1
|
Simonen P, Nylund L, Vartiainen E, Kovanen PT, Strandberg TE, Öörni K, Wester I, Gylling H. Heart-healthy diets including phytostanol ester consumption to reduce the risk of atherosclerotic cardiovascular diseases. A clinical review. Lipids Health Dis 2024; 23:341. [PMID: 39434087 PMCID: PMC11492639 DOI: 10.1186/s12944-024-02330-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
The risk of atherosclerotic cardiovascular diseases (ASCVDs) can be reduced by lowering low-density lipoprotein cholesterol (LDL-C) concentrations. Nevertheless, ASCVDs still cause most deaths worldwide. Here, we discuss the prevention of ASCVD and the event risk with a focus on heart-healthy diets, i.e., low intakes of saturated and trans-fatty acids and cholesterol, and high intakes of unsaturated fatty acids, viscous fibre, and dietary phytostanols as fatty acid esters, according to international dyslipidaemia treatment guidelines. Calculations based on both FINRISK and Cholesterol Treatment Trialists' Collaborators regression equations indicate that heart-healthy diets combined with phytostanol ester reduce LDL-C concentrations to such an extent that the 10-year estimated reduction in the incidence of coronary artery disease would be 23%. This information can be used, in particular, to prevent the development of subclinical atherosclerosis in healthy middle-aged populations and the progression of atherosclerosis to ASCVD. The outcome of simple and feasible dietary changes, and, when needed, combined with statins, can be significant: reduced mortality, an increased number of healthy life-years, and reduced healthcare costs.
Collapse
Affiliation(s)
- Piia Simonen
- Heart and Lung Center, Cardiology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | | | - Erkki Vartiainen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Timo E Strandberg
- Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Center for Life-Course Health Research, University of Oulu, Oulu, Finland
| | | | | | - Helena Gylling
- Heart and Lung Center, Cardiology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Chen J, Hu J, Guo X, Yang Y, Qin D, Tang X, Huang Z, Wang F, Hu D, Peng D, Yu B. Apolipoprotein O modulates cholesterol metabolism via NRF2/CYB5R3 independent of LDL receptor. Cell Death Dis 2024; 15:389. [PMID: 38830896 PMCID: PMC11148037 DOI: 10.1038/s41419-024-06778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/05/2024]
Abstract
Apolipoprotein O (APOO) plays a critical intracellular role in regulating lipid metabolism. Here, we investigated the roles of APOO in metabolism and atherogenesis in mice. Hepatic APOO expression was increased in response to hyperlipidemia but was inhibited after simvastatin treatment. Using a novel APOO global knockout (Apoo-/-) model, it was found that APOO depletion aggravated diet-induced obesity and elevated plasma cholesterol levels. Upon crossing with low-density lipoprotein receptor (LDLR) and apolipoprotein E (APOE) knockout hyperlipidemic mouse models, Apoo-/- Apoe-/- and Apoo-/- Ldlr-/- mice exhibited elevated plasma cholesterol levels, with more severe atherosclerotic lesions than littermate controls. This indicated the effects of APOO on cholesterol metabolism independent of LDLR and APOE. Moreover, APOO deficiency reduced cholesterol excretion through bile and feces while decreasing phospholipid unsaturation by inhibiting NRF2 and CYB5R3. Restoration of CYB5R3 expression in vivo by adeno-associated virus (AAV) injection reversed the reduced degree of phospholipid unsaturation while decreasing blood cholesterol levels. This represents the first in vivo experimental validation of the role of APOO in plasma cholesterol metabolism independent of LDLR and elucidates a previously unrecognized cholesterol metabolism pathway involving NRF2/CYB5R3. APOO may be a metabolic regulator of total-body cholesterol homeostasis and a target for atherosclerosis management. Apolipoprotein O (APOO) regulates plasma cholesterol levels and atherosclerosis through a pathway involving CYB5R3 that regulates biliary and fecal cholesterol excretion, independently of the LDL receptor. In addition, down-regulation of APOO may lead to impaired mitochondrial function, which in turn aggravates diet-induced obesity and fat accumulation.
