang, L.Y.), and Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Cell Signaling Network, College of Life Sciences (J.C.), Zhejiang University, Hangzhou, China; Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (L.Q., M.S.); Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT (L.Q., W.M.); and The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou, China (W.M.)
| | - Sha Ding
- From the Institute of Genetics and Regenerative Biology, College of Life Sciences (X.Z., S.D., C.Q., Y. Shi, L.S., Yueyue Wang, Yuewen Wang, J.L., Yiran Wang, Y. Sun, L.Y.), Research Center for Air Pollution and Health (X.Z., S.D., C.Q., Y. Shi, L.S., Yuewen Wang, J.L., Yiran Wang, L.Y.), and Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Cell Signaling Network, College of Life Sciences (J.C.), Zhejiang University, Hangzhou, China; Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (L.Q., M.S.); Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT (L.Q., W.M.); and The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou, China (W.M.)
| | - Cong Qiu
- From the Institute of Genetics and Regenerative Biology, College of Life Sciences (X.Z., S.D., C.Q., Y. Shi, L.S., Yueyue Wang, Yuewen Wang, J.L., Yiran Wang, Y. Sun, L.Y.), Research Center for Air Pollution and Health (X.Z., S.D., C.Q., Y. Shi, L.S., Yuewen Wang, J.L., Yiran Wang, L.Y.), and Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Cell Signaling Network, College of Life Sciences (J.C.), Zhejiang University, Hangzhou, China; Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (L.Q., M.S.); Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT (L.Q., W.M.); and The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou, China (W.M.)
| | - Yanna Shi
- From the Institute of Genetics and Regenerative Biology, College of Life Sciences (X.Z., S.D., C.Q., Y. Shi, L.S., Yueyue Wang, Yuewen Wang, J.L., Yiran Wang, Y. Sun, L.Y.), Research Center for Air Pollution and Health (X.Z., S.D., C.Q., Y. Shi, L.S., Yuewen Wang, J.L., Yiran Wang, L.Y.), and Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Cell Signaling Network, College of Life Sciences (J.C.), Zhejiang University, Hangzhou, China; Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (L.Q., M.S.); Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT (L.Q., W.M.); and The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou, China (W.M.)
| | - Lin Song
- From the Institute of Genetics and Regenerative Biology, College of Life Sciences (X.Z., S.D., C.Q., Y. Shi, L.S., Yueyue Wang, Yuewen Wang, J.L., Yiran Wang, Y. Sun, L.Y.), Research Center for Air Pollution and Health (X.Z., S.D., C.Q., Y. Shi, L.S., Yuewen Wang, J.L., Yiran Wang, L.Y.), and Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Cell Signaling Network, College of Life Sciences (J.C.), Zhejiang University, Hangzhou, China; Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (L.Q., M.S.); Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT (L.Q., W.M.); and The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou, China (W.M.)
| | - Yueyue Wang
- From the Institute of Genetics and Regenerative Biology, College of Life Sciences (X.Z., S.D., C.Q., Y. Shi, L.S., Yueyue Wang, Yuewen Wang, J.L., Yiran Wang, Y. Sun, L.Y.), Research Center for Air Pollution and Health (X.Z., S.D., C.Q., Y. Shi, L.S., Yuewen Wang, J.L., Yiran Wang, L.Y.), and Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Cell Signaling Network, College of Life Sciences (J.C.), Zhejiang University, Hangzhou, China; Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (L.Q., M.S.); Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT (L.Q., W.M.); and The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou, China (W.M.)
| | - Yuewen Wang
- From the Institute of Genetics and Regenerative Biology, College of Life Sciences (X.Z., S.D., C.Q., Y. Shi, L.S., Yueyue Wang, Yuewen Wang, J.L., Yiran Wang, Y. Sun, L.Y.), Research Center for Air Pollution and Health (X.Z., S.D., C.Q., Y. Shi, L.S., Yuewen Wang, J.L., Yiran Wang, L.Y.), and Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Cell Signaling Network, College of Life Sciences (J.C.), Zhejiang University, Hangzhou, China; Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (L.Q., M.S.); Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT (L.Q., W.M.); and The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou, China (W.M.)
