1
|
Liu Y, Li M, Chen Z, Zuo M, Bao K, Zhao Z, Yan M, Bai Y, Ai D, Wang H, Jiang H. BRISC-Mediated PPM1B-K63 Deubiquitination and Subsequent TGF-β Pathway Activation Promote High-Fat/High-Sucrose Diet-Induced Arterial Stiffness. Circ Res 2025; 136:297-314. [PMID: 39742393 DOI: 10.1161/circresaha.124.325590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/03/2025]
Abstract
BACKGROUND Metabolic syndrome heightens cardiovascular disease risk primarily through increased arterial stiffness. We previously demonstrated the involvement of YAP (Yes-associated protein) in high-fat/high-sucrose diet (HFHSD)-induced arterial stiffness via modulation of PPM1B (protein phosphatase Mg2+/Mn2+-dependent 1B)-lysine 63(K63) deubiquitination. In this study, we aimed to elucidate the role and mechanisms underlying PPM1B deubiquitination in HFHSD-induced arterial stiffness. METHODS Enzymes governing PPM1B deubiquitination were identified through small interfering RNA (siRNA) screening and mass spectrometry. Glutathione S-transferase pull-down, coimmunoprecipitation, protein purification, and immunofluorescence were used to explore the mechanism underlying PPM1B deubiquitination. Doppler ultrasound was used to evaluate HFHSD-induced arterial stiffness in mice, and telemetry was used to record pulsatile (systolic and diastolic) blood pressure. RESULTS Smooth muscle cell-specific PPM1B overexpression attenuated HFHSD-induced arterial stiffness in mice in a PPM1B-K326-K63-linked polyubiquitination-dependent manner. Mechanistically, ABRO1 (Abraxas brother 1; a core BRCC36 [BRCA1/BRCA2 (breast cancer type 1/2)-containing complex subunit 36] isopeptidase complex component) directly bound YAP and underwent liquid-liquid phase separation with YAP and PPM1B in a YAP-dependent manner, which in turn promoted PPM1B deubiquitination. Furthermore, smooth muscle cell-specific Abro1-knockout mice and Brcc3-knockout mice showed attenuated HFHSD-induced arterial stiffness and activation of transforming growth factor-β-Smad (mothers against decapentaplegic homolog) signaling. CONCLUSIONS We elucidated the PPM1B deubiquitination mechanisms and highlighted a potential therapeutic target for metabolic syndrome-related arterial stiffness.
Collapse
Affiliation(s)
- Yanan Liu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, China (Y.L., M.L., Z.C., K.B., Z.Z., D.A.)
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, School of Basic Medicine Sciences, Hangzhou Normal University, China (Y.L., M.Z., H.W.)
- Department of Geriatric Medicine, Center of Coronary Circulation, Xiangya Hospital, Central South University, Hunan, China (Y.L., Y.B.)
| | - Mengke Li
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, China (Y.L., M.L., Z.C., K.B., Z.Z., D.A.)
| | - Zhipeng Chen
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, China (Y.L., M.L., Z.C., K.B., Z.Z., D.A.)
| | - Min Zuo
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, School of Basic Medicine Sciences, Hangzhou Normal University, China (Y.L., M.Z., H.W.)
| | - Kaiwen Bao
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, China (Y.L., M.L., Z.C., K.B., Z.Z., D.A.)
| | - Ziyan Zhao
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, China (Y.L., M.L., Z.C., K.B., Z.Z., D.A.)
| | - Meng Yan
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China (M.Y.)
| | - Yongping Bai
- Department of Geriatric Medicine, Center of Coronary Circulation, Xiangya Hospital, Central South University, Hunan, China (Y.L., Y.B.)
| | - Ding Ai
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, China (Y.L., M.L., Z.C., K.B., Z.Z., D.A.)
| | - Hu Wang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, School of Basic Medicine Sciences, Hangzhou Normal University, China (Y.L., M.Z., H.W.)
| | - Hongfeng Jiang
- Experimental Research Center, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, China (H.J.)
| |
Collapse
|
2
|
Stougiannou TM, Christodoulou KC, Karangelis D. Olfactory Receptors and Aortic Aneurysm: Review of Disease Pathways. J Clin Med 2024; 13:7778. [PMID: 39768700 PMCID: PMC11727755 DOI: 10.3390/jcm13247778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Aortic aneurysm, the pathological dilatation of the aorta at distinct locations, can be attributed to many different genetic and environmental factors. The resulting pathobiological disturbances generate a complex interplay of processes affecting cells and extracellular molecules of the tunica interna, media and externa. In short, aortic aneurysm can affect processes involving the extracellular matrix, lipid trafficking/atherosclerosis, vascular smooth muscle cells, inflammation, platelets and intraluminal thrombus formation, as well as various endothelial functions. Many of these processes are interconnected, potentiating one another. Newer discoveries, including the involvement of odorant olfactory receptors in these processes, have further shed light on disease initiation and pathology. Olfactory receptors are a varied group of G protein coupled-receptors responsible for the recognition of chemosensory information. Although they comprise many different subgroups, some of which are not well-characterized or identified in humans, odorant olfactory receptors, in particular, are most commonly associated with recognition of olfactory information. They can also be ectopically localized and thus carry out additional functions relevant to the tissue in which they are identified. It is thus the purpose of this narrative review to summarize and present pathobiological processes relevant to the initiation and propagation of aortic aneurysm, while also incorporating evidence associating these ectopically functioning odorant olfactory receptors with the overall pathology.
Collapse
Affiliation(s)
- Theodora M. Stougiannou
- Department of Cardiothoracic Surgery, University General Hospital, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.C.C.); (D.K.)
| | | | | |
Collapse
|
3
|
Bohl K, Wynia-Smith SL, Lipinski RAJ, Smith BC. Inhibition of Sirtuin Deacylase Activity by Peroxynitrite. Biochemistry 2024; 63:2463-2476. [PMID: 39256054 PMCID: PMC11524680 DOI: 10.1021/acs.biochem.4c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Sirtuins are a class of enzymes that deacylate protein lysine residues using NAD+ as a cosubstrate. Sirtuin deacylase activity has been historically regarded as protective; loss of sirtuin deacylase activity potentially increases susceptibility to aging-related disease development. However, which factors may inhibit sirtuins during aging or disease is largely unknown. Increased oxidant and inflammatory byproduct production damages cellular proteins. Previously, we and others found that sirtuin deacylase activity is inhibited by the nitric oxide (NO)-derived cysteine post-translational modification S-nitrosation. However, the comparative ability of the NO-derived oxidant peroxynitrite (ONOO-) to affect human sirtuin activity had not yet been assessed under uniform conditions. Here, we compare the ability of ONOO- (donated from SIN-1) to post-translationally modify and inhibit SIRT1, SIRT2, SIRT3, SIRT5, and SIRT6 deacylase activity. In response to SIN-1 treatment, inhibition of SIRT1, SIRT2, SIRT3, SIRT5, and SIRT6 deacylase activity correlated with increased tyrosine nitration. Mass spectrometry identified multiple novel tyrosine nitration sites in SIRT1, SIRT3, SIRT5, and SIRT6. As each sirtuin isoform has at least one tyrosine nitration site within the catalytic core, nitration may result in sirtuin inhibition. ONOO- can also react with cysteine residues, resulting in sulfenylation; however, only SIRT1 showed detectable peroxynitrite-mediated cysteine sulfenylation. While SIRT2, SIRT3, SIRT5, and SIRT6 showed no detectable sulfenylation, SIRT6 likely undergoes transient sulfenylation, quickly resolving into an intermolecular disulfide bond. These results suggest that the aging-related oxidant peroxynitrite can post-translationally modify and inhibit sirtuins, contributing to susceptibility to aging-related disease.