Collapse
Affiliation(s)
- Jin Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, China
- Hunan Key Laboratory of Cardiometabolic Medicine, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Jiarui Hu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, NO.139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Xin Guo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, China
- Hunan Key Laboratory of Cardiometabolic Medicine, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Yang Yang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, China
- Hunan Key Laboratory of Cardiometabolic Medicine, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Donglu Qin
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, China
- Hunan Key Laboratory of Cardiometabolic Medicine, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Xiaoyu Tang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Zhijie Huang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, China
- Hunan Key Laboratory of Cardiometabolic Medicine, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Fengjiao Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, China
- Hunan Key Laboratory of Cardiometabolic Medicine, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Die Hu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, China
- Hunan Key Laboratory of Cardiometabolic Medicine, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Bilian Yu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, China.
- Hunan Key Laboratory of Cardiometabolic Medicine, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
- FuRong Laboratory, Changsha, 410078, Hunan, China.
| |
Collapse
|
3
|
Gylling H, Öörni K, Nylund L, Wester I, Simonen P. The profile of cholesterol metabolism does not interfere with the cholesterol-lowering efficacy of phytostanol esters. Clin Nutr 2024; 43:587-592. [PMID: 38301283 DOI: 10.1016/j.clnu.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND & AIMS Increasing evidence suggests that high cholesterol absorption efficiency enhances the risk of atherosclerotic cardiovascular diseases. It is not known whether inhibiting cholesterol absorption has different metabolic effects in high- vs. low cholesterol absorbers. We evaluated the effects of phytostanol esters on serum lipids and cholesterol metabolism in a post hoc study of three randomized, double-blind, controlled trials. The participants were classified into low (n = 20) and high (n = 21) cholesterol absorbers by median cholesterol absorption efficiency based on the plasma cholesterol absorption marker cholestanol at baseline. METHODS The participants consumed mayonnaise or margarine without or with phytostanol esters for six to nine weeks without other changes in the diet or lifestyle. Serum cholesterol, cholestanol, lathosterol, and faecal neutral sterols and bile acids were analysed by gas-liquid chromatography. According to power calculations, the size of the study population (n = 41) was appropriate. RESULTS During the control period, cholesterol synthesis, and faecal neutral sterols and bile acids were lower in high- vs. low absorbers (p < 0.05 for all). Phytostanol esters reduced low-density lipoprotein cholesterol by 10-13% in both groups, and directly measured cholesterol absorption efficiency by 41 ± 7% in low- and 47 ± 5% in high absorbers (p < 0.001 for all) without side effects. Cholesterol synthesis and faecal neutral sterols (p < 0.01) increased in both groups, more markedly in the high vs. low absorbers (p < 0.01). CONCLUSIONS Low cholesterol absorption combined with high faecal neutral sterol excretion are components of reverse cholesterol transport. Thus, high- vs. low absorbers had a more disadvantageous metabolic profile at baseline. In both groups, phytostanol esters induced favourable changes in serum, lipoprotein, and metabolic variables known to help in prevention of the development of atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Helena Gylling
- Heart and Lung Center, Cardiology, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland.
