1
|
Ajoolabady A, Pratico D, Mazidi M, Davies IG, Lip GYH, Seidah N, Libby P, Kroemer G, Ren J. PCSK9 in metabolism and diseases. Metabolism 2025; 163:156064. [PMID: 39547595 DOI: 10.1016/j.metabol.2024.156064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/02/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
PCSK9 is a serine protease that regulates plasma levels of low-density lipoprotein (LDL) and cholesterol by mediating the endolysosomal degradation of LDL receptor (LDLR) in the liver. When PCSK9 functions unchecked, it leads to increased degradation of LDLR, resulting in elevated circulatory levels of LDL and cholesterol. This dysregulation contributes to lipid and cholesterol metabolism abnormalities, foam cell formation, and the development of various diseases, including cardiovascular disease (CVD), viral infections, cancer, and sepsis. Emerging clinical and experimental evidence highlights an imperative role for PCSK9 in metabolic anomalies such as hypercholesterolemia and hyperlipidemia, as well as inflammation, and disturbances in mitochondrial homeostasis. Moreover, metabolic hormones - including insulin, glucagon, adipokines, natriuretic peptides, and sex steroids - regulate the expression and circulatory levels of PCSK9, thus influencing cardiovascular and metabolic functions. In this comprehensive review, we aim to elucidate the regulatory role of PCSK9 in lipid and cholesterol metabolism, pathophysiology of diseases such as CVD, infections, cancer, and sepsis, as well as its pharmaceutical and non-pharmaceutical targeting for therapeutic management of these conditions.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Mohsen Mazidi
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK; King's College London, Department of Twin Research & Genetic Epidemiology, South Wing St Thomas', London, UK; Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Ian G Davies
- School of Sport and Exercise Sciences, Faculty of Science, Liverpool John Moores University, Copperas Hill, Liverpool L3 5AJ, UK
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Nabil Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC H2W 1R7, Canada.
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
2
|
Andrei C, Mihai DP, Nitulescu GM, Nitulescu G, Zanfirescu A. Modulating Autophagy in Osteoarthritis: Exploring Emerging Therapeutic Drug Targets. Int J Mol Sci 2024; 25:13695. [PMID: 39769455 PMCID: PMC11727697 DOI: 10.3390/ijms252413695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by the breakdown of cartilage and the subsequent inflammation of joint tissues, leading to pain and reduced mobility. Despite advancements in symptomatic treatments, disease-modifying therapies for OA remain limited. This narrative review examines the dual role of autophagy in OA, emphasizing its protective functions during the early stages and its potential to contribute to cartilage degeneration in later stages. By delving into the molecular pathways that regulate autophagy, this review highlights its intricate interplay with oxidative stress and inflammation, key drivers of OA progression. Emerging therapeutic strategies aimed at modulating autophagy are explored, including pharmacological agents such as AMP kinase activators, and microRNA-based therapies. Preclinical studies reveal encouraging results, demonstrating that enhancing autophagy can reduce inflammation and decelerate cartilage degradation. However, the therapeutic benefits of autophagy modulation depend on precise, stage-specific approaches. Excessive or dysregulated autophagy in advanced OA may lead to chondrocyte apoptosis, exacerbating joint damage. This review underscores the promise of autophagy-based interventions in bridging the gap between experimental research and clinical application. By advancing our understanding of autophagy's role in OA, these findings pave the way for innovative and effective therapies. Nonetheless, further research is essential to optimize these strategies, address potential off-target effects, and develop safe, targeted treatments that improve outcomes for OA patients.
Collapse
Affiliation(s)
| | - Dragos Paul Mihai
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.A.); (G.M.N.); (G.N.); (A.Z.)
| | | | | | | |
Collapse
|
3
|
Andavar M, Kamaraj R, Mahalingam Vijayakumar T, Murugesan A. Effectiveness of dual combination therapy of acarbose plus metformin and acarbose plus myo-inositol in ameliorating the metabolic and endocrinologic complications of polycystic ovary syndrome - A randomized controlled trial. Eur J Obstet Gynecol Reprod Biol 2024; 300:6-11. [PMID: 38972164 DOI: 10.1016/j.ejogrb.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/02/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
INTRODUCTION PCOS, beyond being characterized by reproductive disturbances, is a complicated rapid expanding metabolic and endocrinologic disorder of the recent times. Nearly 70% PCOS women show resistance to insulin. AIM The aim of the study is to determine and compare the effectiveness of acarbose plus metformin and acarbose plus myo-inositol combination therapy in alleviating the metabolic and endocrinologic complications of PCOS. MATERIALS AND METHODS An open labelled RCT was conducted on 168 PCOS women attending the gynaecology clinic at SRM MCH & RC, Chengalpattu and the trial was registered in CTRI (No. CTRI/2022/04/041877). Group A (n = 56) received metformin 500 mg/TID alone; group B (n = 54) received (acarbose 25 mg/TID for 4 weeks then 50 mg/TID for other 20 weeks) along with metformin 500 mg/TID and group C (n = 54) received (acarbose 25 mg/TID for 4 weeks then 50 mg/TID for other 20 weeks) along with myoinositol 1000 mg/BD. All parameters were measured at baseline and at the end of 6 months. RESULTS Significant reduction of LH, LH: FSH, TT, HOMA-IR was observed in all the groups. FSH increased only in metformin group. Increase in serum progesterone and reduction in FI, TGL, LDL were significant only in acarbose plus myo-inositol group. SHBG and HDL increased significantly only in acarbose plus metformin group. No changes in BMI, TC and VLDL were observed in any group. CONCLUSION Therefore, decrease in FI, HOMA-IR, TGL, LDL seen in acarbose plus myo-inositol group indirectly contributes to cardio-metabolic safety in PCOS. Similarly, a significant increase in SHBG levels with acarbose plus metformin group shows correction of the excess androgen and restoration of ovulation.
Collapse
Affiliation(s)
- Marina Andavar
- Department of Pharmacy Practice, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Raju Kamaraj
- Department of Pharmaceutical Regulatory Affairs, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India.
| | - Thangavel Mahalingam Vijayakumar
- Department of Pharmacy Practice, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Anuradha Murugesan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, SRM Medical College Hospital and Research Centre, Kattankulathur, Tamil Nadu 603 203, India
| |
Collapse
|
4
|
Williams KJ. The value of a negative study. Atherosclerosis 2024; 396:118530. [PMID: 38972157 DOI: 10.1016/j.atherosclerosis.2024.118530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Affiliation(s)
- Kevin Jon Williams
- Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Sirtori CR, Castiglione S, Pavanello C. METFORMIN: FROM DIABETES TO CANCER TO PROLONGATION OF LIFE. Pharmacol Res 2024; 208:107367. [PMID: 39191336 DOI: 10.1016/j.phrs.2024.107367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
The metformin molecule dates back to over a century, but its clinical use started in the '50s. Since then, its use in diabetics has grown constantly, with over 150 million users today. The therapeutic profile also expanded, with improved understanding of novel mechanisms. Metformin has a major activity on insulin resistance, by acting on the insulin receptors and mitochondria, most likely by activation of the adenosine monophosphate-activated kinase. These and associated mechanisms lead to significant lipid lowering and body weight loss. An anti-cancer action has come up in recent years, with mechanisms partly dependent on the mitochondrial activity and also on phosphatidylinositol 3-kinase resistance occurring in some malignant tumors. The potential of metformin to raise life-length is the object of large ongoing studies and of several basic and clinical investigations. The present review article will attempt to investigate the basic mechanisms behind these diverse activities and the potential clinical benefits. Metformin may act on transcriptional activity by histone modification, DNA methylation and miRNAs. An activity on age-associated inflammation (inflammaging) may occur via activation of the nuclear factor erythroid 2 related factor and changes in gut microbiota. A senolytic activity, leading to reduction of cells with the senescent associated secretory phenotype, may be crucial in lifespan prolongation as well as in ancillary properties in age-associated diseases, such as Parkinson's disease. Telomere prolongation may be related to the activity on mitochondrial respiratory factor 1 and on peroxisome gamma proliferator coactivator 1-alpha. Very recent observations on the potential to act on the most severe neurological disorders, such as amyotrophic lateral sclerosis and frontotemporal dementia, have raised considerable hope.
Collapse
Affiliation(s)
- Cesare R Sirtori
- Center of Dyslipidemias, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Centro E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| | - Sofia Castiglione
- Center of Dyslipidemias, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Centro E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Chiara Pavanello
- Center of Dyslipidemias, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Centro E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
6
|
Corn G, Lund M, Andersson NW, Dohlmann TL, Hlatky MA, Wohlfahrt J, Melbye M. Low-density lipoprotein cholesterol response to statins according to comorbidities and co-medications: A population-based study. Am Heart J 2024; 274:102-112. [PMID: 38710378 DOI: 10.1016/j.ahj.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND The response of low-density lipoprotein cholesterol (LDL-C) to statin therapy is variable, and may be affected by the presence of co-morbid conditions or the use of concomitant medications. Systematic variation in the response to statins based on these factors could affect the selection of the statin treatment regimen in population subgroups. We investigated whether common comorbidities and co-medications had clinically important effects on statin responses in individual patients. METHODS This register-based cohort study included 89,006 simvastatin or atorvastatin initiators with measurements of pre-statin and on-statin LDL-C levels, in Denmark, 2008-2018. We defined statin response as the percentage reduction in LDL-C, and used linear regression to estimate percentage reduction differences (PRD) according to 175 chronic comorbidities and 99 co-medications. We evaluated both the statistical significance (P-values corrected for multiple testing) and the clinical importance (PRD of 5 percentage points or more) of the observed associations. RESULTS Concomitant use of oral blood-glucose lowering drugs, which included metformin in 96% of treated individuals, was associated with a greater response to statin therapy that was both statistically significant and clinically important, with a PRD of 5.18 (95% confidence interval: 4.79 to 5.57). No other comorbidity or co-medication reached the prespecified thresholds for a significant, clinically important effect on statin response. Overall, comorbidities and co-medications had little effect on statin response, and altogether explained only 1.7% of the total observed population variance. CONCLUSION Most of the studied comorbidities and co-medications did not have a clinically important effect on statin response, suggesting no need to modify treatment regimens. However, use of metformin was associated with a significantly enhanced LDL-C response to statins, suggesting that lower statin doses may be effective in patients taking metformin.