Collapse
Affiliation(s)
- Kelsey Bohl
- Concordia University of Wisconsin, 12800 N. Lake Shore Drive, Mequon, WI, 53097
| | - Sarah L. Wynia-Smith
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226
| | - Rachel A. Jones Lipinski
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226
| | - Brian C. Smith
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226
| |
Collapse
|
4
|
Hou J, Lin Y, Zhu C, Chen Y, Lin R, Lin H, Liu D, Guan D, Yu B, Wang J, Wu H, Cui Z. Zwitterion-Lubricated Hydrogel Microspheres Encapsulated with Metformin Ameliorate Age-Associated Osteoarthritis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402477. [PMID: 38874373 PMCID: PMC11321630 DOI: 10.1002/advs.202402477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Chondrocyte senescence and reduced lubrication play pivotal roles in the pathogenesis of age-related osteoarthritis (OA). In the present study, highly lubricated and drug-loaded hydrogel microspheres are designed and fabricated through the radical polymerization of sulfobetaine (SB)-modified hyaluronic acid methacrylate using microfluidic technology. The copolymer contains a large number of SB and carboxyl groups that can provide a high degree of lubrication through hydration and form electrostatic loading interactions with metformin (Met@SBHA), producing a high drug load for anti-chondrocyte senescence. Mechanical, tribological, and drug release analyses demonstrated enhanced lubricative properties and prolonged drug dissemination of the Met@SBHA microspheres. RNA sequencing (RNA-seq) analysis, network pharmacology, and in vitro assays revealed the extraordinary capacity of Met@SBHA to combat chondrocyte senescence. Additionally, inducible nitric oxide synthase (iNOS) has been identified as a promising protein modulated by Met in senescent chondrocytes, thereby exerting a significant influence on the iNOS/ONOO-/P53 pathway. Notably, the intra-articular administration of Met@SBHA in aged mice ameliorated cartilage senescence and OA pathogenesis. Based on the findings of this study, Met@SBHA emerges as an innovative and promising strategy in tackling age-related OA serving the dual function of enhancing joint lubrication and mitigating cartilage senescence.
Collapse
Affiliation(s)
- Jiahui Hou
- Devision of Orthopaedics and TraumatologyDepartment of OrthopaedicsNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration MedicineNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Yanpeng Lin
- Department of RadiologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Chencheng Zhu
- Devision of Orthopaedics and TraumatologyDepartment of OrthopaedicsNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration MedicineNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Yupeng Chen
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Rongmin Lin
- Devision of Orthopaedics and TraumatologyDepartment of OrthopaedicsNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration MedicineNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Hancheng Lin
- Devision of Orthopaedics and TraumatologyDepartment of OrthopaedicsNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration MedicineNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Dahai Liu
- School of MedicineFoshan UniversityFoshanGuangdong528000China
| | - Daogang Guan
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Bin Yu
- Devision of Orthopaedics and TraumatologyDepartment of OrthopaedicsNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration MedicineNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Jun Wang
- School of MedicineFoshan UniversityFoshanGuangdong528000China
| | - Hangtian Wu
- Devision of Orthopaedics and TraumatologyDepartment of OrthopaedicsNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration MedicineNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Zhuang Cui
- Devision of Orthopaedics and TraumatologyDepartment of OrthopaedicsNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration MedicineNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| |
Collapse
|
5
|
Ding T, Zeng L, Xia Y, Zhang B, Cui D. miR-135a Mediates Mitochondrial Oxidative Respiratory Function through SIRT1 to Regulate Atrial Fibrosis. Cardiology 2024; 149:286-296. [PMID: 38228115 DOI: 10.1159/000536059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024]
Abstract
INTRODUCTION This study aimed to explore the function of miR-135a in the progress of atrial fibrosis and the mechanism of miR-135a/SIRT1 (sirtuin 1) in human cardiac fibroblasts and mouse cardiac fibroblasts (MCFs) mediating the regulation of atrial fibrosis by mitochondrial oxidative respiration function. METHODS Using Ang II (angiotensin II) to induce fibrosis in HCFs (human corneal fibroblasts) and MCF (Michigan Cancer Foundation, MCF) cells in vitro, the miRNA-seq results of previous studies were validated. Proliferative and invasive ability of HCFs and MCFs was detected by Cell Counting Kit-8 assay (CCK-8) and scratch experiment after overexpressing miR-135a in HCFs and MCF cells. Protein and mRNA expression was tested using Western blot and qPCR. The target of miR-135a was verified as SIRT1 by a luciferase reporter assay and the activities of the mitochondrial respiratory enzyme complexes I, II, III, and IV were determined colorimetrically. The activities of malondialdehyde, reactive oxygen species, and superoxide dismutase in cells were detected with enzyme-linked immunosorbent assay (ELISA). RESULTS miR-135a expression was elevated in HCFs and MCFs cells in the Ang II group than control group. Overexpression of miR-135a could promote the proliferation, migration, oxidative stress, as well as fibrosis of cardiac fibroblasts and suppresses mitochondrial activity. In addition, we found SIRT1 was a target gene of miR-135a. What is more, the findings showed miR-135a promoted fibrosis in HCFs and MCFs cells acting through regulation of SIRT1. CONCLUSIONS miR-135a mediates mitochondrial oxidative respiratory function through SIRT1 to regulate atrial fibrosis.
Collapse
Affiliation(s)
- Tianhang Ding
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Liyan Zeng
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Ying Xia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Baojun Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Dongji Cui
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
6
|
Wang J, Zhang Q, Yao L, He T, Chen X, Su Y, Sun S, Fan M, Yan J, Wang T, Zhang M, Guo F, Mo S, Lu M, Zou M, Li L, Yuan Q, Pan H, Chen Y. Modulating activity of PVN neurons prevents atrial fibrillation induced circulation dysfunction by electroacupuncture at BL15. Chin Med 2023; 18:135. [PMID: 37848944 PMCID: PMC10580609 DOI: 10.1186/s13020-023-00841-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Circulation dysfunction is a major contributing factor to thrombosis in patients with atrial fibrillation (AF) for which effective interventions are lacking. Growing evidence indicates that regulating the paraventricular nucleus (PVN), an autonomic control center, could offer a novel strategy for treating cardiovascular and circulatory diseases. Concurrently, electroacupuncture (EA) at Xinshu (BL15), a form of peripheral nerve stimulation, has shown efficacy in treating several cardiovascular conditions, although its specific mechanism remains unclear. This study aimed to assess the impact of EA at BL15 on circulatory dysfunction in a rat AF model and investigate the pivotal role of PVN neuronal activity. METHODS To mimic the onset of AF, male SD rats received tail intravenous injection of ACh-CaCl2 and were then subjected to EA at BL15, sham EA, or EA at Shenshu (BL23). Macro- and micro-circulation function were evaluated using in vivo ultrasound imaging and laser doppler testing, respectively. Vasomotricity was assessed by measuring dimension changes during vascular relaxation and contraction. Vascular endothelial function was measured using myograph, and the activation of the autonomic nerve system was evaluated through nerve activity signals. Additionally, chemogenetic manipulation was used to block PVN neuronal activation to further elucidate the role of PVN activation in the prevention of AF-induced blood circulation dysfunction through EA treatment. RESULTS Our data demonstrate that EA at BL15, but not BL23 or sham EA, effectively prevented AF-induced macro- and micro-circulation dysfunction. Furthermore, EA at BL15 restored AF-induced vasomotricity impairment. Additionally, EA treatment prevented abnormal activation of the autonomic nerve system induced by AF, although it did not address vascular endothelial dysfunction. Importantly, excessive activation of PVN neurons negated the protective effects of EA treatment on AF-induced circulation dysfunction in rats. CONCLUSION These results indicate that EA treatment at BL15 modulates PVN neuronal activity and provides protection against AF-induced circulatory dysfunction.