| | | | | | | | - Piia Simonen
- Heart and Lung Center, Cardiology, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Simonen P, Ulander L, Eklund KK, Niemi M, Backman JT, Gylling H, Sinisalo J. The effect of hydroxychloroquine on cholesterol synthesis depends on the profile of cholesterol metabolism. A controlled clinical study. ATHEROSCLEROSIS PLUS 2024; 55:93-97. [PMID: 38487037 PMCID: PMC10937308 DOI: 10.1016/j.athplu.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/10/2024] [Accepted: 02/29/2024] [Indexed: 03/17/2024]
Abstract
Background and aims Hydroxychloroquine (HCQ) has a variable effect on cholesterol synthesis. To clarify this, we assessed the effect of HCQ on the cholesterol-synthesis pathway in individuals with low and high cholesterol absorption efficiency. Method A total of 53 acute myocardial infarction patients with a constant statin dose randomized to receive HCQ or placebo for six months in a double-blind manner, were classified further into low (n = 26) and high (n = 27) cholesterol absorbers based on the median baseline serum cholestanol level. Serum lipids and biomarkers of cholesterol synthesis (squalene, lanosterol, zymostenol, desmosterol, and lathosterol) and absorption efficiency (sitosterol and cholestanol), were measured at baseline and one-, six-, and 12-month follow-up visits. Results In low cholesterol absorbers, serum cholesterol concentration and cholesterol synthesis and absorption biomarkers did not differ between the HCQ and placebo groups. At one month, high cholesterol absorbers with HCQ had lower serum cholesterol concentration and serum lanosterol to cholesterol ratio in comparison to the placebo group (HCQ 3.18 ± 0.62 vs. placebo 3.71 ± 0.65, p = 0.042, and HCQ 10.4 ± 2.55 vs. placebo 13.1 ± 2.36, p = 0.008, respectively). At 12 months, serum desmosterol to cholesterol ratio was lower in HCQ users (HCQ 47.1 ± 7.08 vs. placebo 59.0 ± 13.1, p = 0.011). Conclusions HCQ affects the cholesterol-synthesis pathway in high cholesterol absorbers. It reduces serum lanosterol and desmosterol ratios and consequently serum cholesterol concentration possibly by inhibiting the activity of lanosterol synthase as described earlier in vitro studies. Trial registration ClinicalTrials.gov Identifier: NCT02648464.
Collapse
Affiliation(s)
- Piia Simonen
- Heart and Lung Center, Cardiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Lotta Ulander
- Heart and Lung Center, Cardiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kari K. Eklund
- Department of Rheumatology, Helsinki University Hospital, Helsinki University, ORTON Orthopaedic Hospital of the Orton Foundation, Helsinki, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Finland
- Department of Clinical Pharmacology HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Janne T. Backman
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Finland
- Department of Clinical Pharmacology HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Helena Gylling
- Heart and Lung Center, Cardiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Juha Sinisalo
- Heart and Lung Center, Cardiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - OXI pilot trial
- Heart and Lung Center, Cardiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Rheumatology, Helsinki University Hospital, Helsinki University, ORTON Orthopaedic Hospital of the Orton Foundation, Helsinki, Finland
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Finland
- Department of Clinical Pharmacology HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
5
|
Olkkonen VM, Gylling H. Oxy- and Phytosterols as Biomarkers: Current Status and Future Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:353-375. [PMID: 38036889 DOI: 10.1007/978-3-031-43883-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Oxysterols and phytosterols are sterol compounds present at markedly low levels in tissues and serum of healthy individuals. A wealth of evidence suggests that they could be employed as biomarkers for human diseases or for cholesterol absorption.An increasing number of reports suggest circulating or tissue oxysterols as putative biomarkers for cardiovascular and neurodegenerative diseases or cancers. Thus far most of the studies have been carried out on small study populations. To achieve routine biomarker use, large prospective cohort studies are absolutely required. This, again, would necessitate thorough standardization of the oxysterol analytical methodology across the different laboratories, which now employ different technologies resulting in inconsistencies in the measured oxysterol levels. Routine use of oxysterol biomarkers would also necessitate the development of a new targeted analytical methodology suitable for high-throughput platforms.The most important use of phytosterols as biomarkers involves their use as markers for cholesterol absorption. For this to be achieved, (1) their quantitative analyses should be available in routine lipid laboratories, (2) it should be generally acknowledgment that the profile of cholesterol metabolism can reveal the risk of the development of atherosclerotic cardiovascular diseases (ASCVD), and (3) screening of the profile of cholesterol metabolism should be included in the ASCVD risk surveys. This should be done e.g. in families with a history of early onset or frequent ASCVD and in young adults aged 18-20 years, to exclude the presence of high cholesterol absorption. Individuals in high cholesterol absorption families need preventive measures from young adulthood to inhibit the possible development and progression of atherosclerosis.
