1
|
Benkhoff M, Polzin A. Lipoprotection in cardiovascular diseases. Pharmacol Ther 2024:108747. [PMID: 39491757 DOI: 10.1016/j.pharmthera.2024.108747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/14/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Cardioprotection is a well-established term in the scientific world. It describes the protection of various mediators on the cardiovascular system. These protective effects can also be provided by certain lipids. Since lipids are a very specific and clearly definable class of substances, we define the term lipoprotection as lipid-mediated cardioprotection. In this review, we highlight high-density lipoprotein (HDL), sphingosine-1-phosphate (S1P) and omega-3 polyunsaturated fatty acids (n-3 PUFA) as the most important lipoprotective mediators and show their beneficial impact on coronary artery disease (CAD), acute myocardial infarction (AMI) and heart failure (HF).
Collapse
Affiliation(s)
- Marcel Benkhoff
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Amin Polzin
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany.
| |
Collapse
|
2
|
Ahmed T, Suzuki T, Terao R, Yamagishi R, Fujino R, Azuma K, Soga H, Ueta T, Honjo M, Watanabe S, Yoshioka K, Takuwa Y, Aihara M. Roles of Sphingosine Kinase and Sphingosine-1-Phosphate Receptor 2 in Endotoxin-Induced Acute Retinal Inflammation. Ocul Immunol Inflamm 2024; 32:1633-1647. [PMID: 38100527 DOI: 10.1080/09273948.2023.2273963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 12/17/2023]
Abstract
PURPOSE To investigate the roles of sphingosine kinases (SphKs) and sphingosine-1-phosphate receptors (S1PRs) in endotoxin-induced uveitis (EIU) mice. METHODS EIU model was induced using an intraperitoneal injection of lipopolysaccharide (LPS). The expression of SphKs and S1PRs in the retina was assessed using quantitative polymerase chain reaction (qPCR) and immunofluorescence. The effects of S1PR antagonists on the expression of inflammatory cytokines in the retina were evaluated using qPCR and western blotting. Effects of leukocyte infiltration of the retinal vessels were evaluated to determine the effects of the S1PR2 antagonist and genetic deletion of S1PR2 on retinal inflammation. RESULTS Retinal SphK1 expression was significantly upregulated in EIU. SphK1 was expressed in the GCL, IPL, and OPL and S1PR2 was expressed in the GCL, INL, and OPL. Positive cells in IPL and OPL of EIU retina were identified as endothelial cells. S1PR2 antagonist and genetic deletion of S1PR2 significantly suppressed the expression of IL-1α, IL-6, TNF-α, and ICAM-1, whereas S1PR1/3 antagonist did not. Use of S1PR2 antagonist and S1PR2 knockout in mice significantly ameliorated leukocyte adhesion induced by LPS. CONCLUSION SphK1/S1P/S1PR2 signaling was upregulated in EIU and S1PR2 inhibition suppressed inflammatory response. Targeting this signaling pathway has potential for treating retinal inflammatory diseases.
Collapse
Affiliation(s)
- Tazbir Ahmed
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takafumi Suzuki
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryo Terao
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Reiko Yamagishi
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryosuke Fujino
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kunihiro Azuma
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hirotsugu Soga
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takashi Ueta
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Megumi Honjo
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Sumiko Watanabe
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazuaki Yoshioka
- Department of Physiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa, Japan
| | - Yoh Takuwa
- Department of Physiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa, Japan
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
3
|
Del Gaudio I, Nitzsche A, Boyé K, Bonnin P, Poulet M, Nguyen TQ, Couty L, Ha HTT, Nguyen DT, Cazenave-Gassiot A, Ben Alaya K, Thérond P, Chun J, Wenk MR, Proia RL, Henrion D, Nguyen LN, Eichmann A, Camerer E. Zonation, ligand and dose dependence of S1PR1 signalling in blood and lymphatic vasculature. Cardiovasc Res 2024:cvae168. [PMID: 39086170 DOI: 10.1093/cvr/cvae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 08/02/2024] Open
Abstract
AIMS Circulating levels of sphingosine 1-phosphate (S1P), an HDL-associated ligand for endothelial cell (EC) protective S1P receptor-1 (S1PR1), are reduced in disease states associated with endothelial dysfunction. Yet as S1PR1 has high affinity for S1P and can be activated by ligand-independent mechanisms and EC-autonomous S1P production, it is unclear if relative reductions in circulating S1P impact endothelial function. It is also unclear how EC S1PR1 insufficiency, whether induced by ligand deficiency or by S1PR1-directed immunosuppressive therapy, affects different vascular subsets. METHODS AND RESULTS We here fine-map the zonation of S1PR1 signalling in the murine blood and lymphatic vasculature, superimpose cell type-specific and relative deficiencies in S1P production to define ligand source- and dose-dependence, and correlate receptor engagement to essential functions. In naïve blood vessels, despite broad expression, EC S1PR1 engagement was restricted to resistance-size arteries, lung capillaries and high-endothelial venules (HEV). Similar zonation was observed for albumin extravasation in EC S1PR1 deficient mice, and brain extravasation was reproduced with arterial EC-selective S1pr1 deletion. In lymphatic EC, S1PR1 engagement was high in collecting vessels and lymph nodes and low in terminal capillaries that drain tissue fluids. While EC S1P production sustained S1PR1 signaling in lymphatics and HEV, hematopoietic cells provided ∼90% of plasma S1P and sustained signaling in resistance arteries and lung capillaries. S1PR1 signaling and endothelial function were both surprisingly sensitive to reductions in plasma S1P with apparent saturation around 50% of normal levels. S1PR1 engagement did not depend on sex or age, but modestly increased in arteries in hypertension and diabetes. Sphingosine kinase (Sphk)-2 deficiency also increased S1PR1 engagement selectively in arteries, which could be attributed to Sphk1-dependent S1P release from perivascular macrophages. CONCLUSIONS This study highlights vessel subtype-specific S1PR1 functions and mechanisms of engagement and supports the relevance of S1P as circulating biomarker for endothelial function.
Collapse
Affiliation(s)
- Ilaria Del Gaudio
- Université de Paris, Paris Cardiovascular Research Centre, INSERM U970, Paris, France
| | - Anja Nitzsche
- Université de Paris, Paris Cardiovascular Research Centre, INSERM U970, Paris, France
| | - Kevin Boyé
- Université de Paris, Paris Cardiovascular Research Centre, INSERM U970, Paris, France
| | - Philippe Bonnin
- Assistance Publique-Hôpitaux de Paris (AP-HP), Physiologie Clinique, Hôpital Lariboisière, Paris France
- Université Paris Cité, INSERM U1144, UFR de Pharmacie, Paris, France
| | - Mathilde Poulet
- Université de Paris, Paris Cardiovascular Research Centre, INSERM U970, Paris, France
| | - Toan Quoc Nguyen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Ludovic Couty
- Université de Paris, Paris Cardiovascular Research Centre, INSERM U970, Paris, France
| | - Hoa T T Ha
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Dat T Nguyen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Amaury Cazenave-Gassiot
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Khaoula Ben Alaya
- Université de Paris, Paris Cardiovascular Research Centre, INSERM U970, Paris, France
| | - Patrice Thérond
- Assistance Publique-Hôpitaux de Paris (AP-HP), Service de Biochimie, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
- UFR de Pharmacie, EA 4529, Châtenay-Malabry, France
| | - Jerold Chun
- Neuroscience Drug Discovery, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Markus R Wenk
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Richard L Proia
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Institutes of Health, Bethesda, MD, USA
| | - Daniel Henrion
- Angers University, MitoVasc Department, Team 2 (CarMe), Angers University Hospital (CHU of Angers), CNRS, INSERM U1083, Angers, France
| | - Long N Nguyen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Anne Eichmann
- Université de Paris, Paris Cardiovascular Research Centre, INSERM U970, Paris, France
- Yale University School of Medicine, Department of Internal Medicine and Cellular and Molecular Physiology, New Haven, USA
| | - Eric Camerer
- Université de Paris, Paris Cardiovascular Research Centre, INSERM U970, Paris, France
| |
Collapse
|
4
|
Poteryaeva ON, Usynin IF. Molecular mechanisms of the regulatory action of high-density lipoproteins on the endothelial function. BIOMEDITSINSKAIA KHIMIIA 2024; 70:206-217. [PMID: 39239895 DOI: 10.18097/pbmc20247004206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Endothelial dysfunction underlies the pathogenesis of many diseases, primarily cardiovascular diseases. Epidemiological studies have shown an inverse dependence between the plasma level of high-density lipoproteins (HDL) and cardiovascular diseases. The results of experimental studies indicate that the antiatherogenic effect of HDL is associated not only with their participation in the reverse transport of excess cholesterol, but also with their regulatory effect on the functions of cells of various organs and tissues, including endothelial cells. The purpose of this review is to consider recent data on the participation of plasma receptors and related intracellular signaling pathways in the mechanism of protective effect of HDL on endothelial cell functions. Understanding the mechanisms of cell function regulation under the influence of HDL is an important step for the development of new ways of pharmacological correction of impaired endothelial functions and creation of effective endothelial protection drugs.
Collapse
Affiliation(s)
- O N Poteryaeva
- Institute of Biochemistry, Federal Research Center of Fundamental and Translation Medicine, Novosibirsk, Russia
| | - I F Usynin
- Institute of Biochemistry, Federal Research Center of Fundamental and Translation Medicine, Novosibirsk, Russia
| |
Collapse
|
5
|
Lui DTW, Tan KCB. High-density lipoprotein in diabetes: Structural and functional relevance. J Diabetes Investig 2024; 15:805-816. [PMID: 38416054 PMCID: PMC11215696 DOI: 10.1111/jdi.14172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
Low levels of high-density lipoprotein-cholesterol (HDL-C) is considered a major cardiovascular risk factor. However, recent studies have suggested a more U-shaped association between HDL-C and cardiovascular disease. It has been shown that the cardioprotective effect of HDL is related to the functions of HDL particles rather than their cholesterol content. HDL particles are highly heterogeneous and have multiple functions relevant to cardiometabolic conditions including cholesterol efflux capacity, anti-oxidative, anti-inflammatory, and vasoactive properties. There are quantitative and qualitative changes in HDL as well as functional abnormalities in both type 1 and type 2 diabetes. Non-enzymatic glycation, carbamylation, oxidative stress, and systemic inflammation can modify the HDL composition and therefore the functions, especially in situations of poor glycemic control. Studies of HDL proteomics and lipidomics have provided further insights into the structure-function relationship of HDL in diabetes. Interestingly, HDL also has a pleiotropic anti-diabetic effect, improving glycemic control through improvement in insulin sensitivity and β-cell function. Given the important role of HDL in cardiometabolic health, HDL-based therapeutics are being developed to enhance HDL functions rather than to increase HDL-C levels. Among these, recombinant HDL and small synthetic apolipoprotein A-I mimetic peptides may hold promise for preventing and treating diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- David Tak Wai Lui
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Kathryn Choon Beng Tan
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| |
Collapse
|
6
|
Zhang X, van der Vorst EPC. High-Density Lipoprotein Modifications: Causes and Functional Consequences in Type 2 Diabetes Mellitus. Cells 2024; 13:1113. [PMID: 38994965 PMCID: PMC11240616 DOI: 10.3390/cells13131113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024] Open
Abstract
High-density lipoprotein (HDL) is a group of small, dense, and protein-rich lipoproteins that play a role in cholesterol metabolism and various cellular processes. Decreased levels of HDL and HDL dysfunction are commonly observed in individuals with type 2 diabetes mellitus (T2DM), which is also associated with an increased risk for cardiovascular disease (CVD). Due to hyperglycemia, oxidative stress, and inflammation that develop in T2DM, HDL undergoes several post-translational modifications such as glycation, oxidation, and carbamylation, as well as other alterations in its lipid and protein composition. It is increasingly recognized that the generation of HDL modifications in T2DM seems to be the main cause of HDL dysfunction and may in turn influence the development and progression of T2DM and its related cardiovascular complications. This review provides a general introduction to HDL structure and function and summarizes the main modifications of HDL that occur in T2DM. Furthermore, the potential impact of HDL modifications on the pathogenesis of T2DM and CVD, based on the altered interactions between modified HDL and various cell types that are involved in glucose homeostasis and atherosclerotic plaque generation, will be discussed. In addition, some perspectives for future research regarding the T2DM-related HDL modifications are addressed.
Collapse
Affiliation(s)
- Xiaodi Zhang
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), 80336 Munich, Germany
| |
Collapse
|
7
|
Burg N, Malpass R, Alex L, Tran M, Englebrecht E, Kuo A, Pannelini T, Minett M, Athukorala K, Worgall T, Faust HJ, Goodman S, Mehta B, Brenner M, Vestweber D, Wei K, Blobel C, Hla T, Salmon JE. Endothelial cell sphingosine 1-phosphate receptor 1 restrains VE-cadherin cleavage and attenuates experimental inflammatory arthritis. JCI Insight 2024; 9:e171467. [PMID: 38855867 PMCID: PMC11382883 DOI: 10.1172/jci.insight.171467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 05/01/2024] [Indexed: 06/11/2024] Open
Abstract
In rheumatoid arthritis, inflammatory mediators extravasate from blood into joints via gaps between endothelial cells (ECs), but the contribution of ECs is not known. Sphingosine 1-phosphate receptor 1 (S1PR1), widely expressed on ECs, maintains the vascular barrier. Here, we assessed the contribution of vascular integrity and EC S1PR1 signaling to joint damage in mice exposed to serum-induced arthritis (SIA). EC-specific deletion of S1PR1 or pharmacological blockade of S1PR1 promoted vascular leak and amplified SIA, whereas overexpression of EC S1PR1 or treatment with an S1PR1 agonist delayed SIA. Blockade of EC S1PR1 induced membrane metalloproteinase-dependent cleavage of vascular endothelial cadherin (VE-cadherin), a principal adhesion molecule that maintains EC junctional integrity. We identified a disintegrin and a metalloproteinase domain 10 (ADAM10) as the principal VE-cadherin "sheddase." Mice expressing a stabilized VE-cadherin construct had decreased extravascular VE-cadherin and vascular leakage in response to S1PR1 blockade, and they were protected from SIA. Importantly, patients with active rheumatoid arthritis had decreased circulating S1P and microvascular expression of S1PR1, suggesting a dysregulated S1P/S1PR1 axis favoring vascular permeability and vulnerability. We present a model in which EC S1PR1 signaling maintains homeostatic vascular barrier function by limiting VE-cadherin shedding mediated by ADAM10 and suggest this signaling axis as a therapeutic target in inflammatory arthritis.