Collapse
Affiliation(s)
- Giulia Corn
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.; Danish Cancer Institute, Statistics and Data Analysis, Copenhagen, Denmark.
| | - Marie Lund
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.; Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niklas W Andersson
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Tine L Dohlmann
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Mark A Hlatky
- Department of Health Policy and Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jan Wohlfahrt
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.; Danish Cancer Institute, Cancer Epidemiology and Surveillance, Copenhagen, Denmark
| | - Mads Melbye
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Danish Cancer Institute, Copenhagen, Denmark; K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, Norway; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
7
|
Hu D, Qin D, Kuang J, Yang Y, Weng S, Chen J, Wu S, Wang S, Mao L, Peng D, Yu B. Metformin-Induced Proprotein Convertase Subtilisin/Kexin Type 9 Inhibition Further Decreases Low-Density Lipoprotein Cholesterol Following Statin Treatment in Patients With Coronary Artery Disease and Without Diabetes. J Cardiovasc Pharmacol 2024; 84:261-269. [PMID: 38922587 DOI: 10.1097/fjc.0000000000001592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/07/2024] [Indexed: 06/27/2024]
Abstract
ABSTRACT In vitro investigations have established metformin's capacity to downregulate proprotein convertase subtilisin/kexin type 9 (PCSK9) expression, suggesting a potential beneficial effect on atherogenic lipoprotein particles when combined with metformin therapy. Our objective was to assess whether metformin could mitigate statin-induced adverse effects on PCSK9, thereby improving lipid profiles in patients with coronary artery disease (CAD) but without diabetes. Employing an open-label, placebo-controlled, randomized trial, we randomized patients with CAD but without diabetes into CLA (cholesterol-lowering agents alone: atorvastatin ± ezetimibe, n = 38) and Met + CLA groups (metformin plus CLA, n = 33) in a 1:1 ratio. The primary end point was the therapeutic impact of 1-month metformin combination treatment on low-density lipoprotein cholesterol (LDL-C) and PCSK9 levels. Baseline LDL-C and PCSK9 levels were 76.18 mg·dL -1 and 80.54 ng·mL -1 , respectively. After 1 month, metformin significantly reduced LDL-C (-20.81%, P < 0.001), enabling 72% of patients to attain guideline-recommended LDL-C goals. Noteworthy reductions in PCSK9 levels (-15.03%, P < 0.001) were observed. Moreover, Met + CLA markedly reduced LDL particle number more than CLA alone (-10.65% vs. 1.45%, P = 0.009), primarily due to diminished small-dense LDL particle count. Mechanistically, our study demonstrated metformin's inhibition of statin-induced PCSK9 expression in human hepatocellular cells. In summary, a 1-month metformin combination regimen reduced LDL-C levels in patients with CAD but without diabetes by inhibiting PCSK9 expression. TRIAL REGISTRATION Chinese Clinical Trial Registry identifier: ChiCTR1900026925 (26/10/2019).
Collapse
Affiliation(s)
- Die Hu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China; and
| | - Donglu Qin
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China; and
| | - Jie Kuang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China; and
| | - Yang Yang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China; and
| | - Shuwei Weng
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China; and
| | - Jin Chen
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China; and
| | - Sha Wu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China; and
| | - Shuai Wang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China; and
| | - Ling Mao
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China; and
| | - Daoquang Peng
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China; and
| | - Bilian Yu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China; and
- FuRong Laboratory, Changsha, Hunan, China
| |
Collapse
|
8
|
Lu F, Li E, Yang X. Proprotein convertase subtilisin/kexin type 9 deficiency in extrahepatic tissues: emerging considerations. Front Pharmacol 2024; 15:1413123. [PMID: 39139638 PMCID: PMC11319175 DOI: 10.3389/fphar.2024.1413123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is primarily secreted by hepatocytes. PCSK9 is critical in liver low-density lipoprotein receptors (LDLRs) metabolism. In addition to its hepatocellular presence, PCSK9 has also been detected in cardiac, cerebral, islet, renal, adipose, and other tissues. Once perceived primarily as a "harmful factor," PCSK9 has been a focal point for the targeted inhibition of both systemic circulation and localized tissues to treat diseases. However, PCSK9 also contributes to the maintenance of normal physiological functions in numerous extrahepatic tissues, encompassing both LDLR-dependent and -independent pathways. Consequently, PCSK9 deficiency may harm extrahepatic tissues in close association with several pathophysiological processes, such as lipid accumulation, mitochondrial impairment, insulin resistance, and abnormal neural differentiation. This review encapsulates the beneficial effects of PCSK9 on the physiological processes and potential disorders arising from PCSK9 deficiency in extrahepatic tissues. This review also provides a comprehensive analysis of the disparities between experimental and clinical research findings regarding the potential harm associated with PCSK9 deficiency. The aim is to improve the current understanding of the diverse effects of PCSK9 inhibition.
Collapse
Affiliation(s)
- Fengyuan Lu
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - En Li
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Yang
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Andavar M, Kamaraj R, Vijayakumar TM, Murugesan A. Therapeutic potential of acarbose in ameliorating the metabolic and endocrinological complications of polycystic ovarian syndrome: a review. Curr Med Res Opin 2024; 40:1123-1135. [PMID: 38771729 DOI: 10.1080/03007995.2024.2358237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
Polycystic ovarian syndrome is a perplexed condition addressing endocrinal, cardiometabolic and gynaecological issues. It affects women of adolescent age and is drastically increasing in the Indo-Asian ethnicity over the recent years. According to Rotterdam criteria, PCOS is characterized by clinical or biochemical excess androgen and polycystic ovarian morphology; however, it has been established in the recent years that PCOS exacerbates to further serious metabolic conditions on the long term. This is a narrative literature review and not systematic review and is based on PubMed searches with relevant keywords "Polycystic ovarian syndrome AND acarbose OR metformin OR myoinositol; PCOS AND metabolic syndrome OR cardiovascular disease OR menstrual irregularity OR infertility OR chronic anovulation OR clinical hyperandrogenism" used in the title and are limited to articles published in English language with no time limits. A prominent aspect of PCOS is hyperandrogenaemia and hyperinsulinemia. About 50-70% of afflicted women have compensatory hyperinsulinemia and close to one tierce suffer from anovulation and infertility. Insulin resistance leads to metabolic complications and works with luteinizing hormone in increasing the ovarian androgen production. This excess androgen leads to clinical manifestations, irregular menstrual cycles and infertility. There isn't an entire cure, only the symptomatic clinical factors are considered rather than focusing on the underlying long-term complications. Therefore, the article focuses on a potent alpha glucosidase inhibitor, acarbose which suppresses the post meal glucose and insulin by delaying the absorption of complex carbs. It exhibits cardio-metabolic and hormonal benefits and is well tolerable in the south asian population. This review highlights the safety, effectiveness of acarbose in ameliorating the long-term complications of PCOS.
Collapse
Affiliation(s)
- Marina Andavar
- SRM College of Pharmacy, Department of Pharmacy Practice, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Raju Kamaraj
- SRM College of Pharmacy, Department of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Thangavel Mahalingam Vijayakumar
- SRM College of Pharmacy, Department of Pharmacy Practice, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Anuradha Murugesan
- SRM Medical College Hospital and Research Centre, Department of Obstetrics and Gynaecology, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| |
Collapse
|
10
|
Castro-Leyva V, Manuel-Apolinar L, Basurto-Acevedo NE, Basurto L, González-Chávez A, Ruiz-Gastelum E, Martínez-Murillo C. Metabolic Changes Induced by Bariatric Surgery May be Mediated by PAI-1 and PCSK9 Crosstalk. Arch Med Res 2024; 55:103032. [PMID: 38971127 DOI: 10.1016/j.arcmed.2024.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/01/2024] [Accepted: 06/12/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Adiposity favors several metabolic disorders with an exacerbated chronic pro-inflammatory status and tissue damage, with high levels of plasminogen activator inhibitor type 1 (PAI-1) and proprotein convertase subtilisin/kexin type 9 (PCSK9). OBJECTIVE To demonstrate the influence of bariatric surgery on the crosstalk between PAI-1 and PCSK9 to regulate metabolic markers. METHODS Observational and longitudinal study of 190 patients with obesity and obesity-related comorbidities who underwent bariatric surgery. We measured, before and after bariatric surgery, the anthropometric variables and we performed biochemical analysis by standard methods (glucose, insulin, triglycerides [TG], total cholesterol, high-density lipoprotein cholesterol [HDL-C], low-density lipoprotein cholesterol [LDL-C] and TG/HDL-C ratio, PAI-1 and PCSK9 were measured by ELISA). RESULTS PAI-1 levels decreased significantly after bariatric surgery, and were positively correlated with lipids, glucose, and TG, with significance on PCSK9 and TG/HDL-C alleviating the insulin resistance (IR) and inducing a state reversal of type 2 diabetes (T2D) with a significant decrease in body weight and BMI (p <0.0001). Multivariate regression analysis predicted a functional model in which PAI-1 acts as a regulator of PCSK9 (p <0.002), TG (p <0.05), and BMI; at the same time, PCSK9 modulates LDL-C HDL-C and PAI-1. CONCLUSIONS After bariatric surgery, we found a positive association and crosstalk between PAI-1 and PCSK9, which modulates the delicate balance of cholesterol, favoring the decrease of circulating lipids, TG, and PAI-1, which influences the glucose levels with amelioration of IR and T2D, demonstrating the crosstalk between fibrinolysis and lipid metabolism, the two main factors involved in atherosclerosis and cardiovascular disease in human obesity.