| | - Jinying Li
- From the Institute of Genetics and Regenerative Biology, College of Life Sciences (X.Z., S.D., C.Q., Y. Shi, L.S., Yueyue Wang, Yuewen Wang, J.L., Yiran Wang, Y. Sun, L.Y.), Research Center for Air Pollution and Health (X.Z., S.D., C.Q., Y. Shi, L.S., Yuewen Wang, J.L., Yiran Wang, L.Y.), and Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Cell Signaling Network, College of Life Sciences (J.C.), Zhejiang University, Hangzhou, China; Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (L.Q., M.S.); Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT (L.Q., W.M.); and The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou, China (W.M.)
| | - Yiran Wang
- From the Institute of Genetics and Regenerative Biology, College of Life Sciences (X.Z., S.D., C.Q., Y. Shi, L.S., Yueyue Wang, Yuewen Wang, J.L., Yiran Wang, Y. Sun, L.Y.), Research Center for Air Pollution and Health (X.Z., S.D., C.Q., Y. Shi, L.S., Yuewen Wang, J.L., Yiran Wang, L.Y.), and Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Cell Signaling Network, College of Life Sciences (J.C.), Zhejiang University, Hangzhou, China; Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (L.Q., M.S.); Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT (L.Q., W.M.); and The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou, China (W.M.)
| | - Yi Sun
- From the Institute of Genetics and Regenerative Biology, College of Life Sciences (X.Z., S.D., C.Q., Y. Shi, L.S., Yueyue Wang, Yuewen Wang, J.L., Yiran Wang, Y. Sun, L.Y.), Research Center for Air Pollution and Health (X.Z., S.D., C.Q., Y. Shi, L.S., Yuewen Wang, J.L., Yiran Wang, L.Y.), and Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Cell Signaling Network, College of Life Sciences (J.C.), Zhejiang University, Hangzhou, China; Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (L.Q., M.S.); Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT (L.Q., W.M.); and The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou, China (W.M.)
| | - Lingfeng Qin
- From the Institute of Genetics and Regenerative Biology, College of Life Sciences (X.Z., S.D., C.Q., Y. Shi, L.S., Yueyue Wang, Yuewen Wang, J.L., Yiran Wang, Y. Sun, L.Y.), Research Center for Air Pollution and Health (X.Z., S.D., C.Q., Y. Shi, L.S., Yuewen Wang, J.L., Yiran Wang, L.Y.), and Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Cell Signaling Network, College of Life Sciences (J.C.), Zhejiang University, Hangzhou, China; Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (L.Q., M.S.); Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT (L.Q., W.M.); and The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou, China (W.M.)
| | - Jun Chen
- From the Institute of Genetics and Regenerative Biology, College of Life Sciences (X.Z., S.D., C.Q., Y. Shi, L.S., Yueyue Wang, Yuewen Wang, J.L., Yiran Wang, Y. Sun, L.Y.), Research Center for Air Pollution and Health (X.Z., S.D., C.Q., Y. Shi, L.S., Yuewen Wang, J.L., Yiran Wang, L.Y.), and Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Cell Signaling Network, College of Life Sciences (J.C.), Zhejiang University, Hangzhou, China; Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (L.Q., M.S.); Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT (L.Q., W.M.); and The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou, China (W.M.)
| | - Michael Simons
- From the Institute of Genetics and Regenerative Biology, College of Life Sciences (X.Z., S.D., C.Q., Y. Shi, L.S., Yueyue Wang, Yuewen Wang, J.L., Yiran Wang, Y. Sun, L.Y.), Research Center for Air Pollution and Health (X.Z., S.D., C.Q., Y. Shi, L.S., Yuewen Wang, J.L., Yiran Wang, L.Y.), and Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Cell Signaling Network, College of Life Sciences (J.C.), Zhejiang University, Hangzhou, China; Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (L.Q., M.S.); Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT (L.Q., W.M.); and The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou, China (W.M.)
| | - Wang Min
- From the Institute of Genetics and Regenerative Biology, College of Life Sciences (X.Z., S.D., C.Q., Y. Shi, L.S., Yueyue Wang, Yuewen Wang, J.L., Yiran Wang, Y. Sun, L.Y.), Research Center for Air Pollution and Health (X.Z., S.D., C.Q., Y. Shi, L.S., Yuewen Wang, J.L., Yiran Wang, L.Y.), and Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Cell Signaling Network, College of Life Sciences (J.C.), Zhejiang University, Hangzhou, China; Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (L.Q., M.S.); Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT (L.Q., W.M.); and The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou, China (W.M.)