Collapse
Affiliation(s)
- Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland.
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Helena Gylling
- Heart and Lung Center, Cardiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Simonen P, Öörni K, Sinisalo J, Strandberg TE, Wester I, Gylling H. High cholesterol absorption: A risk factor of atherosclerotic cardiovascular diseases? Atherosclerosis 2023; 376:53-62. [PMID: 37290267 DOI: 10.1016/j.atherosclerosis.2023.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Lowering elevated low-density lipoprotein cholesterol (LDL-C) concentrations reduces the risk of atherosclerotic cardiovascular diseases (ASCVDs). However, increasing evidence suggests that cholesterol metabolism may also be involved in the risk reduction of ASCVD events. In this review, we discuss if the different profiles of cholesterol metabolism, with a focus on high cholesterol absorption, are atherogenic, and what could be the possible mechanisms. The potential associations of cholesterol metabolism and the risk of ASCVDs are evaluated from genetic, metabolic, and population-based studies and lipid-lowering interventions. According to these studies, loss-of-function genetic variations in the small intestinal sterol transporters ABCG5 and ABCG8 result in high cholesterol absorption associated with low cholesterol synthesis, low cholesterol elimination from the body, and a high risk of ASCVDs. In contrast, loss-of-function genetic variations in another intestinal sterol transporter, NPC1L1 result in low cholesterol absorption associated with high cholesterol synthesis, elevated cholesterol elimination from the body, and low risk of ASCVDs. Statin monotherapy is not sufficient to reduce the ASCVD risk in cases of high cholesterol absorption, and these individuals need combination therapy of statin with cholesterol absorption inhibition. High cholesterol absorption, i.e., >60%, is estimated to occur in approximately one third of a population, so taking it into consideration is important to optimise lipid-lowering therapy to prevent atherosclerosis and reduce the risk of ASCVD events.
Collapse
Affiliation(s)
- Piia Simonen
- Heart and Lung Center, Cardiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Katariina Öörni
- Wihuri Research Institute, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Juha Sinisalo
- Heart and Lung Center, Cardiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Timo E Strandberg
- Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Center for Life-Course Health Research, University of Oulu, Oulu, Finland
| | | | - Helena Gylling
- Heart and Lung Center, Cardiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| |
Collapse
|
7
|
Gothwal SK, Goyal K, Barjatya H, Bhakar B, Dahiya R, Singh Y, Saini TK, Agrawal M, Subramaniyan V, Gupta G. Estimating the correlation between TYG and CIMT in non-diabetic adult patients. OBESITY MEDICINE 2022; 35:100460. [DOI: 10.1016/j.obmed.2022.100460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
|
8
|
Abstract
Coronary atherosclerosis is a chronic inflammatory disease that can lead to varying degrees of blood flow obstruction and a common pathophysiological basis of cardiovascular disease. Inflammatory factors run through the whole process of atherosclerotic lesions. Macrophages, T cells, and neutrophils play important roles in the process of atherosclerotic inflammation. Considering the evolutionary characteristics, atherosclerosis can be divided into different stages as early atherosclerotic plaque, plaque formation stage, and plaque rupture stage. In this paper, the changes in inflammatory cells at different stages of lesions and their related mechanisms are discussed, which can provide new insights from a clinical to bench perspective for atherosclerosis me chanism.