Collapse
Affiliation(s)
- Violeta Castro-Leyva
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Leticia Manuel-Apolinar
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Norma Eleane Basurto-Acevedo
- Servicio de Cirugía General, Clínica de Tracto Digestivo Superior, Cirugía Bariátrica y Metabólica, Hospital General de México Dr. Eduardo Liceaga, Mexico City, Mexico
| | - Lourdes Basurto
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| | - Antonio González-Chávez
- Clínica para la Atención Integral del Paciente con Diabetes y Obesidad, Hospital General de México Dr. Eduardo Liceaga, Mexico City, Mexico
| | - Edith Ruiz-Gastelum
- Servicio de Cardiología, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Sonora, Mexico
| | - Carlos Martínez-Murillo
- Departamento de Hematología. Hospital General de México Dr. Eduardo Liceaga, Mexico City, Mexico
| |
Collapse
|
11
|
Wisseh C, Adinkrah E, Opara L, Melone S, Udott E, Bazargan M, Shaheen M. Associations between Diabetes-Specific Medication Regimen Complexity and Cardiometabolic Outcomes among Underserved Non-Hispanic Black Adults Living with Type 2 Diabetes Mellitus. PHARMACY 2024; 12:83. [PMID: 38921959 PMCID: PMC11207877 DOI: 10.3390/pharmacy12030083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) management and glycemic control in underserved non-Hispanic Black adults presents with multifaceted challenges: balancing the optimal complexity of antihyperglycemic medications prescribed, limited medication access due to socioeconomic status, medication nonadherence, and high prevalence of cardiometabolic comorbidities. This single-center, cross-sectional, retrospective chart analysis evaluated the association of Medication Regimen Complexity (MRC) with cardiometabolic outcomes (glycemic, atherogenic cholesterol, and blood pressure control) among non-Hispanic Black adults with type 2 diabetes. Utilizing 470 independent patient electronic health records, MRC and other covariates were examined to determine their associations with cardiometabolic outcomes. Chi-square tests of independence and multiple logistic regression were performed to identify associations between MRC and cardiometabolic outcomes. Our findings indicate significant negative and positive associations between MRC and glycemic control and atherogenic cholesterol control, respectively. However, there were no associations between MRC and blood pressure control. As diabetes MRC was shown to be associated with poor glycemic control and improved atherogenic cholesterol control, there is a critical need to standardize interdisciplinary diabetes care to include pharmacists and to develop more insurance policy interventions that increase access to newer, efficacious diabetes medications for historically marginalized populations.
Collapse
Affiliation(s)
- Cheryl Wisseh
- Department of Clinical Pharmacy Practice, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
- Department of Family Medicine, College of Medicine, Charles R. Drew University of Medicine and Science (CDU), Los Angeles, CA 90059, USA; (E.A.); (M.B.)
| | - Edward Adinkrah
- Department of Family Medicine, College of Medicine, Charles R. Drew University of Medicine and Science (CDU), Los Angeles, CA 90059, USA; (E.A.); (M.B.)
| | - Linda Opara
- Adult and Children’s Psychiatric Outpatient Clinic, Fresno County Department of Behavioral Health, Fresno, CA 93702, USA;
| | - Sheila Melone
- Health and Wellness Center, Walmart Pharmacy, Bakersfield, CA 93307, USA (E.U.)
| | - Emem Udott
- Health and Wellness Center, Walmart Pharmacy, Bakersfield, CA 93307, USA (E.U.)
| | - Mohsen Bazargan
- Department of Family Medicine, College of Medicine, Charles R. Drew University of Medicine and Science (CDU), Los Angeles, CA 90059, USA; (E.A.); (M.B.)
- Department of Family Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Magda Shaheen
- Department of Internal Medicine, College of Medicine, Charles R. Drew University of Medicine and Science (CDU), Los Angeles, CA 90059, USA;
| |
Collapse
|
12
|
Hassan YR, El-Shiekh RA, El Hefnawy HM, Mohamed OG, Abu-Elfotuh K, Hamdan AM, Darwish A, Gowifel AMH, Tripathi A, Michael CG. A mechanistic exploration of the metabolome of African mango seeds and its potential to alleviate cognitive impairment induced by high-fat/high-carbohydrate diets: Involvement of PI3K/AKT/GSK-3β/CREB, PERK/CHOP/Bcl-2, and AMPK/SIRT-1/mTOR Axes. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117747. [PMID: 38218500 DOI: 10.1016/j.jep.2024.117747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/15/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Irvingia gabonensis (Aubry-Lecomte ex O'Rorke) Baill., also known as "African mango" or "bush mango", belonging to family Irvingiaceae, has been mostly used as food and traditional medicine for weight loss and to enhance the health. AIM OF THE STUDY The overconsumption of high-fat and high-carbohydrate (HFHC) food induces oxidative stress, leading to neurological and cognitive dysfunction. Consequently, there is an immediate need for effective treatment. Hence, this study explored the efficacy of orlistat, metformin, and I. gabonensis seeds' total aqueous extract (IG SAE) in addressing HFHC-induced cognitive impairment by mitigating oxidative stress and their underlying mechanistic pathways. MATERIALS AND METHODS Initially, the secondary metabolite profile of IG SAE is determined using high-performance liquid chromatography coupled with a mass detector (UHPLC/MS). The in vivo study involves two phases: an established model phase with control (10 rats on a standard diet) and HFHC diet group (50 rats) for 3 months. In the study phase, HFHC is divided into 5 groups. The first subgroup receives HFHC diet only, while the remaining groups each receive HFHC diet with either Orlistat, metformin, or IG SAE at doses of 100 mg/kg and 200 mg/kg, respectively, for 28 days. RESULTS More than 150 phytoconstituents were characterized for the first holistic approach onto IG metabolome. Characterization of IG SAE revealed that tannins dominate metabolites in the plant. Total phenolics and flavonoids were estimated to standardize our extract (77.12 ± 7.09 μg Gallic acid equivalent/mg extract and 8.039 ± 0.53 μg Rutin equivalent/mg extract, respectively). Orlistat, metformin, and IG SAE successfully reduced the body weight, blood glucose level, lipid profile, oxidative stress and neurotransmitters levels leading to improved behavioral functions as well as histological alternation. Also, IG SAE halted inflammation, apoptosis, and endoplasmic reticulum stress, together with promoting autophagy, via modulation of PI3K/AKT/GSK-3β/CREB, PERK/CHOP/Bcl-2 and AMPK/SIRT-1/m-TOR pathways. CONCLUSION Metformin, orlistat, and IG SAE offer a promising multi-target therapy to mitigate HFHC diet-induced oxidative stress, addressing cognitive function. This involves diverse molecular mechanisms, particularly the modulation of inflammation, ER stress, and both PI3K/AKT/GSK-3β/CREB and AMPK/SIRT-1/m-TOR pathways. Furthermore, the higher dose of IG SAE demonstrated effects comparable to orlistat and metformin across most studied parameters.
Collapse
Affiliation(s)
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Hala M El Hefnawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Osama G Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Karema Abu-Elfotuh
- Clinical Pharmacy Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt; Al-Ayen Iraqi University, Thi-Qar, 64001, Iraq
| | - Ahmed M Hamdan
- Pharmacy Practice Department, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Alshaymaa Darwish
- Biochemistry Department, Faculty of Pharmacy, Sohag University, Sohag, Egypt.
| | - Ayah M H Gowifel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, 11571, Egypt.
| | - Ashootosh Tripathi
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | | |
Collapse
|
13
|
Galal MA, Al-Rimawi M, Hajeer A, Dahman H, Alouch S, Aljada A. Metformin: A Dual-Role Player in Cancer Treatment and Prevention. Int J Mol Sci 2024; 25:4083. [PMID: 38612893 PMCID: PMC11012626 DOI: 10.3390/ijms25074083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer continues to pose a significant global health challenge, as evidenced by the increasing incidence rates and high mortality rates, despite the advancements made in chemotherapy. The emergence of chemoresistance further complicates the effectiveness of treatment. However, there is growing interest in the potential of metformin, a commonly prescribed drug for type 2 diabetes mellitus (T2DM), as an adjuvant chemotherapy agent in cancer treatment. Although the precise mechanism of action of metformin in cancer therapy is not fully understood, it has been found to have pleiotropic effects, including the modulation of metabolic pathways, reduction in inflammation, and the regulation of cellular proliferation. This comprehensive review examines the anticancer properties of metformin, drawing insights from various studies conducted in vitro and in vivo, as well as from clinical trials and observational research. This review discusses the mechanisms of action involving both insulin-dependent and independent pathways, shedding light on the potential of metformin as a therapeutic agent for different types of cancer. Despite promising findings, there are challenges that need to be addressed, such as conflicting outcomes in clinical trials, considerations regarding dosing, and the development of resistance. These challenges highlight the importance of further research to fully harness the therapeutic potential of metformin in cancer treatment. The aims of this review are to provide a contemporary understanding of the role of metformin in cancer therapy and identify areas for future exploration in the pursuit of effective anticancer strategies.