Collapse
Affiliation(s)
- Nathalie Burg
- Hospital for Special Surgery, New York, New York, USA
| | - Ryan Malpass
- Hospital for Special Surgery, New York, New York, USA
| | - Linda Alex
- Hospital for Special Surgery, New York, New York, USA
| | - Miles Tran
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eric Englebrecht
- School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Andrew Kuo
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Tilla Worgall
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Heather J Faust
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Susan Goodman
- Hospital for Special Surgery, New York, New York, USA
| | - Bella Mehta
- Hospital for Special Surgery, New York, New York, USA
| | - Michael Brenner
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Carl Blobel
- Hospital for Special Surgery, New York, New York, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Jane E Salmon
- Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
8
|
Zhang Z, Xu S, Song M, Huang W, Yan M, Li X. Association between blood lipid levels and the risk of liver cancer: a systematic review and meta-analysis. Cancer Causes Control 2024; 35:943-953. [PMID: 38376693 PMCID: PMC11129988 DOI: 10.1007/s10552-024-01853-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024]
Abstract
PURPOSE The association between blood lipid levels and the risk of developing liver cancer remains a subject of ongoing debate. To elucidate this association, we conducted a meta-analysis by systematically incorporating data from all relevant prospective cohort studies. METHODS We conducted a systematic search of the PubMed, Embase, Web of Science, and Cochrane Library databases covering studies published from database inception through July 2023. This study included prospective cohort studies related to lipid profiles (e.g., total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) levels) that reported hazard ratios (HRs) or relative risks (RRs) with corresponding 95% confidence intervals (95% CIs) to investigate their association with the risk of liver cancer. During the analysis process, we used fixed-effects or random-effects models based on the level of heterogeneity among the studies and obtained pooled risk ratios using these models. To ensure the robustness and reliability of the study findings, we also conducted sensitivity analyses and publication bias analyses. RESULTS After conducting a systematic search, 12 studies were identified from a total of 11,904 articles and were included in the meta-analysis. These studies included a combined population of 10,765,221 participants, among whom 31,055 cases of liver cancer were reported. The analysis revealed that the pooled HR for the serum TC concentration (highest versus lowest) was 0.45 (95% CI = 0.35-0.58, I2 = 78%). For TGs, the HR was 0.67 (95% CI = 0.46-0.96, I2 = 86%), while for HDL-C, the HR was 0.72 (95% CI = 0.58-0.90, I2 = 65%). The HR for LDL-C was 0.51 (95% CI = 0.23-1.13, I2 = 93%). CONCLUSION The findings of this study indicate that serum TC, TG, and HDL-C levels are negatively associated with liver cancer risk, suggesting that higher concentrations of these lipids are associated with a reduced risk of liver cancer. However, no significant association has been found between LDL-C levels and liver cancer risk.
Collapse
Affiliation(s)
- Zhihui Zhang
- School of Nursing, Southwest Medical University, Luzhou, 646000, China
- Department of Gastrointestinal surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Shicong Xu
- School of Nursing, Southwest Medical University, Luzhou, 646000, China
- Department of Gastrointestinal surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Meixuan Song
- School of Nursing, Southwest Medical University, Luzhou, 646000, China
| | - Weirong Huang
- School of Nursing, Southwest Medical University, Luzhou, 646000, China
- Department of Gastrointestinal surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Manlin Yan
- School of Nursing, Southwest Medical University, Luzhou, 646000, China
- Department of Gastrointestinal surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Xianrong Li
- Department of Gastrointestinal surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
9
|
Cao L, Wu C, Liu M, Zhang W, Chen H, Wang R, He Z. The association between monocyte-to-high-density lipoprotein ratio and hyperuricemia: Results from 2009 to 2018. Medicine (Baltimore) 2024; 103:e37713. [PMID: 38669360 PMCID: PMC11049789 DOI: 10.1097/md.0000000000037713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/04/2024] [Indexed: 04/28/2024] Open
Abstract
Previous research has suggested that the monocyte-to-high-density lipoprotein ratio (MHR), an emerging inflammatory biomarker, holds promise in predicting the prevalence of various cardiovascular and metabolic diseases. However, earlier investigations were constrained by the relatively modest sample sizes. This study endeavored to expand the sample size and conduct a more comprehensive exploration of the potential relationship between MHR and hyperuricemia. This cross-sectional study incorporated data from participants of the 2009 to 2018 National Health and Nutrition Examination Survey (NHANES) with complete and qualifying information. MHR was determined by calculating the ratio between monocyte count and high-density lipoprotein levels. Various statistical methodologies such as weighted multivariate logistic regression, subgroup analysis, smoothed curve fitting, and threshold analysis, have been used to explore the correlation between hyperuricemia and MHR. The study included a cohort of 17,694 participants, of whom 3512 were diagnosed with hyperuricemia. MHR levels were notably higher in the hyperuricemia group than in the normal group, aligning with an elevated body mass index (BMI). A comprehensive multivariate logistic analysis, accounting for all relevant adjustments, revealed a notable positive correlation between MHR and hyperuricemia (P < .001, OR = 1.98, 95% CI: 1.54-2.54). Subgroup analysis indicated that the MHR exhibited an enhanced predictive capacity for identifying hyperuricemia risk, particularly in females (P < .05). Curvilinear and threshold analyses revealed a nonlinear association between MHR and hyperuricemia prevalence, with a notable inflection point at 0.826. In the US population, a clear positive correlation was observed between the MHR and prevalence of hyperuricemia. Importantly, the MHR is a more robust predictor of hyperuricemia risk in females. Further investigations are required to confirm these findings.
Collapse
Affiliation(s)
- Lei Cao
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Chunwei Wu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Miao Liu
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Wenlong Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Hailong Chen
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Ruolin Wang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Ze He
- Department of Endocrinology and Metabolism, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
10
|
Jia C, Wu W, Lu H, Liu J, Chen S, Liang G, Zhou Y, Yu S, Qiao L, Chen J, Tan N, Liu Y, Chen J. Fibrinogen to HDL-Cholesterol ratio as a predictor of mortality risk in patients with acute myocardial infarction. Lipids Health Dis 2024; 23:86. [PMID: 38528580 DOI: 10.1186/s12944-024-02071-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/05/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) is characterized by inflammation, oxidative stress, and atherosclerosis, contributing to increased mortality risk. High-density lipoprotein (HDL) takes a crucial part in mitigating atherosclerosis and inflammation through its diverse functionalities. Conversely, fibrinogen is implicated in the development of atherosclerotic plaques. However, the mortality risk predictive capacity of fibrinogen to HDL-cholesterol ratio (FHR) in AMI patients remains unexplored. This research aimed to evaluate the effectiveness of FHR for mortality risk prediction in relation to AMI. METHODS A retrospective study involving 13,221 AMI patients from the Cardiorenal ImprovemeNt II cohort (NCT05050877) was conducted. Baseline FHR levels were used to categorize patients into quartiles. The assessment of survival disparities among various groups was conducted by employing Kaplan‒Meier diagram. Cox regression was performed for investigating the correlation between FHR and adverse clinical outcomes, while the Fine-Gray model was applied to evaluate the subdistribution hazard ratios for cardiovascular death. RESULTS Over a median follow-up of 4.66 years, 2309 patients experienced all-cause death, with 1007 deaths attributed to cardiovascular disease (CVD). The hazard ratio (HR) and its 95% confidence interval (CI) for cardiac and all-cause death among individuals in the top quartile of FHR were 2.70 (1.99-3.65) and 1.48 (1.26-1.75), respectively, in comparison to ones in the first quartile, after covariate adjustment. Restricted cubic spline analysis revealed that FHR was linearly correlated with all-cause mortality, irrespective of whether models were adjusted or unadjusted (all P for nonlinearity > 0.05). CONCLUSION AMI patients with increased baseline FHR values had higher all-cause and cardiovascular mortality, regardless of established CVD risk factors. FHR holds promise as a valuable tool for evaluating mortality risk in AMI patients. TRIAL REGISTRATION The Cardiorenal ImprovemeNt II registry NCT05050877.
Collapse
Affiliation(s)
- Congzhuo Jia
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Wanying Wu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Huan Lu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
- Department of Cardiology, Yangjiang People's Hospital, Yangjiang, 529500, China
| | - Jin Liu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Shiqun Chen
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Global Health Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, 510100, China
| | - Guoxiao Liang
- The School of Pharmacy, Guangdong Medical University, Dongguan, 523000, China
| | - Yang Zhou
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Sijia Yu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Linfang Qiao
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jinming Chen
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Ning Tan
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Yong Liu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Jiyan Chen
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| |
Collapse
|
11
|
Ouyang J, Zhao L, Song Y, Qu H, Du T, Shi L, Cui Z, Jiang Z, Gao Z. Trends in gut-heart axis and heart failure research (1993-2023): A bibliometric and visual analysis. Heliyon 2024; 10:e25995. [PMID: 38404792 PMCID: PMC10884449 DOI: 10.1016/j.heliyon.2024.e25995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/11/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
Background The incidence of heart failure, the terminal stage of several cardiovascular diseases, is increasing owing to population growth and aging. Bidirectional crosstalk between the gut and heart plays a significant role in heart failure. This study aimed to analyze the gut-heart axis and heart failure from a bibliometric perspective. Methods We extracted literature regarding the gut-heart axis and heart failure from the Web of Science Core Collection database (January 1, 1993, to June 30, 2023) and conducted bibliometric and visualization analyses using Microsoft Excel, CiteSpace, VOSviewer, and the R package "bibliometrix." Results The final analysis included 1646 articles with an average of 35.38 citations per article. Despite some fluctuations, the number of articles published per year has steadily increased over the past 31 years, particularly since 2018. A total of 9412 authors from 2287 institutions in 86 countries have contributed to this field. The USA and China have been the most productive countries, with the Cleveland Clinic in the USA and Charité-Universitätsmedizin Berlin in Germany being the most active institutions. The cooperation between countries/regions and institutions was relatively close. Professor Tang WHW was the most productive author in the field and the journal Shocks published the highest number of articles. "Heart failure," "gut microbiota," "trimethylamine N-oxide," and "inflammation" were the most common keywords, representing the current research hotspots. The keyword burst analysis indicated that "gut microbiota" and "short-chain fatty acids" are the current frontier research topics in this field. Conclusion Research on the gut-heart axis and heart failure is increasing. This bibliometric analysis indicated that the mechanisms associated with the gut-heart axis and heart failure, particularly the gut microbiota, trimethylamine N-oxide, inflammation, and short-chain fatty acids, will become hotspots and emerging trends in research in this field. These findings provide valuable insights into current research and future directions.
Collapse
Affiliation(s)
- Jiahui Ouyang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Lingli Zhao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yewen Song
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Hua Qu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Tianyi Du
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Liu Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhijie Cui
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Zhonghui Jiang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Zhuye Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| |
Collapse
|
12
|
Alkafaas SS, Elsalahaty MI, Ismail DF, Radwan MA, Elkafas SS, Loutfy SA, Elshazli RM, Baazaoui N, Ahmed AE, Hafez W, Diab M, Sakran M, El-Saadony MT, El-Tarabily KA, Kamal HK, Hessien M. The emerging roles of sphingosine 1-phosphate and SphK1 in cancer resistance: a promising therapeutic target. Cancer Cell Int 2024; 24:89. [PMID: 38419070 PMCID: PMC10903003 DOI: 10.1186/s12935-024-03221-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/09/2024] [Indexed: 03/02/2024] Open
Abstract
Cancer chemoresistance is a problematic dilemma that significantly restrains numerous cancer management protocols. It can promote cancer recurrence, spreading of cancer, and finally, mortality. Accordingly, enhancing the responsiveness of cancer cells towards chemotherapies could be a vital approach to overcoming cancer chemoresistance. Tumour cells express a high level of sphingosine kinase-1 (SphK1), which acts as a protooncogenic factor and is responsible for the synthesis of sphingosine-1 phosphate (S1P). S1P is released through a Human ATP-binding cassette (ABC) transporter to interact with other phosphosphingolipids components in the interstitial fluid in the tumor microenvironment (TME), provoking communication, progression, invasion, and tumor metastasis. Also, S1P is associated with several impacts, including anti-apoptotic behavior, metastasis, mesenchymal transition (EMT), angiogenesis, and chemotherapy resistance. Recent reports addressed high levels of S1P in several carcinomas, including ovarian, prostate, colorectal, breast, and HCC. Therefore, targeting the S1P/SphK signaling pathway is an emerging therapeutic approach to efficiently attenuate chemoresistance. In this review, we comprehensively discussed S1P functions, metabolism, transport, and signaling. Also, through a bioinformatic framework, we pointed out the alterations of SphK1 gene expression within different cancers with their impact on patient survival, and we demonstrated the protein-protein network of SphK1, elaborating its sparse roles. Furthermore, we made emphasis on different machineries of cancer resistance and the tight link with S1P. We evaluated all publicly available SphK1 inhibitors and their inhibition activity using molecular docking and how SphK1 inhibitors reduce the production of S1P and might reduce chemoresistance, an approach that might be vital in the course of cancer treatment and prognosis.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mohamed I Elsalahaty
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Doha F Ismail
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mustafa Ali Radwan
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
- Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Nanotechnology Research Center, British University, Cairo, Egypt
| | - Rami M Elshazli
- Biochemistry and Molecular Genetics Unit, Department of Basic Sciences, Faculty of Physical Therapy, Horus University-Egypt, New Damietta, 34517, Egypt
| | - Narjes Baazaoui
- Biology Department, College of Sciences and Arts Muhayil Assir, King Khalid University, Abha 61421, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Wael Hafez
- NMC Royal Hospital, 16th Street, 35233, Khalifa, Abu Dhabi, United Arab Emirates
- Medical Research Division, Department of Internal Medicine, The National Research Centre, Cairo 11511, Egypt
| | - Mohanad Diab
- Burjeel Hospital Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mohamed Sakran
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Hani K Kamal
- Anatomy and Histology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
13
|
Mousa H, Al Saei A, Razali RM, Zughaier SM. Vitamin D status affects proteomic profile of HDL-associated proteins and inflammatory mediators in dyslipidemia. J Nutr Biochem 2024; 123:109472. [PMID: 37863441 DOI: 10.1016/j.jnutbio.2023.109472] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023]
Abstract
Vitamin D deficiency and dyslipidemia have substantial implications for human health globally. Vitamin D is essential for bone metabolism and immune modulation, and its insufficiency is linked to various chronic inflammatory conditions. Dyslipidemia, characterized by low levels of high-density lipoprotein (HDL) and elevated levels of low-density lipoprotein (LDL) and triglycerides, is also prevalent. Previous research has shown a connection between vitamin D deficiency and low HDL, but the precise mechanism by which vitamin D influences HDL production and its anti-inflammatory properties remains unclear. This study aimed to investigate the proteomic profiles of individuals with and without vitamin D deficiency and dyslipidemia, specifically focusing on the effects of vitamin D on HDL production, its anti-inflammatory potential, and the molecular pathways associated with vitamin D deficiency and dyslipidemia, particularly inflammation and cancer pathways. By analyzing the proteomic profiles of 274 participants from the Qatar Biobank database, we identified 1301 proteins. Our findings indicated a decrease in HDL-associated apolipoproteins (ApoM and ApoD) in individuals with both dyslipidemia and vitamin D deficiency. Conversely, participants with these conditions exhibited increased expression of acute-phase proteins (SAA1 and SOD1), which are associated with inflammation. Pathway enrichment analysis revealed heightened inflammatory activity in individuals with vitamin D deficiency and dyslipidemia, with notable enrichments in pathways such as MAPK, JAK-STAT, Ras signaling, cytokine-cytokine receptor interaction, AGE-RAGE, ErbB signaling, and cancer pathways. Overall, cases of vitamin D deficiency showed enrichment in inflammation pathways, while individuals with both vitamin D deficiency and dyslipidemia demonstrated enhanced activation of cancer and inflammation pathways.
