1
|
Brilliant J, Yadav R, Akhtar T, Calkins H, Trayanova N, Spragg D. Clinical and Structural Factors Affecting Ablation Outcomes in Atrial Fibrillation Patients - A Review. Curr Cardiol Rev 2023; 19:83-96. [PMID: 36999694 PMCID: PMC10518883 DOI: 10.2174/1573403x19666230331103153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/16/2023] [Accepted: 02/02/2023] [Indexed: 04/01/2023] Open
Abstract
Catheter ablation is an effective and durable treatment option for patients with atrial fibrillation (AF). Ablation outcomes vary widely, with optimal results in patients with paroxysmal AF and diminishing results in patients with persistent or long-standing persistent AF. A number of clinical factors including obesity, hypertension, diabetes, obstructive sleep apnea, and alcohol use contribute to AF recurrence following ablation, likely through modulation of the atrial electroanatomic substrate. In this article, we review the clinical risk factors and the electro-anatomic features that contribute to AF recurrence in patients undergoing ablation for AF.
Collapse
Affiliation(s)
- Justin Brilliant
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD 21287, United States
| | - Ritu Yadav
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD 21287, United States
| | - Tauseef Akhtar
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD 21287, United States
| | - Hugh Calkins
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD 21287, United States
| | - Natalia Trayanova
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD 21287, United States
| | - David Spragg
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD 21287, United States
| |
Collapse
|
2
|
Cliff CL, Williams BM, Chadjichristos CE, Mouritzen U, Squires PE, Hills CE. Connexin 43: A Target for the Treatment of Inflammation in Secondary Complications of the Kidney and Eye in Diabetes. Int J Mol Sci 2022; 23:600. [PMID: 35054783 PMCID: PMC8776095 DOI: 10.3390/ijms23020600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Of increasing prevalence, diabetes is characterised by elevated blood glucose and chronic inflammation that precedes the onset of multiple secondary complications, including those of the kidney and the eye. As the leading cause of end stage renal disease and blindness in the working population, more than ever is there a demand to develop clinical interventions which can both delay and prevent disease progression. Connexins are membrane bound proteins that can form pores (hemichannels) in the cell membrane. Gated by cellular stress and injury, they open under pathophysiological conditions and in doing so release 'danger signals' including adenosine triphosphate into the extracellular environment. Linked to sterile inflammation via activation of the nod-like receptor protein 3 inflammasome, targeting aberrant hemichannel activity and the release of these danger signals has met with favourable outcomes in multiple models of disease, including secondary complications of diabetes. In this review, we provide a comprehensive update on those studies which document a role for aberrant connexin hemichannel activity in the pathogenesis of both diabetic eye and kidney disease, ahead of evaluating the efficacy of blocking connexin-43 specific hemichannels in these target tissues on tissue health and function.
Collapse
Affiliation(s)
- Chelsy L. Cliff
- Joseph Banks Laboratories, School of Life, Sciences University of Lincoln, Lincoln LN6 7DL, UK; (C.L.C.); (B.M.W.); (P.E.S.)
| | - Bethany M. Williams
- Joseph Banks Laboratories, School of Life, Sciences University of Lincoln, Lincoln LN6 7DL, UK; (C.L.C.); (B.M.W.); (P.E.S.)
| | - Christos E. Chadjichristos
- National Institutes for Health and Medical Research, UMR-S1155, Batiment Recherche, Tenon Hospital, 4 Rue de la Chine, 75020 Paris, France;
| | - Ulrik Mouritzen
- Ciana Therapeutics, Ole Maaloes Vej 3, 2200 Copenhagen N, Denmark;
| | - Paul E. Squires
- Joseph Banks Laboratories, School of Life, Sciences University of Lincoln, Lincoln LN6 7DL, UK; (C.L.C.); (B.M.W.); (P.E.S.)
| | - Claire E. Hills
- Joseph Banks Laboratories, School of Life, Sciences University of Lincoln, Lincoln LN6 7DL, UK; (C.L.C.); (B.M.W.); (P.E.S.)
