1
|
Bhale AS, Meilhac O, d'Hellencourt CL, Vijayalakshmi MA, Venkataraman K. Cholesterol transport and beyond: Illuminating the versatile functions of HDL apolipoproteins through structural insights and functional implications. Biofactors 2024; 50:922-956. [PMID: 38661230 DOI: 10.1002/biof.2057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
High-density lipoproteins (HDLs) play a vital role in lipid metabolism and cardiovascular health, as they are intricately involved in cholesterol transport and inflammation modulation. The proteome of HDL particles is indeed complex and distinct from other components in the bloodstream. Proteomics studies have identified nearly 285 different proteins associated with HDL; however, this review focuses more on the 15 or so traditionally named "apo" lipoproteins. Important lipid metabolizing enzymes closely working with the apolipoproteins are also discussed. Apolipoproteins stand out for their integral role in HDL stability, structure, function, and metabolism. The unique structure and functions of each apolipoprotein influence important processes such as inflammation regulation and lipid metabolism. These interactions also shape the stability and performance of HDL particles. HDLs apolipoproteins have multifaceted roles beyond cardiovascular diseases (CVDs) and are involved in various physiological processes and disease states. Therefore, a detailed exploration of these apolipoproteins can offer valuable insights into potential diagnostic markers and therapeutic targets. This comprehensive review article aims to provide an in-depth understanding of HDL apolipoproteins, highlighting their distinct structures, functions, and contributions to various physiological processes. Exploiting this knowledge holds great potential for improving HDL function, enhancing cholesterol efflux, and modulating inflammatory processes, ultimately benefiting individuals by limiting the risks associated with CVDs and other inflammation-based pathologies. Understanding the nature of all 15 apolipoproteins expands our knowledge of HDL metabolism, sheds light on their pathological implications, and paves the way for advancements in the diagnosis, prevention, and treatment of lipid and inflammatory-related disorders.
Collapse
Affiliation(s)
- Aishwarya Sudam Bhale
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Olivier Meilhac
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Saint-Pierre, France
| | - Christian Lefebvre d'Hellencourt
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Saint-Pierre, France
| | | | - Krishnan Venkataraman
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
2
|
Velagapudi S, Wang D, Poti F, Feuerborn R, Robert J, Schlumpf E, Yalcinkaya M, Panteloglou G, Potapenko A, Simoni M, Rohrer L, Nofer JR, von Eckardstein A. Sphingosine-1-phosphate receptor 3 regulates the transendothelial transport of high-density lipoproteins and low-density lipoproteins in opposite ways. Cardiovasc Res 2024; 120:476-489. [PMID: 38109696 PMCID: PMC11060483 DOI: 10.1093/cvr/cvad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/08/2023] [Accepted: 10/20/2023] [Indexed: 12/20/2023] Open
Abstract
AIMS The entry of lipoproteins from blood into the arterial wall is a rate-limiting step in atherosclerosis. It is controversial whether this happens by filtration or regulated transendothelial transport.Because sphingosine-1-phosphate (S1P) preserves the endothelial barrier, we investigated in vivo and in vitro, whether S1P and its cognate S1P-receptor 3 (S1P3) regulate the transendothelial transport of lipoproteins. METHODS AND RESULTS Compared to apoE-haploinsufficient mice (CTRL), apoE-haploinsufficient mice with additional endothelium-specific knock-in of S1P3 (S1P3-iECKI) showed decreased transport of LDL and Evan's Blue but increased transport of HDL from blood into the peritoneal cave. After 30 weeks of high-fat diet feeding, S1P3-iECKI mice had lower levels of non-HDL-cholesterol and less atherosclerosis than CTRL mice. In vitro stimulation with an S1P3 agonist increased the transport of 125I-HDL but decreased the transport of 125I-LDL through human aortic endothelial cells (HAECs). Conversely, inhibition or knock-down of S1P3 decreased the transport of 125I-HDL but increased the transport of 125I-LDL. Silencing of SCARB1 encoding scavenger receptor B1 (SR-BI) abrogated the stimulation of 125I-HDL transport by the S1P3 agonist. The transendothelial transport of 125I-LDL was decreased by silencing of SCARB1 or ACVLR1 encoding activin-like kinase 1 but not by interference with LDLR. None of the three knock-downs prevented the stimulatory effect of S1P3 inhibition on transendothelial 125I-LDL transport. CONCLUSION S1P3 regulates the transendothelial transport of HDL and LDL oppositely by SR-BI-dependent and SR-BI-independent mechanisms, respectively. This divergence supports a contention that lipoproteins pass the endothelial barrier by specifically regulated mechanisms rather than passive filtration.
