1
|
Hage Z, Madeira MM, Koliatsis D, Tsirka SE. Convergence of endothelial dysfunction, inflammation and glucocorticoid resistance in depression-related cardiovascular diseases. BMC Immunol 2024; 25:61. [PMID: 39333855 PMCID: PMC11428380 DOI: 10.1186/s12865-024-00653-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Major Depressive Disorder, or depression, has been extensively linked to dysregulated HPA axis function, chronic inflammation and cardiovascular diseases. While the former two have been studied in depth, the mechanistic connection between depression and cardiovascular disease is unclear. As major mediators of vascular homeostasis, vascular pathology and immune activity, endothelial cells represent an important player connecting the diseases. Exaggerated inflammation and glucocorticoid function are important topics to explore in the endothelial response to MDD. Glucocorticoid resistance in several cell types strongly promotes inflammatory signaling and results in worsened severity in many diseases. However, endothelial health and inflammation in chronic stress and depression are rarely considered from the perspective of glucocorticoid signaling and resistance. In this review, we aim to discuss (1) endothelial dysfunction in depression, (2) inflammation in depression, (3) general glucocorticoid resistance in depression and (4) endothelial glucocorticoid resistance in depression co-morbid inflammatory diseases. We will first describe vascular pathology, inflammation and glucocorticoid resistance separately in depression and then describe their potential interactions with one another in depression-relevant diseases. Lastly, we will hypothesize potential mechanisms by which glucocorticoid resistance in endothelial cells may contribute to vascular disease states in depressed people. Overall, endothelial-glucocorticoid signaling may play an important role in connecting depression and vascular pathology and warrants further study.
Collapse
Affiliation(s)
- Zachary Hage
- Program in Molecular and Cellular Pharmacology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
- Scholars in Biomedical Sciences Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Miguel M Madeira
- Program in Molecular and Cellular Pharmacology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
- Scholars in Biomedical Sciences Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Dimitris Koliatsis
- Program in Molecular and Cellular Pharmacology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Stella E Tsirka
- Program in Molecular and Cellular Pharmacology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.
- Scholars in Biomedical Sciences Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
2
|
Gumede NAC, Khathi A. The Role of Pro-Opiomelanocortin Derivatives in the Development of Type 2 Diabetes-Associated Myocardial Infarction: Possible Links with Prediabetes. Biomedicines 2024; 12:314. [PMID: 38397916 PMCID: PMC10887103 DOI: 10.3390/biomedicines12020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Myocardial infarction is a major contributor to CVD-related mortality. T2DM is a risk factor for MI. Stress activates the HPA axis, SNS, and endogenous OPS. These POMC derivatives increase the blood glucose and cardiovascular response by inhibiting the PI3K/AkT insulin signaling pathway and increasing cardiac contraction. Opioids regulate the effect of the HPA axis and SNS and they are cardioprotective. The chronic activation of the stress response may lead to insulin resistance, cardiac dysfunction, and MI. Stress and T2DM, therefore, increase the risk of MI. T2DM is preceded by prediabetes. Studies have shown that prediabetes is associated with an increased risk of MI because of inflammation, hyperlipidemia, endothelial dysfunction, and hypertension. The HPA axis is reported to be dysregulated in prediabetes. However, the SNS and the OPS have not been explored during prediabetes. The effect of prediabetes on POMC derivatives has yet to be fully explored and understood. The impact of stress and prediabetes on the cardiovascular response needs to be investigated. This study sought to review the potential impact of prediabetes on the POMC derivatives and pathways that could lead to MI.
Collapse
Affiliation(s)
- Nompumelelo Anna-Cletta Gumede
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban X54001, South Africa;
| | | |
Collapse
|
3
|
Shakour N, Karami S, Iranshahi M, Butler AE, Sahebkar A. Antifibrotic effects of sodium-glucose cotransporter-2 inhibitors: A comprehensive review. Diabetes Metab Syndr 2024; 18:102934. [PMID: 38154403 DOI: 10.1016/j.dsx.2023.102934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/25/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND AND AIMS Scar tissue accumulation in organs is the underlying cause of many fibrotic diseases. Due to the extensive array of organs affected, the long-term nature of fibrotic processes and the large number of people who suffer from the negative impact of these diseases, they constitute a serious health problem for modern medicine and a huge economic burden on society. Sodium-glucose cotransporter-2 inhibitors (SGLT2is) are a relatively new class of anti-diabetic pharmaceuticals that offer additional benefits over and above their glucose-lowering properties; these medications modulate a variety of diseases, including fibrosis. Herein, we have collated and analyzed all available research on SGLT2is and their effects on organ fibrosis, together with providing a proposed explanation as to the underlying mechanisms. METHODS PubMed, ScienceDirect, Google Scholar and Scopus were searched spanning the period from 2012 until April 2023 to find relevant articles describing the antifibrotic effects of SGLT2is. RESULTS The majority of reports have shown that SGLT2is are protective against lung, liver, heart and kidney fibrosis as well as arterial stiffness. According to the results of clinical trials and animal studies, many SGLT2 inhibitors are promising candidates for the treatment of fibrosis. Recent studies have demonstrated that SGLT2is affect an array of cellular processes, including hypoxia, inflammation, oxidative stress, the renin-angiotensin system and metabolic activities, all of which have been linked to fibrosis. CONCLUSION Extensive evidence indicates that SGLT2is are promising treatments for fibrosis, demonstrating protective effects in various organs and influencing key cellular processes linked to fibrosis.