| | - Luyang Yu
- From the Institute of Genetics and Regenerative Biology, College of Life Sciences (X.Z., S.D., C.Q., Y. Shi, L.S., Yueyue Wang, Yuewen Wang, J.L., Yiran Wang, Y. Sun, L.Y.), Research Center for Air Pollution and Health (X.Z., S.D., C.Q., Y. Shi, L.S., Yuewen Wang, J.L., Yiran Wang, L.Y.), and Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Cell Signaling Network, College of Life Sciences (J.C.), Zhejiang University, Hangzhou, China; Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (L.Q., M.S.); Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT (L.Q., W.M.); and The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou, China (W.M.).
| |
Collapse
|
18
|
Da Silva L, Fonseca-Alves CE, Thompson JJ, Foster RA, Wood GA, Amorim RL, Coomber BL. Pilot assessment of vascular endothelial growth factor receptors and trafficking pathways in recurrent and metastatic canine subcutaneous mast cell tumours. Vet Med Sci 2017; 3:146-155. [PMID: 29067211 PMCID: PMC5645839 DOI: 10.1002/vms3.66] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Canine subcutaneous mast cell tumour (scMCT) shows less aggressive biological behaviour than cutaneous MCT. Vascular endothelial growth factor receptor 2 (VEGFR2) is expressed by neoplastic cells in canine scMCT, but the relevance of this signalling pathway for disease pathobiology is not clear. The objective of this study was to quantify VEGF‐A, VEGFR2, pVEGFR2, the VEGF co‐receptor Neuropilin 1 (NRP‐1) and the E3 ubiquitin protein ligase c‐Cbl in canine scMCT, and to evaluate their association with disease outcome. Immunohistochemical staining for biomarkers was quantified from 14 cases of canine scMCT using manual and computer‐assisted methods. Kaplan–Meier curves were generated for disease‐free survival (DFS) and compared using Mantel–Cox log‐rank analysis. Cases with high levels of neoplastic cell VEGFR2, pVEGFR2 or c‐CBL immunoreactivity had significantly reduced DFS. All cases displayed neoplastic cells positive for VEGF‐A, which was significantly associated with pVEGFR2 immunoreactivity. There were also significant positive correlations between VEGFR2 and pVEGFR2, and between c‐CBL and pVEGFR2 levels. This pilot study demonstrates the potential utility of these markers in a subset of scMCT in dogs.
Collapse
Affiliation(s)
- Lucas Da Silva
- Department of Biomedical SciencesUniversity of GuelphGuelphOntarioCanada
| | - Carlos E Fonseca-Alves
- Department of Veterinary ClinicUniversity of São Paulo State -UNESPBotucatuSão PauloBrazil
| | - Jennifer J Thompson
- Department of PathobiologyOntario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
| | - Robert A Foster
- Department of PathobiologyOntario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
| | - Geoffrey A Wood
- Department of PathobiologyOntario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
| | - Renee L Amorim
- Department of Veterinary ClinicUniversity of São Paulo State -UNESPBotucatuSão PauloBrazil
| | - Brenda L Coomber
- Department of Biomedical SciencesUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
19
|
Chu YH, Lu CC, Lin TC, Tsou MY, Hsu YJ, Ho ST, Tung CS, Tseng CJ, Li MH, Lee HS. The Osmopressor-Induced Angiopoietin-1 Secretion in Plasma and Subsequent Activation of the Tie-2/Akt/eNOS Signaling Pathway in Red Blood Cell. Am J Hypertens 2017; 30:295-303. [PMID: 28034894 DOI: 10.1093/ajh/hpw161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/28/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Water ingestion induces the osmopressor response, which typically presents as increased total peripheral vascular resistance in young healthy subjects. A previous study has suggested that the RBC membrane receptor is involved in osmopressor stress. Recent studies have indicated nitric oxide synthase phosphorylation in RBCs. However, the main process in signaling pathway activation to elicit such a response is unknown. Herein, we hypothesized that hypo-osmotic stress following water ingestion modulates the eNOS/NO pathway, thereby alternating vascular resistance. METHODS We included 24 young, healthy subjects. Physiological parameters and blood samples were collected at 5 minutes before and 25 and 50 minutes after 50 ml water, 500 ml water, or 500 ml normal saline ingestion. A human receptor tyrosine kinase (RTK) phosphorylation antibody array was used to simultaneously detect and monitor the biological activation pathways in RBCs. RESULTS Of the 71 RTKs assayed during the osmopressor response, several RTKs were significantly upregulated, including Tie-2 and Tie-1. Plasma angiopoietin-1 levels significantly increased at 25 minutes after 500 ml water ingestion compared to those at baseline. Simultaneous phosphorylation of Tie-2, Akt, and eNOS in RBCs occurred. RBCs in vitro were stimulated with angiopoietin-1, Tie-2, or 0.8% saline and showed significant increase in Tie-2, Akt, and eNOS phosphorylation upon angiopoietin-1 treatment and enhanced activation upon cotreatment of angiopoietin-1 and 0.8% saline. CONCLUSIONS The hypo-osmotic stimulus of water ingestion increases angiopoietin-1 secretion and subsequently activates the Tie-2/Akt/eNOS signaling pathway in RBCs, thereby revealing a novel biological mechanism simultaneously occurring with the osmopressor response.