Collapse
Affiliation(s)
- Srividya Velagapudi
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - Dongdong Wang
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - Francesco Poti
- Department of Medicine and Surgery—Unit of Neurosciences, University of Parma, Parma, Italy
- Department of Biomedical, Metabolic and Neural Sciences—Unit of Endocrinology, University of Modena and Reggio Emilia, Modena, Italy
| | - Renata Feuerborn
- Central Laboratory Facility, University Hospital of Münster, Münster, Germany
| | - Jerome Robert
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - Eveline Schlumpf
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - Mustafa Yalcinkaya
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - Grigorios Panteloglou
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - Anton Potapenko
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - Manuela Simoni
- Department of Biomedical, Metabolic and Neural Sciences—Unit of Endocrinology, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucia Rohrer
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - Jerzy-Roch Nofer
- Central Laboratory Facility, University Hospital of Münster, Münster, Germany
- Institute of Laboratory Medicine, Marien-Hospital Osnabrück, Niels-Stensen-Kliniken, Osnabrück, Germany
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| |
Collapse
|
3
|
Lin YC, Swendeman S, Moreira IS, Ghosh A, Kuo A, Rosário-Ferreira N, Guo S, Culbertson A, Levesque MV, Cartier A, Seno T, Schmaier A, Galvani S, Inoue A, Parikh SM, FitzGerald GA, Zurakowski D, Liao M, Flaumenhaft R, Gümüş ZH, Hla T. Designer high-density lipoprotein particles enhance endothelial barrier function and suppress inflammation. Sci Signal 2024; 17:eadg9256. [PMID: 38377179 PMCID: PMC10954247 DOI: 10.1126/scisignal.adg9256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
High-density lipoprotein (HDL) nanoparticles promote endothelial cell (EC) function and suppress inflammation, but their utility in treating EC dysfunction has not been fully explored. Here, we describe a fusion protein named ApoA1-ApoM (A1M) consisting of apolipoprotein A1 (ApoA1), the principal structural protein of HDL that forms lipid nanoparticles, and ApoM, a chaperone for the bioactive lipid sphingosine 1-phosphate (S1P). A1M forms HDL-like particles, binds to S1P, and is signaling competent. Molecular dynamics simulations showed that the S1P-bound ApoM moiety in A1M efficiently activated EC surface receptors. Treatment of human umbilical vein ECs with A1M-S1P stimulated barrier function either alone or cooperatively with other barrier-enhancing molecules, including the stable prostacyclin analog iloprost, and suppressed cytokine-induced inflammation. A1M-S1P injection into mice during sterile inflammation suppressed neutrophil influx and inflammatory mediator secretion. Moreover, systemic A1M administration led to a sustained increase in circulating HDL-bound S1P and suppressed inflammation in a murine model of LPS-induced endotoxemia. We propose that A1M administration may enhance vascular endothelial barrier function, suppress cytokine storm, and promote resilience of the vascular endothelium.
Collapse
Affiliation(s)
- Yueh-Chien Lin
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Steven Swendeman
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Irina S. Moreira
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
- CNC - Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Avishek Ghosh
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrew Kuo
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Nícia Rosário-Ferreira
- CNC - Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-456, Coimbra, Portugal
| | | | - Alan Culbertson
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Michel V. Levesque
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Andreane Cartier
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Takahiro Seno
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Alec Schmaier
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02115, USA
| | - Sylvain Galvani
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Samir M. Parikh
- Division of Nephrology and Department of Medicine, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, 75235, USA
| | - Garret A. FitzGerald
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - David Zurakowski
- Department of Anesthesia and Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, China
| | | | - Zeynep H. Gümüş
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA and Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
4
|
Luo J, He Z, Li Q, Lv M, Cai Y, Ke W, Niu X, Zhang Z. Adipokines in atherosclerosis: unraveling complex roles. Front Cardiovasc Med 2023; 10:1235953. [PMID: 37645520 PMCID: PMC10461402 DOI: 10.3389/fcvm.2023.1235953] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Adipokines are biologically active factors secreted by adipose tissue that act on local and distant tissues through autocrine, paracrine, and endocrine mechanisms. However, adipokines are believed to be involved in an increased risk of atherosclerosis. Classical adipokines include leptin, adiponectin, and ceramide, while newly identified adipokines include visceral adipose tissue-derived serpin, omentin, and asprosin. New evidence suggests that adipokines can play an essential role in atherosclerosis progression and regression. Here, we summarize the complex roles of various adipokines in atherosclerosis lesions. Representative protective adipokines include adiponectin and neuregulin 4; deteriorating adipokines include leptin, resistin, thrombospondin-1, and C1q/tumor necrosis factor-related protein 5; and adipokines with dual protective and deteriorating effects include C1q/tumor necrosis factor-related protein 1 and C1q/tumor necrosis factor-related protein 3; and adipose tissue-derived bioactive materials include sphingosine-1-phosphate, ceramide, and adipose tissue-derived exosomes. However, the role of a newly discovered adipokine, asprosin, in atherosclerosis remains unclear. This article reviews progress in the research on the effects of adipokines in atherosclerosis and how they may be regulated to halt its progression.