Collapse
Affiliation(s)
- Mariam Ahmed Galal
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| | - Mohammed Al-Rimawi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | | | - Huda Dahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | - Samhar Alouch
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| |
Collapse
|
14
|
Ozkara G, Aslan EI, Ceviz AB, Candan G, Malikova F, Eronat AP, Ser OS, Kılıcarslan O, Kucukhuseyin O, Bostan C, Yildiz A, Ozturk O, Yilmaz-Aydogan H. Unusual effects of PCSK9 E670G (rs505151) variation in patients with in-stent restenosis: Variable effects on restenosis risk according to concomitant chronic conditions. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 44:185-205. [PMID: 38359332 DOI: 10.1080/15257770.2024.2316724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Recent reports showing that neo-atherosclerosis formation in stented coronary artery is characterized by the accumulation of lipid-laden macrophages within the neointima has strengthened the possibility that elevated low-density lipoprotein (LDL)-cholesterol may be a risk factor for in-stent restenosis (ISR). Protein Convertase Subtilisin/Kexin-9 (PCSK9) protein plays an important role in cholesterol metabolism by degrading of LDL receptors. The gain-of-function E670G (rs505151) mutation of the PCSK9 gene is a well-known genetic risk factor for hypercholesterolemia. This study evaluated for the first time the association of the E670G variation with the serum lipids, PCSK9 levels and concomitant diseases on the ISR risk. The study included 109 ISR, and 82 Non-ISR patients, based on the results of coronary angiography. Genotypes were determined using the real-time PCR and serum PCSK9 levels were measured by ELISA technique. The rare G allele of PCSK9 E670G (p < 0.05), hyperlipidemia (HL) (p < 0.001), and type 2 diabetes (T2DM) (p < 0.01) were associated with increased risk for ISR. In hyperlipidemic conditions, the E670G-G allele was associated with hypercholesterolemia and a higher risk of ISR (p < 0.001), while the E670G-AA genotype has been associated with a high prevalence of T2DM and hypertension. In addition, diabetic ISRs had higher serum PCSK9 levels (p < 0.05) and the E670G-AA genotype was associated with increased levels of diabetes markers. Our results indicated that the unusual effects of both G allele and AA genotype of the PCSK9 E670G variation may be involved in the risk of ISR in association with concomitant metabolic diseases.
Collapse
Affiliation(s)
- Gulcin Ozkara
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Department of Medical Biology, Bezmialem Vakif University Medical School, Istanbul, Turkey
| | - Ezgi Irmak Aslan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ayse Begum Ceviz
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Gonca Candan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Fidan Malikova
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Allison Pinar Eronat
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Halic University, Istanbul, Turkey
| | - Ozgur Selim Ser
- Department of Cardiology, Institute of Cardiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Onur Kılıcarslan
- Department of Cardiology, Institute of Cardiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ozlem Kucukhuseyin
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Cem Bostan
- Department of Cardiology, Institute of Cardiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ahmet Yildiz
- Department of Cardiology, Institute of Cardiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Oguz Ozturk
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Hulya Yilmaz-Aydogan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
15
|
Greco M, Munir A, Musarò D, Coppola C, Maffia M. Restoring autophagic function: a case for type 2 diabetes mellitus drug repurposing in Parkinson's disease. Front Neurosci 2023; 17:1244022. [PMID: 38027497 PMCID: PMC10654753 DOI: 10.3389/fnins.2023.1244022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Parkinson's disease (PD) is a predominantly idiopathic pathological condition characterized by protein aggregation phenomena, whose main component is alpha-synuclein. Although the main risk factor is ageing, numerous evidence points to the role of type 2 diabetes mellitus (T2DM) as an etiological factor. Systemic alterations classically associated with T2DM like insulin resistance and hyperglycemia modify biological processes such as autophagy and mitochondrial homeostasis. High glucose levels also compromise protein stability through the formation of advanced glycation end products, promoting protein aggregation processes. The ability of antidiabetic drugs to act on pathways impaired in both T2DM and PD suggests that they may represent a useful tool to counteract the neurodegeneration process. Several clinical studies now in advanced stages are looking for confirmation in this regard.
Collapse
Affiliation(s)
- Marco Greco
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
| | - Anas Munir
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Lecce, Italy
| | - Debora Musarò
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
| | - Chiara Coppola
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Lecce, Italy
| | - Michele Maffia
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
| |
Collapse
|
16
|
Islam MT, Samad Talha MTU, Shafiq SS, Mazumder T, Gupta RD, Siraj MS. Prevalence, pattern, and correlates of dyslipidemia in Bangladeshi individuals. J Clin Lipidol 2023; 17:788-799. [PMID: 37743185 DOI: 10.1016/j.jacl.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/13/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND The burden of dyslipidemia in Bangladesh remains inadequately characterized. OBJECTIVES To determine and describe the prevalence and pattern of dyslipidemia and its associated risk factors among an adult Bangladeshi population. DESIGN Population-based, cross-sectional study. Participants were adults living in all eight administrative divisions of Bangladesh. The total sample size was 7084 (53.1 % women, 46.9% urban residents). Primary outcome measures were triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and the use of lipid lowering medication. In addition, control of LDL-C and control of non high-density lipoprotein cholesterol (non-HDL-C) were investigated. RESULTS The overall dyslipidemia prevalence was 76.7%, with 35.7% showing a high TG level, 18.5% showing a high LDL-C level, 63.8% showing a low HDL-C level, and 7.2% of the participants showing all three lipid abnormalities. Sylhet division had the highest prevalence (83.8%) of overall dyslipidemia, while Rangpur had the lowest prevalence (69.3%). The control of LDL-C (<50 mg/dL) and non-HDL-C (<80 mg/dL) among adults with a previous history of atherosclerotic cardiovascular diseases (ASCVD) were 5.1% and 6.9% respectively. The regression models showed that male sex and age 45-59 years were significant predictors of overall dyslipidemia. Both smokers and smokeless tobacco users were significant factors for overall dyslipidemia and high TG. A high waist-hip ratio was associated with overall dyslipidemia and all other subtypes of dyslipidemia. CONCLUSION The high prevalence of dyslipidemia in Bangladesh necessitates lifestyle interventions to prevent and control this cardiovascular risk factor.
Collapse
Affiliation(s)
- Md Tauhidul Islam
- Murdoch Business School (Dr Islam), Murdoch University, Perth, WA-6150, Australia.
| | - Md Taqbir Us Samad Talha
- International Centre for Diarrhoeal Disease Research (Drs Samad Talha, Shafiq, Siraj), Bangladesh
| | - Sabit Saad Shafiq
- International Centre for Diarrhoeal Disease Research (Drs Samad Talha, Shafiq, Siraj), Bangladesh
| | - Tapas Mazumder
- Health Research Institute (Dr Mazumder), Faculty of Health, University of Canberra, Canberra, ACT-2617, Australia
| | - Rajat Das Gupta
- Department of Epidemiology and Biostatistics (Dr Gupta), Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Md Shahjahan Siraj
- International Centre for Diarrhoeal Disease Research (Drs Samad Talha, Shafiq, Siraj), Bangladesh
| |
Collapse
|
17
|
Lu F, Li E, Yang X. The association between circulatory, local pancreatic PCSK9 and type 2 diabetes mellitus: The effects of antidiabetic drugs on PCSK9. Heliyon 2023; 9:e19371. [PMID: 37809924 PMCID: PMC10558357 DOI: 10.1016/j.heliyon.2023.e19371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 10/10/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a potent modulator of cholesterol metabolism and plays a crucial role in the normal functioning of pancreatic islets and the progression of diabetes. Islet autocrine PCSK9 deficiency can lead to the enrichment of low-density lipoprotein (LDL) receptor (LDLR) and excessive LDL cholesterol (LDL-C) uptake, subsequently impairing the insulin secretion in β-cells. Circulatory PCSK9 levels are primarily attributed to hepatocyte secretion. Notably, anti-PCSK9 strategies proposed for individuals with hypercholesterolemia chiefly target liver-derived PCSK9; however, these anti-PCSK9 strategies have been associated with the risk of new-onset diabetes mellitus (NODM). In the current review, we highlight a new direction in PCSK9 inhibition therapy strategies: screening candidates for anti-PCSK9 from the drugs used in type 2 diabetes mellitus (T2DM) treatment. We explored the association between circulating, local pancreatic PCSK9 and T2DM, as well as the relationship between PCSK9 monoclonal antibodies and NODM. We discussed the emergence of artificial and natural drugs in recent years, exhibiting dual benefits of antidiabetic activity and PCSK9 reduction, confirming that the diverse effects of these drugs may potentially impact the progression of diabetes and associated disorders, thereby introducing novel avenues and methodologies to enhance disease prognosis.
Collapse
Affiliation(s)
- Fengyuan Lu
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, 450014, China
| | - En Li
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, 450014, China
| | - Xiaoyu Yang
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, 450014, China
- School of Basic Medical Sciences, Zhengzhou University, 450001, China
| |
Collapse
|
18
|
Zhang R, Wang Y, Peng Y, Zhao J, Zhang Z. Advanced progress of the relationship between PCSK9 monoclonal antibodies and hyperglycemic adverse events. Front Cardiovasc Med 2023; 10:1117143. [PMID: 37435056 PMCID: PMC10330718 DOI: 10.3389/fcvm.2023.1117143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/06/2023] [Indexed: 07/13/2023] Open
Abstract
Purpose of Review Long-term use of statins had been confirmed to cause an increase in hyperglycemic adverse events (HAEs), whose mechanism has been well understood. Proprotein convertase subtilisin/kexin type 9 (PCSK9) monoclonal antibodies (PCSK9-mAbs), a kind of new lipid-lowering drug, can effectively reduce plasma low-density lipoprotein cholesterol levels in patients with CHD and have been widely used. However, animal experiments, Mendelian randomization studies, clinical researches and Meta-analyses which focused on the relationship between PCSK9-mAbs and HAEs had reached different conclusions, which has attracted great attention from clinicians. Recent Findings The newest FOURIER-OLE randomized controlled trial followed PCSK9-mAbs users for over 8 years, whose results suggested that long-term use of PCSK9-mAbs did not increase the incidence of HAEs. Newest Meta-analyses also indicated that there was no relationship between PCSK9-mAbs and NOD. Meanwhile, genetic polymorphisms and variants related to PCSK9 might have effects on HAEs. Conclusion According to the results of current studies, there is no significant relationship between PCSK9-mAbs and HAEs. However, longer-term follow-up studies are still needed to confirm it. Although PCSK9 genetic polymorphisms and variants may affect the possible occurrence of HAEs, there is no need to perform relevant genetic testing before applying PCSK9-mAbs.