Collapse
Affiliation(s)
- Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Karami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Adliya, Bahrain
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Srivastava SP, Goodwin JE. Loss of endothelial glucocorticoid receptor accelerates organ fibrosis in db/db mice. Am J Physiol Renal Physiol 2023; 325:F519-F526. [PMID: 37589053 PMCID: PMC10639025 DOI: 10.1152/ajprenal.00105.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023] Open
Abstract
Endothelial cells play a key role in maintaining homeostasis and are deranged in many disease processes, including fibrotic conditions. Absence of the endothelial glucocorticoid receptor (GR) has been shown to accelerate diabetic kidney fibrosis in part through upregulation of Wnt signaling. The db/db mouse model is a model of spontaneous type 2 diabetes that has been noted to develop fibrosis in multiple organs over time, including the kidneys. This study aimed to determine the effect of loss of endothelial GR on organ fibrosis in the db/db model. db/db mice lacking endothelial GR showed more severe fibrosis in multiple organs compared with endothelial GR-replete db/db mice. Organ fibrosis could be substantially improved either through administration of a Wnt inhibitor or metformin. IL-6 is a key cytokine driving the fibrosis phenotype and is mechanistically linked to Wnt signaling. The db/db model is an important tool to study the mechanisms of fibrosis and its phenotype in the absence of endothelial GR highlights the synergistic effects of Wnt signaling and inflammation in the pathogenesis or organ fibrosis.NEW & NOTEWORTHY The major finding of this work is that endothelial glucocorticoid receptor-mediated upregulation of Wnt signaling and concurrent hyperinflammation work synergistically to exacerbate organ fibrosis in a genetic mouse model of diabetes. This study adds to our understanding of diabetic renal fibrosis and has important implications for the use of metformin in this condition.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Julie E Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
5
|
Akhter MS, Goodwin JE. Endothelial Dysfunction in Cardiorenal Conditions: Implications of Endothelial Glucocorticoid Receptor-Wnt Signaling. Int J Mol Sci 2023; 24:14261. [PMID: 37762564 PMCID: PMC10531724 DOI: 10.3390/ijms241814261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The endothelium constitutes the innermost lining of the blood vessels and controls blood fluidity, vessel permeability, platelet aggregation, and vascular tone. Endothelial dysfunction plays a key role in initiating a vascular inflammatory cascade and is the pivotal cause of various devastating diseases in multiple organs including the heart, lung, kidney, and brain. Glucocorticoids have traditionally been used to combat vascular inflammation. Endothelial cells express glucocorticoid receptors (GRs), and recent studies have demonstrated that endothelial GR negatively regulates vascular inflammation in different pathological conditions such as sepsis, diabetes, and atherosclerosis. Mechanistically, the anti-inflammatory effects of GR are mediated, in part, through the suppression of Wnt signaling. Moreover, GR modulates the fatty acid oxidation (FAO) pathway in endothelial cells and hence can influence FAO-mediated fibrosis in several organs including the kidneys. This review summarizes the relationship between GR and Wnt signaling in endothelial cells and the effects of the Wnt pathway in different cardiac and renal diseases. Available data suggest that GR plays a significant role in restoring endothelial integrity, and research on endothelial GR-Wnt interactions could facilitate the development of novel therapies for many cardiorenal conditions.
Collapse
Affiliation(s)
- Mohammad Shohel Akhter
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06511, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Julie Elizabeth Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06511, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
6
|
Srivastava SP, Goodwin JE. Loss of endothelial glucocorticoid receptor accelerates organ fibrosis in db/db mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533532. [PMID: 36993478 PMCID: PMC10055184 DOI: 10.1101/2023.03.20.533532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Endothelial cells play a key role in maintaining homeostasis and are deranged in many disease processes, including fibrotic conditions. Absence of the endothelial glucocorticoid receptor (GR) has been shown to accelerate diabetic kidney fibrosis in part through up regulation of Wnt signaling. The db/db mouse model is a model of spontaneous type 2 diabetes that has been noted to develop fibrosis in multiple organs over time, including the kidneys. This study aimed to determine the effect of loss of endothelial GR on organ fibrosis in the db/db model. Db/Db mice lacking endothelial GR showed more severe fibrosis in multiple organs compared to endothelial GR-replete db/db mice. Organ fibrosis could be substantially improved either through administration of a Wnt inhibitor or metformin. IL-6 is a key cytokine driving the fibrosis phenotype and is mechanistically linked to Wnt signaling. The db/db model is an important tool to study mechanisms of fibrosis and its phenotype in the absence of endothelial GR highlights the synergistic effects of Wnt signaling and inflammation in the pathogenesis or organ fibrosis.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of Pediatrics Yale University School of Medicine New Haven, CT, USA 06520
- Vascular Biology and Therapeutics Program, Yale University School of Medicine New Haven, CT, USA 06520
| | - Julie E Goodwin
- Department of Pediatrics Yale University School of Medicine New Haven, CT, USA 06520
- Vascular Biology and Therapeutics Program, Yale University School of Medicine New Haven, CT, USA 06520
- Department of Molecular and Cellular Physiology, Yale University School of Medicine New Haven, CT, USA 06520
| |
Collapse
|
7
|
Madalena KM, Brennan FH, Popovich PG. Genetic deletion of the glucocorticoid receptor in Cx 3cr1 + myeloid cells is neuroprotective and improves motor recovery after spinal cord injury. Exp Neurol 2022; 355:114114. [PMID: 35568187 PMCID: PMC10034962 DOI: 10.1016/j.expneurol.2022.114114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/29/2022] [Accepted: 05/08/2022] [Indexed: 11/23/2022]
Abstract
Glucocorticoid receptors (GRs), part of the nuclear receptor superfamily of transcription factors (TFs), are ubiquitously expressed in all cell types and regulate cellular responses to glucocorticoids (e.g., cortisol in humans; corticosterone in rodents). In myeloid cells, glucocorticoids binding to GRs can enhance or repress gene transcription, thereby imparting distinct and context-dependent functions in macrophages at sites of inflammation. In experimental models and in humans, glucocorticoids are widely used as anti-inflammatory treatments to promote recovery of function after SCI. Thus, we predicted that deleting GR in mouse myeloid lineage cells (i.e., microglia and monocyte-derived macrophages) would enhance inflammation at the site of injury and worsen functional recovery after traumatic spinal cord injury (SCI). Contrary to our prediction, the intraspinal macrophage response to a moderate (75 kdyne) spinal contusion SCI was reduced in Cx3cr1-Cre;GRf/f conditional knockout mice (with GR specifically deleted in myeloid cells). This phenotype was associated with improvements in hindlimb motor recovery, myelin sparing, axon sparing/regeneration, and microvascular protection/plasticity relative to SCI mice with normal myeloid cell GR expression. Further analysis revealed that macrophage GR deletion impaired lipid and myelin phagocytosis and foamy macrophage formation. Together, these data reveal endogenous GR signaling as a key pathway that normally inhibits mechanisms of macrophage-mediated repair after SCI.