| |
Collapse
|
3
|
Ai X, Yan J, Pogwizd SM. Serine-threonine protein phosphatase regulation of Cx43 dephosphorylation in arrhythmogenic disorders. Cell Signal 2021; 86:110070. [PMID: 34217833 PMCID: PMC8963383 DOI: 10.1016/j.cellsig.2021.110070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/11/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
Regulation of cell-to-cell communication in the heart by the gap junction protein Connexin43 (Cx43) involves modulation of Cx43 phosphorylation state by protein kinases, and dephosphorylation by protein phosphatases. Dephosphorylation of Cx43 has been associated with impaired intercellular coupling and enhanced arrhythmogenesis in various pathologic states. While there has been extensive study of the protein kinases acting on Cx43, there has been limited studies of the protein phosphatases that may underlie Cx43 dephosphorylation. The focus of this review is to introduce serine-threonine protein phosphatase regulation of Cx43 phosphorylation state and cell-to-cell communication, and its impact on arrhythmogenesis in the setting of chronic heart failure and myocardial ischemia, as well as on atrial fibrillation. We also discuss the therapeutic potential of modulating protein phosphatases to treat arrhythmias in these clinical settings.
Collapse
Affiliation(s)
- Xun Ai
- Department of Physiology & Biophysics, Rush University, Chicago, IL, United States of America
| | - Jiajie Yan
- Department of Physiology & Biophysics, Rush University, Chicago, IL, United States of America
| | - Steven M Pogwizd
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
4
|
Jost N, Christ T, Magyar J. New Strategies for the Treatment of Atrial Fibrillation. Pharmaceuticals (Basel) 2021; 14:ph14090926. [PMID: 34577626 PMCID: PMC8466466 DOI: 10.3390/ph14090926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia in the clinical practice. It significantly contributes to the morbidity and mortality of the elderly population. Over the past 25-30 years intense effort in basic research has advanced the understanding of the relationship between the pathophysiology of AF and atrial remodelling. Nowadays it is clear that the various forms of atrial remodelling (electrical, contractile and structural) play crucial role in initiating and maintaining the persistent and permanent types of AF. Unlike in ventricular fibrillation, in AF rapid ectopic firing originating from pulmonary veins and re-entry mechanism may induce and maintain (due to atrial remodelling) this complex cardiac arrhythmia. The present review presents and discusses in detail the latest knowledge on the role of remodelling in AF. Special attention is paid to novel concepts and pharmacological targets presumably relevant to the drug treatment of atrial fibrillation.
Collapse
Affiliation(s)
- Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6725 Szeged, Hungary
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research Network, 6725 Szeged, Hungary
- Correspondence:
| | - Torsten Christ
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - János Magyar
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
- Department of Sport Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
5
|
Boal AM, Risner ML, Cooper ML, Wareham LK, Calkins DJ. Astrocyte Networks as Therapeutic Targets in Glaucomatous Neurodegeneration. Cells 2021; 10:1368. [PMID: 34199470 PMCID: PMC8228804 DOI: 10.3390/cells10061368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 11/22/2022] Open
Abstract
Astrocytes are intimately involved in the response to neurodegenerative stress and have become an attractive target for the development of neuroprotective therapies. However, studies often focus on astrocytes as single-cell units. Astrocytes are densely interconnected by gap junctions that are composed primarily of the protein connexin-43 (Cx43) and can function as a broader network of cells. Such networks contribute to a number of important processes, including metabolite distribution and extracellular ionic buffering, and are likely to play an important role in the progression of neurodegenerative disease. This review will focus on the pro-degenerative and pro-survival influence of astrocyte Cx43 in disease progression, with a focus on the roles of gap junctions and hemichannels in the spread of degenerative stress. Finally, we will highlight the specific evidence for targeting these networks in the treatment of glaucomatous neurodegeneration and other optic neuropathies.