Collapse
Affiliation(s)
- Ruixing Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Cardiovascular Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yongxiang Wang
- Department of Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Cardiovascular Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yu Peng
- Department of Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Cardiovascular Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jing Zhao
- Department of Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Cardiovascular Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zheng Zhang
- Department of Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Cardiovascular Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
19
|
Xu JN, Wang TT, Shu H, Shi SY, Tao LC, Li JJ. Insight into the role of PCSK9 in glucose metabolism. Clin Chim Acta 2023:117444. [PMID: 37315725 DOI: 10.1016/j.cca.2023.117444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
Diabetes mellitus (DM) is strongly associated with an increased risk of atherosclerotic cardiovascular disease (ASCVD). Proprotein convertase subtilisin/kexin type 9 (PCSK9) was recently identified as an important regulator of circulating low-density lipoprotein-cholesterol (LDL-C) levels via degradation of the LDL receptor, proving to be a valid target to improve lipoprotein profiles and cardiovascular outcomes in patients with ASCVD. Beyond LDL receptor processing and cholesterol homeostasis, the PCSK9 protein has recently been verified to be associated with glucose metabolism. Importantly, clinical trials suggest that treatment with PCSK9 inhibitors for patients with DM is more effective. Hence, in this review, we summarize the current findings derived from experimental, preclinical, and clinical studies regarding the association between PCSK9 and glucose metabolism, including the relationship of PCSK9 genetic mutations to glucose metabolism and diabetes, the link between plasma PCSK9 concentrations and glucose metabolic parameters, the effects of glucose-lowering drugs on plasma PCSK9 levels and the impacts of PCSK9 inhibitors on cardiovascular outcomes of patients with DM. Clinically, exploring this field may improve our understanding regarding the roles of PCSK9 in glucose metabolism and may offer an in-depth interpretation of how PCSK9 inhibitors exert effects on the treatment of patients with DM.
Collapse
Affiliation(s)
- Jia-Ni Xu
- The Third Affiliated Hospital of Soochow University, Juqian Road, Changzhou, 213000, China
| | - Ting-Ting Wang
- The Third Affiliated Hospital of Soochow University, Juqian Road, Changzhou, 213000, China
| | - Hong Shu
- The Third Affiliated Hospital of Soochow University, Juqian Road, Changzhou, 213000, China
| | - Shun-Yi Shi
- The Third Affiliated Hospital of Soochow University, Juqian Road, Changzhou, 213000, China
| | - Li-Chan Tao
- The Third Affiliated Hospital of Soochow University, Juqian Road, Changzhou, 213000, China
| | - Jian-Jun Li
- State Key Laboratory of Cardiovascular Diseases, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China.
| |
Collapse
|
20
|
Régnier M, Carbinatti T, Parlati L, Benhamed F, Postic C. The role of ChREBP in carbohydrate sensing and NAFLD development. Nat Rev Endocrinol 2023; 19:336-349. [PMID: 37055547 DOI: 10.1038/s41574-023-00809-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 04/15/2023]
Abstract
Excessive sugar consumption and defective glucose sensing by hepatocytes contribute to the development of metabolic diseases including type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD). Hepatic metabolism of carbohydrates into lipids is largely dependent on the carbohydrate-responsive element binding protein (ChREBP), a transcription factor that senses intracellular carbohydrates and activates many different target genes, through the activation of de novo lipogenesis (DNL). This process is crucial for the storage of energy as triglycerides in hepatocytes. Furthermore, ChREBP and its downstream targets represent promising targets for the development of therapies for the treatment of NAFLD and T2DM. Although lipogenic inhibitors (for example, inhibitors of fatty acid synthase, acetyl-CoA carboxylase or ATP citrate lyase) are currently under investigation, targeting lipogenesis remains a topic of discussion for NAFLD treatment. In this Review, we discuss mechanisms that regulate ChREBP activity in a tissue-specific manner and their respective roles in controlling DNL and beyond. We also provide in-depth discussion of the roles of ChREBP in the onset and progression of NAFLD and consider emerging targets for NAFLD therapeutics.
Collapse
Affiliation(s)
- Marion Régnier
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France.
| | - Thaïs Carbinatti
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Lucia Parlati
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Fadila Benhamed
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Catherine Postic
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France.
| |
Collapse
|
21
|
Thongnak L, Pengrattanachot N, Promsan S, Phengpol N, Sutthasupha P, Jaikumkao K, Lungkaphin A. Metformin mitigates renal dysfunction in obese insulin-resistant rats via activation of the AMPK/PPARα pathway. Arch Pharm Res 2023; 46:408-422. [PMID: 36966452 DOI: 10.1007/s12272-023-01439-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/28/2023] [Indexed: 03/27/2023]
Abstract
Insulin signaling and lipid metabolism are disrupted by long-term consumption of a high-fat diet (HFD). This disruption can lead to insulin resistance, dyslipidemia and subsequently renal dysfunction as a consequence of the inactivation of the AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-α (PPARα) or AMPK/PPARα pathways. We investigated the impact of metformin on the prevention of renal dysfunction through the modulation of AMPK-regulated PPARα-dependent pathways in insulin-resistant rats induced by a HFD. Male Wistar rats were fed a HFD for 16 weeks to induce insulin resistance. After insulin resistance had been confirmed, metformin (30 mg/kg) or gemfibrozil (50 mg/kg) was given orally for 8 weeks. Evidence of insulin resistance, dyslipidemia, lipid accumulation and kidney injury were observed in HF rats. Impairment of lipid oxidation, energy metabolism and renal organic anion transporter 3 (Oat3) expression and function were demonstrated in HF rats. Metformin can stimulate the AMPK/PPARα pathways and suppress sterol regulatory element-binding transcription factor 1 (SREBP1) and fatty acid synthase (FAS) signaling (SREBP1/FAS) to enable the regulation of lipid metabolism. Renal inflammatory markers and renal fibrosis expression induced by a HFD were more effectively reduced after metformin treatment than after gemfibrozil treatment. Interestingly, renal Oat3 function and expression and kidney injury were improved following metformin and gemfibrozil treatment. Renal cluster of differentiation 36 (CD36) or sodium glucose cotransporter type 2 (SGLT2) expression did not differ after treatment with metformin or gemfibrozil. Metformin and gemfibrozil could reduce the impairment of renal injury in obese conditions induced by a HFD through the AMPK/PPARα-dependent pathway. Interestingly, metformin demonstrated greater efficacy than gemfibrozil in attenuating renal lipotoxicity through the AMPK-regulated SREBP1/FAS signaling pathway.
Collapse
Affiliation(s)
- Laongdao Thongnak
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Nattavadee Pengrattanachot
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sasivimon Promsan
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nichakorn Phengpol
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prempree Sutthasupha
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Krit Jaikumkao
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Functional Foods for Health and Disease, Department of Physiology, Faculty of Medicine, Chiang Mai University, Intravaroros Road, 50200, Chiang Mai, Thailand.
- Functional Food Research Center for Well-Being, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
22
|
Ahmed ASF, Sharkawi SS, AbdelHameed SS, Bayoumi AM, Moussa RS, Alhakamy NA, Al Sadoun H, Mansouri RA, El-Moselhy MA, El-Daly M, Anter AF, Truhan TE. Ketogenic diet restores hormonal, apoptotic/proliferative balance and enhances the effect of metformin on a letrozole-induced polycystic ovary model in rats. Life Sci 2023; 313:121285. [PMID: 36526050 DOI: 10.1016/j.lfs.2022.121285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Polycystic ovaries (PCO) is a hormonal disorder that is a leading cause of infertility. The formation of multiple persistent cysts and hormonal imbalance are hallmarks of PCO. Recent clinical studies reported a beneficial effect of the ketogenic diet (KD; high-fat, low-carbohydrate) on PCO. The aim of this study was to investigate the effect of the KD alone and in combination with metformin on letrozole-induced PCO in female rats. METHODS Female rats were grouped into control and PCO (letrozole; 1 mg/kg for 21 days). The PCO group was subdivided into PCO (non-treated), PCO-metformin (300 mg/kg), PCO rats fed with KD only, and PCO rats treated with metformin and fed with KD. All groups continued to receive letrozole during the 21-day treatment period. At the end of the experiment, serum and ovaries were collected for further analysis. RESULTS The untreated-PCO rats showed increased testosterone, LH/FSH ratio, and ovary weights. Disturbed apoptosis and proliferation balance were evident as a low caspase-3 activation and proliferating cell nuclear antigen expression and increased TGF-β expression. The KD improved the letrozole-induced effects, which was comparable to the effect of metformin. Combining the KD with metformin treatment additively enhanced the metformin effect. CONCLUSION Our results indicate that the KD has a protective role against PCO in rats, especially when combined with metformin. This study reveals a potential therapeutic role of the KD in PCO, which could prompt valuable future clinical applications.