Collapse
Affiliation(s)
- You-Hsiang Chu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Cherng Lu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Aerospace Medicine, National Defense Medical Center, Taipei, Taiwan
- Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tso-Chou Lin
- Department of Anesthesiology, Tri-Service General Hospital, Taipei, Taiwan
| | - Mei-Yung Tsou
- Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology and Department of Medicine, National Defense Medical Center, Taipei, Taiwan
- Department of Nephrology of Internal Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - Shung-Tai Ho
- Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Anesthesiology, National Defense Medical Center, Taipei, Taiwan
| | - Che-Se Tung
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan
- Division of Medical Research and Education, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Ching-Jiunn Tseng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Min-Hui Li
- Institute of Aerospace Medicine, National Defense Medical Center, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Herng-Sheng Lee
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
20
|
Szabo C. Hydrogen sulfide, an enhancer of vascular nitric oxide signaling: mechanisms and implications. Am J Physiol Cell Physiol 2016; 312:C3-C15. [PMID: 27784679 DOI: 10.1152/ajpcell.00282.2016] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/17/2016] [Indexed: 12/15/2022]
Abstract
Nitric oxide (NO) vascular signaling has long been considered an independent, self-sufficient pathway. However, recent data indicate that the novel gaseous mediator, hydrogen sulfide (H2S), serves as an essential enhancer of vascular NO signaling. The current article overviews the multiple levels at which this enhancement takes place. The first level of interaction relates to the formation of biologically active hybrid S/N species and the H2S-induced stimulation of NO release from its various stable "pools" (e.g., nitrite). The next interactions occur on the level of endothelial calcium mobilization and PI3K/Akt signaling, increasing the specific activity of endothelial NO synthase (eNOS). The next level of interaction occurs on eNOS itself; H2S directly interacts with the enzyme: sulfhydration of critical cysteines stabilizes it in its physiological, dimeric state, thereby optimizing eNOS-derived NO production and minimizing superoxide formation. Yet another level of interaction, further downstream, occurs at the level of soluble guanylate cyclase (sGC): H2S stabilizes sGC in its NO-responsive, physiological, reduced form. Further downstream, H2S inhibits the vascular cGMP phosphodiesterase (PDE5), thereby prolonging the biological half-life of cGMP. Finally, H2S-derived polysulfides directly activate cGMP-dependent protein kinase (PKG). Taken together, H2S emerges an essential endogenous enhancer of vascular NO signaling, contributing to vasorelaxation and angiogenesis. The functional importance of the H2S/NO cooperative interactions is highlighted by the fact that H2S loses many of its beneficial cardiovascular effects when eNOS is inactive.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
21
|
Wang X, Mou Y, Yue Z, Zhang H, Su X, Wang Y, Li R, Sun X. Arsenite suppresses angiogenesis of vascular endothelial cells mediated by Platelet Derived Growth Factor Receptor-beta. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 46:168-173. [PMID: 27475902 DOI: 10.1016/j.etap.2016.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 07/12/2016] [Accepted: 07/16/2016] [Indexed: 06/06/2023]
Abstract
The present study aimed to investigate the effects of sodium arsenite (NaAsO2) on the angiogenesis of human umbilical vein endothelial cells (HUVECs) and the mechanism involved. Firstly, a Matrigel-based in vitro angiogenesis assay demonstrated that arsenite suppressed the angiogenesis of HUVECs in a dose-dependent manner. Then by using a global inhibitor for multiple growth factor receptors (E7080) and a specific inhibitor of PDGFR-beta (CP-673451), we found that E7080 completely prevented and CP-673451 significantly decreased the angiogenesis of HUVECs. This suggested that angiogenesis of HUVECs depends on the signal pathway mediated by tyrosine kinase receptors and that among them, PDGFR-beta has an important regulatory function. Finally by using porcine aortic endothelial cells which stably express human PDGFR-beta, we found that arsenite suppressed the angiogenesis mediated by PDGFR-beta. Based on these results, we conclude that arsenite suppressed the angiogenesis of the vascular endothelial cells, that this effect is mediated by PDGFR-beta, and postulate that it might contribute to the injuries of blood vessel in arsenism.