Collapse
Affiliation(s)
- Hanaa Mousa
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Aisha Al Saei
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Rozaimi Mohamad Razali
- Department of Biomedical Sciences College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Susu M Zughaier
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
14
|
Denimal D. Antioxidant and Anti-Inflammatory Functions of High-Density Lipoprotein in Type 1 and Type 2 Diabetes. Antioxidants (Basel) 2023; 13:57. [PMID: 38247481 PMCID: PMC10812436 DOI: 10.3390/antiox13010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
(1) Background: high-density lipoproteins (HDLs) exhibit antioxidant and anti-inflammatory properties that play an important role in preventing the development of atherosclerotic lesions and possibly also diabetes. In turn, both type 1 diabetes (T1D) and type 2 diabetes (T2D) are susceptible to having deleterious effects on these HDL functions. The objectives of the present review are to expound upon the antioxidant and anti-inflammatory functions of HDLs in both diabetes in the setting of atherosclerotic cardiovascular diseases and discuss the contributions of these HDL functions to the onset of diabetes. (2) Methods: this narrative review is based on the literature available from the PubMed database. (3) Results: several antioxidant functions of HDLs, such as paraoxonase-1 activity, are compromised in T2D, thereby facilitating the pro-atherogenic effects of oxidized low-density lipoproteins. In addition, HDLs exhibit diminished ability to inhibit pro-inflammatory pathways in the vessels of individuals with T2D. Although the literature is less extensive, recent evidence suggests defective antiatherogenic properties of HDL particles in T1D. Lastly, substantial evidence indicates that HDLs play a role in the onset of diabetes by modulating glucose metabolism. (4) Conclusions and perspectives: impaired HDL antioxidant and anti-inflammatory functions present intriguing targets for mitigating cardiovascular risk in individuals with diabetes. Further investigations are needed to clarify the influence of glycaemic control and nephropathy on HDL functionality in patients with T1D. Furthermore, exploring the effects on HDL functionality of novel antidiabetic drugs used in the management of T2D may provide intriguing insights for future research.
Collapse
Affiliation(s)
- Damien Denimal
- Unit 1231, Center for Translational and Molecular Medicine, University of Burgundy, 21000 Dijon, France;
- Department of Clinical Biochemistry, Dijon Bourgogne University Hospital, 21079 Dijon, France
| |
Collapse
|
15
|
Schoch L, Alcover S, Padró T, Ben-Aicha S, Mendieta G, Badimon L, Vilahur G. Update of HDL in atherosclerotic cardiovascular disease. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2023; 35:297-314. [PMID: 37940388 DOI: 10.1016/j.arteri.2023.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
Epidemiologic evidence supported an inverse association between HDL (high-density lipoprotein) cholesterol (HDL-C) levels and atherosclerotic cardiovascular disease (ASCVD), identifying HDL-C as a major cardiovascular risk factor and postulating diverse HDL vascular- and cardioprotective functions beyond their ability to drive reverse cholesterol transport. However, the failure of several clinical trials aimed at increasing HDL-C in patients with overt cardiovascular disease brought into question whether increasing the cholesterol cargo of HDL was an effective strategy to enhance their protective properties. In parallel, substantial evidence supports that HDLs are complex and heterogeneous particles whose composition is essential for maintaining their protective functions, subsequently strengthening the "HDL quality over quantity" hypothesis. The following state-of-the-art review covers the latest understanding as per the roles of HDL in ASCVD, delves into recent advances in understanding the complexity of HDL particle composition, including proteins, lipids and other HDL-transported components and discusses on the clinical outcomes after the administration of HDL-C raising drugs with particular attention to CETP (cholesteryl ester transfer protein) inhibitors.
Collapse
Affiliation(s)
- Leonie Schoch
- Cardiovascular Program, Institut de Recerca, Hospital de la Santa Creu I Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; Faculty of Medicine, University of Barcelona (UB), 08036 Barcelona, Spain
| | - Sebastián Alcover
- Cardiovascular Program, Institut de Recerca, Hospital de la Santa Creu I Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain
| | - Teresa Padró
- Cardiovascular Program, Institut de Recerca, Hospital de la Santa Creu I Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain
| | | | - Guiomar Mendieta
- Cardiology Unit, Cardiovascular Clinical Institute, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Program, Institut de Recerca, Hospital de la Santa Creu I Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; Cardiovascular Research Chair, UAB, 08025 Barcelona, Spain; CiberCV, Institute of Health Carlos III, Madrid, Spain
| | - Gemma Vilahur
- Cardiovascular Program, Institut de Recerca, Hospital de la Santa Creu I Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; CiberCV, Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
16
|
de Azúa-López ZR, Pezzotti MR, González-Díaz Á, Meilhac O, Ureña J, Amaya-Villar R, Castellano A, Varela LM. HDL anti-inflammatory function is impaired and associated with high SAA1 and low APOA4 levels in aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab 2023; 43:1919-1930. [PMID: 37357772 PMCID: PMC10676137 DOI: 10.1177/0271678x231184806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/07/2023] [Accepted: 06/02/2023] [Indexed: 06/27/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a devastating disease with high morbidity and mortality rates. Within 24 hours after aSAH, monocytes are recruited and enter the subarachnoid space, where they mature into macrophages, increasing the inflammatory response and contributing, along with other factors, to delayed neurological dysfunction and poor outcomes. High-density lipoproteins (HDL) are lipid-protein complexes that exert anti-inflammatory effects but under pathological conditions undergo structural alterations that have been associated with loss of functionality. Plasma HDL were isolated from patients with aSAH and analyzed for their anti-inflammatory activity and protein composition. HDL isolated from patients lost the ability to prevent VCAM-1 expression in endothelial cells (HUVEC) and subsequent adhesion of THP-1 monocytes to the endothelium. Proteomic analysis showed that HDL particles from patients had an altered composition compared to those of healthy subjects. We confirmed by western blot that low levels of apolipoprotein A4 (APOA4) and high of serum amyloid A1 (SAA1) in HDL were associated with the lack of anti-inflammatory function observed in aSAH. Our results indicate that the study of HDL in the pathophysiology of aSAH is needed, and functional HDL supplementation could be considered a novel therapeutic approach to the treatment of the inflammatory response after aSAH.
Collapse
Affiliation(s)
- Zaida Ruiz de Azúa-López
- Instituto de Biomedicina de Sevilla (IBiS)/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Unidad de Cuidados Intensivos, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - M Rosa Pezzotti
- Instituto de Biomedicina de Sevilla (IBiS)/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Ángela González-Díaz
- Instituto de Biomedicina de Sevilla (IBiS)/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Saint-Pierre de La Réunion, France
- CHU de La Réunion, Saint-Pierre de la Réunion, France
| | - Juan Ureña
- Instituto de Biomedicina de Sevilla (IBiS)/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Rosario Amaya-Villar
- Instituto de Biomedicina de Sevilla (IBiS)/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Unidad de Cuidados Intensivos, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Antonio Castellano
- Instituto de Biomedicina de Sevilla (IBiS)/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Lourdes M Varela
- Instituto de Biomedicina de Sevilla (IBiS)/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
17
|
Kim D, Tian W, Wu TTH, Xiang M, Vinh R, Chang JL, Gu S, Lee S, Zhu Y, Guan T, Schneider EC, Bao E, Dixon JB, Kao P, Pan J, Rockson SG, Jiang X, Nicolls MR. Abnormal Lymphatic Sphingosine-1-Phosphate Signaling Aggravates Lymphatic Dysfunction and Tissue Inflammation. Circulation 2023; 148:1231-1249. [PMID: 37609838 PMCID: PMC10592179 DOI: 10.1161/circulationaha.123.064181] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Lymphedema is a global health problem with no effective drug treatment. Enhanced T-cell immunity and abnormal lymphatic endothelial cell (LEC) signaling are promising therapeutic targets for this condition. Sphingosine-1-phosphate (S1P) mediates a key signaling pathway required for normal LEC function, and altered S1P signaling in LECs could lead to lymphatic disease and pathogenic T-cell activation. Characterizing this biology is relevant for developing much needed therapies. METHODS Human and mouse lymphedema was studied. Lymphedema was induced in mice by surgically ligating the tail lymphatics. Lymphedematous dermal tissue was assessed for S1P signaling. To verify the role of altered S1P signaling effects in lymphatic cells, LEC-specific S1pr1-deficient (S1pr1LECKO) mice were generated. Disease progression was quantified by tail-volumetric and -histopathologic measurements over time. LECs from mice and humans, with S1P signaling inhibition, were then cocultured with CD4 T cells, followed by an analysis of CD4 T-cell activation and pathway signaling. Last, animals were treated with a monoclonal antibody specific to P-selectin to assess its efficacy in reducing lymphedema and T-cell activation. RESULTS Human and experimental lymphedema tissues exhibited decreased LEC S1P signaling through S1P receptor 1 (S1PR1). LEC S1pr1 loss-of-function exacerbated lymphatic vascular insufficiency, tail swelling, and increased CD4 T-cell infiltration in mouse lymphedema. LECs, isolated from S1pr1LECKO mice and cocultured with CD4 T cells, resulted in augmented lymphocyte differentiation. Inhibiting S1PR1 signaling in human dermal LECs promoted T-helper type 1 and 2 (Th1 and Th2) cell differentiation through direct cell contact with lymphocytes. Human dermal LECs with dampened S1P signaling exhibited enhanced P-selectin, an important cell adhesion molecule expressed on activated vascular cells. In vitro, P-selectin blockade reduced the activation and differentiation of Th cells cocultured with shS1PR1-treated human dermal LECs. P-selectin-directed antibody treatment improved tail swelling and reduced Th1/Th2 immune responses in mouse lymphedema. CONCLUSIONS This study suggests that reduction of the LEC S1P signaling aggravates lymphedema by enhancing LEC adhesion and amplifying pathogenic CD4 T-cell responses. P-selectin inhibitors are suggested as a possible treatment for this pervasive condition.