Collapse
Affiliation(s)
- Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt.
| | - Sara S Sharkawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Sara S AbdelHameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Asmaa M Bayoumi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Rabab S Moussa
- Department of Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hadeel Al Sadoun
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rasha A Mansouri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed A El-Moselhy
- Clinical Pharmacy and Pharmacology Department, Ibn Sina National College for Medical Studies, Jeddah 21589, Saudi Arabia
| | - Mahmoud El-Daly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Aliaa F Anter
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | | |
Collapse
|
23
|
Buckler AJ, Marlevi D, Skenteris NT, Lengquist M, Kronqvist M, Matic L, Hedin U. In silico model of atherosclerosis with individual patient calibration to enable precision medicine for cardiovascular disease. Comput Biol Med 2023; 152:106364. [PMID: 36525832 DOI: 10.1016/j.compbiomed.2022.106364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/01/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE Guidance for preventing myocardial infarction and ischemic stroke by tailoring treatment for individual patients with atherosclerosis is an unmet need. Such development may be possible with computational modeling. Given the multifactorial biology of atherosclerosis, modeling must be based on complete biological networks that capture protein-protein interactions estimated to drive disease progression. Here, we aimed to develop a clinically relevant scale model of atherosclerosis, calibrate it with individual patient data, and use it to simulate optimized pharmacotherapy for individual patients. APPROACH AND RESULTS The study used a uniquely constituted plaque proteomic dataset to create a comprehensive systems biology disease model for simulating individualized responses to pharmacotherapy. Plaque tissue was collected from 18 patients with 6735 proteins at two locations per patient. 113 pathways were identified and included in the systems biology model of endothelial cells, vascular smooth muscle cells, macrophages, lymphocytes, and the integrated intima, altogether spanning 4411 proteins, demonstrating a range of 39-96% plaque instability. After calibrating the systems biology models for individual patients, we simulated intensive lipid-lowering, anti-inflammatory, and anti-diabetic drugs. We also simulated a combination therapy. Drug response was evaluated as the degree of change in plaque stability, where an improvement was defined as a reduction of plaque instability. In patients with initially unstable lesions, simulated responses varied from high (20%, on combination therapy) to marginal improvement, whereas patients with initially stable plaques showed generally less improvement. CONCLUSION In this pilot study, proteomics-based system biology modeling was shown to simulate drug response based on atherosclerotic plaque instability with a power of 90%, providing a potential strategy for improved personalized management of patients with cardiovascular disease.
Collapse
Affiliation(s)
- Andrew J Buckler
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Elucid Bioimaging Inc., Boston, MA, USA
| | - David Marlevi
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Nikolaos T Skenteris
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Mariette Lengquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Malin Kronqvist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
24
|
Ahamad S, Bhat SA. Recent Update on the Development of PCSK9 Inhibitors for Hypercholesterolemia Treatment. J Med Chem 2022; 65:15513-15539. [PMID: 36446632 DOI: 10.1021/acs.jmedchem.2c01290] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The proprotein convertase subtilisin/kexin-type 9 (PCSK9) binds to low-density lipoprotein receptors (LDLR), thereby trafficking them to lysosomes upon endocytosis and enhancing intracellular degradation to prevent their recycling. As a result, the levels of circulating LDL cholesterol (LDL-C) increase, which is a prominent risk factor for developing atherosclerotic cardiovascular diseases (ASCVD). Thus, PCSK9 has become a promising therapeutic target that offers a fertile testing ground for new drug modalities to regulate plasma LDL-C levels to prevent ASCVD. In this review, we have discussed the role of PCSK9 in lipid metabolism and briefly summarized the current clinical status of modalities targeting PCSK9. In particular, a detailed overview of peptide-based PCSK9 inhibitors is presented, which emphasizes their structural features and design, therapeutic effects on patients, and preclinical cardiovascular disease (CVD) models, along with PCSK9 modulation mechanisms. As a promising alternative to monoclonal antibodies (mAbs) for managing LDL-C, anti-PCSK9 peptides are emerging as a prospective next generation therapy.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Shahnawaz A Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
25
|
Xing H, Liang C, Wang C, Xu X, Hu Y, Qiu B. Metformin mitigates cholesterol accumulation via the AMPK/SIRT1 pathway to protect osteoarthritis chondrocytes. Biochem Biophys Res Commun 2022; 632:113-121. [PMID: 36206595 DOI: 10.1016/j.bbrc.2022.09.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022]
Abstract
In this study, we aim to investigate the effect of metformin on cholesterol synthesis and efflux-related genes in chondrocytes during osteoarthritis (OA) and explore the underlying mechanisms. Primary chondrocytes were harvested from Wistar rat cartilage and divided into control and treatment groups. Chondrocytes in the treatment group were treated with interleukin-1β (IL-1β) mimicking the inflammatory environment of osteoarthritis. Subsequently, RT-qPCR, Western blotting, immunofluorescence staining, and Cell Counting Kit-8 (CCK-8) were conducted. Significant reductions in phosphorylated AMP-activated protein kinase (p-AMPK) and silent information regulator 1 (SIRT1) protein expression were observed in both human OA chondrocytes and cultured primary murine chondrocytes treated with IL-1β, while AMP-activated protein kinase (AMPK) was not inhibited. Moreover, in the presence of IL-1β, metformin significantly increased the expression of p-AMPK and SIRT1 at the protein and mRNA level. Meanwhile, metformin could reverse IL-1β-induced cartilage extracellular matrix degradation in chondrocytes from the rat model of OA (treated by IL-β) by activating the AMPK/SIRT1 pathway. Moreover, metformin activated AMPK and SIRT1, mediated by the activation of SREBP-2 and HMGCR in OA chondrocytes. Inhibiting AMPK/SIRT1 activity by its specific inhibitor could suppress IL-1β-induced expression of LXRα, ABCA1 and ApoA1 and cholesterol efflux. Thus, metformin inhibits cholesterol synthesis and promotes cholesterol efflux by activating the AMPK/SIRT1 pathway in OA chondrocytes. This study improves our understanding of the effect of metformin on cholesterol accumulation in OA chondrocytes.
Collapse
Affiliation(s)
- Hengte Xing
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430000, China
| | - Chuancai Liang
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430000, China
| | - Chenyu Wang
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430000, China
| | - Xiongfeng Xu
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430000, China
| | - Yong Hu
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430000, China.
| | - Bo Qiu
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430000, China.
| |
Collapse
|
26
|
Hidalgo-Lozada GM, Villarruel-López A, Martínez-Abundis E, Vázquez-Paulino O, González-Ortiz M, Pérez-Rubio KG. Ellagic Acid Effect on the Components of Metabolic Syndrome, Insulin Sensitivity and Insulin Secretion: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. J Clin Med 2022; 11:jcm11195741. [PMID: 36233611 PMCID: PMC9572658 DOI: 10.3390/jcm11195741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
Metabolic syndrome (MetS) is a cluster of cardiovascular risk factors, usually with a common pathophysiological origin in insulin resistance and abdominal obesity. Considering the reported effects of ellagic acid (EA) on insulin resistance and abdominal obesity, the aim of this study was to evaluate the effect of EA on the components of MetS, insulin sensitivity and insulin secretion by conducting a randomized, double-blind, placebo-controlled, clinical trial with 32 volunteers diagnosed with MetS. Sixteen patients were randomly allocated, received 500 mg of EA orally twice a day for 12 weeks, and the other 16 received a placebo. Clinical and laboratory determinations were obtained at baseline and at the end of the study. After EA administration, patients reduced their waist circumference (females: 102.2 ± 4.2 to 99.5 ± 3.2 cm (p < 0.05); males: 99.8 ± 6.7 to 96.0 ± 4.7 cm (p < 0.01)), systolic blood pressure (118.1 ± 10.1 to 113.7 ± 7.8 mmHg (p < 0.01)), diastolic blood pressure (118.1 ± 10.1 to 113.7 ± 7.8 mmHg (p < 0.01)), triglycerides (2.8 ± 1.1 to 2.1 ± 0.7 mmol/L (p < 0.01)), fasting plasma glucose (6.5 ± 0.5 to 5.7 ± 0.6 mmol/L (p < 0.01)), fasting plasma insulin (p < 0.01), and insulin secretion (p < 0.05), with an increase of insulin sensitivity (p < 0.01). In male patients, high-density lipoprotein cholesterol increased (p < 0.05). In conclusion, EA improved the components of MetS, reduced hyperinsulinemia, and improved insulin sensitivity.
Collapse
Affiliation(s)
- Gladys Maribel Hidalgo-Lozada
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Guadalajar 44340, Mexico
| | - Angélica Villarruel-López
- Department of Pharmacobiology, University Center for Exact and Engineering Sciences, University of Guadalajara, Guadalajara 44430, Mexico
- Correspondence: (A.V.-L.); (K.G.P.-R.)
| | - Esperanza Martínez-Abundis
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Guadalajar 44340, Mexico
- Health Biomedical Research Center, Guadalajara 44140, Mexico
| | - Olga Vázquez-Paulino
- Department of Pharmacobiology, University Center for Exact and Engineering Sciences, University of Guadalajara, Guadalajara 44430, Mexico
| | | | - Karina Griselda Pérez-Rubio
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Guadalajar 44340, Mexico
- Health Biomedical Research Center, Guadalajara 44140, Mexico
- Correspondence: (A.V.-L.); (K.G.P.-R.)
| |
Collapse
|
27
|
Ali A, Unnikannan H, Shafarin J, Bajbouj K, Taneera J, Muhammad JS, Hasan H, Salehi A, Awadallah S, Hamad M. Metformin enhances LDL-cholesterol uptake by suppressing the expression of the pro-protein convertase subtilisin/kexin type 9 (PCSK9) in liver cells. Endocrine 2022; 76:543-557. [PMID: 35237909 DOI: 10.1007/s12020-022-03022-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 02/16/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE Metformin (MF) intake associates with reduced levels of circulating low-density lipoprotein-cholesterol (LDL-C). This has been attributed to the activation of AMPK, which differentially regulates the expression of multiple genes involved in cholesterol synthesis and trafficking. However, the exact mechanism underlying the LDL-C lowering effect of MF remains ambiguous. METHODS MF-treated Hep-G2 and HuH7 cells were evaluated for cell viability and the expression status of key lipid metabolism-related genes along with LDL-C uptake efficiency. RESULTS MF treatment resulted in decreased expression and secretion of PCSK9, increased expression of LDLR and enhanced LDL-C uptake in hepatocytes. It also resulted in increased expression of activated AMPK (p-AMPK) and decreased expression of SREBP2 and HNF-1α proteins. Transcriptomic analysis of MF-treated Hep-G2 cells confirmed these findings and showed that other key lipid metabolism-related genes including those that encode apolipoproteins (APOB, APOC2, APOC3 and APOE), MTTP and LIPC are downregulated. Lastly, MF treatment associated with reduced HMG-CoA reductase expression and activity. CONCLUSIONS These findings suggest that MF treatment reduces circulating LDL-C levels by suppressing PCSK9 expression and enhancing LDLR expression; hence the potential therapeutic utility of MF in hypercholesterolemia.