Collapse
Affiliation(s)
- Jingya Wang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Qiumei Zhang
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Institute of Physical and Health, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Guangdong Chaozhou Health Vocational College, Chaozhou, 521000, People's Republic of China
| | - Lin Yao
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Teng He
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Xinyi Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Yang Su
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Shengxuan Sun
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Mengyue Fan
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Jinglan Yan
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Taiyi Wang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Meng Zhang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Feng Guo
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Shiqing Mo
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Manqi Lu
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Meixia Zou
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Liangjie Li
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Qing Yuan
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Huashan Pan
- Institute of Physical and Health, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
- Guangdong Chaozhou Health Vocational College, Chaozhou, 521000, People's Republic of China.
| | - Yongjun Chen
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
7
|
Luo S, Zhao Y, Zhu S, Liu L, Cheng K, Ye B, Han Y, Fan J, Xia M. Flavonifractor plautii Protects Against Elevated Arterial Stiffness. Circ Res 2023; 132:167-181. [PMID: 36575982 DOI: 10.1161/circresaha.122.321975] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Dysbiosis of gut microbiota plays a pivotal role in vascular dysfunction and microbial diversity was reported to be inversely correlated with arterial stiffness. However, the causal role of gut microbiota in the progression of arterial stiffness and the specific species along with the molecular mechanisms underlying this change remain largely unknown. METHODS Participants with elevated arterial stiffness and normal controls free of medication were matched for age and sex. The microbial composition and metabolic capacities between the 2 groups were compared with the integration of metagenomics and metabolomics. Subsequently, Ang II (angiotensin II)-induced and humanized mouse model were employed to evaluate the protective effect of Flavonifractor plautii (F plautii) and its main effector cis-aconitic acid. RESULTS Human fecal metagenomic sequencing revealed a significantly high abundance and centrality of F plautii in normal controls, which was absent in the microbial community of subjects with elevated arterial stiffness. Moreover, blood pressure only mediated part of the effect of F plautii on lower arterial stiffness. The microbiome of normal controls exhibited an enhanced capacity for glycolysis and polysaccharide degradation, whereas, those of subjects with increased arterial stiffness were characterized by increased biosynthesis of fatty acids and aromatic amino acids. Integrative analysis with metabolomics profiling further suggested that increased cis-aconitic acid served as the main effector for the protective effect of F plautii against arterial stiffness. Replenishment with F plautii and cis-aconitic acid improved elastic fiber network and reversed increased pulse wave velocity through the suppression of MMP-2 (matrix metalloproteinase-2) and inhibition of MCP-1 (monocyte chemoattractant protein-1) and NF-κB (nuclear factor kappa-B) activation in both Ang II-induced and humanized model of arterial stiffness. CONCLUSIONS Our translational study identifies a novel link between F plautii and arterial function and raises the possibility of sustaining vascular health by targeting gut microbiota.
Collapse
Affiliation(s)
- Shiyun Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition (S.L., Y.Z., S.Z., L.L., B.Y., J.F., M.X.), School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, China
| | - Yawen Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition (S.L., Y.Z., S.Z., L.L., B.Y., J.F., M.X.), School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, China
| | - Shanshan Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition (S.L., Y.Z., S.Z., L.L., B.Y., J.F., M.X.), School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, China
| | - Ludi Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition (S.L., Y.Z., S.Z., L.L., B.Y., J.F., M.X.), School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, China.,Department of Statistics and Epidemiology (L.L., B.Y.), School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, China
| | - Ken Cheng
- XJTLU Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China (K.C., Y.H.)
| | - Bingqi Ye
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition (S.L., Y.Z., S.Z., L.L., B.Y., J.F., M.X.), School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, China.,Department of Statistics and Epidemiology (L.L., B.Y.), School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, China
| | - Yueyuan Han
- XJTLU Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China (K.C., Y.H.)
| | - Jiahua Fan
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition (S.L., Y.Z., S.Z., L.L., B.Y., J.F., M.X.), School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, China
| | - Min Xia
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition (S.L., Y.Z., S.Z., L.L., B.Y., J.F., M.X.), School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, China
| |
Collapse
|
8
|
Lee YH, Kim SJ, Surh YJ. Role of Post-translational Modification of Silent Mating Type Information Regulator 2 Homolog 1 in Cancer and Other Disorders. J Cancer Prev 2022; 27:157-169. [PMID: 36258719 PMCID: PMC9537581 DOI: 10.15430/jcp.2022.27.3.157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022] Open
Abstract
Silent mating type information regulator 2 homolog 1 (SIRT1), an NAD+-dependent histone/protein deacetylase, has multifarious physiological roles in development, metabolic regulation, and stress response. Thus, its abnormal expression or malfunction is implicated in pathogenesis of various diseases. SIRT1 undergoes post-translational modifications, including phosphorylation, oxidation/reduction, carbonylation, nitrosylation, glycosylation, ubiquitination/deubiquitination, SUMOylation etc. which can modulate its catalytic activity, stability, subcellular localization, and also binding affinity for substrate proteins. This short review highlights the regulation of SIRT1 post-translational modifications and their pathophysiologic implications.