Collapse
|
9
|
Hill EB, Chen L, Bailey MT, Singh Khalsa A, Maltz R, Kelleher K, Spees CK, Zhu J, Loman BR. Facilitating a high-quality dietary pattern induces shared microbial responses linking diet quality, blood pressure, and microbial sterol metabolism in caregiver-child dyads. Gut Microbes 2022; 14:2150502. [PMID: 36457073 PMCID: PMC9721422 DOI: 10.1080/19490976.2022.2150502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022] Open
Abstract
Low-resource individuals are at increased risk of obesity and cardiovascular disease (CVD), partially attributable to poor dietary patterns and dysfunctional microbiota. Dietary patterns in childhood play critical roles in physiological development and are shaped by caregivers, making caregiver-child dyads attractive targets for dietary interventions to reduce metabolic disease risk. Herein, we targeted low-resource caregiver-child dyads for a 10-week, randomized, controlled, multifaceted lifestyle intervention including: nutrition and physical activity education, produce harvesting, cooking demonstrations, nutrition counseling, and kinetic activites; to evaluate its effects on dietary patterns, CVD risk factors, and microbiome composition. Subjects in the lifestyle intervention group improved total diet quality, increased whole grain intake, decreased energy intake, and enhanced fecal elimination of the microbe-derived metabolite lithocholic acid (LCA) in contrast to control subjects. Microbiomes were highly personalized, similar within dyads, and altered by lifestyle intervention. Differential modeling of microbiome composition identified taxa associated with total diet quality, whole grain intake, and LCA elimination including recognized fiber-degrading bacteria such as Subdoligranulum, and bile acid metabolizing organisms like Bifidobacterium. Inclusion of taxa identified in diet and metabolite modeling within blood pressure models improved prediction accuracy of microbiome-blood pressure associations. Importantly, microbiota-blood pressure relationships were shared between dyads, implying shared host-microbiota responses to lifestyle intervention. Overall, these outcomes provide insight into mechanisms by which dietary interventions impact the gut-cardiovascular axis to reduce future CVD risk. Registered at clinicaltrials.gov: NCT05367674.
Collapse
Affiliation(s)
- Emily B. Hill
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, USA
| | - Li Chen
- Department of Human Sciences and James Comprehensive Cancer Center, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| | - Michael T. Bailey
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
- Division of Primary Care Pediatrics, Center for Child Health Equity and Outcomes Research, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Amrik Singh Khalsa
- Division of Primary Care Pediatrics, Center for Child Health Equity and Outcomes Research, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ross Maltz
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Kelly Kelleher
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Colleen K. Spees
- Division of Medical Dietetics, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jiangjiang Zhu
- Department of Human Sciences and James Comprehensive Cancer Center, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| | - Brett R. Loman
- Department of Animal Sciences, the University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, the University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
10
|
Nunes VS, Ilha ADOG, Ferreira GDS, Bombo RDPA, Afonso MS, Lavrador MSF, Machado RM, Nakandakare ER, Quintão ECR, Lottenberg AM. Plasma lathosterol measures rates of cholesterol synthesis and efficiency of dietary phytosterols in reducing the plasma cholesterol concentration. Clinics (Sao Paulo) 2022; 77:100028. [PMID: 35397367 PMCID: PMC8989763 DOI: 10.1016/j.clinsp.2022.100028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Because the plasma campesterol/cholesterol ratio does not differ between groups that absorb different amounts of cholesterol, the authors investigated whether the plasma Phytosterols (PS) relate to the body's cholesterol synthesis rate measured as non-cholesterol sterol precursors (lathosterol). METHOD The authors studied 38 non-obese volunteers (58±12 years; Low-Density Lipoprotein Cholesterol ‒ LDL-C ≥ 130 mg/dL) randomly assigned to consume 400 mL/day of soy milk (Control phase) or soy milk + PS (1.6 g/day) for four weeks in a double-blind, cross-over study. PS and lathosterol were measured in plasma by gas chromatography coupled to mass spectrophotometry. RESULTS PS treatment reduced plasma total cholesterol concentration (-5.5%, p < 0.001), LDL-C (-7.6%, p < 0.001), triglycerides (-13.6%, p < 0.0085), and apolipoprotein B (apo B) (-6.3%, p < 0.008), without changing high density lipoprotein cholesterol (HDL-C concentration), but plasma lathosterol, campesterol and sitosterol expressed per plasma cholesterol increased. CONCLUSIONS The lathosterol-to-cholesterol plasma ratio predicted the plasma cholesterol response to PS feeding. The highest plasma lathosterol concentration during the control phase was associated with a lack of response of plasma cholesterol during the PS treatment period. Consequently, cholesterol synthesis in non-responders to dietary PS being elevated in the control phase indicates these cases resist to further synthesis rise, whereas responders to dietary PS, having in the control phase synthesis values lower than non-responders, expand synthesis on alimentary PS. Responders absorb more PS than non-responders, likely resulting from responders delivering into the intestinal lumen less endogenous cholesterol than non-responders do, thus facilitating greater intestinal absorption of PS shown as increased plasma PS concentration.