Collapse
Affiliation(s)
- Andrew M. Boal
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, 1161 21st Ave S, AA7103D Medical Center North, Nashville, TN 37232-0654, USA; (A.M.B.); (M.L.R.); (L.K.W.)
| | - Michael L. Risner
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, 1161 21st Ave S, AA7103D Medical Center North, Nashville, TN 37232-0654, USA; (A.M.B.); (M.L.R.); (L.K.W.)
| | - Melissa L. Cooper
- Skirball Institute for Biomolecular Medicine, NYU Langone Medical Center, New York, NY 10016, USA;
- Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA
| | - Lauren K. Wareham
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, 1161 21st Ave S, AA7103D Medical Center North, Nashville, TN 37232-0654, USA; (A.M.B.); (M.L.R.); (L.K.W.)
| | - David J. Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, 1161 21st Ave S, AA7103D Medical Center North, Nashville, TN 37232-0654, USA; (A.M.B.); (M.L.R.); (L.K.W.)
| |
Collapse
|
6
|
Connexins in the Heart: Regulation, Function and Involvement in Cardiac Disease. Int J Mol Sci 2021; 22:ijms22094413. [PMID: 33922534 PMCID: PMC8122935 DOI: 10.3390/ijms22094413] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Connexins are a family of transmembrane proteins that play a key role in cardiac physiology. Gap junctional channels put into contact the cytoplasms of connected cardiomyocytes, allowing the existence of electrical coupling. However, in addition to this fundamental role, connexins are also involved in cardiomyocyte death and survival. Thus, chemical coupling through gap junctions plays a key role in the spreading of injury between connected cells. Moreover, in addition to their involvement in cell-to-cell communication, mounting evidence indicates that connexins have additional gap junction-independent functions. Opening of unopposed hemichannels, located at the lateral surface of cardiomyocytes, may compromise cell homeostasis and may be involved in ischemia/reperfusion injury. In addition, connexins located at non-canonical cell structures, including mitochondria and the nucleus, have been demonstrated to be involved in cardioprotection and in regulation of cell growth and differentiation. In this review, we will provide, first, an overview on connexin biology, including their synthesis and degradation, their regulation and their interactions. Then, we will conduct an in-depth examination of the role of connexins in cardiac pathophysiology, including new findings regarding their involvement in myocardial ischemia/reperfusion injury, cardiac fibrosis, gene transcription or signaling regulation.
Collapse
|
7
|
Fu YL, Tao L, Peng FH, Zheng NZ, Lin Q, Cai SY, Wang Q. GJA1-20k attenuates Ang II-induced pathological cardiac hypertrophy by regulating gap junction formation and mitochondrial function. Acta Pharmacol Sin 2021; 42:536-549. [PMID: 32620936 PMCID: PMC8115281 DOI: 10.1038/s41401-020-0459-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/07/2020] [Indexed: 02/06/2023]
Abstract
Cardiac hypertrophy (CH) is characterized by an increase in cardiomyocyte size, and is the most common cause of cardiac-related sudden death. A decrease in gap junction (GJ) coupling and mitochondrial dysfunction are important features of CH, but the mechanisms of decreased coupling and energy impairment are poorly understood. It has been reported that GJA1-20k has a strong tropism for mitochondria and is required for the trafficking of connexin 43 (Cx43) to cell-cell borders. In this study, we investigated the effects of GJA1-20k on Cx43 GJ coupling and mitochondrial function in the pathogenesis of CH. We performed hematoxylin-eosin (HE) and Masson staining, and observed significant CH in 18-week-old male spontaneously hypertensive rats (SHRs) compared to age-matched normotensive Wistar-Kyoto (WKY) rats. In cardiomyocytes from SHRs, the levels of Cx43 at the intercalated disc (ID) and the expression of GJA1-20k were significantly reduced, whereas JAK-STAT signaling was activated. Furthermore, the SHR rats displayed suppressed mitochondrial GJA1-20k and mitochondrial biogenesis. Administration of valsartan (10 mg· [Formula: see text] d-1, i.g., for 8 weeks) prevented all of these changes. In neonatal rat cardiomyocytes (NRCMs), overexpression of GJA1-20k attenuated Ang II-induced cardiomyocyte hypertrophy and caused elevated levels of GJ coupling at the cell-cell borders. Pretreatment of NRCMs with the Jak2 inhibitor AG490 (10 µM) blocked Ang II-induced reduction in GJA1-20k expression and Cx43 gap junction formation; knockdown of Jak2 in NRCMs significantly lessened Ang II-induced cardiomyocyte hypertrophy and normalized GJA1-20k expression and Cx43 gap junction formation. Overexpression of GJA1-20k improved mitochondrial membrane potential and respiration and lowered ROS production in Ang II-induced cardiomyocyte hypertrophy. These results demonstrate the importance of GJA1-20k in regulating gap junction formation and mitochondrial function in Ang II-induced cardiomyocyte hypertrophy, thus providing a novel therapeutic strategy for patients with cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Yi-le Fu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Liang Tao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Fu-Hua Peng