Collapse
Affiliation(s)
- Yeon-Hwa Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul, Korea
| | - Su-Jung Kim
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul, Korea
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul, Korea,Cancer Research Institute, Seoul National University, Seoul, Korea,Correspondence to Young-Joon Surh, E-mail: , https://orcid.org/0000-0001-8310-1795
| |
Collapse
|
9
|
Wang Y, Zhang P, Wang T, Yao D, Shi Y, Liu J, Wang B, Wei H, Liu W, Xu CB, Wang C. DMSO-soluble smoking particles up-regulates the vascular endothelin receptors through AMPK-SIRT1 and MAPK pathways. Chem Biol Interact 2022; 368:110203. [DOI: 10.1016/j.cbi.2022.110203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
|
10
|
Liang W, Liu Z, Zheng H, Lin A, Fan J, Li J, Wu W, Jie Q. ONOO - -mediated oxidative modification of extracellular matrix aggravates atherosclerosis by affecting biological behaviors of vascular smooth muscle cells. Cell Biol Int 2022; 46:1447-1457. [PMID: 35583088 DOI: 10.1002/cbin.11815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/28/2022] [Accepted: 04/16/2022] [Indexed: 11/06/2022]
Abstract
Atherosclerosis (AS) is a principal contributor to stroke and coronary heart disease in humans characterized by chronic low-grade inflammation. The extracellular matrix (ECM) plays critical roles in regulating the function of arteries. However, the effect of changes in ECM on AS development is rarely studied. In this context, we intend to study the effect of oxidizing agent peroxynitrite (ONOO- )-mediated oxidization of ECM proteins on the biological behaviors of vascular smooth muscle cells (SMCs) and the development of AS. AS mouse models were established, and mouse coronary artery smooth muscle cells (MCASMCs) were cultured in vitro to derive ECM (SMC-ECM), which was obtained by deoxycholate (DOC)-based decellularization. Further, MCASMCs were subjected to the determination of ECM oxidative damage and ECM protein structure. Finally, roles of ONOO- -mediated oxidization of ECM in SMC adhesion and migration and in AS development were explored through Transwell assay, transcriptome sequencing, and gene enrichment analysis. High concentration of ONOO- was found in the serum of AS mice, and ONOO- could stimulate the development of AS. SMC-ECM with intact structure can be obtained in vitro by DOC treatment. Functionally, ONOO- -mediated oxidization destroyed the three-dimensional structure of SMC-ECM proteins, affected SMC adhesion and migration and promoted the absorption efficiency of lipids while reducing the efflux of cholesterol. In addition, the expression of inflammation- and oxidative stress-related genes was significantly increased in ECM subjected to ONOO- -mediated oxidization, thereby contributing to AS progression. ONOO- -mediated oxidative modification of ECM aggravates AS by affecting the biological behavior of SMCs.
Collapse
Affiliation(s)
- Weijie Liang
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, Guangzhou, Guangdong, PR China
| | - Zhen Liu
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, Guangzhou, Guangdong, PR China
| | - Hongyan Zheng
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, Guangzhou, Guangdong, PR China
| | - Aiwen Lin
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, Guangzhou, Guangdong, PR China
| | - Jun Fan
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, Guangzhou, Guangdong, PR China
| | - Jianhao Li
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, Guangzhou, Guangdong, PR China
| | - Wen Wu
- Department of Endocrinology, Guangdong Geriatrics Institute, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, Guangdong, PR China
| | - Qiang Jie
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, Guangzhou, Guangdong, PR China
| |
Collapse
|
11
|
Liu Y, Li M, Lv X, Bao K, Yu Tian X, He L, Shi L, Zhu Y, Ai D. YAP Targets the TGFβ Pathway to Mediate High-Fat/High-Sucrose Diet-Induced Arterial Stiffness. Circ Res 2022; 130:851-867. [PMID: 35176871 DOI: 10.1161/circresaha.121.320464] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Metabolic syndrome is related to cardiovascular diseases, which is attributed in part, to arterial stiffness; however, the mechanisms remain unclear. The present study aimed to investigate the molecular mechanisms of metabolic syndrome-induced arterial stiffness and to identify new therapeutic targets. METHODS Arterial stiffness was induced by high-fat/high-sucrose diet in mice, which was quantified by Doppler ultrasound. Four-dimensional label-free quantitative proteomic analysis, affinity purification and mass spectrometry, and immunoprecipitation and GST pull-down experiments were performed to explore the mechanism of YAP (Yes-associated protein)-mediated TGF (transforming growth factor) β pathway activation. RESULTS YAP protein was upregulated in the aortic tunica media of mice fed a high-fat/high-sucrose diet for 2 weeks and precedes arterial stiffness. Smooth muscle cell-specific YAP knockdown attenuated high-fat/high-sucrose diet-induced arterial stiffness and activation of TGFβ-Smad2/3 signaling pathway in arteries. By contrast, Myh11CreERT2-YapTg mice exhibited exacerbated high-fat/high-sucrose diet-induced arterial stiffness and enhanced TGFβ-activated Smad2/3 phosphorylation in arteries. PPM1B (protein phosphatase, Mg2+/Mn2+-dependent 1B) was identified as a YAP-bound phosphatase that translocates into the nucleus to dephosphorylate Smads in response to TGFβ. This process was inhibited by YAP through removal of the K63-linked ubiquitin chain of PPM1B at K326. CONCLUSIONS This study provides a new mechanism by which smooth muscle cell YAP regulates the TGFβ pathway and a potential therapeutic target in metabolic syndrome-associated arterial stiffness.
Collapse
Affiliation(s)
- Yanan Liu
- Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Second Hospital of Tianjin Medical University, Tianjin Medical University, China. (Y.L., X.L., D.A.)
| | - Mengke Li
- Department of Physiology and Pathophysiology, Tianjin Medical University, China. (M.L., Y.Z., D.A.)
| | - Xue Lv
- Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Second Hospital of Tianjin Medical University, Tianjin Medical University, China. (Y.L., X.L., D.A.)
| | - Kaiwen Bao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, China. (K.B., L.S.)
| | - Xiao Yu Tian
- School of Biomedical Sciences, Chinese University of Hong Kong (X.Y.T., L.H.)
| | - Lei He
- School of Biomedical Sciences, Chinese University of Hong Kong (X.Y.T., L.H.)
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, China. (K.B., L.S.)
| | - Yi Zhu
- Department of Physiology and Pathophysiology, Tianjin Medical University, China. (M.L., Y.Z., D.A.)
| | - Ding Ai
- Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Second Hospital of Tianjin Medical University, Tianjin Medical University, China. (Y.L., X.L., D.A.).,Department of Physiology and Pathophysiology, Tianjin Medical University, China. (M.L., Y.Z., D.A.)