Collapse
Affiliation(s)
- Kathryn M Madalena
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Faith H Brennan
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Phillip G Popovich
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
8
|
Wang C, Qu K, Wang J, Qin R, Li B, Qiu J, Wang G. Biomechanical regulation of planar cell polarity in endothelial cells. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166495. [PMID: 35850177 DOI: 10.1016/j.bbadis.2022.166495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 01/03/2023]
Abstract
Cell polarity refers to the uneven distribution of certain cytoplasmic components in a cell with a spatial order. The planar cell polarity (PCP), the cell aligns perpendicular to the polar plane, in endothelial cells (ECs) has become a research hot spot. The planar polarity of ECs has a positive significance on the regulation of cardiovascular dysfunction, pathological angiogenesis, and ischemic stroke. The endothelial polarity is stimulated and regulated by biomechanical force. Mechanical stimuli promote endothelial polarization and make ECs produce PCP to maintain the normal physiological and biochemical functions. Here, we overview recent advances in understanding the interplay and mechanism between PCP and ECs function involved in mechanical forces, with a focus on PCP signaling pathways and organelles in regulating the polarity of ECs. And then showed the related diseases caused by ECs polarity dysfunction. This study provides new ideas and therapeutic targets for the treatment of endothelial PCP-related diseases.
Collapse
Affiliation(s)
- Caihong Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Jing Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Rui Qin
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Bingyi Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| |
Collapse
|
9
|
Role of Endothelial Glucocorticoid Receptor in the Pathogenesis of Kidney Diseases. Int J Mol Sci 2021; 22:ijms222413295. [PMID: 34948091 PMCID: PMC8706765 DOI: 10.3390/ijms222413295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 01/12/2023] Open
Abstract
Glucocorticoids, as multifunctional hormones, are widely used in the treatment of various diseases including nephrological disorders. They are known to affect immunological cells, effectively treating many autoimmune and inflammatory processes. Furthermore, there is a growing body of evidence demonstrating the potent role of glucocorticoids in non-immune cells such as podocytes. Moreover, novel data show additional pathways and processes affected by glucocorticoids, such as the Wnt pathway or autophagy. The endothelium is currently considered as a key organ in the regulation of numerous kidney functions such as glomerular filtration, vascular tone and the regulation of inflammation and coagulation. In this review, we analyse the literature concerning the effects of endothelial glucocorticoid receptor signalling on kidney function in health and disease, with special focus on hypertension, diabetic kidney disease, glomerulopathies and chronic kidney disease. Recent studies demonstrate the potential role of endothelial GR in the prevention of fibrosis of kidney tissue and cell metabolism through Wnt pathways, which could have a protective effect against disease progression. Another important aspect covered in this review is blood pressure regulation though GR and eNOS. We also briefly cover potential therapies that might affect the endothelial glucocorticoid receptor and its possible clinical implications, with special interest in selective or local GR stimulation and potential mitigation of GC treatment side effects.
Collapse
|
10
|
Recent Advances in Diabetic Kidney Diseases: From Kidney Injury to Kidney Fibrosis. Int J Mol Sci 2021; 22:ijms222111857. [PMID: 34769288 PMCID: PMC8584225 DOI: 10.3390/ijms222111857] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/08/2021] [Accepted: 10/30/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease and end-stage renal disease. The natural history of DKD includes glomerular hyperfiltration, progressive albuminuria, declining estimated glomerular filtration rate, and, ultimately, kidney failure. It is known that DKD is associated with metabolic changes caused by hyperglycemia, resulting in glomerular hypertrophy, glomerulosclerosis, and tubulointerstitial inflammation and fibrosis. Hyperglycemia is also known to cause programmed epigenetic modification. However, the detailed mechanisms involved in the onset and progression of DKD remain elusive. In this review, we discuss recent advances regarding the pathogenic mechanisms involved in DKD.
Collapse
|
11
|
Srivastava SP, Zhou H, Setia O, Dardik A, Fernandez‐Hernando C, Goodwin J. Podocyte Glucocorticoid Receptors Are Essential for Glomerular Endothelial Cell Homeostasis in Diabetes Mellitus. J Am Heart Assoc 2021; 10:e019437. [PMID: 34308664 PMCID: PMC8475689 DOI: 10.1161/jaha.120.019437] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022]
Abstract
Background Proteinuria and glomerular segmental fibrosis are inevitable complications of diabetic nephropathy though their mechanisms are poorly understood. Understanding the clinical characteristics and pathogenesis of proteinuria and glomerular segmental fibrosis in diabetic nephropathy is, therefore, urgently needed for patient management of this severe disease. Methods and Results Diabetes mellitus was induced in podocyte-specific glucocorticoid receptor knockout (GRPKO) mice and control littermates by administration of streptozotocin. Primary podocytes were isolated and subjected to analysis of Wnt signaling and fatty acid metabolism. Conditioned media from primary podocytes was transferred to glomerular endothelial cells. Histologic analysis of kidneys from diabetic GRPKO mice showed worsened fibrosis, increased collagen deposition, and glomerulomegaly indicating severe glomerular fibrosis. Higher expression of transforming growth factor-βR1 and β-catenin and suppressed expression of carnitine palmitoyltransferase 1A in nephrin-positive cells were found in the kidneys of diabetic GRPKO mice. Podocytes isolated from diabetic GRPKO mice demonstrated significantly higher profibrotic gene expression and suppressed fatty acid oxidation compared with controls. Administration of a Wnt inhibitor significantly improved the fibrotic features in GRPKO mice. The glomerular endothelium of diabetic GRPKO mice demonstrated the features of endothelial-to-mesenchymal transition. Moreover, endothelial cells treated with conditioned media from podocytes lacking GR showed increased expression of α-smooth muscle actin, transforming growth factor-βR1 and β-catenin levels. Conclusions These data demonstrate that loss of podocyte GR leads to upregulation of Wnt signaling and disruption in fatty acid metabolism. Podocyte-endothelial cell crosstalk, mediated through GR, is important for glomerular homeostasis, and its disruption likely contributes to diabetic nephropathy.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of PediatricsYale University School of MedicineNew HavenCT
- Vascular Biology and Therapeutics ProgramYale University School of MedicineNew HavenCT
| | - Han Zhou
- Department of PediatricsYale University School of MedicineNew HavenCT
- Vascular Biology and Therapeutics ProgramYale University School of MedicineNew HavenCT
| | - Ocean Setia
- Vascular Biology and Therapeutics ProgramYale University School of MedicineNew HavenCT
- Department of SurgeryYale University School of MedicineNew HavenCT