Collapse
Affiliation(s)
- Dongeon Kim
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Wen Tian
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Timothy Ting-Hsuan Wu
- Stanford University School of Medicine, Stanford, California, USA
- Department of Biochemistry, Stanford Bio-X, Stanford, California, USA
| | - Menglan Xiang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Ryan Vinh
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Jason Lon Chang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Shenbiao Gu
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Seunghee Lee
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Yu Zhu
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Torrey Guan
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Emilie Claire Schneider
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Evan Bao
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Peter Kao
- Stanford University School of Medicine, Stanford, California, USA
| | - Junliang Pan
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Xinguo Jiang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Mark Robert Nicolls
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
18
|
Zhao Y, Shao C, Zhou H, Yu L, Bao Y, Mao Q, Yang J, Wan H. Salvianolic acid B inhibits atherosclerosis and TNF-α-induced inflammation by regulating NF-κB/NLRP3 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:155002. [PMID: 37572566 DOI: 10.1016/j.phymed.2023.155002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/05/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Inflammation is critical in the pathophysiology of atherosclerosis (AS). The aim of this study was to investigate the protective effect of salvianolic acid B (Sal B) on AS and to explore the molecular mechanism of tumor necrosis factor-α (TNF-α)-induced damage in human umbilical vein endothelial cells (HUVECs). METHODS In vivo studies, LDLR-/- mice were fed a high-fat diet (HFD) for 14 weeks to establish an AS model to evaluate the protective effect of Sal B on the development of AS. Total cholesterol (TC), triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C) levels were determined in the blood serum. En face and cross section lipid deposits were measured and quantified with Oil Red O staining. Hematoxylin and eosin (H&E) and Masson's trichrome staining were used to quantify atherosclerotic plaque size and collagen fiber content in aortic root sections. Reactive oxygen species (ROS) were detected in aortic root using dihydroethylenediamine (DHE) staining. Apoptosis rate was determined by TdT-mediated dUTP nick end labeling (TUNEL) staining. Immunofluorescence (IF) staining was used to detect the expression of the nuclear factor kappa-B (NF-κB) p65 and NOD-like receptor family pyrin domain containing 3 (NLRP3). To further investigate the protective effect of Sal B, we used TNF-α induced HUVECs inflammation model. We examined cell viability, lactate dehydrogenase (LDH) content, and ROS production. The transcription of NF-κB was evaluated by immunofluorescence. The mRNA levels of NLRP3, caspase-1, and IL-1β were detected by RT-PCR. Pyroptosis related proteins were detected by Western blot. RESULTS The change in the weight of the mice over time was an indication that Sal B had an effect on weight gain. IN VIVO STUDIES we were able to show that the serum lipids TC, TG and LDL-C were increased in the model group and that the treatment with Sal B reduced the levels of serum lipids. Histological staining showed that the LDLR-/- mice had a large amount of foam cell deposition accompanied by inflammatory cell infiltration and the formation of atherosclerotic plaques in theMOD group. The pathological abnormalities were significantly improved by Sal B treatment. ROS release and apoptosis were significantly increased after HFD in aortic root, which was attenuated by Sal B. IF results showed that the expression of NF-κB p65 and NLRP3 was significantly increased in the MOD group and significantly decreased in the Sal B group, suggesting that Sal B may act through the NF-κB/NLRP3 pathway. And in vitro studies: inflammatory damage of HUEVCs was induced by TNF-α, and Sal B treatmented significantly increased cell viability and reduced LDH release. It was also found that Sal B inhibited ROS level increase after TNF-α-induced HUEVCs. Activation of NF-κB p65 by TNF-α stimulation, NF-κB p65 is transferred to the nucleus. Sal B treatment could reverse this effect. RT-PCR and Western blot showed that Sal B affected NF-κB transcription and NLRP3 inflammasome activation and could significantly inhibit TNF-α-induced NLRP3 inflammasome activation. These results suggest that Sal B may participate in antiatherosclerotic and inflammatory responses through the NF-κB/NLRP3 pathway. CONCLUSIONS This study shows that Sal B ameliorates the development of AS lesions in HFD-induced LDLR-/- mice. Furthermore, under TNF-α conditions, Sal B reduced ROS release and reversed nuclear translocation of NF-κB, and inhibited atherosclerosis and inflammation by modulating the NF-κB/NLRP3 pathway.
Collapse
Affiliation(s)
- Yali Zhao
- College of Life Science Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chongyu Shao
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou 310053, China
| | - Huifen Zhou
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou 310053, China
| | - Li Yu
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou 310053, China
| | - Yida Bao
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou 310053, China
| | - Qianping Mao
- College of Life Science Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiehong Yang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou 310053, China.
| | - Haitong Wan
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou 310053, China.
| |
Collapse
|
19
|
Muendlein A, Heinzle C, Brandtner EM, Leiherer A, Geiger K, Gaenger S, Drexel H, Dechow T, Decker T. Plasma apolipoprotein M predicts overall survival in metastatic breast cancer patients. Breast Cancer Res Treat 2023; 201:571-576. [PMID: 37490173 DOI: 10.1007/s10549-023-07045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023]
Abstract
PURPOSE Apolipoprotein M (APOM) is a plasma apolipoprotein closely involved with lipid metabolism and inflammation. In vitro studies suggest that APOM may also have a tumor-suppressive role in breast cancer. In the present study, we aimed to evaluate the impact of plasma APOM levels on the prognosis of breast cancer patients. METHODS We measured APOM levels using an enzyme-linked immunosorbent assay in 75 patients with ER-positive/HER2-negative metastatic breast cancer. The endpoint was overall survival (OS) at 24 months. RESULTS During the 24-month follow-up period, 34.7% of the patients died. Baseline APOM levels were significantly reduced in patients who deceased during follow-up compared to survivors (42.7 ± 14.5 µg/mL versus 52.2 ± 13.8 µg/mL; P = 0.003). Cox regression analysis showed a hazard ratio of 0.30 [95% confidence interval 0.15-0.61]; P < 0.001 per doubling of APOM levels. Correction for age, C-reactive protein, menopausal state, histology of the primary tumor, metastatic site, number of metastases, endocrine resistance, scheduled therapy line, and kind of scheduled therapy indicated that circulating APOM predicted OS independently of these parameters (HRper doubling = 0.23 [0.09-0.56; P = 0.001). CONCLUSIONS Our study suggests that circulating APOM is significantly linked with reduced mortality in metastatic breast cancer patients.
Collapse
Affiliation(s)
- Axel Muendlein
- Vorarlberg Institute for Vascular Investigation and Treatment Laboratory, Stadtstrasse 33, 6850, Dornbirn, Austria.
| | - Christine Heinzle
- Vorarlberg Institute for Vascular Investigation and Treatment Laboratory, Stadtstrasse 33, 6850, Dornbirn, Austria
- Medical Central Laboratories, Feldkirch, Austria
| | - Eva Maria Brandtner
- Vorarlberg Institute for Vascular Investigation and Treatment Laboratory, Stadtstrasse 33, 6850, Dornbirn, Austria
| | - Andreas Leiherer
- Vorarlberg Institute for Vascular Investigation and Treatment Laboratory, Stadtstrasse 33, 6850, Dornbirn, Austria
- Medical Central Laboratories, Feldkirch, Austria
| | - Kathrin Geiger
- Vorarlberg Institute for Vascular Investigation and Treatment Laboratory, Stadtstrasse 33, 6850, Dornbirn, Austria
- Medical Central Laboratories, Feldkirch, Austria
| | - Stella Gaenger
- Vorarlberg Institute for Vascular Investigation and Treatment Laboratory, Stadtstrasse 33, 6850, Dornbirn, Austria
| | - Heinz Drexel
- Vorarlberg Institute for Vascular Investigation and Treatment Laboratory, Stadtstrasse 33, 6850, Dornbirn, Austria
- Drexel University College of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
20
|
Karam M, Auclair C. Sphingosine-1-Phosphate as Lung and Cardiac Vasculature Protecting Agent in SARS-CoV-2 Infection. Int J Mol Sci 2023; 24:13088. [PMID: 37685894 PMCID: PMC10488186 DOI: 10.3390/ijms241713088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may cause severe respiratory illness with high mortality. SARS-CoV-2 infection results in a massive inflammatory cell infiltration into the infected lungs accompanied by excessive pro-inflammatory cytokine production. The lung histology of dead patients shows that some areas are severely emphysematous, with enormously dilated blood vessels and micro-thromboses. The inappropriate inflammatory response damaging the pulmonary interstitial arteriolar walls suggests that the respiratory distress may come in a large part from lung vasculature injuries. It has been recently observed that low plasmatic sphingosine-1-phosphate (S1P) is a marker of a worse prognosis of clinical outcome in severe coronavirus disease (COVID) patients. S1P is an angiogenic molecule displaying anti-inflammatory and anti-apoptotic properties, that promote intercellular interactions between endothelial cells and pericytes resulting in the stabilization of arteries and capillaries. In this context, it can be hypothesized that the benefit of a normal S1P level is due to its protective effect on lung vasculature functionality. This paper provides evidence supporting this concept, opening the way for the design of a pharmacological approach involving the use of an S1P lyase inhibitor to increase the S1P level that in turn will rescue the lung vasculature functionality.
Collapse
Affiliation(s)
| | - Christian Auclair
- AC BioTech, Villejuif Biopark, Cancer Campus, 1 mail du Professeur Georges Mathé, 94800 Villejuif, France;
| |
Collapse
|
21
|
Ya'ar Bar S, Pintel N, Abd Alghne H, Khattib H, Avni D. The therapeutic potential of sphingolipids for cardiovascular diseases. Front Cardiovasc Med 2023; 10:1224743. [PMID: 37608809 PMCID: PMC10440740 DOI: 10.3389/fcvm.2023.1224743] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/17/2023] [Indexed: 08/24/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide and Inflammation plays a critical role in the development of CVD. Despite considerable progress in understanding the underlying mechanisms and various treatment options available, significant gaps in therapy necessitate the identification of novel therapeutic targets. Sphingolipids are a family of lipids that have gained attention in recent years as important players in CVDs and the inflammatory processes that underlie their development. As preclinical studies have shown that targeting sphingolipids can modulate inflammation and ameliorate CVDs, targeting sphingolipids has emerged as a promising therapeutic strategy. This review discusses the current understanding of sphingolipids' involvement in inflammation and cardiovascular diseases, the existing therapeutic approaches and gaps in therapy, and explores the potential of sphingolipids-based drugs as a future avenue for CVD treatment.
Collapse
Affiliation(s)
- Sapir Ya'ar Bar
- Department of Natural Compound, Nutrition, and Health, MIGAL, Kiryat Shmona, Israel
| | - Noam Pintel
- Department of Natural Compound, Nutrition, and Health, MIGAL, Kiryat Shmona, Israel
| | - Hesen Abd Alghne
- Department of Natural Compound, Nutrition, and Health, MIGAL, Kiryat Shmona, Israel
- Tel-Hai College Department of Biotechnology, Kiryat Shmona, Israel
| | - Hamdan Khattib
- Department of Natural Compound, Nutrition, and Health, MIGAL, Kiryat Shmona, Israel
- Department of Gastroenterology and Hepatology, Tel Aviv University Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Dorit Avni
- Department of Natural Compound, Nutrition, and Health, MIGAL, Kiryat Shmona, Israel
- Tel-Hai College Department of Biotechnology, Kiryat Shmona, Israel
| |
Collapse
|
22
|
Mousa H, Thanassoulas A, Zughaier SM. ApoM binds endotoxin contributing to neutralization and clearance by High Density Lipoprotein. Biochem Biophys Rep 2023; 34:101445. [PMID: 36915826 PMCID: PMC10006442 DOI: 10.1016/j.bbrep.2023.101445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Background HDL possesses anti-inflammatory properties, however, the exact mechanism is not fully understood. Endotoxin is a potent inducers of TLR4 signaling, leading to inflammatory mediators' release. It has been estimated that TLR4 recognizes about 5% of circulating lipopolysaccharide whereas 95% is cleared by plasma lipoproteins, mainly HDL. ApoM is required for HDL biogenesis and 95% of plasma ApoM is found associated with HDL, both are significantly reduced during sepsis. Aim The aim of this study is to investigate whether ApoM binds endotoxin and contributes to anti-inflammatory activity of HDL. Methods Isothermal Titration Calorimetry (ITC) was used to determine the binding of ultrapure E. coli LPS to the recombinant ApoM protein. Purified human HDL and recombinant ApoM was used to investigate LPS neutralization using human and murine macrophages and computational simulation was performed. Result ApoM shows high affinity for E. coli LPS, forming 1:1 complexes with Kd values below 1 μΜ, as revealed by ITC. The binding process is strongly exothermic and enthalpy-driven (ΔrH = -36.5 kJ/mol), implying the formation of an extensive network of interactions between ApoM and LPS in the bound state. Computational simulation also predicted high-affinity binding between ApoM and E. coli LPS and the best scoring models showed E. coli LPS docking near the calyx of ApoM without blocking the pocket. The biological significance of this interaction was further demonstrated in macrophages where purified HDL neutralized an E. coli LPS effect and significantly reduced TNFα release from human THP-1 cells. Conclusion ApoM binds LPS to facilitate endotoxin neutralization and clearance by HDL.
Collapse
Affiliation(s)
- Hanaa Mousa
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Angelos Thanassoulas
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Susu M Zughaier
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, P.O. Box 2713, Qatar
| |
Collapse
|
23
|
Kim D, Tian W, Wu TTH, Xiang M, Vinh R, Chang J, Gu S, Lee S, Zhu Y, Guan T, Schneider EC, Bao E, Dixon JB, Kao P, Pan J, Rockson SG, Jiang X, Nicolls MR. Abnormal lymphatic S1P signaling aggravates lymphatic dysfunction and tissue inflammation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.08.23291175. [PMID: 37398237 PMCID: PMC10312855 DOI: 10.1101/2023.06.08.23291175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
BACKGROUND Lymphedema is a global health problem with no effective drug treatment. Enhanced T cell immunity and abnormal lymphatic endothelial cell (LEC) signaling are promising therapeutic targets for this condition. Sphingosine-1-phosphate (S1P) mediates a key signaling pathway required for normal LEC function, and altered S1P signaling in LECs could lead to lymphatic disease and pathogenic T cell activation. Characterizing this biology is relevant for developing much-needed therapies. METHODS Human and mouse lymphedema was studied. Lymphedema was induced in mice by surgically ligating the tail lymphatics. Lymphedematous dermal tissue was assessed for S1P signaling. To verify the role of altered S1P signaling effects in lymphatic cells, LEC-specific S1pr1 -deficient ( S1pr1 LECKO ) mice were generated. Disease progression was quantified by tail-volumetric and -histopathological measurements over time. LECs from mice and humans, with S1P signaling inhibition, were then co-cultured with CD4 T cells, followed by an analysis of CD4 T cell activation and pathway signaling. Finally, animals were treated with a monoclonal antibody specific to P-selectin to assess its efficacy in reducing lymphedema and T cell activation. RESULTS Human and experimental lymphedema tissues exhibited decreased LEC S1P signaling through S1PR1. LEC S1pr1 loss-of-function exacerbated lymphatic vascular insufficiency, tail swelling, and increased CD4 T cell infiltration in mouse lymphedema. LECs, isolated from S1pr1 LECKO mice and co-cultured with CD4 T cells, resulted in augmented lymphocyte differentiation. Inhibiting S1PR1 signaling in human dermal LECs (HDLECs) promoted T helper type 1 and 2 (Th1 and Th2) cell differentiation through direct cell contact with lymphocytes. HDLECs with dampened S1P signaling exhibited enhanced P-selectin, an important cell adhesion molecule expressed on activated vascular cells. In vitro , P-selectin blockade reduced the activation and differentiation of Th cells co-cultured with sh S1PR1 -treated HDLECs. P-selectin-directed antibody treatment improved tail swelling and reduced Th1/Th2 immune responses in mouse lymphedema. CONCLUSION This study suggests that reduction of the LEC S1P signaling aggravates lymphedema by enhancing LEC adhesion and amplifying pathogenic CD4 T cell responses. P-selectin inhibitors are suggested as a possible treatment for this pervasive condition. Clinical Perspective What is New?: Lymphatic-specific S1pr1 deletion exacerbates lymphatic vessel malfunction and Th1/Th2 immune responses during lymphedema pathogenesis. S1pr1 -deficient LECs directly induce Th1/Th2 cell differentiation and decrease anti-inflammatory Treg populations. Peripheral dermal LECs affect CD4 T cell immune responses through direct cell contact.LEC P-selectin, regulated by S1PR1 signaling, affects CD4 T cell activation and differentiation.P-selectin blockade improves lymphedema tail swelling and decreases Th1/Th2 population in the diseased skin.What Are the Clinical Implications?: S1P/S1PR1 signaling in LECs regulates inflammation in lymphedema tissue.S1PR1 expression levels on LECs may be a useful biomarker for assessing predisposition to lymphatic disease, such as at-risk women undergoing mastectomyP-selectin Inhibitors may be effective for certain forms of lymphedema.