| |
Collapse
|
12
|
Wang Y, Wu CJ, Du Y, Liu YQ, Cai JR, Wu XQ, Hu SQ. SIRT2 tyrosine nitration by peroxynitrite in response to renal ischemia/reperfusion injury. Free Radic Res 2022; 55:1104-1118. [PMID: 34979841 DOI: 10.1080/10715762.2021.2024529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are the production of renal ischemia/reperfusion (I/R). The current study is to elucidate a mechanism of SIRT2 tyrosine nitration to accelerate the cell apoptosis induced by peroxynitrite (ONOO‾), the most reactive and deleterious RNS type in renal ischemia/reperfusion (I/R) injury. Our results demonstrate that there is a significant enhancement of the 3-nitrotyrosine levels in renal tissues of Acute Kidney Injury (AKI) patients and rats that underwent renal I/R, and a positive correlation between the 3-nitrotyrosine level and renal function impairment, indicative of an accumulation of peroxynitrite. Notably, peroxynitrite-evoked nitration of SIRT2 destroyed its enzymatic activity and the capability to deacetylate FOXO3a, and enhanced expression of Bim and caspase3, facilitating renal cell apoptosis in renal ischemia/reperfusion and SIN-1(peroxynitrite donor) treatment in vitro, and these effects were reversed by FeTMPyP, a peroxynitrite decomposition scavenger. Importantly, we identified that the tyrosine 86 is responsible for SIRT2 nitration and inactivation using site-mutation assay and Mass Spectrography analysis. Altogether, these findings point to a novel protective mechanism that an inhibition of SIRT2 tyrosine nitration can be a promising strategy to prevent ischemic renal diseases involving AKI.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy of Xuzhou Medical University, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chun Jie Wu
- Department of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy of Xuzhou Medical University, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yu Du
- Department of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy of Xuzhou Medical University, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yu Qing Liu
- The Affiliated Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jing Ran Cai
- Department of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy of Xuzhou Medical University, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xue Qing Wu
- Department of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy of Xuzhou Medical University, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shu Qun Hu
- Emergency Center, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
13
|
Kalous KS, Wynia-Smith SL, Smith BC. Sirtuin Oxidative Post-translational Modifications. Front Physiol 2021; 12:763417. [PMID: 34899389 PMCID: PMC8652059 DOI: 10.3389/fphys.2021.763417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Increased sirtuin deacylase activity is correlated with increased lifespan and healthspan in eukaryotes. Conversely, decreased sirtuin deacylase activity is correlated with increased susceptibility to aging-related diseases. However, the mechanisms leading to decreased sirtuin activity during aging are poorly understood. Recent work has shown that oxidative post-translational modification by reactive oxygen (ROS) or nitrogen (RNS) species results in inhibition of sirtuin deacylase activity through cysteine nitrosation, glutathionylation, sulfenylation, and sulfhydration as well as tyrosine nitration. The prevalence of ROS/RNS (e.g., nitric oxide, S-nitrosoglutathione, hydrogen peroxide, oxidized glutathione, and peroxynitrite) is increased during inflammation and as a result of electron transport chain dysfunction. With age, cellular production of ROS/RNS increases; thus, cellular oxidants may serve as a causal link between loss of sirtuin activity and aging-related disease development. Therefore, the prevention of inhibitory oxidative modification may represent a novel means to increase sirtuin activity during aging. In this review, we explore the role of cellular oxidants in inhibiting individual sirtuin human isoform deacylase activity and clarify the relevance of ROS/RNS as regulatory molecules of sirtuin deacylase activity in the context of health and disease.
Collapse
Affiliation(s)
- Kelsey S Kalous
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sarah L Wynia-Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
14
|
Mimura T, Funatsu H, Noma H, Kondo A, Mizota A. Silent Information Regulator T1 in Aqueous Humor of Patients with Age-Related Macular Degeneration. Open Ophthalmol J 2021. [DOI: 10.2174/1874364102115010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Purpose:
The purpose of this study is to compare the aqueous humor level of Silent Information Regulator T1 (SIRT1) between patients with Age-related Macular Degeneration (AMD) and cataract patients.
Materials and Methods:
Aqueous humor level of SIRT1 was measured by enzyme-linked immunosorbent assay in 13 patients with wet-type AMD (n=13, AMD group) and 13 patients with cataracts (cataract group). In addition, the thickness of each retinal layer was determined by optical coherence tomography.
Results:
The aqueous humor level of SIRT1 was significantly lower in the AMD group than in the cataract group (p=0.007). In the AMD group, the SIRT1 level was positively correlated with the thickness of the retinal ganglion cell layer (r=0.31) and the inner nuclear layer (r=0.76).
Conclusion:
The aqueous level of SIRT1 decreased as the ganglion cell layer and inner nuclear layer became thinner, suggesting that reduction of SIRT1 activity might be involved in the pathogenesis of this disease.
Collapse
|
15
|
|
16
|
Abbasian N. Vascular Calcification Mechanisms: Updates and Renewed Insight into Signaling Pathways Involved in High Phosphate-Mediated Vascular Smooth Muscle Cell Calcification. Biomedicines 2021; 9:804. [PMID: 34356868 PMCID: PMC8301440 DOI: 10.3390/biomedicines9070804] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 12/18/2022] Open
Abstract
Vascular calcification (VC) is associated with aging, cardiovascular and renal diseases and results in poor morbidity and increased mortality. VC occurs in patients with chronic kidney disease (CKD), a condition that is associated with high serum phosphate (Pi) and severe cardiovascular consequences. High serum Pi level is related to some pathologies which affect the behaviour of vascular cells, including platelets, endothelial cells (ECs) and smooth muscle cells (SMCs), and plays a central role in promoting VC. VC is a complex, active and cell-mediated process involving the transdifferentiation of vascular SMCs to a bone-like phenotype, systemic inflammation, decreased anti-calcific events (loss of calcification inhibitors), loss in SMC lineage markers and enhanced pro-calcific microRNAs (miRs), an increased intracellular calcium level, apoptosis, aberrant DNA damage response (DDR) and senescence of vascular SMCs. This review gives a brief overview of the current knowledge of VC mechanisms with a particular focus on Pi-induced changes in the vascular wall important in promoting calcification. In addition to reviewing the main findings, this review also sheds light on directions for future research in this area and discusses emerging pathways such as Pi-regulated intracellular calcium signaling, epigenetics, oxidative DNA damage and senescence-mediated mechanisms that may play critical, yet to be explored, regulatory and druggable roles in limiting VC.
Collapse
Affiliation(s)
- Nima Abbasian
- School of Life and Medical Sciences, University of Hertfordshire, Hertfordshire AL10 9AB, UK
| |
Collapse
|
17
|
Hu S, Luo J, Fu M, Luo L, Cai Y, Li W, Li Y, Dong R, Yang Y, Tu L, Xu X. Soluble epoxide hydrolase deletion attenuated nicotine-induced arterial stiffness via limiting the loss of SIRT1. Am J Physiol Heart Circ Physiol 2021; 321:H353-H368. [PMID: 34142887 DOI: 10.1152/ajpheart.00979.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arterial stiffness, a consequence of smoking, is an underlying risk factor of cardiovascular diseases. Epoxyeicosatrienoic acids (EETs), hydrolyzed by soluble epoxide hydrolase (sEH), have beneficial effects against vascular dysfunction. However, the role of sEH knockout in nicotine-induced arterial stiffness was not characterized. We hypothesized that sEH knockout could prevent nicotine-induced arterial stiffness. In the present study, Ephx2 (the gene encodes sEH enzyme) null (Ephx2-/-) mice and wild-type (WT) littermate mice were infused with or without nicotine and administered with or without nicotinamide [NAM, sirtuin-1 (SIRT1) inhibitor] simultaneously for 4 wk. Nicotine treatment increased sEH expression and activity in the aortas of WT mice. Nicotine infusion significantly induced vascular remodeling, arterial stiffness, and SIRT1 deactivation in WT mice, which was attenuated in Ephx2 knockout mice (Ephx2-/- mice) without NAM treatment. However, the arterial protective effects were gone in Ephx2-/- mice with NAM treatment. In vitro, 11,12-EET treatment attenuated nicotine-induced matrix metalloproteinase 2 (MMP2) upregulation via SIRT1-mediated yes-associated protein (YAP) deacetylation. In conclusion, sEH knockout attenuated nicotine-induced arterial stiffness and vascular remodeling via SIRT1-induced YAP deacetylation.NEW & NOTEWORTHY We presently show that sEH knockout repressed nicotine-induced arterial stiffness and extracellular matrix remodeling via SIRT1-induced YAP deacetylation, which highlights that sEH is a potential therapeutic target in smoking-induced arterial stiffness and vascular remodeling.