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ning-Ze Zheng
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qing Lin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shao-Yi Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qin Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
8
|
Squires PE, Price GW, Mouritzen U, Potter JA, Williams BM, Hills CE. Danegaptide Prevents TGFβ1-Induced Damage in Human Proximal Tubule Epithelial Cells of the Kidney. Int J Mol Sci 2021; 22:2809. [PMID: 33802083 PMCID: PMC7999212 DOI: 10.3390/ijms22062809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is a global health problem associated with a number of comorbidities. Recent evidence implicates increased hemichannel-mediated release of adenosine triphosphate (ATP) in the progression of tubulointerstitial fibrosis, the main underlying pathology of CKD. Here, we evaluate the effect of danegaptide on blocking hemichannel-mediated changes in the expression and function of proteins associated with disease progression in tubular epithelial kidney cells. Primary human proximal tubule epithelial cells (hPTECs) were treated with the beta1 isoform of the pro-fibrotic cytokine transforming growth factor (TGFβ1) ± danegaptide. qRT-PCR and immunoblotting confirmed mRNA and protein expression, whilst a cytokine antibody array assessed the expression/secretion of proinflammatory and profibrotic cytokines. Carboxyfluorescein dye uptake and ATP biosensing measured hemichannel activity and ATP release, whilst transepithelial electrical resistance was used to assess paracellular permeability. Danegaptide negated carboxyfluorescein dye uptake and ATP release and protected against protein changes associated with tubular injury. Blocking Cx43-mediated ATP release was paralleled by partial restoration of the expression of cell cycle inhibitors, adherens and tight junction proteins and decreased paracellular permeability. Furthermore, danegaptide inhibited TGFβ1-induced changes in the expression and secretion of key adipokines, cytokines, chemokines, growth factors and interleukins. The data suggest that as a gap junction modulator and hemichannel blocker, danegaptide has potential in the future treatment of CKD.
Collapse
Affiliation(s)
- Paul E. Squires
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| | - Gareth W. Price
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| | - Ulrik Mouritzen
- Ciana Therapeutics, Ved Hegnet 2, 2960 Rungsted Kyst, Copenhagen, Denmark;
| | - Joe A. Potter
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| | - Bethany M. Williams
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| | - Claire E. Hills
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| |
Collapse
|
9
|
Yang K, Zhou Y, Zhou L, Yan F, Guan L, Liu H, Liu W. Synaptic Plasticity After Focal Cerebral Ischemia Was Attenuated by Gap26 but Enhanced by GAP-134. Front Neurol 2020; 11:888. [PMID: 32982919 PMCID: PMC7479336 DOI: 10.3389/fneur.2020.00888] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
Objective: Synaptic plasticity is critical for neurorehabilitation after focal cerebral ischemia. Connexin 43 (Cx43), the main component of the gap junction, has been shown to be pivotal for synaptic plasticity. The objective of this study was to investigate the role of the Cx43 inhibitor (Gap26) and gap junction modifier (GAP-134) in neurorehabilitation and to study their contribution to synaptic plasticity after focal ischemia. Methods: Time course expression of both total and phosphorylated Cx43 (p-Cx43) were detected by western blotting at 3, 7, and 14 d after focal ischemia. Gap26 and GAP-134 were administered starting from 3 d post focal ischemia. Neurological performances were evaluated by balance beam walking test and Y-maze test at 1, 3, and 7 d. Golgi staining and transmission electron microscope (TEM) detection were conducted at 7 d for observing dendritic spine numbers and synaptic ultrastructure, respectively. Immunofluorescent staining was used at 7 d for detection of synaptic plasticity markers, including synaptophysin (SYN) and growth-associated protein-43 (GAP-43). Results: Expression levels of both total Cx43 and p-Cx43 were increased after focal cerebral ischemia, peaking at 7 d. Compared with the MCAO group, Gap26 worsened the neurological behavior and decreased the dendritic spine number while GAP-134 improved the neurobehavior and increased the number of dendritic spines. Moreover, Gap26 further destroyed the synaptic structure, concomitant with downregulated SYN and GAP-43, whereas GAP-134 alleviated synaptic destruction and upregulated SYN and GAP-43. Conclusion: These findings suggested that Cx43 or the gap junction was involved in synaptic plasticity, thereby promoting neural recovery after ischemic stroke. Treatments enhancing gap junctions may be potential promising therapeutic measures for neurorehabilitation after ischemic stroke.