| | - Alan Dardik
- Vascular Biology and Therapeutics ProgramYale University School of MedicineNew HavenCT
- Department of SurgeryYale University School of MedicineNew HavenCT
- Department of SurgeryVA Connecticut Healthcare SystemsWest HavenCT
| | - Carlos Fernandez‐Hernando
- Vascular Biology and Therapeutics ProgramYale University School of MedicineNew HavenCT
- Department of Comparative MedicineYale University School of MedicineNew HavenCT
- Program in Integrative Cell Signaling and Neurobiology of Metabolism (ICSNM)Yale University School of MedicineNew HavenCT
- Department of PathologyYale University School of MedicineNew HavenCT
| | - Julie Goodwin
- Department of PediatricsYale University School of MedicineNew HavenCT
- Vascular Biology and Therapeutics ProgramYale University School of MedicineNew HavenCT
| |
Collapse
|
12
|
Song W, Cao H, Zhang D, Xu H, Zhang Q, Wang Z, Li S, Wang W, Hu W, Wang B, Duan H. Association between NR3C1 gene polymorphisms and age-related hearing impairment in Qingdao Chinese elderly. BMC Med Genomics 2021; 14:193. [PMID: 34320993 PMCID: PMC8320226 DOI: 10.1186/s12920-021-01044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/22/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Age-related hearing impairment (ARHI) has attracted increasing attention recently. It is caused by genetic and environmental factors. A number of ARHI-related genes have been found. This study aimed to detect the potential association between NR3C1 gene polymorphisms and ARHI by means of weighted allele score. METHODS A total of 861 participants from Qingdao city were selected by means of cluster random sampling. We statistically evaluated the characteristics of individuals and used the Mann-Whitney U test or chi-square test for comparison. The publicly available expression quantitative trait locus (eQTL) was queried on the website of the Genotype-Tissue Expression (GTEx). We used the weighted allele score and logistic regression analysis to explore the association between NR3C1 gene polymorphisms and ARHI. Finally, the prediction model was constructed by logistic regression and receiver operating characteristic (ROC) curve. RESULTS All individuals over 60 years of age were enrolled in this study. The allele of rs61757411, rs41423247 and rs6877893 were significantly different between the ARHI group and the normal hearing group (P < 0.01). Though eQTL analysis, rs6877893 and rs33388 might affect the occurrence of ARHI by affecting the expression of NR3C1 gene in artery aorta. Then we performed two models: one without adding any covariates into model and the other adjusting for demographic characteristic, smoking and drinking, diet and exercise, and physical conditions. In the multivariate-adjusted model 2, the odds ratio with 95% confidence interval for weighted allele score (NR3C1) was 0.841 (0.710-0.995, P = 0.043). The area under the ROC curve was 0.755, indicating that the model had good predictability. CONCLUSIONS Our study suggests that NR3C1 gene polymorphisms was significantly associated with ARHI.
Collapse
Affiliation(s)
- Wanxue Song
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, No. 38 Dengzhou Road, Shibei District, Qingdao, 266021, Shandong Province, People's Republic of China
| | - Hainan Cao
- Department of Otorhinolaryngology, Qingdao Municipal Hospital, Qingdao, 266011, Shandong Province, People's Republic of China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, No. 38 Dengzhou Road, Shibei District, Qingdao, 266021, Shandong Province, People's Republic of China
| | - Haiyan Xu
- Chengyang Street Community Health Service Center, No. 137 Wenyang Road, Chengyang District, Qingdao, 266109, Shandong Province, People's Republic of China
| | - Qianqian Zhang
- Zaozhuang Municipal Center for Disease Control and Prevention, No. 223 Jiefang North Road, Shizhong District, Zaozhuang, 277100, Shandong Province, People's Republic of China
| | - Zhaoguo Wang
- Qingdao Municipal Center for Disease Control and Prevention, No. 175 Shandong Road, Shibei District, Qingdao, 266033, Shandong Province, People's Republic of China
- Qingdao Institute of Preventive Medicine, No. 175 Shandong Road, Shibei District, Qingdao, 266033, Shandong Province, People's Republic of China
| | - Suyun Li
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, No. 38 Dengzhou Road, Shibei District, Qingdao, 266021, Shandong Province, People's Republic of China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, No. 38 Dengzhou Road, Shibei District, Qingdao, 266021, Shandong Province, People's Republic of China
| | - Wenchao Hu
- Department of Endocrinology, Qilu Hospital of Shandong University (Qingdao), No. 758 Hefei Road, Shibei District, Qingdao, 266033, Shandong Province, People's Republic of China
| | - Bingling Wang
- Qingdao Municipal Center for Disease Control and Prevention, No. 175 Shandong Road, Shibei District, Qingdao, 266033, Shandong Province, People's Republic of China
- Qingdao Institute of Preventive Medicine, No. 175 Shandong Road, Shibei District, Qingdao, 266033, Shandong Province, People's Republic of China
| | - Haiping Duan
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, No. 38 Dengzhou Road, Shibei District, Qingdao, 266021, Shandong Province, People's Republic of China.
- Qingdao Municipal Center for Disease Control and Prevention, No. 175 Shandong Road, Shibei District, Qingdao, 266033, Shandong Province, People's Republic of China.
- Qingdao Institute of Preventive Medicine, No. 175 Shandong Road, Shibei District, Qingdao, 266033, Shandong Province, People's Republic of China.
| |
Collapse
|
13
|
Glucocorticoids: Fuelling the Fire of Atherosclerosis or Therapeutic Extinguishers? Int J Mol Sci 2021; 22:ijms22147622. [PMID: 34299240 PMCID: PMC8303333 DOI: 10.3390/ijms22147622] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/21/2023] Open
Abstract
Glucocorticoids are steroid hormones with key roles in the regulation of many physiological systems including energy homeostasis and immunity. However, chronic glucocorticoid excess, highlighted in Cushing's syndrome, is established as being associated with increased cardiovascular disease (CVD) risk. Atherosclerosis is the major cause of CVD, leading to complications including coronary artery disease, myocardial infarction and heart failure. While the associations between glucocorticoid excess and increased prevalence of these complications are well established, the mechanisms underlying the role of glucocorticoids in development of atheroma are unclear. This review aims to better understand the importance of glucocorticoids in atherosclerosis and to dissect their cell-specific effects on key processes (e.g., contractility, remodelling and lesion development). Clinical and pre-clinical studies have shown both athero-protective and pro-atherogenic responses to glucocorticoids, effects dependent upon their multifactorial actions. Evidence indicates regulation of glucocorticoid bioavailability at the vasculature is complex, with local delivery, pre-receptor metabolism, and receptor expression contributing to responses linked to vascular remodelling and inflammation. Further investigations are required to clarify the mechanisms through which endogenous, local glucocorticoid action and systemic glucocorticoid treatment promote/inhibit atherosclerosis. This will provide greater insights into the potential benefit of glucocorticoid targeted approaches in the treatment of cardiovascular disease.