Collapse
Affiliation(s)
- Shuiqing Hu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, People's Republic of China
| | - Jinlan Luo
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Menglu Fu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Liman Luo
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yueting Cai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, People's Republic of China
| | - Wenhua Li
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yuanyuan Li
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ruolan Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Yang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Tu
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, People's Republic of China.,Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xizhen Xu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, People's Republic of China
| |
Collapse
|
18
|
Whitehead AK, Erwin AP, Yue X. Nicotine and vascular dysfunction. Acta Physiol (Oxf) 2021; 231:e13631. [PMID: 33595878 DOI: 10.1111/apha.13631] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/25/2021] [Accepted: 02/15/2021] [Indexed: 12/20/2022]
Abstract
Cigarette smoking is the single most important risk factor for the development of cardiovascular diseases (CVDs). However, the role of nicotine, the addictive component of all tobacco products, in the development of CVD is incompletely understood. Although increased public awareness of the harms of cigarette smoking has successfully led to a decline in its prevalence, the use of electronic cigarettes (e-cig) or electronic nicotine delivery system has increased dramatically in recent years because of the perception that these products are safe. This review summarizes our current knowledge of the expression and function of the nicotinic acetylcholine receptors in the cardiovascular system and the impact of nicotine exposure on cardiovascular health, with a focus on nicotine-induced vascular dysfunction. Nicotine alters vasoreactivity through endothelium-dependent and/or endothelium-independent mechanisms, leading to clinical manifestations in both cigarette smokers and e-cig users. In addition, nicotine induces vascular remodelling through its effects on proliferation, migration and matrix production of both vascular endothelial and vascular smooth muscle cells. The purpose of this review is to identify critical knowledge gaps regarding the effects of nicotine on the vasculature and to stimulate continued nicotine research.
Collapse
Affiliation(s)
- Anna K. Whitehead
- Department of Physiology Louisiana State University Health Sciences Center New Orleans LA USA
| | - Abigail P. Erwin
- Department of Physiology Louisiana State University Health Sciences Center New Orleans LA USA
| | - Xinping Yue
- Department of Physiology Louisiana State University Health Sciences Center New Orleans LA USA
| |
Collapse
|
19
|
Guo Y, Li W, Qian M, Jiang T, Guo P, Du Q, Lin N, Xie X, Wu Z, Lin D, Liu D. D-4F Ameliorates Contrast Media-Induced Oxidative Injuries in Endothelial Cells via the AMPK/PKC Pathway. Front Pharmacol 2021; 11:556074. [PMID: 33658920 PMCID: PMC7917283 DOI: 10.3389/fphar.2020.556074] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/30/2020] [Indexed: 01/23/2023] Open
Abstract
Endothelial dysfunction is involved in the pathophysiological processes of contrast media (CM)–induced acute kidney injury (CI-AKI) after vascular angiography or intervention. Previous study found that apolipoprotein A-I (apoA-I) mimetic peptide, D-4F, alleviates endothelial impairments via upregulating heme oxygenase-1 (HO-1) expression and scavenging excessively generated reactive oxygen species (ROS). However, whether D-4F could ameliorate oxidative injuries in endothelial cells through suppressing ROS production remains unclear. In this study, a representative nonionic iodinated CM, iodixanol, was chosen for the in vitro and in vivo studies. Endothelial cell viability was assayed using micrographs, lactate dehydrogenase (LDH) activity, and cell counting kit-8 (CCK-8). Apoptosis was detected using flow cytometry analysis and caspase-3 activation. Endothelial inflammation was tested using monocyte adhesion assay and adhesion molecule expression. ROS production was detected by measuring the formation of lipid peroxidation malondialdehyde (MDA) through the thiobarbituric acid reactive substance (TBARS) assay. Peroxynitrite (ONOO⁻) formation was tested using the 3-nitrotyrosine ELISA kit. Iodixanol impaired cell viability, promoted vascular cell adhesion molecule-1 (VCAM-1) and intercellular cell adhesion molecule-1 (ICAM-1) expression, and induced cell apoptosis in human umbilical vein endothelial cells (HUVECs). However, D-4F mitigated these injuries. Furthermore, iodixanol induced the phosphorylation of protein kinase C (PKC) beta II, p47, Rac1, and endothelial nitric oxide synthase (eNOS) at Thr495, which elicited ROS release and ONOO⁻ generation. D-4F inhibited NADPH oxidase (NOX) activation, ROS production, and ONOO⁻ formation via the AMP-activated protein kinase (AMPK)/PKC pathway. Additionally, after an intravascular injection of iodixanol in Sprague Dawley rats, iodixanol induced a remarkable inflammatory response in arterial endothelial cells, although significant apoptosis and morphological changes were not observed. D-4F alleviated the vessel inflammation resulting from iodixanol in vivo. Collectively, besides scavenging ROS, D-4F could also suppress ROS production and ONOO⁻ formation through the AMPK/PKC pathway, which ameliorated oxidative injuries in endothelial cells. Hence, D-4F might serve as a potential agent in preventing CI-AKI.
Collapse
Affiliation(s)
- Yansong Guo
- Department of Cardiology, Fujian Provincial Hospital, Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Cardiovascular Institute, Fujian Provincial Center for Geriatrics, Provincial Clinical Medicine College of Fujian Medical University, Fuzhou, China
| | - Wei Li
- Department of Cardiology, the Affiliated Xiamen Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, China
| | - Mingming Qian
- Department of Cardiology, the Affiliated Xiamen Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, China
| | - Ting Jiang
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, High-field NMR Research Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Ping Guo
- Department of Cardiology, the Affiliated Xiamen Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, China
| | - Qian Du
- Department of Cardiology, the Affiliated Xiamen Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, China
| | - Na Lin
- Department of Cardiology, Fujian Provincial Hospital, Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Cardiovascular Institute, Fujian Provincial Center for Geriatrics, Provincial Clinical Medicine College of Fujian Medical University, Fuzhou, China
| | - Xianwei Xie
- Department of Cardiology, Fujian Provincial Hospital, Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Cardiovascular Institute, Fujian Provincial Center for Geriatrics, Provincial Clinical Medicine College of Fujian Medical University, Fuzhou, China
| | - Zhiyong Wu
- Department of Cardiology, Fujian Provincial Hospital, Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Cardiovascular Institute, Fujian Provincial Center for Geriatrics, Provincial Clinical Medicine College of Fujian Medical University, Fuzhou, China
| | - Donghai Lin
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, High-field NMR Research Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Donghui Liu
- Department of Cardiology, Fujian Provincial Hospital, Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Cardiovascular Institute, Fujian Provincial Center for Geriatrics, Provincial Clinical Medicine College of Fujian Medical University, Fuzhou, China.,Department of Cardiology, the Affiliated Xiamen Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, China
| |
Collapse
|
20
|
Pan Q, Gao Z, Zhu C, Peng Z, Song M, Li L. Overexpression of histone deacetylase SIRT1 exerts an antiangiogenic role in diabetic retinopathy via miR-20a elevation and YAP/HIF1α/VEGFA depletion. Am J Physiol Endocrinol Metab 2020; 319:E932-E943. [PMID: 32776826 DOI: 10.1152/ajpendo.00051.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As a basic member of the Class III histone deacetylases, SIRT1 has been implicated in the occurrence and progression of diabetic retinopathy (DR). The current study aimed to investigate the roles of SIRT1/miR-20a/Yse-associated protein (YAP)/hypoxia-inducible factor 1 α (HIF1α)/vascular endothelial growth factor A (VEGFA) in DR. The expression of SIRT1 was initially determined through quantitative RT-PCR and Western blot analysis following the successful establishment of a DR mouse model, followed by detection of SIRT1 catalytic activity. Retinal microvascular endothelial cells (RMECs) were cultured in media supplemented with normal glucose (NG) or high glucose (HG). Thereafter, SIRT1 was either silenced or overexpressed in RMECs, after which EdU staining and Matrigel-based tube formation assay were performed to assess cell proliferation and tube formation. The binding relationship between YAP, HIF1α, and VEGFA was further illustrated using dual-luciferase reporter assay. Preretinal neovascular cell number was tallied with the IB4-positive vascular endothelial cells, as determined by immunofluorescence. SIRT1 was poorly expressed in mice with DR and HG-treated RMECs with low catalytic activity. The proliferation and tube formation capabilities of RMECs were elevated under HG conditions, which could be reversed following overexpression of SIRT1. SIRT1 was identified as positively regulating the expression of miR-20a with YAP detected as the key target gene of miR-20a. Our data suggested that YAP could upregulate VEGFA via induction of HIF1α. Moreover, SIRT1 overexpression strongly repressed RMEC proliferation and angiogenesis, which could be reversed via restoration of YAP/HIF1α/VEGFA expression. Taken together, the key findings of our study suggest that upregulation of SIRT1 inhibits the development of DR via miR-20a-induced downregulation of YAP/HIF1α/VEGFA.