Collapse
Affiliation(s)
- Kailing Yang
- Department of Physiology, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Zhou
- Department of Physiology, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lequan Zhou
- Department of Physiology, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fuman Yan
- Department of Physiology, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Guan
- Department of Physiology, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haimei Liu
- Department of Physiology, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Liu
- Department of Physiology, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
10
|
Gap-134, a Connexin43 activator, prevents age-related development of ventricular fibrosis in Scn5a +/- mice. Pharmacol Res 2020; 159:104922. [PMID: 32464326 DOI: 10.1016/j.phrs.2020.104922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/30/2020] [Accepted: 05/10/2020] [Indexed: 01/05/2023]
Abstract
Down-regulation of Connexin43 (Cx43) has often been associated with the development of cardiac fibrosis. We showed previously that Scn5a heterozygous knockout mice (Scn5a+/-), which mimic familial progressive cardiac conduction defect, exhibit an age-dependent decrease of Cx43 expression and phosphorylation concomitantly with activation of TGF-β pathway and fibrosis development in the myocardium between 45 and 60 weeks of age. The aim of this study was to investigate whether Gap-134 prevents Cx43 down-regulation with age and fibrosis development in Scn5a+/- mice. We observed in 60-week-old Scn5a+/- mouse heart a Cx43 expression and localization remodeling correlated with fibrosis. Chronic administration of a potent and selective gap junction modifier, Gap-134 (danegaptide), between 45 and 60 weeks, increased Cx43 expression and phosphorylation on serine 368 and prevented Cx43 delocalization. Furthermore, we found that Gap-134 prevented fibrosis despite the persistence of the conduction defects and the TGF-β canonical pathway activation. In conclusion, the present study demonstrates that the age-dependent decrease of Cx43 expression is involved in the ventricular fibrotic process occurring in Scn5a+/- mice. Finally, our study suggests that gap junction modifier, such as Gap-134, could be an effective anti-fibrotic agent in the context of age-dependent fibrosis in progressive cardiac conduction disease.
Collapse
|
11
|
Danegaptide Enhances Astrocyte Gap Junctional Coupling and Reduces Ischemic Reperfusion Brain Injury in Mice. Biomolecules 2020; 10:biom10030353. [PMID: 32110860 PMCID: PMC7175267 DOI: 10.3390/biom10030353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022] Open
Abstract
Ischemic stroke is a complex and devastating event characterized by cell death resulting from a transient or permanent arterial occlusion. Astrocytic connexin43 (Cx43) gap junction (GJ) proteins have been reported to impact neuronal survival in ischemic conditions. Consequently, Cx43 could be a potential target for therapeutic approaches to stroke. We examined the effect of danegaptide (ZP1609), an antiarrhythmic dipeptide that specifically enhances GJ conductance, in two different rodent stroke models. In this study, danegaptide increased astrocytic Cx43 coupling with no significant effects on Cx43 hemichannel activity, in vitro. Using matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) the presence of danegaptide within brain tissue sections were detected one hour after reperfusion indicating successful transport of the dipeptide across the blood brain barrier. Furthermore, administration of danegaptide in a novel mouse brain ischemia/reperfusion model showed significant decrease in infarct volume. Taken together, this study provides evidence for the therapeutic potential of danegaptide in ischemia/reperfusion stroke.