Collapse
|
14
|
Srivastava SP, Zhou H, Setia O, Liu B, Kanasaki K, Koya D, Dardik A, Fernandez-Hernando C, Goodwin J. Loss of endothelial glucocorticoid receptor accelerates diabetic nephropathy. Nat Commun 2021; 12:2368. [PMID: 33888696 PMCID: PMC8062600 DOI: 10.1038/s41467-021-22617-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Endothelial cells play a key role in the regulation of disease. Defective regulation of endothelial cell homeostasis may cause mesenchymal activation of other endothelial cells or neighboring cell types, and in both cases contributes to organ fibrosis. Regulatory control of endothelial cell homeostasis is not well studied. Diabetes accelerates renal fibrosis in mice lacking the endothelial glucocorticoid receptor (GR), compared to control mice. Hypercholesterolemia further enhances severe renal fibrosis. The fibrogenic phenotype in the kidneys of diabetic mice lacking endothelial GR is associated with aberrant cytokine and chemokine reprogramming, augmented Wnt signaling and suppression of fatty acid oxidation. Both neutralization of IL-6 and Wnt inhibition improve kidney fibrosis by mitigating mesenchymal transition. Conditioned media from endothelial cells from diabetic mice lacking endothelial GR stimulate Wnt signaling-dependent epithelial-to-mesenchymal transition in tubular epithelial cells from diabetic controls. These data demonstrate that endothelial GR is an essential antifibrotic molecule in diabetes.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of Pediatrics, Yale University School of Medicine New Haven, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine New Haven, New Haven, CT, USA
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Han Zhou
- Department of Pediatrics, Yale University School of Medicine New Haven, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine New Haven, New Haven, CT, USA
| | - Ocean Setia
- Vascular Biology and Therapeutics Program, Yale University School of Medicine New Haven, New Haven, CT, USA
- Department of Surgery, Yale University School of Medicine New Haven, New Haven, CT, USA
| | - Bing Liu
- Department of Pediatrics, Yale University School of Medicine New Haven, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine New Haven, New Haven, CT, USA
| | - Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Yale University School of Medicine New Haven, New Haven, CT, USA
- Department of Surgery, Yale University School of Medicine New Haven, New Haven, CT, USA
- Department of Surgery, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Carlos Fernandez-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine New Haven, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine New Haven, New Haven, CT, USA
- Program in Integrative Cell Signaling and Neurobiology of Metabolism (ICSNM), Yale University School of Medicine New Haven, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine New Haven, New Haven, CT, USA
| | - Julie Goodwin
- Department of Pediatrics, Yale University School of Medicine New Haven, New Haven, CT, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine New Haven, New Haven, CT, USA.
| |
Collapse
|
15
|
Liu B, Zhou H, Zhang T, Gao X, Tao B, Xing H, Zhuang Z, Dardik A, Kyriakides TR, Goodwin JE. Loss of endothelial glucocorticoid receptor promotes angiogenesis via upregulation of Wnt/β-catenin pathway. Angiogenesis 2021; 24:631-645. [PMID: 33650028 PMCID: PMC8292305 DOI: 10.1007/s10456-021-09773-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
Objective The glucocorticoid receptor (GR) is a member of the nuclear receptor family that controls key biological processes in the cardiovascular system and has recently been shown to modulate Wnt signaling in endothelial cells. Wnt/β-catenin signaling has been demonstrated to be crucial in the process of angiogenesis. In the current study, we studied whether GR could regulate angiogenesis via the Wnt/β-catenin pathway. Approach and Resultsa Key components of the Wnt/β-catenin pathway were evaluated using quantitative PCR and Western blot in the presence or absence of GR. Enhanced angiogenesis was found in GR deficiency in vitro and confirmed with cell viability assays, proliferation assays and tube formation assays. Consistent with these in vitro findings, endothelial cell-specific GR loss GR in vivo promoted angiogenesis in both a hind limb ischemia model and sponge implantation assay. Results were further verified in a novel mouse model lacking endothelial LRP5/6, a key receptor in canonical Wnt signaling, and showed substantially suppressed angiogenesis using these same in vitro and in vivo assays. To further investigate the mechanism of GR regulation of Wnt signaling, autophagy flux was investigated in endothelial cells by visualizing auto phagolysosomes as well as by assessing P62 degradation and LC3B conversion. Results indicated that potentiated autophagy flux participated in GR-Wnt regulation. Conclusions Lack of endothelial GR triggers autophagy flux, leads to activation of Wnt/β-catenin signaling and promotes angiogenesis. There may also be a synergistic interaction between autophagy and Wnt/β-catenin signaling. Supplementary Information The online version of this article (10.1007/s10456-021-09773-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bing Liu
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, 06520, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Han Zhou
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, 06520, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Tiening Zhang
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, 06520, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xixiang Gao
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University and Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Bo Tao
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Hao Xing
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Zhenwu Zhuang
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, CT, 06510-3221, USA
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Surgery, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, CT, 06516, USA
| | - Themis R Kyriakides
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Pathology, Yale University, New Haven, CT, 06510, USA
| | - Julie E Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
16
|
Srivastava SP, Goodwin JE. Cancer Biology and Prevention in Diabetes. Cells 2020; 9:cells9061380. [PMID: 32498358 PMCID: PMC7349292 DOI: 10.3390/cells9061380] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023] Open
Abstract
The available evidence suggests a complex relationship between diabetes and cancer. Epidemiological data suggest a positive correlation, however, in certain types of cancer, a more complex picture emerges, such as in some site-specific cancers being specific to type I diabetes but not to type II diabetes. Reports share common and differential mechanisms which affect the relationship between diabetes and cancer. We discuss the use of antidiabetic drugs in a wide range of cancer therapy and cancer therapeutics in the development of hyperglycemia, especially antineoplastic drugs which often induce hyperglycemia by targeting insulin/IGF-1 signaling. Similarly, dipeptidyl peptidase 4 (DPP-4), a well-known target in type II diabetes mellitus, has differential effects on cancer types. Past studies suggest a protective role of DPP-4 inhibitors, but recent studies show that DPP-4 inhibition induces cancer metastasis. Moreover, molecular pathological mechanisms of cancer in diabetes are currently largely unclear. The cancer-causing mechanisms in diabetes have been shown to be complex, including excessive ROS-formation, destruction of essential biomolecules, chronic inflammation, and impaired healing phenomena, collectively leading to carcinogenesis in diabetic conditions. Diabetes-associated epithelial-to-mesenchymal transition (EMT) and endothelial-to-mesenchymal transition (EndMT) contribute to cancer-associated fibroblast (CAF) formation in tumors, allowing the epithelium and endothelium to enable tumor cell extravasation. In this review, we discuss the risk of cancer associated with anti-diabetic therapies, including DPP-4 inhibitors and SGLT2 inhibitors, and the role of catechol-o-methyltransferase (COMT), AMPK, and cell-specific glucocorticoid receptors in cancer biology. We explore possible mechanistic links between diabetes and cancer biology and discuss new therapeutic approaches.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of Pediatrics, Yale University School of Medicine, Yale University, New Haven, CT 06520-8064, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520-8066, USA
- Correspondence: (S.P.S.); (J.E.G.)