Collapse
Affiliation(s)
- Xiaotong Wang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Yan Mou
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China; The Second Hospital of Jilin University, Changchun, PR China
| | - Zhen Yue
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Haiying Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Xuejin Su
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Yang Wang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Ronggui Li
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China.
| | - Xin Sun
- Life Science Research Center, Beihua University, Jilin, PR China.
| |
Collapse
|
22
|
Abstract
Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are uniquely required to balance the formation of new blood vessels with the maintenance and remodelling of existing ones, during development and in adult tissues. Recent advances have greatly expanded our understanding of the tight and multi-level regulation of VEGFR2 signalling, which is the primary focus of this Review. Important insights have been gained into the regulatory roles of VEGFR-interacting proteins (such as neuropilins, proteoglycans, integrins and protein tyrosine phosphatases); the dynamics of VEGFR2 endocytosis, trafficking and signalling; and the crosstalk between VEGF-induced signalling and other endothelial signalling cascades. A clear understanding of this multifaceted signalling web is key to successful therapeutic suppression or stimulation of vascular growth.
Collapse
|
23
|
Jing Z, Wei-Jie Y, Yi-Feng ZG, Jing H. Downregulation of Syndecan-1 induce glomerular endothelial cell dysfunction through modulating internalization of VEGFR-2. Cell Signal 2016; 28:826-37. [PMID: 27075925 DOI: 10.1016/j.cellsig.2016.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/20/2016] [Accepted: 04/06/2016] [Indexed: 01/20/2023]
Abstract
Ischemic acute kidney injury (AKI) remains to have high morbidity and mortality rates. The mechanism of glomerular endothelial cells (GEnC) dysfunction in the development of ischemic AKI is still unclear. Syndecan-1, one kind of heparan sulfate proteoglycan (HSPG), is extensively studied in tumor for its effects in promoting angiogenesis. In this study, we found that, Syndecan-1 was reduced in GEnC both in vivo and in vitro after hypoxia treatment. Besides, down-regulation of Syndecan-1 could lead to dysfunction and apoptosis of GEnC, as indicated by increased cell permeability, decreased cell viability and inhibited tube formation. VEGF-VEGFR-2 signaling is essential in maintaining biology of GEnC, and activation of its downstream effectors, ERK1/2, AKT, and Rac1, were inhibited in GEnC transfected with Syndecan-1 siRNA compared with control siRNA. Moreover, membrane VEGFR-2 expression was reduced significantly in GEnC transfected with Syndecan-1 siRNA. Clathrin-mediated endocytosis of VEGFR-2 is essential in the activation of VEGF-VEGFR-2 signaling. Our further study demonstrated that down-regulation of Syndecan-1 in GEnC inhibit VEGF-VEGFR-2 signaling by recruiting VEGFR-2 to the Caveolin-dependent endocytosis route, there by sequestering it from Clathrin-mediated endocytosis. Moreover, as shown by immunofluorescence and immunoprecipitation analysis, VEGFR-2 co-localizes and interacts with Syndecan-1, indicating Syndecan-1 may act as a co-receptor of VEGFR-2, thus to mediate internalization of VEGFR-2. We speculated that down-regulation of Syndecan-1 could inhibit VEGF-VEGFR-2 signaling through regulating internalization of VEGFR-2, thus leading to dysfunction and apoptosis of GEnC. This indicates a potential target for the therapy of ischemic AKI.