Collapse
|
12
|
Postoperative Atrial Fibrillation Following Cardiac Surgery: From Pathogenesis to Potential Therapies. Am J Cardiovasc Drugs 2020; 20:19-49. [PMID: 31502217 DOI: 10.1007/s40256-019-00365-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Postoperative atrial fibrillation (POAF) is a major complication after cardiac surgery which can lead to high rates of morbidity and mortality, an enhanced length of hospital stay, and an increased cost of care. POAF is postulated to be a multifactorial phenomenon; however, some major pathogeneses have been proposed, including inflammatory pathways, oxidative stress, and autonomic dysfunction. Genetic studies also showed that inflammatory pathways, beta-1 adrenoreceptor variants, G protein-coupled receptor kinase 5 gene variants, and non-coding single-nucleotide polymorphisms in the 4q25 chromosomal locus are involved in this phenomenon. Moreover, several predisposing factors lead to the development of POAF, consisting of pre-, intra-, and postoperative contributors. The main predisposing factors comprise age, prior history of major cardiovascular risk factors, and ischemia-reperfusion injury during surgery. The management of POAF is based on the usual therapies used for non-surgical AF, including medications for either rate control or rhythm control in hemodynamically unstable patients. The perioperative administration of β-blockers and some antiarrhythmic agents has been recommended in major international guidelines. In addition, upstream therapies consisting of colchicine, magnesium, statins, and antioxidants have attenuated the incidence of POAF; however, some uncomfortable side effects developed in large randomized trials. The use of anticoagulation has also resulted in less mortality in patients with POAF at higher risk of thromboembolic events. Despite these recommendations, the actual regimen for the prevention of POAF remains controversial. In this review, we highlight the pathogenesis, predisposing factors, and potential therapeutic options for the management of patients at risk for or with POAF following cardiac surgery.
Collapse
|
13
|
Oleaga C, Jalilvand G, Legters G, Martin C, Ekman G, McAleer CW, Long CJ, Hickman JJ. A human in vitro platform for the evaluation of pharmacology strategies in cardiac ischemia. APL Bioeng 2019; 3:036103. [PMID: 31431939 PMCID: PMC6692160 DOI: 10.1063/1.5089237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Cardiac ischemic events increase the risk for arrhythmia, heart attack, heart failure, and death and are the leading mortality condition globally. Reperfusion therapy is the first line of treatment for this condition, and although it significantly reduces mortality, cardiac ischemia remains a significant threat. New therapeutic strategies are under investigation to improve the ischemia survival rate; however, the current preclinical models to validate these fail to predict the human outcome. We report the development of a functional human cardiac in vitro system for the study of conduction velocity under ischemic conditions. The system is a bioMEMs platform formed by human iPSC derived cardiomyocytes patterned on microelectrode arrays and maintained in serum-free conditions. Electrical activity changes of conduction velocity, beat frequency, and QT interval (the QT-interval measures the period from onset of depolarization to the completion of repolarization) or action potential length can be evaluated over time and under the stress of ischemia. The optimized protocol induces >80% reduction in conduction velocity, after a 4 h depletion period, and a partial recovery after 72 h of oxygen and nutrient reintroduction. The sensitivity of the platform for pharmacological interventions was challenged with a gap junction modulator (ZP1609), known to prevent or delay the depression of conduction velocity induced by ischemic metabolic stress. ZP1609 significantly improved the drastic drop in conduction velocity and enabled a greater recovery. This model represents a new preclinical platform for studying cardiac ischemia with human cells, which does not rely on biomarker analysis and has the potential for screening novel cardioprotective drugs with readouts that are closer to the measured clinical parameters.