| | - Julie E. Goodwin
- Department of Pediatrics, Yale University School of Medicine, Yale University, New Haven, CT 06520-8064, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520-8066, USA
- Correspondence: (S.P.S.); (J.E.G.)
| |
Collapse
|
17
|
Liu Y, Tian X, Liu S, Liu D, Li Y, Liu M, Zhang X, Yan C, Han Y. DNA hypermethylation: A novel mechanism of CREG gene suppression and atherosclerogenic endothelial dysfunction. Redox Biol 2020; 32:101444. [PMID: 32067910 PMCID: PMC7264464 DOI: 10.1016/j.redox.2020.101444] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Cellular repressor of E1A-stimulated genes (CREG), a vasculoprotective molecule, is significantly downregulated in atherosclerotic vessels through unclear mechanisms. While epigenetic regulation is involved in atherosclerosis development, it is not known if the CREG gene is epigenetically regulated. The aim of this study was to assess the potential role of CREG methylation in contributing to atherosclerosis. APPROACH AND RESULTS Overexpression of DNA methyltransferase (DNMT)3B significantly inhibited CREG expression in human umbilical vein endothelial cells (HUVECs) and human coronary aortic endothelial cells (HCAECs).Conversely, inhibition of DNA methylation with 5-aza-2'-deoxycytidine (5-aza-dC) dose-dependently increased CREG expression. A CREG promoter analysis identified +168 to +255 bp as a key regulatory region and the CG site at +201/+202 bp as a key methylation site. The transcription factor GR-α could bind to the +201/+202 bp CG site promoting CREG transcription, a process significantly inhibited by DNMT3B overexpression. Treatment of cells with oxidized low-density lipoprotein (ox-LDL), a critical atherosclerogenic factor, significantly increased DNMT3B expression, increasing CREG promotor methylation, blocking GR-α binding, and inhibiting CREG expression. Consistently, CG sites in the CREG promoter fragment were hyper-methylated in human atherosclerotic arteries, and CREG expression was significantly reduced. A negative correlation between DNMT3B and CREG expression levels was observed in human atherosclerotic arteries. Finally, Ox-LDL-induced endothelium dysfunction was significantly attenuated by both 5-aza-dC and an anti-oxidative molecular N-acetylcysteine (NAC) administration through rescue the expression of CREG and activation of the p-eNOS/NO pathway. CONCLUSIONS Our study provides the first direct evidence that DNMT3B-mediated CREG gene hypermethylation is a novel mechanism that contributes to endothelial dysfunction and atherosclerosis development. Blocking CREG methylation may represent a novel therapeutic approach to treat ox-LDL-induced atherosclerosis.
Collapse
Affiliation(s)
- Yanxia Liu
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaoxiang Tian
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Shan Liu
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Dan Liu
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Yang Li
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Meili Liu
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaolin Zhang
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Chenghui Yan
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China.
| | - Yaling Han
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China.
| |
Collapse
|
18
|
Novel Insight into Neuroimmune Regulatory Mechanisms and Biomarkers Linking Major Depression and Vascular Diseases: The Dilemma Continues. Int J Mol Sci 2020; 21:ijms21072317. [PMID: 32230840 PMCID: PMC7177743 DOI: 10.3390/ijms21072317] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
Major depressive disorder (MDD) represents a serious health problem estimated to affect 350 million people globally. Importantly, MDD has repeatedly emerged as an etiological or prognostic factor in cardiovascular disease (CVD) development, including vascular pathology. Several linking pathomechanisms between MDD and CVD involve abnormal autonomic regulation, inflammation, and endothelial dysfunction as an early preclinical stage of atherosclerosis. However, the cause of accelerated atherosclerosis in MDD patients remains unclear. Recently, the causal relationships between MDD and mediator (e.g., inflammation and/or endothelial dysfunction), as well as the causal pathways from the mediator to atherosclerosis, were discussed. Specifically, MDD is accompanied by immune dysregulation, resulting in increased production of proinflammatory cytokines (e.g., interleukin (IL)-6 and tumor necrosis factor (TNF)-α), which could lead to depression-linked abnormalities in brain function. Further, MDD has an adverse effect on endothelial function; for example, circulating markers of endothelial dysfunction (e.g., soluble adhesion molecules, von Willebrand factor) have been linked with depression. Additionally, MDD-linked autonomic dysregulation, which is characterized by disrupted sympathovagal balance associated with excessive circulating catecholamines, can contribute to CVD. Taken together, activated inflammatory response, endothelial dysfunction, and autonomic dysregulation could affect gradual atherosclerosis progression, resulting in a higher risk of developing CVD in MDD. This review focused on the pathomechanisms linking MDD and CVD with respect to neuroimmune regulation, and the description of promising biomarkers, which is important for the early diagnosis and personalized prevention of CVD in major depression.