Collapse
Affiliation(s)
- Amjad Ali
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Hema Unnikannan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Jasmin Shafarin
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Khuloud Bajbouj
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jalal Taneera
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Haydar Hasan
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Albert Salehi
- Department of Clinical science, UMAS, Clinical Research Center, Lund University, Malmö, Sweden
- Department of Neuroscience and Physiology, Metabolic Research Unit, University of Gothenburg, Gothenburg, Sweden
| | - Samir Awadallah
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| | - Mawieh Hamad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
28
|
Xiao X, Luo Y, Peng D. Updated Understanding of the Crosstalk Between Glucose/Insulin and Cholesterol Metabolism. Front Cardiovasc Med 2022; 9:879355. [PMID: 35571202 PMCID: PMC9098828 DOI: 10.3389/fcvm.2022.879355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/07/2022] [Indexed: 12/19/2022] Open
Abstract
Glucose and cholesterol engage in almost all human physiological activities. As the primary energy substance, glucose can be assimilated and converted into diverse essential substances, including cholesterol. Cholesterol is mainly derived from de novo biosynthesis and the intestinal absorption of diets. It is evidenced that glucose/insulin promotes cholesterol biosynthesis and uptake, which have been targeted by several drugs for lipid-lowering, e.g., bempedoic acid, statins, ezetimibe, and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors. Inversely, these lipid-lowering drugs may also interfere with glucose metabolism. This review would briefly summarize the mechanisms of glucose/insulin-stimulated cholesterol biosynthesis and uptake, and discuss the effect and mechanisms of lipid-lowering drugs and genetic mutations on glucose homeostasis, aiming to help better understand the intricate relationship between glucose and cholesterol metabolism.
Collapse
|
29
|
Zhu W, Ding C, Huang P, Ran J, Lian P, Tang Y, Dai W, Huang X. Metformin Ameliorates Hepatic Steatosis induced by olanzapine through inhibiting LXRα/PCSK9 pathway. Sci Rep 2022; 12:5639. [PMID: 35379885 PMCID: PMC8979948 DOI: 10.1038/s41598-022-09610-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/17/2022] [Indexed: 11/09/2022] Open
Abstract
Studies have confirmed that olanzapine, the mainstay treatment for schizophrenia, triggers metabolic diseases, including non-alcoholic fatty liver disease (NAFLD). However, the etiology of olanzapine-induced NAFLD is poorly understood. Proprotein convertase subtilisin kexin type 9 (PCSK9) is involved in NAFLD pathogenesis, and metformin can significantly decrease circulating PCSK9. The purpose of this study was to investigate the role of PCSK9 and explore the therapeutic effect of metformin for olanzapine-associated NAFLD. Olanzapine significantly upregulated PCSK9 and promoted lipid accumulation in mouse livers and HepG2 and AML12 cells. Metformin ameliorated these pathological alterations. PCSK9 upstream regulator liver X receptor α (LXRα) was significantly upregulated in olanzapine-induced NAFLD. LXRα antagonist treatment and LXRα overexpression resulted in a decrease and increase of PCSK9, respectively. Hepatic lipogenesis-associated genes FAS and SCD1 were significantly upregulated in olanzapine-induced NAFLD mice and HepG2 cells overexpressing PCSK9, and genes related to lipid β-oxidation (SCAD and PPARα) were downregulated, while metformin reversed these changes. In addition, we found that LXRα overexpression compromised the effect of metformin on PCSK9 levels and intracellular lipid droplet formation. Taken together, our findings suggest that olanzapine enhances hepatic PCSK9 expression by upregulating LXRα, thereby increasing FAS and SCD1 expression as well as decreasing SCAD and PPARα, and promoting lipid accumulation, and, subsequently, NAFLD, which is ameliorated by metformin.
Collapse
Affiliation(s)
- Wenqiang Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Chen Ding
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Piaopiao Huang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Juanli Ran
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Pingan Lian
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yaxin Tang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wen Dai
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Department of Medicine, Columbia University Medical Center, New York, USA
| | - Xiansheng Huang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
30
|
Janjusevic M, Fluca AL, Gagno G, Pierri A, Padoan L, Sorrentino A, Beltrami AP, Sinagra G, Aleksova A. Old and Novel Therapeutic Approaches in the Management of Hyperglycemia, an Important Risk Factor for Atherosclerosis. Int J Mol Sci 2022; 23:ijms23042336. [PMID: 35216451 PMCID: PMC8878509 DOI: 10.3390/ijms23042336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/13/2022] Open
Abstract
Hyperglycemia is considered one of the main risk factors for atherosclerosis, since high glucose levels trigger multiple pathological processes, such as oxidative stress and hyperproduction of pro-inflammatory mediators, leading to endothelial dysfunction. In this context, recently approved drugs, such as glucagon-like-peptide-1 receptor agonists (GLP-1RAs) and sodium-glucose cotransporter-2 inhibitors (SGLT2i), could be considered a powerful tool for to reduce glucose concentration and cardiovascular risk. Interestingly, many patients with type 2 diabetes mellitus (T2DM) and insulin resistance have been found to be deficient in vitamin D. Recent studies pointed out the unfavorable prognostic values of T2DM and vitamin D deficiency in patients with cardiac dysfunction, either when considered individually or together, which shed light on the role of vitamin D in general health status. New evidence suggests that SGLT2i could adversely affect the production of vitamin D, thereby increasing the risk of fractures, which are common in patients with T2DM. Therefore, given the biological effects of vitamin D as an anti-inflammatory mediator and a regulator of endothelial function and calcium equilibrium, these new findings should be taken into consideration as well. The aim of this review is to gather the latest advancements regarding the use of antidiabetic and antiplatelet drugs coupled with vitamin D supplementation to control glucose levels, therefore reducing the risk of coronary artery disease (CAD).
Collapse
Affiliation(s)
- Milijana Janjusevic
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Deparment of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (M.J.); (A.L.F.); (G.G.); (A.P.); (A.S.); (G.S.)
| | - Alessandra Lucia Fluca
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Deparment of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (M.J.); (A.L.F.); (G.G.); (A.P.); (A.S.); (G.S.)
| | - Giulia Gagno
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Deparment of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (M.J.); (A.L.F.); (G.G.); (A.P.); (A.S.); (G.S.)
| | - Alessandro Pierri
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Deparment of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (M.J.); (A.L.F.); (G.G.); (A.P.); (A.S.); (G.S.)
| | - Laura Padoan
- Cardiology and Cardiovascular Physiopathology, Azienda Ospedaliero-Universitaria S. Maria Della Misericordia, 06156 Perugia, Italy;
| | - Annamaria Sorrentino
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Deparment of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (M.J.); (A.L.F.); (G.G.); (A.P.); (A.S.); (G.S.)
| | | | - Gianfranco Sinagra
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Deparment of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (M.J.); (A.L.F.); (G.G.); (A.P.); (A.S.); (G.S.)
| | - Aneta Aleksova
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Deparment of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (M.J.); (A.L.F.); (G.G.); (A.P.); (A.S.); (G.S.)
- Correspondence: or ; Tel.: +39-3405507762; Fax: +39-040-3994878
| |
Collapse
|
31
|
Nyandwi JB, Ko YS, Jin H, Yun SP, Park SW, Kim HJ. Rosmarinic Acid Exhibits a Lipid-Lowering Effect by Modulating the Expression of Reverse Cholesterol Transporters and Lipid Metabolism in High-Fat Diet-Fed Mice. Biomolecules 2021; 11:1470. [PMID: 34680102 PMCID: PMC8533102 DOI: 10.3390/biom11101470] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022] Open
Abstract
Hyperlipidemia is a potent risk factor for the development of cardiovascular diseases. The reverse cholesterol transport (RCT) process has been shown to alleviate hyperlipidemia and protect against cardiovascular diseases. Recently, rosmarinic acid was reported to exhibit lipid-lowering effects. However, the underlying mechanism is still unclear. This study aims to investigate whether rosmarinic acid lowers lipids by modulating the RCT process in high-fat diet (HFD)-induced hyperlipidemic C57BL/6J mice. Our results indicated that rosmarinic acid treatment significantly decreased body weight, blood glucose, and plasma total cholesterol and triglyceride levels in HFD-fed mice. Rosmarinic acid increased the expression levels of cholesterol uptake-associated receptors in liver tissues, including scavenger receptor B type 1 (SR-B1) and low-density lipoprotein receptor (LDL-R). Furthermore, rosmarinic acid treatment notably increased the expression of cholesterol excretion molecules, ATP-binding cassette G5 (ABCG5) and G8 (ABCG8) transporters, and cholesterol 7 alpha-hydroxylase A1 (CYP7A1) as well as markedly reduced cholesterol and triglyceride levels in liver tissues. In addition, rosmarinic acid facilitated fatty acid oxidation through AMP-activated protein kinase (AMPK)-mediated carnitine palmitoyltransferase 1A (CPT1A) induction. In conclusion, rosmarinic acid exhibited a lipid-lowering effect by modulating the expression of RCT-related proteins and lipid metabolism-associated molecules, confirming its potential for the prevention or treatment of hyperlipidemia-derived diseases.