Collapse
Affiliation(s)
- Dongeon Kim
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Wen Tian
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Timothy Ting-Hsuan Wu
- Stanford University School of Medicine, Stanford, California, USA
- Department of Biochemistry, Stanford Bio-X, Stanford, California, USA
| | - Menglan Xiang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Ryan Vinh
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Jason Chang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Shenbiao Gu
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Seunghee Lee
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Yu Zhu
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Torrey Guan
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Emilie Claire Schneider
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Evan Bao
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Peter Kao
- Stanford University School of Medicine, Stanford, California, USA
| | - Junliang Pan
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Xinguo Jiang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Mark Robert Nicolls
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
24
|
Rani A, Marsche G. A Current Update on the Role of HDL-Based Nanomedicine in Targeting Macrophages in Cardiovascular Disease. Pharmaceutics 2023; 15:1504. [PMID: 37242746 PMCID: PMC10221824 DOI: 10.3390/pharmaceutics15051504] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
High-density lipoproteins (HDL) are complex endogenous nanoparticles involved in important functions such as reverse cholesterol transport and immunomodulatory activities, ensuring metabolic homeostasis and vascular health. The ability of HDL to interact with a plethora of immune cells and structural cells places it in the center of numerous disease pathophysiologies. However, inflammatory dysregulation can lead to pathogenic remodeling and post-translational modification of HDL, rendering HDL dysfunctional or even pro-inflammatory. Monocytes and macrophages play a critical role in mediating vascular inflammation, such as in coronary artery disease (CAD). The fact that HDL nanoparticles have potent anti-inflammatory effects on mononuclear phagocytes has opened new avenues for the development of nanotherapeutics to restore vascular integrity. HDL infusion therapies are being developed to improve the physiological functions of HDL and to quantitatively restore or increase the native HDL pool. The components and design of HDL-based nanoparticles have evolved significantly since their initial introduction with highly anticipated results in an ongoing phase III clinical trial in subjects with acute coronary syndrome. The understanding of mechanisms involved in HDL-based synthetic nanotherapeutics is critical to their design, therapeutic potential and effectiveness. In this review, we provide a current update on HDL-ApoA-I mimetic nanotherapeutics, highlighting the scope of treating vascular diseases by targeting monocytes and macrophages.
Collapse
Affiliation(s)
- Alankrita Rani
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria;
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria;
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
25
|
Yang HH, Wang X, Li S, Liu Y, Akbar R, Fan GC. Lipocalin family proteins and their diverse roles in cardiovascular disease. Pharmacol Ther 2023; 244:108385. [PMID: 36966973 PMCID: PMC10079643 DOI: 10.1016/j.pharmthera.2023.108385] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023]
Abstract
The lipocalin (LCN) family members, a group of small extracellular proteins with 160-180 amino acids in length, can be detected in all kingdoms of life from bacteria to human beings. They are characterized by low similarity of amino acid sequence but highly conserved tertiary structures with an eight-stranded antiparallel β-barrel which forms a cup-shaped ligand binding pocket. In addition to bind small hydrophobic ligands (i.e., fatty acids, odorants, retinoids, and steroids) and transport them to specific cells, lipocalins (LCNs) can interact with specific cell membrane receptors to activate their downstream signaling pathways, and with soluble macromolecules to form the complex. Consequently, LCNs exhibit great functional diversity. Accumulating evidence has demonstrated that LCN family proteins exert multiple layers of function in the regulation of many physiological processes and human diseases (i.e., cancers, immune disorders, metabolic disease, neurological/psychiatric disorders, and cardiovascular disease). In this review, we firstly introduce the structural and sequence properties of LCNs. Next, six LCNs including apolipoprotein D (ApoD), ApoM, lipocalin 2 (LCN2), LCN10, retinol-binding protein 4 (RBP4), and Lipocalin-type prostaglandin D synthase (L-PGDS) which have been characterized so far are highlighted for their diagnostic/prognostic values and their potential effects on coronary artery disease and myocardial infarction injury. The roles of these 6 LCNs in cardiac hypertrophy, heart failure, diabetes-induced cardiac disorder, and septic cardiomyopathy are also summarized. Finally, their therapeutic potential for cardiovascular disease is discussed in each section.
Collapse
Affiliation(s)
- Hui-Hui Yang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xiaohong Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Siru Li
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yueying Liu
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Rubab Akbar
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
26
|
Tan Y, Liu Q, Li Z, Yang S, Cui L. Pyroptosis-triggered pathogenesis: New insights on antiphospholipid syndrome. Front Immunol 2023; 14:1155222. [PMID: 37063905 PMCID: PMC10102483 DOI: 10.3389/fimmu.2023.1155222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
APS (antiphospholipid syndrome) is a systematic autoimmune disease presenting with the high levels of aPLs (antiphospholipid antibodies). These autoantibodies are involved in various clinical manifestations, mainly including arterial or venous thrombosis formation, proinflammatory response, and recurrent pregnant loss. Pyroptosis is a form of lytic programmed cell death, and it aggravates autoimmune diseases progression via activating NOD-like receptors, especially the NLRP3 inflammasome and its downstream inflammatory factors IL (interleukin)-1β and IL-18. However, the underlying mechanisms of pyroptosis-induced APS progression remain to be elucidated. ECs (endothelial cells), monocytes, platelets, trophoblasts, and neutrophils are prominent participants in APS development. Of significance, pyroptosis of APS-related cells leads to the excessive release of proinflammatory and prothrombotic factors, which are the primary contributors to APOs (adverse pregnancy outcomes), thrombosis formation, and autoimmune dysfunction in APS. Furthermore, pyroptosis-associated medicines have made encouraging advancements in attenuating inflammation and thrombosis. Given the potential of pyroptosis in regulating APS development, this review would systematically expound the molecular mechanisms of pyroptosis, and elaborate the role of pyroptosis-mediated cellular effects in APS progression. Lastly, the prospective therapeutic approaches for APS would be proposed based on the regulation of pyroptosis.
Collapse
Affiliation(s)
- Yuan Tan
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Qi Liu
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Zhongxin Li
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Shuo Yang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, China
- *Correspondence: Liyan Cui,
| |
Collapse
|
27
|
HDL-Associated Proteins in Subjects with Polycystic Ovary Syndrome: A Proteomic Study. Cells 2023; 12:cells12060855. [PMID: 36980195 PMCID: PMC10047209 DOI: 10.3390/cells12060855] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Introduction. Serum lipoproteins, with the exception of high-density lipoprotein cholesterol (HDL-C), are increased in polycystic ovary syndrome (PCOS) and their levels may reflect the associated obesity and insulin resistance, but the nature of this association is not fully explained. Therefore, proteomic analysis of key proteins in lipoprotein metabolism was performed. Methods. In this cohort study, plasma was collected from 234 women (137 with PCOS and 97 controls without PCOS). Somalogic proteomic analysis was undertaken for the following 19 proteins involved in lipoprotein, and particularly HDL, metabolism: alpha-1-antichymotrypsin; alpha-1-antitrypsin; apolipoproteins A-1, B, D, E, E2, E3, E4, L1, and M; clusterin; complement C3; hemopexin; heparin cofactor II; kininogen-1; serum amyloid A-1; amyloid beta A-4; and paraoxonase-1. Results. The levels of apolipoprotein E were higher in PCOS (p = 0.012). However, the other isoforms of ApoE, ApoE2, E3, and E4, did not differ when compared with controls. ApoM was lower in PCOS (p = 0.000002). Complement C3 was higher in PCOS (p = 0.037), as was heparin cofactor II (HCFII) (p = 0.0004). The levels of the other proteins associated with lipoprotein metabolism did not differ between PCOS and controls. Conclusions. These data contribute to the concern of the deleterious dyslipidemia found in PCOS, with the novel combination reported here of higher levels of ApoE, C3 and HCFII together with lower ApoM. The dysregulation of these proteins could circumvent the protective effect of HDL-C and contribute to a more atherogenic profile that may increase cardiovascular risk.
Collapse
|
28
|
Kurano M, Tsukamoto K, Shimizu T, Hara M, Yatomi Y. Apolipoprotein M/sphingosine 1-phosphate protects against diabetic nephropathy. Transl Res 2023:S1931-5244(23)00024-5. [PMID: 36805561 DOI: 10.1016/j.trsl.2023.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023]
Abstract
Diabetic nephropathy remains a common cause of end-stage renal failure and its associated mortality around the world. Sphingosine 1-phosphate (S1P) is a multifunctional lipid mediator and binds to HDL via apolipoprotein M (ApoM). Since HDL has been reported to be epidemiologically associated with kidney disease, we attempted to investigate the involvement of the ApoM/S1P axis in the pathogenesis/progression of diabetic nephropathy. In type 2 diabetic patients, the serum ApoM levels were inversely correlated with the clinical stage of diabetic nephropathy. The decline in the eGFR over a 5-year observation period proceeded more rapidly in subjects with lower serum ApoM levels. In a mouse model of streptozotocin-induced diabetes, deletion of ApoM deteriorated the phenotypes of diabetic nephropathy: the urinary albumin and plasma creatinine levels increased, the kidneys enlarged, and renal fibrosis and thickening of the basement membrane progressed. On the other hand, overexpression of ApoM ameliorated these phenotypes. These protective effects of ApoM were partially inhibited by treatment with VPC23019, an antagonist of S1P1 and S1P3, but not by treatment with JTE013, an antagonist of S1P2. ApoM/S1P axis attenuated activation of the Smad3 pathway, while augmented eNOS phosphorylation through the S1P1 pathway. Moreover, ApoM/S1P increased the SIRT1 protein levels and enhanced mitochondrial functions by increasing the S1P content of the cell membrane, which might cause selective activation of S1P1. ApoM might be a useful biomarker for predicting the progression of diabetic nephropathy, and the ApoM/S1P-S1P1 axis might serve as a novel therapeutic target for preventing the development/progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory Medicine and 5Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Kazuhisa Tsukamoto
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Tomo Shimizu
- Tsukuba Research Institute, Research & Development Division, Sekisui Medical Co., Ltd., Ibaraki, Japan
| | - Masumi Hara
- Department of Internal Medicine, Mizonokuchi Hospital, Teikyo University School of Medicine, Kanagawa, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine and 5Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Denimal D, Monier S, Bouillet B, Vergès B, Duvillard L. High-Density Lipoprotein Alterations in Type 2 Diabetes and Obesity. Metabolites 2023; 13:metabo13020253. [PMID: 36837872 PMCID: PMC9967905 DOI: 10.3390/metabo13020253] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Alterations affecting high-density lipoproteins (HDLs) are one of the various abnormalities observed in dyslipidemia in type 2 diabetes mellitus (T2DM) and obesity. Kinetic studies have demonstrated that the catabolism of HDL particles is accelerated. Both the size and the lipidome and proteome of HDL particles are significantly modified, which likely contributes to some of the functional defects of HDLs. Studies on cholesterol efflux capacity have yielded heterogeneous results, ranging from a defect to an improvement. Several studies indicate that HDLs are less able to inhibit the nuclear factor kappa-B (NF-κB) proinflammatory pathway, and subsequently, the adhesion of monocytes on endothelium and their recruitment into the subendothelial space. In addition, the antioxidative function of HDL particles is diminished, thus facilitating the deleterious effects of oxidized low-density lipoproteins on vasculature. Lastly, the HDL-induced activation of endothelial nitric oxide synthase is less effective in T2DM and metabolic syndrome, contributing to several HDL functional defects, such as an impaired capacity to promote vasodilatation and endothelium repair, and difficulty counteracting the production of reactive oxygen species and inflammation.
Collapse
Affiliation(s)
- Damien Denimal
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
- Department of Biochemistry, CHU Dijon Bourgogne, 21000 Dijon, France
- Correspondence:
| | - Serge Monier
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
| | - Benjamin Bouillet
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, 21000 Dijon, France
| | - Bruno Vergès
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, 21000 Dijon, France
| | - Laurence Duvillard
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
- Department of Biochemistry, CHU Dijon Bourgogne, 21000 Dijon, France
| |
Collapse
|
30
|
Apolipoprotein D modulates lipid mediators and osteopontin in an anti-inflammatory direction. Inflamm Res 2023; 72:263-280. [PMID: 36536251 DOI: 10.1007/s00011-022-01679-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND HDL has been proposed to possess anti-inflammatory properties; however, the detail mechanisms have not been fully elucidated. METHODS We investigated the roles of Apolipoprotein D (ApoD) in the pathogenesis of inflammation in the mouse model of diet-induced obesity and that of lipopolysaccharide-induced sepsis and the in vitro experiments. Furthermore, we analyzed serum ApoD levels in human subjects. RESULTS The overexpression of human ApoD decreased the plasma IL-6 and TNF-a levels in both mice models. Lipidomics analyses demonstrated association of ApoD with increase of arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, as well as of their metabolites, and of the anti-inflammatory molecule sphingosine 1-phosphate, and decrease of proinflammatory lysophosphatidic acids and lysophosphatidylinositol. ApoD-containing lipoproteins might directly bind eicosapentaenoic acid and docosahexaenoic acid. The modulations of the lysophosphatidic acid and sphingosine 1-phosphate levels resulted from the suppression of autotaxin expression and elevation of apolipoprotein M (ApoM), respectively. Moreover, ApoD negatively regulated osteopontin, a proinflammatory adipokine. The activation of PPARg by ApoD might suppress autotaxin and osteopontin. Serum ApoD levels were negatively correlated with the serum osteopontin and autotaxin levels and, positively with serum ApoM levels. CONCLUSION ApoD is an anti-inflammatory apolipoprotein, which modulates lipid mediators and osteopontin in an anti-inflammatory direction.