Collapse
|
19
|
van der Sluis RJ, Hoekstra M. Glucocorticoids are active players and therapeutic targets in atherosclerotic cardiovascular disease. Mol Cell Endocrinol 2020; 504:110728. [PMID: 31968221 DOI: 10.1016/j.mce.2020.110728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/19/2019] [Accepted: 01/17/2020] [Indexed: 02/07/2023]
Abstract
Adrenal-derived glucocorticoids mediate the physiological response to stress. Chronic disturbances in glucocorticoid homeostasis, i.e. in Addison's and Cushing's disease patients, predispose to the development of atherosclerotic cardiovascular disease. Here we review preclinical and clinical findings regarding the relation between changes in plasma glucocorticoid levels and the atherosclerosis extent. It appears that, although the altered glucocorticoid function can in most cases be restored in the different patient groups, current therapies do not necessarily reverse the associated risk for atherosclerotic cardiovascular disease. In our opinion much attention should therefore be given to the development of a Cushing's disease mouse model that can (1) effectively replicate the effect of hypercortisolemia on atherosclerosis outcome observed in humans and (2) be used to investigate, in a preclinical setting, the relative impact on atherosclerosis susceptibility of already available (e.g. metyrapone) and potentially novel (i.e. SR-BI activity modulators) therapeutic agents that target the adrenal glucocorticoid output.
Collapse
Affiliation(s)
- Ronald J van der Sluis
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333CC, Leiden, the Netherlands
| | - Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333CC, Leiden, the Netherlands.
| |
Collapse
|
20
|
Zhou H, Mehta S, Srivastava SP, Grabinska K, Zhang X, Wong C, Hedayat A, Perrotta P, Fernández-Hernando C, Sessa WC, Goodwin JE. Endothelial cell-glucocorticoid receptor interactions and regulation of Wnt signaling. JCI Insight 2020; 5:131384. [PMID: 32051336 DOI: 10.1172/jci.insight.131384] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022] Open
Abstract
Vascular inflammation is present in many cardiovascular diseases, and exogenous glucocorticoids have traditionally been used as a therapy to suppress inflammation. However, recent data have shown that endogenous glucocorticoids, acting through the endothelial glucocorticoid receptor, act as negative regulators of inflammation. Here, we performed ChIP for the glucocorticoid receptor, followed by next-generation sequencing in mouse endothelial cells to investigate how the endothelial glucocorticoid receptor regulates vascular inflammation. We identified a role of the Wnt signaling pathway in this setting and show that loss of the endothelial glucocorticoid receptor results in upregulation of Wnt signaling both in vitro and in vivo using our validated mouse model. Furthermore, we demonstrate glucocorticoid receptor regulation of a key gene in the Wnt pathway, Frzb, via a glucocorticoid response element gleaned from our genomic data. These results suggest a role for endothelial Wnt signaling modulation in states of vascular inflammation.
Collapse
Affiliation(s)
- Han Zhou
- Department of Pediatrics.,Vascular Biology and Therapeutics Program
| | | | | | - Kariona Grabinska
- Vascular Biology and Therapeutics Program.,Department of Pharmacology
| | - Xinbo Zhang
- Vascular Biology and Therapeutics Program.,Integrative Cell Signaling and Neurobiology of Metabolism Program.,Department of Comparative Medicine, and
| | | | - Ahmad Hedayat
- Department of Pediatrics.,Vascular Biology and Therapeutics Program
| | - Paola Perrotta
- Vascular Biology and Therapeutics Program.,Department of Pharmacology
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program.,Integrative Cell Signaling and Neurobiology of Metabolism Program.,Department of Comparative Medicine, and.,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - William C Sessa
- Vascular Biology and Therapeutics Program.,Department of Pharmacology
| | - Julie E Goodwin
- Department of Pediatrics.,Vascular Biology and Therapeutics Program
| |
Collapse
|
21
|
Liu B, Zhang TN, Knight JK, Goodwin JE. The Glucocorticoid Receptor in Cardiovascular Health and Disease. Cells 2019; 8:cells8101227. [PMID: 31601045 PMCID: PMC6829609 DOI: 10.3390/cells8101227] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/19/2022] Open
Abstract
The glucocorticoid receptor is a member of the nuclear receptor family that controls many distinct gene networks, governing various aspects of development, metabolism, inflammation, and the stress response, as well as other key biological processes in the cardiovascular system. Recently, research in both animal models and humans has begun to unravel the profound complexity of glucocorticoid signaling and convincingly demonstrates that the glucocorticoid receptor has direct effects on the heart and vessels in vivo and in vitro. This research has contributed directly to improving therapeutic strategies in human disease. The glucocorticoid receptor is activated either by the endogenous steroid hormone cortisol or by exogenous glucocorticoids and acts within the cardiovascular system via both genomic and non-genomic pathways. Polymorphisms of the glucocorticoid receptor are also reported to influence the progress and prognosis of cardiovascular disease. In this review, we provide an update on glucocorticoid signaling and highlight the critical role of this signaling in both physiological and pathological conditions of the cardiovascular system. With increasing in-depth understanding of glucocorticoid signaling, the future is promising for the development of targeted glucocorticoid treatments and improved clinical outcomes.