Collapse
Affiliation(s)
- Qintuo Pan
- Department of Fundus Surgery, The Eye Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zhiqiang Gao
- Department of Fundus Surgery, The Eye Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Chenlei Zhu
- Department of Fundus Surgery, The Eye Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zijie Peng
- Department of Fundus Surgery, The Eye Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Minmin Song
- Department of Fundus Surgery, The Eye Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Lili Li
- Department of Radiation Oncology and Chemotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
21
|
Song P, Zhao Q, Zou MH. Targeting senescent cells to attenuate cardiovascular disease progression. Ageing Res Rev 2020; 60:101072. [PMID: 32298812 DOI: 10.1016/j.arr.2020.101072] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022]
Abstract
Cardiovascular disease (CVD) is the most common disease to increase as life expectancy increases. Most high-profile pharmacological treatments for age-related CVD have led to inefficacious results, implying that novel approaches to treating these pathologies are needed. Emerging data have demonstrated that senescent cardiovascular cells, which are characterized by irreversible cell cycle arrest and a distinct senescence-associated secretory phenotype, accumulate in aged or diseased cardiovascular systems, suggesting that they may impair cardiovascular function. This review discusses the evidence implicating senescent cells in cardiovascular ageing, the onset and progression of CVD, and the molecular mechanisms underlying cardiovascular cell senescence. We also review eradication of senescent cardiovascular cells by small-molecule-drug-mediated apoptosis and immune cell-mediated efferocytosis and toxicity as promising and precisely targeted therapeutics for CVD prevention and treatment.
Collapse
|
22
|
Zhao Q, Coughlan KA, Zou MH, Song P. Loss of AMPKalpha1 Triggers Centrosome Amplification via PLK4 Upregulation in Mouse Embryonic Fibroblasts. Int J Mol Sci 2020; 21:ijms21082772. [PMID: 32316320 PMCID: PMC7216113 DOI: 10.3390/ijms21082772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 11/16/2022] Open
Abstract
Recent evidence indicates that activation of adenosine monophosphate-activated protein kinase (AMPK), a highly conserved sensor and modulator of cellular energy and redox, regulates cell mitosis. However, the underlying molecular mechanisms for AMPKα subunit regulation of chromosome segregation remain poorly understood. This study aimed to ascertain if AMPKα1 deletion contributes to chromosome missegregation by elevating Polo-like kinase 4 (PLK4) expression. Centrosome proteins and aneuploidy were monitored in cultured mouse embryonic fibroblasts (MEFs) isolated from wild type (WT, C57BL/6J) or AMPKα1 homozygous deficient (AMPKα1−/−) mice by Western blotting and metaphase chromosome spread. Deletion of AMPKα1, the predominant AMPKα isoform in immortalized MEFs, led to centrosome amplification and chromosome missegregation, as well as the consequent aneuploidy (34–66%) and micronucleus. Furthermore, AMPKα1 null cells exhibited a significant induction of PLK4. Knockdown of nuclear factor kappa B2/p52 ameliorated the PLK4 elevation in AMPKα1-deleted MEFs. Finally, PLK4 inhibition by Centrinone reversed centrosome amplification of AMPKα1-deleted MEFs. Taken together, our results suggest that AMPKα1 plays a fundamental role in the maintenance of chromosomal integrity through the control of p52-mediated transcription of PLK4, a trigger of centriole biogenesis.
Collapse
Affiliation(s)
- Qiang Zhao
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30302, USA; (Q.Z.); (M.-H.Z.)
| | | | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30302, USA; (Q.Z.); (M.-H.Z.)
| | - Ping Song
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30302, USA; (Q.Z.); (M.-H.Z.)
- Correspondence: ; Tel.: +1-404-413-6636
| |
Collapse
|
23
|
Lacolley P, Regnault V, Laurent S. Mechanisms of Arterial Stiffening: From Mechanotransduction to Epigenetics. Arterioscler Thromb Vasc Biol 2020; 40:1055-1062. [PMID: 32075419 DOI: 10.1161/atvbaha.119.313129] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Arterial stiffness is a major independent risk factor for cardiovascular complications causing isolated systolic hypertension and increased pulse pressure in the microvasculature of target organs. Stiffening of the arterial wall is determined by common mechanisms including reduced elastin/collagen ratio, production of elastin cross-linking, reactive oxygen species-induced inflammation, calcification, vascular smooth muscle cell stiffness, and endothelial dysfunction. This brief review will discuss current biological mechanisms by which other cardiovascular risk factors (eg, aging, hypertension, diabetes mellitus, and chronic kidney disease) cause arterial stiffness, with a particular focus on recent advances regarding nuclear mechanotransduction, mitochondrial oxidative stress, metabolism and dyslipidemia, genome mutations, and epigenetics. Targeting these different molecular pathways at different time of cardiovascular risk factor exposure may be a novel approach for discovering drugs to reduce arterial stiffening without affecting artery strength and normal remodeling.