Collapse
|
31
|
Levesque MV, Hla T. Signal Transduction and Gene Regulation in the Endothelium. Cold Spring Harb Perspect Med 2023; 13:cshperspect.a041153. [PMID: 35667710 PMCID: PMC9722983 DOI: 10.1101/cshperspect.a041153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Extracellular signals act on G-protein-coupled receptors (GPCRs) to regulate homeostasis and adapt to stress. This involves rapid intracellular post-translational responses and long-lasting gene-expression changes that ultimately determine cellular phenotype and fate changes. The lipid mediator sphingosine 1-phosphate (S1P) and its receptors (S1PRs) are examples of well-studied GPCR signaling axis essential for vascular development, homeostasis, and diseases. The biochemical cascades involved in rapid S1P signaling are well understood. However, gene-expression regulation by S1PRs are less understood. In this review, we focus our attention to how S1PRs regulate nuclear chromatin changes and gene transcription to modulate vascular and lymphatic endothelial phenotypic changes during embryonic development and adult homeostasis. Because S1PR-targeted drugs approved for use in the treatment of autoimmune diseases cause substantial vascular-related adverse events, these findings are critical not only for general understanding of stimulus-evoked gene regulation in the vascular endothelium, but also for therapeutic development of drugs for autoimmune and perhaps vascular diseases.
Collapse
|
32
|
Sphingosine 1-phosphate mediates adiponectin receptor signaling essential for lipid homeostasis and embryogenesis. Nat Commun 2022; 13:7162. [PMID: 36418331 PMCID: PMC9684441 DOI: 10.1038/s41467-022-34931-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
Cells and organisms require proper membrane composition to function and develop. Phospholipids are the major component of membranes and are primarily acquired through the diet. Given great variability in diet composition, cells must be able to deploy mechanisms that correct deviations from optimal membrane composition and properties. Here, using lipidomics and unbiased proteomics, we found that the embryonic lethality in mice lacking the fluidity regulators Adiponectin Receptors 1 and 2 (AdipoR1/2) is associated with aberrant high saturation of the membrane phospholipids. Using mouse embryonic fibroblasts (MEFs) derived from AdipoR1/2-KO embryos, human cell lines and the model organism C. elegans we found that, mechanistically, AdipoR1/2-derived sphingosine 1-phosphate (S1P) signals in parallel through S1PR3-SREBP1 and PPARγ to sustain the expression of the fatty acid desaturase SCD and maintain membrane properties. Thus, our work identifies an evolutionary conserved pathway by which cells and organisms achieve membrane homeostasis and adapt to a variable environment.
Collapse
|
33
|
Liu JD, Gong R, Zhang SY, Zhou ZP, Wu YQ. Beneficial effects of high-density lipoprotein (HDL) on stent biocompatibility and the potential value of HDL infusion therapy following percutaneous coronary intervention. Medicine (Baltimore) 2022; 101:e31724. [PMID: 36397406 PMCID: PMC9666103 DOI: 10.1097/md.0000000000031724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Several epidemiological studies have shown a clear inverse relationship between serum levels of high-density lipoprotein cholesterol (HDL-C) and the risk of atherosclerotic cardiovascular disease (ASCVD), even at low-density lipoprotein cholesterol levels below 70 mg/dL. There is much evidence from basic and clinical studies that higher HDL-C levels are beneficial, whereas lower HDL-C levels are detrimental. Thus, HDL is widely recognized as an essential anti-atherogenic factor that plays a protective role against the development of ASCVD. Percutaneous coronary intervention is an increasingly common treatment choice to improve myocardial perfusion in patients with ASCVD. Although drug-eluting stents have substantially overcome the limitations of conventional bare-metal stents, there are still problems with stent biocompatibility, including delayed re-endothelialization and neoatherosclerosis, which cause stent thrombosis and in-stent restenosis. According to numerous studies, HDL not only protects against the development of atherosclerosis, but also has many anti-inflammatory and vasoprotective properties. Therefore, the use of HDL as a therapeutic target has been met with great interest. Although oral medications have not shown promise, the developed HDL infusions have been tested in clinical trials and have demonstrated viability and reproducibility in increasing the cholesterol efflux capacity and decreasing plasma markers of inflammation. The aim of the present study was to review the effect of HDL on stent biocompatibility in ASCVD patients following implantation and discuss a novel therapeutic direction of HDL infusion therapy that may be a promising candidate as an adjunctive therapy to improve stent biocompatibility following percutaneous coronary intervention.
Collapse
Affiliation(s)
- Jian-Di Liu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ren Gong
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shi-Yuan Zhang
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhi-Peng Zhou
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yan-Qing Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- * Correspondence: Yan-Qing Wu, Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Minde Road No. 1, Nanchang, Jiangxi 330006, China (e-mail: )
| |
Collapse
|
34
|
Association of apolipoprotein M and sphingosine-1-phosphate with brown adipose tissue after cold exposure in humans. Sci Rep 2022; 12:18753. [PMID: 36335116 PMCID: PMC9637161 DOI: 10.1038/s41598-022-21938-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 10/06/2022] [Indexed: 11/07/2022] Open
Abstract
The HDL-associated apolipoprotein M (apoM) and its ligand sphingosine-1-phosphate (S1P) may control energy metabolism. ApoM deficiency in mice is associated with increased vascular permeability, brown adipose tissue (BAT) mass and activity, and protection against obesity. In the current study, we explored the connection between plasma apoM/S1P levels and parameters of BAT as measured via 18F-FDG PET/CT after cold exposure in humans. Fixed (n = 15) vs personalized (n = 20) short-term cooling protocols decreased and increased apoM (- 8.4%, P = 0.032 vs 15.7%, P < 0.0005) and S1P (- 41.0%, P < 0.0005 vs 19.1%, P < 0.005) plasma levels, respectively. Long-term cooling (n = 44) did not affect plasma apoM or S1P levels. Plasma apoM and S1P did not correlate significantly to BAT volume and activity in the individual studies. However, short-term studies combined, showed that increased changes in plasma apoM correlated with BAT metabolic activity (β: 0.44, 95% CI [0.06-0.81], P = 0.024) after adjusting for study design but not BAT volume (β: 0.39, 95% CI [- 0.01-0.78], P = 0.054). In conclusion, plasma apoM and S1P levels are altered in response to cold exposure and may be linked to changes in BAT metabolic activity but not BAT volume in humans. This contrasts partly with observations in animals and highlights the need for further studies to understand the biological role of apoM/S1P complex in human adipose tissue and lipid metabolism.
Collapse
|
35
|
Lai Y, Tian Y, You X, Du J, Huang J. Effects of sphingolipid metabolism disorders on endothelial cells. Lipids Health Dis 2022; 21:101. [PMID: 36229882 PMCID: PMC9563846 DOI: 10.1186/s12944-022-01701-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
Many cardiovascular disorders, including atherosclerosis, hypertension, coronary heart disease, diabetes, etc., are characterized by endothelial cell dysfunction. Endothelial cell function is closely related to sphingolipid metabolism, and normal sphingolipid metabolism is critical for maintaining endothelial cell homeostasis. Sphingolipid metabolites or key enzymes in abnormal situation, including sphingosine, ceramide (Cer), sphingosine-1-phosphate (S1P), serine, sphingosine kinase (SPHK), ceramide kinase (Cerk), sphingosine-1-phosphate lyase (S1PL) etc., may have a protective or damaging effect on the function of endothelial cells. This review summarizes the effects of sphingolipid metabolites and key enzymes disordering in sphingolipid metabolism on endothelial cells, offering some insights into further research on the pathogenesis of cardiovascular diseases and corresponding therapeutic targets.
Collapse
Affiliation(s)
- Yali Lai
- School of Traditional Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Tian
- School of Traditional Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xintong You
- School of Traditional Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiangnan Du
- School of Traditional Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jianmei Huang
- School of Traditional Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
36
|
Tian L, Ogretmen B, Chung BY, Yu XZ. Sphingolipid metabolism in T cell responses after allogeneic hematopoietic cell transplantation. Front Immunol 2022; 13:904823. [PMID: 36052066 PMCID: PMC9425084 DOI: 10.3389/fimmu.2022.904823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is an effective immunotherapy against hematopoietic malignancies. The infused donor lymphocytes attack malignant cells and normal tissues, termed a graft-verse-leukemia (GVL) effect and graft-verse-host (GVH) response or disease (GVHD), respectively. Although engineering techniques toward donor graft selection have made HCT more specific and effective, primary tumor relapse and GVHD are still major concerns post allo-HCT. High-dose systemic steroids remain to be the first line of GVHD treatment, which may lead to steroid-refractory GVHD with a dismal outcome. Therefore, identifying novel therapeutic strategies that prevent GVHD while preserving GVL activity is highly warranted. Sphingolipid metabolism and metabolites play pivotal roles in regulating T-cell homeostasis and biological functions. In this review, we summarized the recent research progress in this evolving field of sphingolipids with a focus on alloreactive T-cell responses in the context of allo-HCT. We discussed how sphingolipid metabolism regulates T-cell mediated GVH and GVL responses in allo-HCT and presented the rationale and means to target sphingolipid metabolism for the control of GVHD and leukemia relapse.
Collapse
Affiliation(s)
- Linlu Tian
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Besim Ogretmen
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Brian Y. Chung
- The Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Xue-Zhong Yu
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- The Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
- *Correspondence: Xue-Zhong Yu,
| |
Collapse
|
37
|
Spampinato SF, Sortino MA, Salomone S. Sphingosine-1-phosphate and Sphingosine-1-phosphate receptors in the cardiovascular system: pharmacology and clinical implications. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 94:95-139. [PMID: 35659378 DOI: 10.1016/bs.apha.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a lipid that binds and activates five distinct receptor subtypes, S1P1, S1P2, S1P3, S1P4, S1P5, widely expressed in different cells, tissues and organs. In the cardiovascular system these receptors have been extensively studied, but no drug acting on them has been approved so far for treating cardiovascular diseases. In contrast, a number of S1P receptor agonists are approved as immunomodulators, mainly for multiple sclerosis, because of their action on lymphocyte trafficking. This chapter summarizes the available information on S1P receptors in the cardiovascular system and discusses their potential for treating cardiovascular conditions and/or their role on the clinical pharmacology of drugs so far approved for non-cardiovascular conditions. Basic research has recently produced data useful to understand the molecular pharmacology of S1P and S1P receptors, regarding biased agonism, S1P storage, release and vehiculation and chaperoning by lipoproteins, paracrine actions, intracellular non-receptorial S1P actions. On the other hand, the approval of fingolimod and newer generation S1P receptor ligands as immunomodulators, provides information on a number of clinical observations on the impact of these drugs on cardiovascular system which need to be integrated with preclinical data. S1P receptors are potential targets for prevention and treatment of major cardiovascular conditions, including hypertension, myocardial infarction, heart failure and stroke.
Collapse
Affiliation(s)
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Science, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Science, University of Catania, Catania, Italy.
| |
Collapse
|
38
|
Therond P, Chapman MJ. Sphingosine-1-phosphate: metabolism, transport, atheroprotection and effect of statin treatment. Curr Opin Lipidol 2022; 33:199-207. [PMID: 35695616 DOI: 10.1097/mol.0000000000000825] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To better define the metabolism of sphingosine-1-phosphate (S1P), its transport in plasma and its interactions with S1P receptors on vascular cells, and to evaluate the effect of statin treatment on the subnormal plasma levels of high-density lipoprotein (HDL)-bound S1P characteristic of the atherogenic dyslipidemia of metabolic syndrome (MetS). RECENT FINDINGS Neither clinical intervention trials targeted to raising high-density lipoprotein-cholesterol (HDL-C) levels nor human genome-wide association studies (GWAS) studies have provided evidence to support an atheroprotective role of HDL. Recently however a large monogenic univariable Mendelian randomization on the N396S mutation in the gene encoding endothelial lipase revealed a causal protective effect of elevated HDL-C on coronary artery disease conferred by reduced enzyme activity. Given the complexity of the HDL lipidome and proteome, components of HDL other than cholesterol may in all likelihood contribute to such a protective effect. Among HDL lipids, S1P is a bioactive sphingolipid present in a small proportion of HDL particles (about 5%); indeed, S1P is preferentially enriched in small dense HDL3. As S1P is bound to apolipoprotein (apo) M in HDL, such enrichment is consistent with the elevated apoM concentration in HDL3. When HDL/apoM-bound S1P acts on S1P1 or S1P3 receptors in endothelial cells, potent antiatherogenic and vasculoprotective effects are exerted; those exerted by albumin-bound S1P at these receptors are typically weaker. When HDL/apoM-bound S1P binds to S1P2 receptors, proatherogenic effects may potentially be induced. Subnormal plasma levels of HDL-associated S1P are typical of dyslipidemic individuals at high cardiovascular risk and in patients with coronary heart disease. International Guidelines recommend statin treatment as first-line lipid lowering therapy in these groups. The cardiovascular benefits of statin therapy are derived primarily from reduction in low-density lipoprotein (LDL)-cholesterol, although minor contributions from pleiotropic actions cannot be excluded. Might statin treatment therefore normalize, directly or indirectly, the subnormal levels of S1P in dyslipidemic subjects at high cardiovascular risk? Our unpublished findings in the CAPITAIN study (ClinicalTrials.gov: NCT01595828), involving a cohort of obese, hypertriglyceridemic subjects (n = 12) exhibiting the MetS, showed that pitavastatin calcium (4 mg/day) treatment for 180days was without effect on either total plasma or HDL-associated S1P levels, suggesting that statin-mediated improvement of endothelial function is not due to normalization of HDL-bound S1P. Statins may however induce the expression of S1P1 receptors in endothelial cells, thereby potentiating increase in endothelial nitric oxide synthase response to HDL-bound S1P, with beneficial downstream vasculoprotective effects. SUMMARY Current evidence indicates that S1P in small dense HDL3 containing apoM exerts antiatherogenic effects and that statins exert vasculoprotective effects through activation of endothelial cell S1P1 receptors in response to HDL/apoM-bound S1P.