Collapse
Affiliation(s)
- Jiaying Luo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiwei He
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingwen Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengna Lv
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuli Cai
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Ke
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuan Niu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Weigel C, Bellaci J, Spiegel S. Sphingosine-1-phosphate and its receptors in vascular endothelial and lymphatic barrier function. J Biol Chem 2023; 299:104775. [PMID: 37142226 PMCID: PMC10220486 DOI: 10.1016/j.jbc.2023.104775] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
The vascular and lymphatic systems both comprise a series of structurally distinct vessels lined with an inner layer of endothelial cells that function to provide a semipermeable barrier to blood and lymph. Regulation of the endothelial barrier is critical for maintaining vascular and lymphatic barrier homeostasis. One of the regulators of endothelial barrier function and integrity is sphingosine-1-phosphate (S1P), a bioactive sphingolipid metabolite secreted into the blood by erythrocytes, platelets, and endothelial cells and into the lymph by lymph endothelial cells. Binding of S1P to its G protein-coupled receptors, known as S1PR1-5, regulates its pleiotropic functions. This review outlines the structural and functional differences between vascular and lymphatic endothelium and describes current understanding of the importance of S1P/S1PR signaling in regulation of barrier functions. Most studies thus far have been primarily focused on the role of the S1P/S1PR1 axis in vasculature and have been summarized in several excellent reviews, and thus, we will only discuss new perspectives on the molecular mechanisms of action of S1P and its receptors. Much less is known about the responses of the lymphatic endothelium to S1P and the functions of S1PRs in lymph endothelial cells, and this is the major focus of this review. We also discuss current knowledge related to signaling pathways and factors regulated by the S1P/S1PR axis that control lymphatic endothelial cell junctional integrity. Gaps and limitations in current knowledge are highlighted together with the need to further understand the role of S1P receptors in the lymphatic system.
Collapse
Affiliation(s)
- Cynthia Weigel
- Department of Biochemistry and Molecular Biology Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Jacqueline Bellaci
- Department of Biochemistry and Molecular Biology Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
6
|
von Eckardstein A, Nordestgaard BG, Remaley AT, Catapano AL. High-density lipoprotein revisited: biological functions and clinical relevance. Eur Heart J 2022; 44:1394-1407. [PMID: 36337032 PMCID: PMC10119031 DOI: 10.1093/eurheartj/ehac605] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/16/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Previous interest in high-density lipoproteins (HDLs) focused on their possible protective role in atherosclerotic cardiovascular disease (ASCVD). Evidence from genetic studies and randomized trials, however, questioned that the inverse association of HDL-cholesterol (HDL-C) is causal. This review aims to provide an update on the role of HDL in health and disease, also beyond ASCVD. Through evolution from invertebrates, HDLs are the principal lipoproteins, while apolipoprotein B-containing lipoproteins first developed in vertebrates. HDLs transport cholesterol and other lipids between different cells like a reusable ferry, but serve many other functions including communication with cells and the inactivation of biohazards like bacterial lipopolysaccharides. These functions are exerted by entire HDL particles or distinct proteins or lipids carried by HDL rather than by its cholesterol cargo measured as HDL-C. Neither does HDL-C measurement reflect the efficiency of reverse cholesterol transport. Recent studies indicate that functional measures of HDL, notably cholesterol efflux capacity, numbers of HDL particles, or distinct HDL proteins are better predictors of ASCVD events than HDL-C. Low HDL-C levels are related observationally, but also genetically, to increased risks of infectious diseases, death during sepsis, diabetes mellitus, and chronic kidney disease. Additional, but only observational, data indicate associations of low HDL-C with various autoimmune diseases, and cancers, as well as all-cause mortality. Conversely, extremely high HDL-C levels are associated with an increased risk of age-related macular degeneration (also genetically), infectious disease, and all-cause mortality. HDL encompasses dynamic multimolecular and multifunctional lipoproteins that likely emerged during evolution to serve several physiological roles and prevent or heal pathologies beyond ASCVD. For any clinical exploitation of HDL, the indirect marker HDL-C must be replaced by direct biomarkers reflecting the causal role of HDL in the respective disease.