Collapse
Affiliation(s)
- Patrick Lacolley
- From the INSERM, U1116, Vandœuvre-lès-Nancy, France (P.L., V.R.).,Université de Lorraine, Nancy, France (P.L., V.R.)
| | - Véronique Regnault
- From the INSERM, U1116, Vandœuvre-lès-Nancy, France (P.L., V.R.).,Université de Lorraine, Nancy, France (P.L., V.R.)
| | - Stéphane Laurent
- Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France (S.L.).,PARCC INSERM, UMR 970, Paris, France (S.L.).,University Paris Descartes, France (S.L.)
| |
Collapse
|
24
|
Ye S, Zeng S, Huang M, Chen J, Chen X, Xu P, Wang Q, Gao W, Yang B, Hao B, Huang W, Liu Q. [Effect of the chemoprotectant tempol on anti-tumor activity of cisplatin]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:883-890. [PMID: 31511206 DOI: 10.12122/j.issn.1673-4254.2019.08.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of the chemoprotectant tempol on the anti-tumor activity of cisplatin (DDP). METHODS The cellular toxicity of tempol in human colon cancer SW480 cells and mouse colon cancer CT26 cells were evaluated using MTT and cell counting kit-8 assays. CalcuSyn software analysis was used to determine the interaction between tempol and DDP in inhibition of the cell viability. A subcutaneous homograft mouse model of colon cancer was established. The mice were randomly divided into control group, tempol group, cisplatin group and tempol + DDP treatment group with intraperitoneal injections of the indicated agents. The tumor size, body weight and lifespan of the mice were measured, and HE staining was used to analyze the cytotoxic effect of the agents on the kidney and liver. Immunohistochemistry and Western blotting were performed to detect the expression of Bax and Bcl2 in the tumor tissue, and TUNEL staining was used to analyze the tumor cell apoptosis. The level of reactive oxygen species (ROS) in the tumor tissue was determined using flow cytometry. RESULTS Tempol showed inhibitory effects on the viability of SW480 and CT26 cells. CalcuSyn software analysis showed that tempol had a synergistic anti-tumor effect with DDP (CI < 1). In the homograft mouse model, tempol treatment alone did not produce obvious anti-tumor effect. HE staining showed that the combined use of tempol and DDP alleviated DDP-induced fibrogenesis in the kidneys, but tempol also reduced the anti-tumor activity of DDP. Compared with the mice treated with DDP alone, the mice treated with both tempol and DDP had a significantly larger tumor size (P < 0.01) and a shorter lifespan (P < 0.05). Tempol significantly reversed DDP-induced expression of Bax and Bcl2 in the tumor tissue and tumor cell apoptosis (P < 0.001), and obviously reduced the elevation of ROS level in the tumor tissue induced by DDP treatment (P < 0.05). CONCLUSIONS Tempol can attenuate the anti-tumor effect of DDP while reducing the side effects of DDP. Caution must be taken and the risks and benefits should be carefully weighed when considering the use of tempol as an anti-oxidant to reduce the toxicities of DDP.
Collapse
Affiliation(s)
- Shuangyan Ye
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University/Guangdong Provincial Key Laboratory of Cancer Immunotherapy/Guangzhou Key Laboratory of Tumor Immunology Research, Guangzhou 510515, China
| | - Sisi Zeng
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University/Guangdong Provincial Key Laboratory of Cancer Immunotherapy/Guangzhou Key Laboratory of Tumor Immunology Research, Guangzhou 510515, China
| | - Mengqiu Huang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University/Guangdong Provincial Key Laboratory of Cancer Immunotherapy/Guangzhou Key Laboratory of Tumor Immunology Research, Guangzhou 510515, China
| | - Jianping Chen
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University/Guangdong Provincial Key Laboratory of Cancer Immunotherapy/Guangzhou Key Laboratory of Tumor Immunology Research, Guangzhou 510515, China
| | - Xi Chen
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University/Guangdong Provincial Key Laboratory of Cancer Immunotherapy/Guangzhou Key Laboratory of Tumor Immunology Research, Guangzhou 510515, China
| | - Pengfei Xu
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University/Guangdong Provincial Key Laboratory of Cancer Immunotherapy/Guangzhou Key Laboratory of Tumor Immunology Research, Guangzhou 510515, China
| | - Qianli Wang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University/Guangdong Provincial Key Laboratory of Cancer Immunotherapy/Guangzhou Key Laboratory of Tumor Immunology Research, Guangzhou 510515, China
| | - Wenwen Gao
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University/Guangdong Provincial Key Laboratory of Cancer Immunotherapy/Guangzhou Key Laboratory of Tumor Immunology Research, Guangzhou 510515, China
| | - Bingsheng Yang
- Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Bingtao Hao
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University/Guangdong Provincial Key Laboratory of Cancer Immunotherapy/Guangzhou Key Laboratory of Tumor Immunology Research, Guangzhou 510515, China
| | - Wenhuan Huang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Department of Human Anatomy, School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang 524003, China
| | - Qiuzhen Liu
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University/Guangdong Provincial Key Laboratory of Cancer Immunotherapy/Guangzhou Key Laboratory of Tumor Immunology Research, Guangzhou 510515, China.,Center for Medical Transformation, Shunde Hospital, Southern Medical University, Foshan 528300, China
| |
Collapse
|
25
|
Van den Bergh G, Opdebeeck B, D'Haese PC, Verhulst A. The Vicious Cycle of Arterial Stiffness and Arterial Media Calcification. Trends Mol Med 2019; 25:1133-1146. [PMID: 31522956 DOI: 10.1016/j.molmed.2019.08.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022]
Abstract
Arterial media calcification and arterial stiffness are independent predictors of cardiovascular mortality. Both processes reinforce one another, creating a vicious cycle in which transdifferentiation of endothelial cells and vascular smooth muscle cells play a central role. Physiological functioning of vascular smooth muscle cells in the arterial medial layer greatly depends on normal endothelial cell behavior. Endothelial or intimal layer cells are the primary sensors of pathological triggers circulating in the blood during, for example, ageing or inflammation, and often can be seen as initiators of this vicious cycle. As such, the search for treatment of arterial media calcification, which until now has been mainly concentrated at the level of the vascular smooth cell, may need to be expanded to intimal layer targets.
Collapse
Affiliation(s)
- Geoffrey Van den Bergh
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, B-2610 Wilrijk, Belgium
| | - Britt Opdebeeck
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, B-2610 Wilrijk, Belgium
| | - Patrick C D'Haese
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, B-2610 Wilrijk, Belgium.
| | - Anja Verhulst
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, B-2610 Wilrijk, Belgium
| |
Collapse
|
26
|
Arterial Stiffness Assessed by Cardio-Ankle Vascular Index. Int J Mol Sci 2019; 20:ijms20153664. [PMID: 31357449 PMCID: PMC6695820 DOI: 10.3390/ijms20153664] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022] Open
Abstract
Arterial stiffness is an age-related disorder. In the medial layer of arteries, mechanical fracture due to fatigue failure for the pulsatile wall strain causes medial degeneration vascular remodeling. The alteration of extracellular matrix composition and arterial geometry result in structural arterial stiffness. Calcium deposition and other factors such as advanced glycation end product-mediated collagen cross-linking aggravate the structural arterial stiffness. On the other hand, endothelial dysfunction is a cause of arterial stiffness. The biological molecular mechanisms relating to aging are known to involve the progression of arterial stiffness. Arterial stiffness further applies stress on large arteries and also microcirculation. Therefore, it is closely related to adverse outcomes in cardiovascular and cerebrovascular system. Cardio-ankle vascular index (CAVI) is a promising diagnostic tool for evaluating arterial stiffness. The principle is based on stiffness parameter β, which is an index intended to assess the distensibility of carotid artery. Stiffness parameter β is a two-dimensional technique obtained from changes of arterial diameter by pulse in one section. CAVI applied the stiffness parameter β to all of the arterial segments between heart and ankle using pulse wave velocity. CAVI has been commercially available for a decade and the clinical data of its effectiveness has accumulated. The characteristics of CAVI differ from other physiological tests of arterial stiffness due to the independency from blood pressure at the time of examination. This review describes the pathophysiology of arterial stiffness and CAVI. Molecular mechanisms will also be covered.
Collapse
|