Collapse
Affiliation(s)
- Patrice Therond
- AP-HP, CHU Bicêtre, Laboratory of Biochemistry, Le Kremlin-Bicêtre Hospital, Le Kremlin-Bicetre
- EA7357, Paris Saclay University, Châte- nay-Malabry
| | - M John Chapman
- Faculty of Medicine, Sorbonne University
- Endocrinology and Cardiovascular Disease Prevention, Pitie-Salpetriere University Hospital
- National Institute for Health and Medical Research (INSERM), Paris, France
| |
Collapse
|
39
|
Hu Y, Dai K. Sphingosine 1-Phosphate Metabolism and Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:67-76. [PMID: 35503175 DOI: 10.1007/978-981-19-0394-6_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a well-defined bioactive lipid molecule derived from membrane sphingolipid metabolism. In the past decades, a series of key enzymes involved in generation of S1P have been identified and characterized in detail, as well as enzymes degrading S1P. S1P requires transporter to cross the plasma membrane and carrier to deliver to its cognate receptors and therefore transduces signaling in autocrine, paracrine, or endocrine fashions. The essential roles in regulation of development, metabolism, inflammation, and many other aspects of life are mainly executed when S1P binds to receptors provoking the downstream signaling cascades in distinct cells. This chapter will review the synthesis, degradation, transportation, and signaling of S1P and try to provide a comprehensive view of the biology of S1P, evoking new enthusiasms and ideas into the field of the fascinating S1P.
Collapse
Affiliation(s)
- Yan Hu
- Department of Psychiatry, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Kezhi Dai
- Department of Psychiatry, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
40
|
Sphingosine 1-phosphate receptor-targeted therapeutics in rheumatic diseases. Nat Rev Rheumatol 2022; 18:335-351. [PMID: 35508810 DOI: 10.1038/s41584-022-00784-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
Abstract
Sphingosine 1-phosphate (S1P), which acts via G protein-coupled S1P receptors (S1PRs), is a bioactive lipid essential for vascular integrity and lymphocyte trafficking. The S1P-S1PR signalling axis is a key component of the inflammatory response in autoimmune rheumatic diseases. Several drugs that target S1PRs have been approved for the treatment of multiple sclerosis and inflammatory bowel disease and are under clinical testing for patients with systemic lupus erythematosus (SLE). Preclinical studies support the hypothesis that targeting the S1P-S1PR axis would be beneficial to patients with SLE, rheumatoid arthritis (RA) and systemic sclerosis (SSc) by reducing pathological inflammation. Whereas most preclinical research and development efforts are focused on reducing lymphocyte trafficking, protective effects of circulating S1P on endothelial S1PRs, which maintain the vascular barrier and enable blood circulation while dampening leukocyte extravasation, have been largely overlooked. In this Review, we take a holistic view of S1P-S1PR signalling in lymphocyte and vascular pathobiology. We focus on the potential of S1PR modulators for the treatment of SLE, RA and SSc and summarize the rationale, pathobiology and evidence from preclinical models and clinical studies. Improved understanding of S1P pathobiology in autoimmune rheumatic diseases and S1PR therapeutic modulation is anticipated to lead to efficacious and safer management of these diseases.
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW To critically appraise new insights into HDL structure and function in type 1 diabetes (T1DM) and type 2 diabetes (T2DM). RECENT FINDINGS In young T1DM patients with early renal impairment and a high inflammatory score, both HDL antioxidative activity and endothelial vasodilatory function were impaired, revealing a critical link between HDL dysfunction, subclinical vascular damage, systemic inflammation and end organ damage. HDL may inhibit development of T2DM by attenuating endoplasmic reticulum (ER) stress and apoptotic loss of pancreatic β-cells, an effect due in part to ABC transporter-mediated efflux of specific oxysterols with downstream activation of the hedghehog signalling receptor, Smoothened. The apoM-sphingosine-1-phosphate complex is critical to HDL antidiabetic activity, encompassing protection against insulin resistance, promotion of insulin secretion, enhanced β-cell survival and inhibition of hepatic glucose production. Structure-function studies of HDL in hyperglycemic, dyslipidemic T2DM patients revealed both gain and loss of lipidomic and proteomic components. Such changes attenuated both the optimal protective effects of HDL on mitochondrial function and its capacity to inhibit endothelial cell apoptosis. Distinct structural components associated with individual HDL functions. SUMMARY Extensive evidence indicates that both the proteome and lipidome of HDL are altered in T1DM and T2DM, with impairment of multiple functions.
Collapse
Affiliation(s)
- M. John Chapman
- Faculty of Medicine, Sorbonne University
- Endocrinology and Cardiovascular Disease Prevention, Pitie-Salpetriere University Hospital
- National Institute for Health and Medical Research (INSERM), Paris, France
| |
Collapse
|
42
|
Zou G, Zhu Q, Ren B, Guo Q, Wu Y, He J, Wu Y, Luo Z. HDL-Associated Lipoproteins: Potential Prognostic Biomarkers for Gram-Negative Sepsis. J Inflamm Res 2022; 15:1117-1131. [PMID: 35210815 PMCID: PMC8860992 DOI: 10.2147/jir.s350737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/28/2022] [Indexed: 11/29/2022] Open
Abstract
Purpose To determine the levels of serum HDL-associated apolipoproteins (apoM and apoC) and HDL-binding receptor (scavenger receptor BI, SR-BI) in patients with gram-negative bacteria sepsis (G-sepsis) and to evaluate the value of lipoproteins in the diagnosis, severity and prognosis of G-sepsis. Patients and Methods A total of 128 patients with sepsis, 40 patients with system inflammatory reaction syndrome (SIRS) and 40 healthy subjects were enrolled in the Second People’s Hospital of Hunan Province from September 2019 to September 2020. The levels and the correlation of lipoproteins were detected and dynamically monitored by enzyme-linked adsorption method, ROC curve for the diagnostic, severity and prognostic value of lipoproteins in G-sepsis. Results The levels of serum HDL-associated lipoproteins in patients with G-sepsis were significantly decreased (P < 0.05), and the ROC curve showed that HDL-C, SR-BI, apoM and apoC had cut-off values of 0.915 mmol/L, 122.100 pg/mL, 102.400 ug/mL and 17.55 mg/mL, respectively, for the diagnosis of G-sepsis, with the sensitivity was 85.56%, 97.78%, 93.33% and 73.03%, and the specificity was 95.0%, 82.50%, 61.54% and 82.50%, respectively. There was a correlation between HDL-associated apolipoproteins. Changes in serum HDL-associated lipoproteins were more obvious in shock group than classic inflammation indicators, such as PCT, IL-6 and CRP. They showed a trend change on day 3, with the levels of SR-BI and apoC changing 2–3 times, and the sensitivity of HDL-C, SR-BI, apoM and apoC for the diagnosis of G-septic shock were 32.43%, 72.97%, 65.75%, and 43.24%, and specificity of 94.34%, 81.13%, 83.07%, and 86.79%, respectively. The AUC, sensitivity and specificity of apoM combined with SR-BI were improved. Conclusion HDL-associated lipoproteins were correlated with bacterial-infected types, and serum levels of HDL-associated lipoproteins can be used as potential biomarkers for early diagnosis and progress of G-sepsis. ApoM combined with SR-BI could improve the sensitivity and specificity of prognosis assessment.
Collapse
Affiliation(s)
- Guoying Zou
- Department of Clinical Laboratory, The Second People’s Hospital of Hunan Province, Changsha, Hunan, 410007, People’s Republic of China
| | - Qing Zhu
- Department of Clinical Laboratory, The Second People’s Hospital of Hunan Province, Changsha, Hunan, 410007, People’s Republic of China
| | - Biqiong Ren
- Department of Clinical Laboratory, The Second People’s Hospital of Hunan Province, Changsha, Hunan, 410007, People’s Republic of China
| | - Qi Guo
- Department of Clinical Laboratory, The Second People’s Hospital of Hunan Province, Changsha, Hunan, 410007, People’s Republic of China
| | - Yuanyuan Wu
- Department of Clinical Laboratory, The Second People’s Hospital of Hunan Province, Changsha, Hunan, 410007, People’s Republic of China
| | - Junyu He
- Department of Clinical Laboratory, The Second People’s Hospital of Hunan Province, Changsha, Hunan, 410007, People’s Republic of China
| | - Ying Wu
- Department of Clinical Laboratory, The Second People’s Hospital of Hunan Province, Changsha, Hunan, 410007, People’s Republic of China
| | - Zhihong Luo
- Office of the Party Committee, The Second People’s Hospital of Hunan Province, Changsha, Hunan, 410007, People’s Republic of China
- Correspondence: Zhihong Luo, Office of the Party Committee, The Second People’s Hospital of Hunan Province, Furong Middle Road 427, Yuhua District, Changsha, Hunan, 410007, People’s Republic of China, Tel +86 19848029533, Email
| |
Collapse
|
43
|
Izquierdo MC, Shanmugarajah N, Lee SX, Kraakman MJ, Westerterp M, Kitamoto T, Harris M, Cook JR, Gusarova GA, Zhong K, Marbuary E, O-Sullivan I, Rasmus NF, Camastra S, Unterman TG, Ferrannini E, Hurwitz BE, Haeusler RA. Hepatic FoxOs link insulin signaling with plasma lipoprotein metabolism through an apolipoprotein M/sphingosine-1-phosphate pathway. J Clin Invest 2022; 132:146219. [PMID: 35104242 PMCID: PMC8970673 DOI: 10.1172/jci146219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple beneficial cardiovascular effects of HDL depend on sphingosine-1-phosphate (S1P). S1P associates with HDL by binding to apolipoprotein M (ApoM). Insulin resistance is a major driver of dyslipidemia and cardiovascular risk. However, the mechanisms linking alterations in insulin signaling with plasma lipoprotein metabolism are incompletely understood. The insulin-repressible FoxO transcription factors mediate key effects of hepatic insulin action on glucose and lipoprotein metabolism. This work tested whether hepatic insulin signaling regulates HDL-S1P and aimed to identify the underlying molecular mechanisms. We report that insulin-resistant, nondiabetic individuals had decreased HDL-S1P levels, but no change in total plasma S1P. This also occurred in insulin-resistant db/db mice, which had low ApoM and a specific reduction of S1P in the HDL fraction, with no change in total plasma S1P levels. Using mice lacking hepatic FoxOs (L-FoxO1,3,4), we found that hepatic FoxOs were required for ApoM expression. Total plasma S1P levels were similar to those in controls, but S1P was nearly absent from HDL and was instead increased in the lipoprotein-depleted plasma fraction. This phenotype was restored to normal by rescuing ApoM in L-FoxO1,3,4 mice. Our findings show that insulin resistance in humans and mice is associated with decreased HDL-associated S1P. Our study shows that hepatic FoxO transcription factors are regulators of the ApoM/S1P pathway.
Collapse
Affiliation(s)
- María Concepción Izquierdo
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, United States of America
| | - Niroshan Shanmugarajah
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, United States of America
| | - Samuel X Lee
- Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, United States of America
| | - Michael J Kraakman
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, United States of America
| | - Marit Westerterp
- Department of Pediatrics, University of Groningen, Groningen, Netherlands
| | - Takumi Kitamoto
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, United States of America
| | - Michael Harris
- Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, United States of America
| | - Joshua R Cook
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, United States of America
| | - Galina A Gusarova
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, United States of America
| | - Kendra Zhong
- Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, United States of America
| | - Elijah Marbuary
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, United States of America
| | - InSug O-Sullivan
- Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, United States of America
| | - Nikolaus F Rasmus
- Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, United States of America
| | - Stefania Camastra
- Department of Clinical and Experimental Medicine, University of Pisa School of Medicine, Pisa, Italy
| | - Terry G Unterman
- Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, United States of America
| | - Ele Ferrannini
- Department of Internal Medicine, CNR Institute of Clinical Physiology, Pisa, Italy
| | - Barry E Hurwitz
- Department of Psychology, University of Miami, Miami, United States of America
| | - Rebecca A Haeusler
- Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, United States of America
| |
Collapse
|
44
|
Grao-Cruces E, Lopez-Enriquez S, Martin ME, Montserrat-de la Paz S. High-density lipoproteins and immune response: A review. Int J Biol Macromol 2022; 195:117-123. [PMID: 34896462 DOI: 10.1016/j.ijbiomac.2021.12.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/04/2023]
Abstract
High-density lipoproteins (HDLs) are heterogeneous lipoproteins that modify their composition and functionality depending on physiological or pathological conditions. The main roles of HDL are cholesterol efflux, and anti-inflammatory and antioxidant functions. These functions can be compromised under pathological conditions. HDLs play a role in the immune system as anti-inflammatory molecules but when inflammation occurs, HDLs change their composition and carry pro-inflammatory cargo. Hence, many molecular intermediates that influence inflammatory microenvironments and cell signaling pathways can modulate HDLs structural modification and function. This review provides a comprehensive assessment of the importance of HDL composition and anti-inflammatory function in the onset and progression of atherosclerotic cardiovascular diseases. On the other hand, immune cell activation during progression of atheroma plaque formation can be influenced by HDLs through HDL-derived cholesterol depletion from lipid rafts and through HDL interaction with HDL receptors expressed on T and B lymphocytes. Cholesterol efflux is mediated by HDL receptors located in lipid rafts in peripheral cells, which undergo membrane structural modifications, and interferes with subsequent molecules interactions or intracellular signaling cascades. Regarding antigen-presentation cells such as macrophages or dendritic cells, HDL function may then modulate lymphocytes activation in immune response. Our review also contributes to the understanding of the effects exerted by HDLs in signal transduction associated to our immune cell population during chronic diseases progression.