Collapse
Affiliation(s)
- Bing Liu
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Tie-Ning Zhang
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Jessica K Knight
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Julie E Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
22
|
Jönsson S, Lundberg AK, Chung RWS, Jonasson L. Glucocorticoid sensitivity and inflammatory status of peripheral blood mononuclear cells in patients with coronary artery disease. Ann Med 2018; 50:260-268. [PMID: 29473427 DOI: 10.1080/07853890.2018.1445278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Mechanisms behind sustained inflammation in patients with coronary artery disease (CAD) are not clarified but hypothalamus-pituitary-adrenal (HPA) axis dysfunction may have a role. Here, we investigated whether inflammatory status of peripheral blood mononuclear cells (PBMCs) was associated with altered glucocorticoid sensitivity in CAD patients. METHODS In 55 CAD patients and 30 controls, mRNA levels of GR-α, GR-β, NF-κB, IκBα, MMP-9 and TIMP-1 were measured in PBMCs. Suppressive effects of dexamethasone on GR-α, GR-β, NF-κB, IκBα, MMP-9 and TIMP-1 mRNA levels were assessed in PBMCs ex vivo. Salivary cortisol was repeatedly measured over 3 days. RESULTS GR-α mRNA levels were higher in CAD patients than in controls, 0.50 (0.38-0.59) versus 0.26 (0.18-0.37), p < .001, while GR-β mRNA levels were equally low in both groups. GR-α mRNA expression was associated with inflammatory gene expression and, also, with flatter diurnal cortisol rhythm. In both patients and controls, dexamethasone suppressed gene expression of NF-κB, IκBα, MMP-9 and TIMP-1 (p < .001). Dexamethasone also reduced GR-α mRNA levels (p < .001), while LPS increased it (p < .001). CONCLUSIONS PBMCs from CAD patients displayed an inflammatory gene expression profile. This was not explained by reduced glucocorticoid sensitivity. Instead, inflammation was associated with increased expression of GR-α mRNA, suggesting a hypocortisolemic state. Key messages • Peripheral blood mononuclear cells from patients with coronary artery disease (CAD) display an inflammatory gene expression profile. • This inflammatory state cannot be explained by reduced glucocorticoid sensitivity in CAD patients. • Instead, the inflammatory gene expression profile is associated with upregulated levels of glucocorticoid receptor-α mRNA, suggesting a hypocortisolemic state.
Collapse
Affiliation(s)
- Simon Jönsson
- a Department of Medical and Health Sciences, Division of Cardiovascular Medicine , Linköping University , Linköping , Sweden
| | - Anna K Lundberg
- a Department of Medical and Health Sciences, Division of Cardiovascular Medicine , Linköping University , Linköping , Sweden
| | - Rosanna W S Chung
- a Department of Medical and Health Sciences, Division of Cardiovascular Medicine , Linköping University , Linköping , Sweden
| | - Lena Jonasson
- a Department of Medical and Health Sciences, Division of Cardiovascular Medicine , Linköping University , Linköping , Sweden
| |
Collapse
|
23
|
Gkikas D, Tsampoula M, Politis PK. Nuclear receptors in neural stem/progenitor cell homeostasis. Cell Mol Life Sci 2017; 74:4097-4120. [PMID: 28638936 PMCID: PMC11107725 DOI: 10.1007/s00018-017-2571-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/06/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022]
Abstract
In the central nervous system, embryonic and adult neural stem/progenitor cells (NSCs) generate the enormous variety and huge numbers of neuronal and glial cells that provide structural and functional support in the brain and spinal cord. Over the last decades, nuclear receptors and their natural ligands have emerged as critical regulators of NSC homeostasis during embryonic development and adult life. Furthermore, substantial progress has been achieved towards elucidating the molecular mechanisms of nuclear receptors action in proliferative and differentiation capacities of NSCs. Aberrant expression or function of nuclear receptors in NSCs also contributes to the pathogenesis of various nervous system diseases. Here, we review recent advances in our understanding of the regulatory roles of steroid, non-steroid, and orphan nuclear receptors in NSC fate decisions. These studies establish nuclear receptors as key therapeutic targets in brain diseases.
Collapse
Affiliation(s)
- Dimitrios Gkikas
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str, 115 27, Athens, Greece
| | - Matina Tsampoula
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str, 115 27, Athens, Greece
| | - Panagiotis K Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str, 115 27, Athens, Greece.
| |
Collapse
|
24
|
Dron JS, Ho R, Hegele RA. Recent Advances in the Genetics of Atherothrombotic Disease and Its Determinants. Arterioscler Thromb Vasc Biol 2017; 37:e158-e166. [DOI: 10.1161/atvbaha.117.309934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jacqueline S. Dron
- From the Department of Biochemistry (J.S.D, R.H., R.A.H.), Robarts Research Institute (J.S.D., R.H., R.A.H.), and Department of Medicine (R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Rosettia Ho
- From the Department of Biochemistry (J.S.D, R.H., R.A.H.), Robarts Research Institute (J.S.D., R.H., R.A.H.), and Department of Medicine (R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Robert A. Hegele
- From the Department of Biochemistry (J.S.D, R.H., R.A.H.), Robarts Research Institute (J.S.D., R.H., R.A.H.), and Department of Medicine (R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
25
|
Zielińska KA, Van Moortel L, Opdenakker G, De Bosscher K, Van den Steen PE. Endothelial Response to Glucocorticoids in Inflammatory Diseases. Front Immunol 2016; 7:592. [PMID: 28018358 PMCID: PMC5155119 DOI: 10.3389/fimmu.2016.00592] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/29/2016] [Indexed: 12/16/2022] Open
Abstract
The endothelium plays a crucial role in inflammation. A balanced control of inflammation requires the action of glucocorticoids (GCs), steroidal hormones with potent cell-specific anti-inflammatory properties. Besides the classic anti-inflammatory effects of GCs on leukocytes, recent studies confirm that endothelial cells also represent an important target for GCs. GCs regulate different aspects of endothelial physiology including expression of adhesion molecules, production of pro-inflammatory cytokines and chemokines, and maintenance of endothelial barrier integrity. However, the regulation of endothelial GC sensitivity remains incompletely understood. In this review, we specifically examine the endothelial response to GCs in various inflammatory diseases ranging from multiple sclerosis, stroke, sepsis, and vasculitis to atherosclerosis. Shedding more light on the cross talk between GCs and endothelium will help to improve existing therapeutic strategies and develop new therapies better tailored to the needs of patients.
Collapse
Affiliation(s)
- Karolina A. Zielińska
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Laura Van Moortel
- Receptor Research Laboratories, Nuclear Receptor Lab, VIB-UGent, VIB Medical Biotechnology Center, Ghent, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Karolien De Bosscher
- Receptor Research Laboratories, Nuclear Receptor Lab, VIB-UGent, VIB Medical Biotechnology Center, Ghent, Belgium
| | | |
Collapse
|
26
|
Affiliation(s)
- Chantal M. Boulanger
- From the INSERM, U970, Paris Cardiovascular Research Center–PARCC, and Université Paris Descartes, Sorbonne Paris Cité, UMR-S970, Paris, France
| |
Collapse
|