Collapse
Affiliation(s)
- Valéria Sutti Nunes
- Laboratório de Lipides (LIM10), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil.
| | - Angela de Oliveira Godoy Ilha
- Laboratório de Lipides (LIM10), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Guilherme da Silva Ferreira
- Laboratório de Lipides (LIM10), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Renata de Paula Assis Bombo
- Laboratório de Lipides (LIM10), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Milessa Silva Afonso
- Laboratório de Lipides (LIM10), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Maria Silvia Ferrari Lavrador
- Laboratório de Lipides (LIM10), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Roberta Marcondes Machado
- Laboratório de Lipides (LIM10), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Edna Regina Nakandakare
- Laboratório de Lipides (LIM10), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Eder Carlos Rocha Quintão
- Laboratório de Lipides (LIM10), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Ana Maria Lottenberg
- Laboratório de Lipides (LIM10), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil; Faculdade Israelita de Ciências da Saúde Albert Einstein (FICSAE), São Paulo, SP, Brazil
| |
Collapse
|
11
|
Dávila-Román VG, Toenjes AK, Meyers RM, Lenzen PM, Simkovich SM, Herrera P, Fung E, Papageorghiou AT, Craik R, McCracken JP, Thompson LM, Balakrishnan K, Rosa G, Peel J, Clasen TF, Hossen S, Checkley W, de las Fuentes L. Ultrasound Core Laboratory for the Household Air Pollution Intervention Network Trial: Standardized Training and Image Management for Field Studies Using Portable Ultrasound in Fetal, Lung, and Vascular Evaluations. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1506-1513. [PMID: 33812692 PMCID: PMC8054758 DOI: 10.1016/j.ultrasmedbio.2021.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 05/02/2023]
Abstract
Ultrasound Core Laboratories (UCL) are used in multicenter trials to assess imaging biomarkers to define robust phenotypes, to reduce imaging variability and to allow blinded independent review with the purpose of optimizing endpoint measurement precision. The Household Air Pollution Intervention Network, a multicountry randomized controlled trial (Guatemala, Peru, India and Rwanda), evaluates the effects of reducing household air pollution on health outcomes. Field studies using portable ultrasound evaluate fetal, lung and vascular imaging endpoints. The objective of this report is to describe administrative methods and training of a centralized clinical research UCL. A comprehensive administrative protocol and training curriculum included standard operating procedures, didactics, practical scanning and written/practical assessments of general ultrasound principles and specific imaging protocols. After initial online training, 18 sonographers (three or four per country and five from the UCL) participated in a 2 wk on-site training program. Written and practical testing evaluated ultrasound topic knowledge and scanning skills, and surveys evaluated the overall course. The UCL developed comprehensive standard operating procedures for image acquisition with a portable ultrasound system, digital image upload to cloud-based storage, off-line analysis and quality control. Pre- and post-training tests showed significant improvements (fetal ultrasound: 71% ± 13% vs. 93% ± 7%, p < 0.0001; vascular lung ultrasound: 60% ± 8% vs. 84% ± 10%, p < 0.0001). Qualitative and quantitative feedback showed high satisfaction with training (mean, 4.9 ± 0.1; scale: 1 = worst, 5 = best). The UCL oversees all stages: training, standardization, performance monitoring, image quality control and consistency of measurements. Sonographers who failed to meet minimum allowable performance were identified for retraining. In conclusion, a UCL was established to ensure accurate and reproducible ultrasound measurements in clinical research. Standardized operating procedures and training are aimed at reducing variability and enhancing measurement precision from study sites, representing a model for use of portable digital ultrasound for multicenter field studies.