Collapse
Affiliation(s)
- Zhou Jing
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 HaiNing Road, Shanghai 200080, People's Republic of China
| | - Yuan Wei-Jie
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 HaiNing Road, Shanghai 200080, People's Republic of China.
| | - Zhu-Ge Yi-Feng
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 HaiNing Road, Shanghai 200080, People's Republic of China
| | - Hao Jing
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 HaiNing Road, Shanghai 200080, People's Republic of China
| |
Collapse
|
24
|
Blocking Infralimbic Basic Fibroblast Growth Factor (bFGF or FGF2) Facilitates Extinction of Drug Seeking After Cocaine Self-Administration. Neuropsychopharmacology 2015; 40:2907-15. [PMID: 25994078 PMCID: PMC4864626 DOI: 10.1038/npp.2015.144] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 05/06/2015] [Accepted: 05/15/2015] [Indexed: 01/09/2023]
Abstract
Drug exposure results in structural and functional changes in brain regions that regulate reward and these changes may underlie the persistence of compulsive drug seeking and relapse. Neurotrophic factors, such as basic fibroblast growth factor (bFGF or FGF2), are necessary for neuronal survival, growth, and differentiation, and may contribute to these drug-induced changes. Following cocaine exposure, bFGF is increased in addiction-related brain regions, including the infralimbic medial prefrontal cortex (IL-mPFC). The IL-mPFC is necessary for extinction, but whether drug-induced overexpression of bFGF in this region affects extinction of drug seeking is unknown. Thus, we determined whether blocking bFGF in IL-mPFC would facilitate extinction following cocaine self-administration. Rats were trained to lever press for intravenous infusions of cocaine before extinction. Blocking bFGF in IL-mPFC before four extinction sessions resulted in facilitated extinction. In contrast, blocking bFGF alone was not sufficient to facilitate extinction, as blocking bFGF and returning rats to their home cage had no effect on subsequent extinction. Furthermore, bFGF protein expression increased in IL-mPFC following cocaine self-administration, an effect reversed by extinction. These results suggest that cocaine-induced overexpression of bFGF inhibits extinction, as blocking bFGF during extinction permits rapid extinction. Therefore, targeted reductions in bFGF during therapeutic interventions could enhance treatment outcomes for addiction.
Collapse
|
25
|
Kofler NM, Simons M. Angiogenesis versus arteriogenesis: neuropilin 1 modulation of VEGF signaling. F1000PRIME REPORTS 2015; 7:26. [PMID: 25926977 PMCID: PMC4371373 DOI: 10.12703/p7-26] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In development and disease, vascular endothelial growth factor (VEGF) regulates the expansion of the vascular tree. In response to hypoxia, VEGF promotes new capillary formation through the process of angiogenesis by inducing endothelial cell sprouting, proliferation, and migration. Wound healing, tissue regeneration, and tumor growth depend on angiogenesis for adequate nutrient and oxygen delivery. Under different conditions, VEGF promotes arterial growth, modulates lumen expansion, and induces collateral vessel formation, events collectively referred to as arteriogenesis. Induction of arteriogenesis after cardiac or cerebral arterial occlusion can reduce ischemia and improve disease outcome. Endothelial VEGF receptor 2 (VEGFR2) signaling governs both processes. However, modulation of downstream VEGF signaling effectors, such as extracellular-signal-regulated kinase (ERK) activation, differs in order to achieve angiogenic versus arteriogenic outcomes. Recent reports show that neuropilin 1 (NRP1), a VEGF receptor, can instill VEGF signaling outcomes that specifically regulate either angiogenesis or arteriogenesis. Here, we discuss how NRP1 functions as a VEGFR2 co-receptor in angiogenesis and a modulator of VEGFR2 trafficking in arteriogenesis. The unique role played by neuropilin in different endothelial processes makes it an exciting therapeutic target to specifically enhance angiogenesis or arteriogenesis in disease settings.
Collapse
Affiliation(s)
- Natalie M. Kofler
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine300 George Street, New Haven, CT 06520USA
| | - Michael Simons
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine300 George Street, New Haven, CT 06520USA
- Department of Cell Biology, Yale University School of Medicine300 George Street, New Haven, CT 06520USA
| |
Collapse
|
26
|
Secker GA, Harvey NL. VEGFR signaling during lymphatic vascular development: From progenitor cells to functional vessels. Dev Dyn 2014; 244:323-31. [DOI: 10.1002/dvdy.24227] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/06/2014] [Accepted: 11/06/2014] [Indexed: 01/09/2023] Open
Affiliation(s)
- Genevieve A. Secker
- Centre for Cancer Biology; University of South Australia, and SA Pathology; Adelaide Australia
| | - Natasha L. Harvey
- Centre for Cancer Biology; University of South Australia, and SA Pathology; Adelaide Australia
- School of Medicine; University of Adelaide; Adelaide Australia
| |
Collapse
|