Collapse
Affiliation(s)
- Jean Baptiste Nyandwi
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
- Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju 52727, Korea
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali 4285, Rwanda
| | - Young Shin Ko
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
| | - Hana Jin
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
- Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju 52727, Korea
| | - Sang Won Park
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
- Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju 52727, Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
- Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju 52727, Korea
| |
Collapse
|
32
|
Scicchitano P, Milo M, Mallamaci R, De Palo M, Caldarola P, Massari F, Gabrielli D, Colivicchi F, Ciccone MM. Inclisiran in lipid management: A Literature overview and future perspectives. Biomed Pharmacother 2021; 143:112227. [PMID: 34563953 DOI: 10.1016/j.biopha.2021.112227] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 01/05/2023] Open
Abstract
Primary and secondary prevention protocols aim at reducing the plasma levels of lipids - with particular reference to low-density lipoprotein cholesterol (LDL-C) plasma concentrations - in order to improve the overall survival and reduce the occurrence of major adverse cardiovascular events. The use of statins has been widely considered as the first-line approach in lipids management as they can dramatically impact on the cardiovascular risk profile of individuals. The introduction of ezetimibe and proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors overcame the adverse effects of statins and ameliorate the achievement of the target lipids levels. Indeed, advances in therapies promote the use of specific molecules - i.e. short strands of RNA named small-interfering RNAs (siRNAs) - to suppress the transcription of genes related to lipids metabolism. Recently, the inclisiran has been developed: this is a siRNA able to block the mRNA of the PCSK9 gene. About 50% reduction in low-density lipoprotein cholesterol levels have been observed in randomized controlled trials with inclisiran. The aim of this review was to summarize the literature regarding inclisiran and its possible role in the general management of patients with lipid disorders and/or in primary/secondary prevention protocols.
Collapse
Affiliation(s)
| | - Michele Milo
- Cardiology Section, Department of Emergency and Organ Transplantation, University of Bari "A. Moro", Bari, Italy
| | - Rosanna Mallamaci
- Department of Bioscience, Biotechnology and Biopharmaceutics, University Aldo Moro Bari, Bari, Italy
| | - Micaela De Palo
- Cardiac Surgery Section, Department of Emergency and Organ Transplantation, University of Bari "A. Moro", Bari, Italy
| | | | | | - Domenico Gabrielli
- Cardiology Unit, Cardiotoracovascular Department, Azienda Ospedaliera San Camillo Forlanini, Roma, Italy
| | | | - Marco Matteo Ciccone
- Cardiology Section, Department of Emergency and Organ Transplantation, University of Bari "A. Moro", Bari, Italy
| |
Collapse
|
33
|
Macchi C, Ferri N, Sirtori CR, Corsini A, Banach M, Ruscica M. Proprotein Convertase Subtilisin/Kexin Type 9: A View beyond the Canonical Cholesterol-Lowering Impact. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1385-1397. [PMID: 34019847 DOI: 10.1016/j.ajpath.2021.04.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/17/2021] [Accepted: 04/26/2021] [Indexed: 12/22/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9), mainly synthetized and released by the liver, represents one of the key regulators of low-density lipoprotein cholesterol. Although genetic and interventional studies have demonstrated that lowering PCSK9 levels corresponds to a cardiovascular benefit, identification of non-cholesterol-related processes has emerged since its discovery. Besides liver, PCSK9 is also expressed in many tissues (eg, intestine, endocrine pancreas, and brain). The aim of the present review is to describe and discuss PCSK9 pathophysiology and possible non-lipid-lowering effects whether already extensively characterized (eg, inflammatory burden of atherosclerosis, triglyceride-rich lipoprotein metabolism, and platelet activation), or to be unraveled (eg, in adipose tissue). The identification of novel transcriptional factors in the promoter region of human PCSK9 (eg, ChREBP) characterizes new mechanisms explaining how controlling intrahepatic glucose may be a therapeutic strategy to reduce cardiovascular risk in type 2 diabetes. Finally, the evidence describing PCSK9 as involved in cell proliferation and apoptosis raises the possibility of this protein being involved in cancer risk.
Collapse
Affiliation(s)
- Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences, Universita' degli Studi di Milano, Italy.
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Cesare R Sirtori
- Department of Pharmacological and Biomolecular Sciences, Universita' degli Studi di Milano, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Universita' degli Studi di Milano, Italy; Istituti di Ricovero e Cura a Carattere Scientifico MultiMedica, Sesto San Giovanni/Milan, Italy
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute, Lodz, Poland; Cardiovascular Research Centre, University of Zielona Góra, Zielona Góra, Poland
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Universita' degli Studi di Milano, Italy.
| |
Collapse
|
34
|
Tripaldi R, Lanuti P, Simeone PG, Liani R, Bologna G, Ciotti S, Simeone P, Di Castelnuovo A, Marchisio M, Cipollone F, Santilli F. Endogenous PCSK9 may influence circulating CD45 neg/CD34 bright and CD45 neg/CD34 bright/CD146 neg cells in patients with type 2 diabetes mellitus. Sci Rep 2021; 11:9659. [PMID: 33958634 PMCID: PMC8102605 DOI: 10.1038/s41598-021-88941-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/05/2021] [Indexed: 12/22/2022] Open
Abstract
Protease proprotein convertase subtilisin/kexin type 9 (PCSK9) is a regulator of LDL cholesterol clearance and has been associated with cardiovascular risk. PCSK9 inhibitors increase in vivo circulating endothelial progenitor cells (EPCs), a subtype of immature cells involved in ongoing endothelial repair. We hypothesized that the effect of PCSK9 on vascular homeostasis may be mediated by EPCs in patients with or without type 2 diabetes mellitus (T2DM). Eighty-two patients (45 with, 37 without T2DM) at high cardiovascular risk were enrolled in this observational study. Statin treatment was associated with higher circulating levels of PCSK9 in patients with and without T2DM (p < 0.001 and p = 0.036) and with reduced CD45neg/CD34bright (total EPC compartment) (p = 0.016) and CD45neg/CD34bright/CD146neg (early EPC) (p = 0.040) only among patients with T2DM. In the whole group of patients, statin treatment was the only independent predictor of low number of CD45neg/CD34bright (β = - 0.230; p = 0.038, adjusted R2 = 0.041). Among T2DM patients, PCSK9 circulating levels were inversely related and predicted both the number of CD45neg/CD34bright (β = - 0.438; p = 0.003, adjusted R2 = 0.173), and CD45neg/CD34bright/CD146neg (β = - 0.458; p = 0.002, adjusted R2 = 0.191) independently of age, gender, BMI and statin treatment. In high-risk T2DM patients, high endogenous levels of PCSK9 may have a detrimental effect on EPCs by reducing the endothelial repair and worsening the progression of atherothrombosis.
Collapse
Affiliation(s)
- Romina Tripaldi
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), Via Luigi Polacchi, Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), Via Luigi Polacchi, Chieti, Italy
| | - Paola Giustina Simeone
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), Via Luigi Polacchi, Chieti, Italy
| | - Rossella Liani
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), Via Luigi Polacchi, Chieti, Italy
| | - Giuseppina Bologna
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), Via Luigi Polacchi, Chieti, Italy
| | - Sonia Ciotti
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), Via Luigi Polacchi, Chieti, Italy
| | - Pasquale Simeone
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), Via Luigi Polacchi, Chieti, Italy
| | | | - Marco Marchisio
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), Via Luigi Polacchi, Chieti, Italy
| | - Francesco Cipollone
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), Via Luigi Polacchi, Chieti, Italy
| | - Francesca Santilli
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), Via Luigi Polacchi, Chieti, Italy.
| |
Collapse
|
35
|
Cignarella A, Fadini GP, Bolego C, Trevisi L, Boscaro C, Sanga V, Seccia TM, Rosato A, Rossi GP, Barton M. Clinical Efficacy and Safety of Angiogenesis Inhibitors: Sex Differences and Current Challenges. Cardiovasc Res 2021; 118:988-1003. [PMID: 33739385 DOI: 10.1093/cvr/cvab096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Vasoactive molecules, such as vascular endothelial growth factor (VEGF) and endothelins, share cytokine-like activities and regulate endothelial cell (EC) growth, migration and inflammation. Some endothelial mediators and their receptors are targets for currently approved angiogenesis inhibitors, drugs that are either monoclonal antibodies raised towards VEGF, or inhibitors of vascular receptor protein kinases and signaling pathways. Pharmacological interference with the protective functions of ECs results in a similar spectrum of adverse effects. Clinically, the most common side effects of VEGF signaling pathway inhibition include an increase in arterial pressure, left ventricular (LV) dysfunction ultimately causing heart failure, and thromboembolic events, including pulmonary embolism, stroke, and myocardial infarction. Sex steroids such as androgens, progestins, and estrogen and their receptors (ERα, ERβ, GPER; PR-A, PR-B; AR) have been identified as important modifiers of angiogenesis, and sex differences have been reported for anti-angiogenic drugs. This review article discusses the current challenges clinicians are facing with regard to angiogenesis inhibitor treatments, including the need to consider sex differences affecting clinical efficacy and safety. We also propose areas for future research taking into account the role of sex hormone receptors and sex chromosomes. Development of new sex-specific drugs with improved target and cell-type selectivity likely will open the way personalized medicine in men and women requiring antiangiogenic therapy and result in reduced adverse effects and improved therapeutic efficacy.
Collapse
Affiliation(s)
| | - Gian Paolo Fadini
- Department of Medicine, University of Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | - Carlotta Boscaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | - Viola Sanga
- Department of Medicine, University of Padova, Italy
| | | | - Antonio Rosato
- Venetian Cancer Institute IOV - IRCCS, Padova, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy
| | | | - Matthias Barton
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy.,Molecular Internal Medicine, University of Zürich, Switzerland.,Andreas Grüntzig Foundation, Zürich, Switzerland
| |
Collapse
|