Collapse
Affiliation(s)
- Víctor G Dávila-Román
- Cardiovascular Imaging and Clinical Research Core Laboratory, Cardiovascular Division, Department of Medicine, Washington University in St. Louis, Missouri, USA.
| | - Ashley K Toenjes
- Cardiovascular Imaging and Clinical Research Core Laboratory, Cardiovascular Division, Department of Medicine, Washington University in St. Louis, Missouri, USA
| | - Rachel M Meyers
- Cardiovascular Imaging and Clinical Research Core Laboratory, Cardiovascular Division, Department of Medicine, Washington University in St. Louis, Missouri, USA
| | - Pattie M Lenzen
- Cardiovascular Imaging and Clinical Research Core Laboratory, Cardiovascular Division, Department of Medicine, Washington University in St. Louis, Missouri, USA
| | - Suzanne M Simkovich
- Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Phabiola Herrera
- Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Elizabeth Fung
- Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Aris T Papageorghiou
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Rachel Craik
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - John P McCracken
- Centre for Health Studies, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Lisa M Thompson
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA
| | - Kalpana Balakrishnan
- ICMR Center for Advanced Research on Air Quality, Climate and Health, Department of Environmental Health Engineering, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Ghislaine Rosa
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Jennifer Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Thomas F Clasen
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia; USA
| | - Shakir Hossen
- Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - William Checkley
- Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lisa de las Fuentes
- Cardiovascular Imaging and Clinical Research Core Laboratory, Cardiovascular Division, Department of Medicine, Washington University in St. Louis, Missouri, USA
| |
Collapse
|
12
|
Oat fiber attenuates circulating oxysterols levels and hepatic inflammation via targeting TLR4 signal pathway in LDL receptor knockout mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
13
|
The coronary artery calcium score is linked to plasma cholesterol synthesis and absorption markers: Brazilian Longitudinal Study of Adult Health. Biosci Rep 2020; 40:225472. [PMID: 32579186 PMCID: PMC7332684 DOI: 10.1042/bsr20201094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/03/2020] [Accepted: 06/23/2020] [Indexed: 12/27/2022] Open
Abstract
It is controversial whether atherosclerosis is linked to increased intestinal cholesterol absorption or synthesis in humans. The aim of the present study was to relate atherosclerosis to the measurements of plasma markers of cholesterol synthesis (desmosterol, lathosterol) and absorption (campesterol, sitosterol). In healthy male (n=344), non-obese, non-diabetics, belonging to the city of São Paulo branch of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil), we measured in plasma these non-cholesterol sterol markers, together with their anthropometric, dietary parameters, traditional atherosclerotic risk factors, and blood chemistry, coronary arterial calcium score (CAC), and ultrasonographically measured common carotid artery intima-media thickness (CCA-IMT). Cases with CAC>zero had the following parameters higher than cases with CAC = zero: age, waist circumference (WC), plasma total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C), and non-high density lipoprotein-cholesterol (non HDL-C). Plasma desmosterol and campesterol, duly corrected for TC, age, body mass index (BMI), waist circumference (WC), hypertension, smoking, and the homeostasis model assessment-insulin resistance (HOMA-IR) correlated with CAC, but not with CCA-IMT. The latter related to increased age, BMI, waist circumference (WC), and systolic blood pressure (SBP). Plasma HDL-C concentrations did not define CAC or CCA-IMT degrees, although in relation to the lower tertile of HDL-C in plasma the higher tertile of HDL-C had lower HOMA-IR and concentration of a cholesterol synthesis marker (desmosterol). Present work indicated that increased cholesterol synthesis and absorption represent primary causes of CAD, but not of the common carotid artery atherosclerosis.