Collapse
Affiliation(s)
- Elena Grao-Cruces
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Soledad Lopez-Enriquez
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Maria E Martin
- Department of Cell Biology, Faculty of Biology, University of Seville, Av. Reina Mercedes s/n, 41012 Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain.
| |
Collapse
|
45
|
Lin X, Ouyang S, Zhi C, Li P, Tan X, Ma W, Yu J, Peng T, Chen X, Li L, Xie W. Focus on ferroptosis, pyroptosis, apoptosis and autophagy of vascular endothelial cells to the strategic targets for the treatment of atherosclerosis. Arch Biochem Biophys 2022; 715:109098. [PMID: 34856194 DOI: 10.1016/j.abb.2021.109098] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/15/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023]
Abstract
Vascular endothelial cells (VECs), which are lined up in the inner surface of blood vessels, are in direct contact with the metabolite-related endogenous danger signals in the circulatory system. Moreover, VECs death impairs vasodilation and increases endothelium-dependent permeability, which is strongly correlated with the development of atherosclerosis (AS). Among several forms of cell death, regulatory death of endothelial cells frequently occurs in AS, mainly including ferroptosis, pyroptosis, apoptosis and autophagy. In this review, we summarize regulatory factors and signaling mechanisms of regulatory death in endothelial cells, discussing their effects in the context of the atherosclerotic procession.
Collapse
Affiliation(s)
- Xiaoyan Lin
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China
| | - Siyu Ouyang
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, Hunan, China
| | - Chenxi Zhi
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, Hunan, China
| | - Pin Li
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoqian Tan
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, Hunan, China
| | - Wentao Ma
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, Hunan, China
| | - Jiang Yu
- 2019 Class of Clinical Medicine, University of South China, Hengyang, 421001, Hunan, China
| | - Tianhong Peng
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, Hunan, China
| | - Xi Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, Hunan, China
| | - Liang Li
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China; School of Public Health, University of South China, Hengyang, 421001, Hunan, China.
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
46
|
Cui H, Du Q. HDL and ASCVD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:109-118. [DOI: 10.1007/978-981-19-1592-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Zhang S, Zhou J, Wu W, Zhu Y, Liu X. The Role of Bile Acids in Cardiovascular Diseases: from Mechanisms to Clinical Implications. Aging Dis 2022; 14:261-282. [PMID: 37008052 PMCID: PMC10017164 DOI: 10.14336/ad.2022.0817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
Bile acids (BAs), key regulators in the metabolic network, are not only involved in lipid digestion and absorption but also serve as potential therapeutic targets for metabolic disorders. Studies have shown that cardiac dysfunction is associated with abnormal BA metabolic pathways. As ligands for several nuclear receptors and membrane receptors, BAs systematically regulate the homeostasis of metabolism and participate in cardiovascular diseases (CVDs), such as myocardial infarction, diabetic cardiomyopathy, atherosclerosis, arrhythmia, and heart failure. However, the molecular mechanism by which BAs trigger CVDs remains controversial. Therefore, the regulation of BA signal transduction by modulating the synthesis and composition of BAs is an interesting and novel direction for potential therapies for CVDs. Here, we mainly summarized the metabolism of BAs and their role in cardiomyocytes and noncardiomyocytes in CVDs. Moreover, we comprehensively discussed the clinical prospects of BAs in CVDs and analyzed the clinical diagnostic and application value of BAs. The latest development prospects of BAs in the field of new drug development are also prospected. We aimed to elucidate the underlying mechanism of BAs treatment in CVDs, and the relationship between BAs and CVDs may provide new avenues for the prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Shuwen Zhang
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Junteng Zhou
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
- Health Management Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Wenchao Wu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Ye Zhu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China.
- Correspondence should be addressed to: Prof. Xiaojing Liu (), and Prof. Ye Zhu (), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaojing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China.
- Correspondence should be addressed to: Prof. Xiaojing Liu (), and Prof. Ye Zhu (), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
48
|
Tanase DM, Gosav EM, Petrov D, Jucan AE, Lacatusu CM, Floria M, Tarniceriu CC, Costea CF, Ciocoiu M, Rezus C. Involvement of Ceramides in Non-Alcoholic Fatty Liver Disease (NAFLD) Atherosclerosis (ATS) Development: Mechanisms and Therapeutic Targets. Diagnostics (Basel) 2021; 11:2053. [PMID: 34829402 PMCID: PMC8621166 DOI: 10.3390/diagnostics11112053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and atherosclerosis (ATS) are worldwide known diseases with increased incidence and prevalence. These two are driven and are interconnected by multiple oxidative and metabolic functions such as lipotoxicity. A gamut of evidence suggests that sphingolipids (SL), such as ceramides, account for much of the tissue damage. Although in humans they are proving to be accurate biomarkers of adverse cardiovascular disease outcomes and NAFLD progression, in rodents, pharmacological inhibition or depletion of enzymes driving de novo ceramide synthesis prevents the development of metabolic driven diseases such as diabetes, ATS, and hepatic steatosis. In this narrative review, we discuss the pathways which generate the ceramide synthesis, the potential use of circulating ceramides as novel biomarkers in the development and progression of ATS and related diseases, and their potential use as therapeutic targets in NAFDL-ATS development which can further provide new clues in this field.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.M.G.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.M.G.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Daniela Petrov
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- I Rheumatology Clinic, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Alina Ecaterina Jucan
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Institute of Gastroenterology and Hepatology, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Cristina Mihaela Lacatusu
- Unit of Diabetes, Nutrition and Metabolic Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.M.G.); (C.R.)
- Internal Medicine Clinic, Emergency Military Clinical Hospital Iasi, 700483 Iasi, Romania
| | - Claudia Cristina Tarniceriu
- Department of Morpho-Functional Sciences I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Hematology Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Ciprian Rezus
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.M.G.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| |
Collapse
|
49
|
Souza Junior DR, Silva ARM, Rosa-Fernandes L, Reis LR, Alexandria G, Bhosale SD, Ghilardi FDR, Dalçóquio TF, Bertolin AJ, Nicolau JC, Marinho CRF, Wrenger C, Larsen MR, Siciliano RF, Di Mascio P, Palmisano G, Ronsein GE. HDL proteome remodeling associates with COVID-19 severity. J Clin Lipidol 2021; 15:796-804. [PMID: 34802985 PMCID: PMC8557113 DOI: 10.1016/j.jacl.2021.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/22/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Besides the well-accepted role in lipid metabolism, high-density lipoprotein (HDL) also seems to participate in host immune response against infectious diseases. OBJECTIVE We used a quantitative proteomic approach to test the hypothesis that alterations in HDL proteome associate with severity of Coronavirus disease 2019 (COVID-19). METHODS Based on clinical criteria, subjects (n=41) diagnosed with COVID-19 were divided into two groups: a group of subjects presenting mild symptoms and a second group displaying severe symptoms and requiring hospitalization. Using a proteomic approach, we quantified the levels of 29 proteins in HDL particles derived from these subjects. RESULTS We showed that the levels of serum amyloid A 1 and 2 (SAA1 and SAA2, respectively), pulmonary surfactant-associated protein B (SFTPB), apolipoprotein F (APOF), and inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4) were increased by more than 50% in hospitalized patients, independently of sex, HDL-C or triglycerides when comparing with subjects presenting only mild symptoms. Altered HDL proteins were able to classify COVID-19 subjects according to the severity of the disease (error rate 4.9%). Moreover, apolipoprotein M (APOM) in HDL was inversely associated with odds of death due to COVID-19 complications (odds ratio [OR] per 1-SD increase in APOM was 0.27, with 95% confidence interval [CI] of 0.07 to 0.72, P=0.007). CONCLUSION Our results point to a profound inflammatory remodeling of HDL proteome tracking with severity of COVID-19 infection. They also raise the possibility that HDL particles could play an important role in infectious diseases.
Collapse
Affiliation(s)
| | | | - Livia Rosa-Fernandes
- Department of Parasitology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Lorenna Rocha Reis
- Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, Brazil
| | - Gabrielly Alexandria
- Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, Brazil
| | - Santosh D Bhosale
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | | | | | - José Carlos Nicolau
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Claudio R F Marinho
- Department of Parasitology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Carsten Wrenger
- Department of Parasitology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Rinaldo Focaccia Siciliano
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil; Division of Infectious and Parasitic Diseases, University of São Paulo Medical School, São Paulo, Brazil
| | - Paolo Di Mascio
- Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil.
| | - Graziella Eliza Ronsein
- Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
50
|
Velagapudi S, Rohrer L, Poti F, Feuerborn R, Perisa D, Wang D, Panteloglou G, Potapenko A, Yalcinkaya M, Hülsmeier AJ, Hesse B, Lukasz A, Liu M, Parks JS, Christoffersen C, Stoffel M, Simoni M, Nofer JR, von Eckardstein A. Apolipoprotein M and Sphingosine-1-Phosphate Receptor 1 Promote the Transendothelial Transport of High-Density Lipoprotein. Arterioscler Thromb Vasc Biol 2021; 41:e468-e479. [PMID: 34407633 PMCID: PMC8458249 DOI: 10.1161/atvbaha.121.316725] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective: ApoM enriches S1P (sphingosine-1-phosphate) within HDL (high-density lipoproteins) and facilitates the activation of the S1P1 (S1P receptor type 1) by S1P, thereby preserving endothelial barrier function. Many protective functions exerted by HDL in extravascular tissues raise the question of how S1P regulates transendothelial HDL transport. Approach and Results: HDL were isolated from plasma of wild-type mice, Apom knockout mice, human apoM transgenic mice or humans and radioiodinated to trace its binding, association, and transport by bovine or human aortic endothelial cells. We also compared the transport of fluorescently-labeled HDL or Evans Blue, which labels albumin, from the tail vein into the peritoneal cavity of apoE-haploinsufficient mice with (apoE-haploinsufficient mice with endothelium-specific knockin of S1P1) or without (control mice, ie, apoE-haploinsufficient mice without endothelium-specific knockin of S1P1) endothelium-specific knockin of S1P1. The binding, association, and transport of HDL from Apom knockout mice and human apoM-depleted HDL by bovine aortic endothelial cells was significantly lower than that of HDL from wild-type mice and human apoM-containing HDL, respectively. The binding, uptake, and transport of 125I-HDL by human aortic endothelial cells was increased by an S1P1 agonist but decreased by an S1P1 inhibitor. Silencing of SR-BI (scavenger receptor BI) abrogated the stimulation of 125I-HDL transport by the S1P1 agonist. Compared with control mice, that is, apoE-haploinsufficient mice without endothelium-specific knockin of S1P1, apoE-haploinsufficient mice with endothelium-specific knockin of S1P1 showed decreased transport of Evans Blue but increased transport of HDL from blood into the peritoneal cavity and SR-BI expression in the aortal endothelium. Conclusions: ApoM and S1P1 promote transendothelial HDL transport. Their opposite effect on transendothelial transport of albumin and HDL indicates that HDL passes endothelial barriers by specific mechanisms rather than passive filtration.
Collapse
Affiliation(s)
- Srividya Velagapudi
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland (S.V., L.R., D.P., D.W., G.P., A.P., M.Y., A.J.H., A.v.E.)
| | - Lucia Rohrer
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland (S.V., L.R., D.P., D.W., G.P., A.P., M.Y., A.J.H., A.v.E.)
| | - Francesco Poti
- Unit of Neurosciences, Department of Medicine and Surgery, University of Parma, Italy (F.P.)
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy (F.P., M. Simoni, J.-R.N.)
| | - Renate Feuerborn
- Central Laboratory Facility, University Hospital of Münster, Germany (R.F., J.-R.N.)
| | - Damir Perisa
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland (S.V., L.R., D.P., D.W., G.P., A.P., M.Y., A.J.H., A.v.E.)
| | - Dongdong Wang
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland (S.V., L.R., D.P., D.W., G.P., A.P., M.Y., A.J.H., A.v.E.)
| | - Grigorios Panteloglou
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland (S.V., L.R., D.P., D.W., G.P., A.P., M.Y., A.J.H., A.v.E.)
| | - Anton Potapenko
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland (S.V., L.R., D.P., D.W., G.P., A.P., M.Y., A.J.H., A.v.E.)
| | - Mustafa Yalcinkaya
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland (S.V., L.R., D.P., D.W., G.P., A.P., M.Y., A.J.H., A.v.E.)
| | - Andreas J Hülsmeier
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland (S.V., L.R., D.P., D.W., G.P., A.P., M.Y., A.J.H., A.v.E.)
| | - Bettina Hesse
- Department of Medicine D, Division of General Internal Medicine, Nephrology, and Rheumatology, University Hospital Münster, Germany (B.H., A.L.)
| | - Alexander Lukasz
- Department of Medicine D, Division of General Internal Medicine, Nephrology, and Rheumatology, University Hospital Münster, Germany (B.H., A.L.)
| | - Mingxia Liu
- Department of Internal Medicine/Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC (M.L., J.S.P.)
| | - John S Parks
- Department of Internal Medicine/Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC (M.L., J.S.P.)
| | - Christina Christoffersen
- Department of Biomedical Science, University of Copenhagen, Denmark (C.C.)
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark (C.C.)
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zurich, Switzerland (M. Stoffel)
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy (F.P., M. Simoni, J.-R.N.)
| | - Jerzy-Roch Nofer
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy (F.P., M. Simoni, J.-R.N.)
- Central Laboratory Facility, University Hospital of Münster, Germany (R.F., J.-R.N.)
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (J.-R.N.)
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland (S.V., L.R., D.P., D.W., G.P., A.P., M.Y., A.J.H., A.v.E.)
| |
Collapse
|