Collapse
Affiliation(s)
- Arnold von Eckardstein
- Institute of Clinical Chemistry, University Hospital Zurich and University of Zurich , Zurich , Switzerland
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital, Herlev and Gentofte Hospital , Herlev , Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital, Herlev and Gentofte Hospital , Herlev , Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, MD , USA
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan , Milan , Italy
- IRCCS MultiMedica, Sesto S. Giovanni , Milan , Italy
| |
Collapse
|
7
|
Nain M, Gupta A, Malhotra S, Sharma A. High-density lipoproteins may play a crucial role in COVID-19. Virol J 2022; 19:135. [PMID: 35999545 PMCID: PMC9395887 DOI: 10.1186/s12985-022-01865-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Background Lipids play a central role in the virus life cycle and are a crucial target to develop antiviral therapeutics. Importantly, among the other lipoproteins, the ‘good cholesterol’ high-density lipoprotein (HDL) has been widely studied for its role in not only cardiovascular but several infectious diseases as well. Studies have suggested a role of serum lipids and lipoproteins including HDL, total cholesterol (TC), triglycerides (TG), and low-density lipoproteins (LDL) in several viral infections including COVID-19. This disease is currently a major public health problem and there is a need to explore the role of these host lipids/lipoproteins in virus pathogenesis. Methodology A total of 75 retrospective COVID-19 positive serum samples and 10 COVID-19 negative controls were studied for their lipid profiles including TC, HDL, LDL, and very-low-density lipoproteins (VLDL), and TG. Results Systematic literature search on dyslipidemia status in India shows that low HDL is the most common dyslipidemia. In this cohort, 65% (49) of COVID-19 patients had severely low HDL levels whereas 35% (26) had moderately low HDL and none had normal HDL levels. On the other hand, ~ 96% of samples had normal TC (72) and LDL (72) levels. VLDL and TG levels were also variable. In the controls, 100% of samples had moderately low HDL but none severely low HDL levels. Conclusion HDL likely plays a crucial role in COVID-19 infection and outcomes. The causal relationships between HDL levels and COVID-19 need to be studied extensively for an understanding of disease pathogenesis and management. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01865-4.
Collapse
Affiliation(s)
- Minu Nain
- National Institute of Malaria Research, New Delhi, 110 077, India
| | - Apoorv Gupta
- National Institute of Malaria Research, New Delhi, 110 077, India
| | - Sumit Malhotra
- Centre for Community Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Amit Sharma
- National Institute of Malaria Research, New Delhi, 110 077, India. .,Molecular Medicine, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110 067, India.
| |
Collapse
|
8
|
Del Gaudio I, Camerer E. Distinct GEFs Couple S1PR1 to Rac for Endothelial Barrier Enhancement and Lymphocyte Trafficking. Arterioscler Thromb Vasc Biol 2022; 42:903-905. [PMID: 35616033 DOI: 10.1161/atvbaha.122.317794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ilaria Del Gaudio
- From the Université Paris Cité, Inserm, PARCC, F-75015 Paris, France
| | - Eric Camerer
- From the Université Paris Cité, Inserm, PARCC, F-75015 Paris, France
| |
Collapse
|
9
|
Diab A, Valenzuela Ripoll C, Guo Z, Javaheri A. HDL Composition, Heart Failure, and Its Comorbidities. Front Cardiovasc Med 2022; 9:846990. [PMID: 35350538 PMCID: PMC8958020 DOI: 10.3389/fcvm.2022.846990] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Although research on high-density lipoprotein (HDL) has historically focused on atherosclerotic coronary disease, there exists untapped potential of HDL biology for the treatment of heart failure. Anti-oxidant, anti-inflammatory, and endothelial protective properties of HDL could impact heart failure pathogenesis. HDL-associated proteins such as apolipoprotein A-I and M may have significant therapeutic effects on the myocardium, in part by modulating signal transduction pathways and sphingosine-1-phosphate biology. Furthermore, because heart failure is a complex syndrome characterized by multiple comorbidities, there are complex interactions between heart failure, its comorbidities, and lipoprotein homeostatic mechanisms. In this review, we will discuss the effects of heart failure and associated comorbidities on HDL, explore potential cardioprotective properties of HDL, and review novel HDL therapeutic targets in heart failure.
Collapse
|