Collapse
|
14
|
Wu C, Daugherty A, Lu HS. Updates on Approaches for Studying Atherosclerosis. Arterioscler Thromb Vasc Biol 2020; 39:e108-e117. [PMID: 30917052 DOI: 10.1161/atvbaha.119.312001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Congqing Wu
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington.,Department of Physiology (A.D., H.S.L.), University of Kentucky, Lexington
| | - Hong S Lu
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington.,Department of Physiology (A.D., H.S.L.), University of Kentucky, Lexington
| |
Collapse
|
15
|
Satoh K, Shimokawa H. Recent Advances in the Development of Cardiovascular Biomarkers. Arterioscler Thromb Vasc Biol 2019; 38:e61-e70. [PMID: 29695533 DOI: 10.1161/atvbaha.118.310226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kimio Satoh
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
16
|
Nakano T, Inoue I, Murakoshi T. A Newly Integrated Model for Intestinal Cholesterol Absorption and Efflux Reappraises How Plant Sterol Intake Reduces Circulating Cholesterol Levels. Nutrients 2019; 11:nu11020310. [PMID: 30717222 PMCID: PMC6412963 DOI: 10.3390/nu11020310] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/27/2022] Open
Abstract
Cholesterol homeostasis is maintained through a balance of de novo synthesis, intestinal absorption, and excretion from the gut. The small intestine contributes to cholesterol homeostasis by absorbing and excreting it, the latter of which is referred to as trans-intestinal cholesterol efflux (TICE). Because the excretion efficiency of endogenous cholesterol is inversely associated with the development of atherosclerosis, TICE provides an attractive therapeutic target. Thus, elucidation of the mechanism is warranted. We have shown that intestinal cholesterol absorption and TICE are inversely correlated in intestinal perfusion experiments in mice. In this review, we summarized 28 paired data sets for absorption efficiency and fecal neutral sterol excretion, a surrogate marker of TICE, obtained from 13 available publications in a figure, demonstrating the inverse correlation were nearly consistent with the assumption. We then offer a bidirectional flux model that accommodates absorption and TICE occurring in the same segment. In this model, the brush border membrane (BBM) of intestinal epithelial cells stands as the dividing ridge for cholesterol fluxes, making the opposite fluxes competitive and being coordinated by shared BBM-localized transporters, ATP-binding cassette G5/G8 and Niemann-Pick C1-like 1. Furthermore, the idea is applied to address how excess plant sterol/stanol (PS) intake reduces circulating cholesterol level, because the mechanism is still unclear. We propose that unabsorbable PS repeatedly shuttles between the BBM and lumen and promotes concomitant cholesterol efflux. Additionally, PSs, which are chemically analogous to cholesterol, may disturb the trafficking machineries that transport cholesterol to the cell interior.
Collapse
Affiliation(s)
- Takanari Nakano
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan.
| | - Ikuo Inoue
- Department of Diabetes and Endocrinology, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan.
| | - Takayuki Murakoshi
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan.
| |
Collapse
|
17
|
He Y, Kothari V, Bornfeldt KE. High-Density Lipoprotein Function in Cardiovascular Disease and Diabetes Mellitus. Arterioscler Thromb Vasc Biol 2019; 38:e10-e16. [PMID: 29367232 DOI: 10.1161/atvbaha.117.310222] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yi He
- From the Division of Metabolism, Endocrinology and Nutrition, Department of Medicine (Y.H., V.K., K.E.B.) and Department of Pathology (K.E.B.), University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle
| | - Vishal Kothari
- From the Division of Metabolism, Endocrinology and Nutrition, Department of Medicine (Y.H., V.K., K.E.B.) and Department of Pathology (K.E.B.), University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle
| | - Karin E Bornfeldt
- From the Division of Metabolism, Endocrinology and Nutrition, Department of Medicine (Y.H., V.K., K.E.B.) and Department of Pathology (K.E.B.), University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle.
| |
Collapse
|
18
|
Affiliation(s)
- Jacqueline S Dron
- From the Department of Biochemistry (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Julieta Lazarte
- From the Department of Biochemistry (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Medicine (J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Robert A Hegele
- From the Department of Biochemistry (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Medicine (J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|