Collapse
Affiliation(s)
- Carlota Oleaga
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway Suite 400, Orlando, Florida 32826, USA
| | - Golareh Jalilvand
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway Suite 400, Orlando, Florida 32826, USA
| | - Gregg Legters
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway Suite 400, Orlando, Florida 32826, USA
| | - Candace Martin
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway Suite 400, Orlando, Florida 32826, USA
| | - Gail Ekman
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway Suite 400, Orlando, Florida 32826, USA
| | | | | | - James J. Hickman
- Author to whom correspondence should be addressed:. Tel.: +1 407-823-1925
| |
Collapse
|
14
|
Abstract
The connexin family of channel-forming proteins is present in every tissue type in the human anatomy. Connexins are best known for forming clustered intercellular channels, structurally known as gap junctions, where they serve to exchange members of the metabolome between adjacent cells. In their single-membrane hemichannel form, connexins can act as conduits for the passage of small molecules in autocrine and paracrine signalling. Here, we review the roles of connexins in health and disease, focusing on the potential of connexins as therapeutic targets in acquired and inherited diseases as well as wound repair, while highlighting the associated clinical challenges.
Collapse
|
15
|
Wang JSH, Freitas-Andrade M, Bechberger JF, Naus CC, Yeung KKC, Whitehead SN. Matrix-assisted laser desorption/ionization imaging mass spectrometry of intraperitoneally injected danegaptide (ZP1609) for treatment of stroke-reperfusion injury in mice. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:951-958. [PMID: 29575411 DOI: 10.1002/rcm.8115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE This work focuses on direct matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) detection of intraperitoneally (IP)-injected dipeptide ZP1609 in mouse brain tissue. Direct analysis of drug detection in intact tissue sections provides distribution information that can impact drug development. MALDI-IMS capabilities of uncovering drug transport across the blood-brain barrier are demonstrated. METHODS Successful peptide detection using MALDI-IMS was achieved using a MALDI TOF/TOF system. Upon optimization of sample preparation procedures for dipeptide ZP1609, an additional tissue acidification procedure was found to greatly enhance signal detection. The imaging data acquired was able to determine successful transport of ZP1609 across the blood-brain barrier. Data obtained from MALDI-IMS can help shape our understanding of biological functions, disease progression, and effects of drug delivery. RESULTS Direct detection of ZP1609 throughout the brain tissue sections was observed from MALDI-MS images. However, in cases where there was induction of stroke, a peak of lower signal intensity was also detected in the target m/z region. Although distinct differences in signal intensity can be seen between control and experimental groups, fragments and adducts of ZP1609 were investigated using MALDI-IMS to verify detection of the target analyte. CONCLUSIONS Overall, the data reveals successful penetration of ZP1609 across the blood-brain barrier. The benefits of tissue acidification in the enhancement of detection sensitivity for low-abundance peptides were demonstrated. MALDI-IMS has been shown to be a useful technique in the direct detection of drugs within intact brain tissue sections.
Collapse
Affiliation(s)
- Jasmine S H Wang
- Department of Chemistry and Department of Biochemistry, University of Western Ontario, London, ON, Canada, N6A 5B7 and N6A 5C1
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada, N6A 5C1
| | - Moises Freitas-Andrade
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - John F Bechberger
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Christian C Naus
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Ken K-C Yeung
- Department of Chemistry and Department of Biochemistry, University of Western Ontario, London, ON, Canada, N6A 5B7 and N6A 5C1
| | - Shawn N Whitehead
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada, N6A 5C1
| |
Collapse
|
16
|
Inhibition of Cx43 gap junction uncoupling prevents high glucose-induced apoptosis and reduces excess cell monolayer permeability in retinal vascular endothelial cells. Exp Eye Res 2018; 173:85-90. [PMID: 29750972 DOI: 10.1016/j.exer.2018.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 03/30/2018] [Accepted: 05/07/2018] [Indexed: 12/23/2022]
Abstract
The aim of this study was to investigate whether inhibition of connexin 43 gap junction-uncoupling is sufficient to prevent retinal vascular cell loss under high glucose condition and reduce cell monolayer permeability. Rat retinal endothelial cells were grown for 3, 5, and 7 days in normal (5 mM) or high glucose (30 mM) medium; in parallel, cells grown in high glucose medium were exposed for 3, 5, and 7 days to 100 nM danegaptide, which stabilizes connexin 43-mediated cell coupling. Additionally, cells grown in normal medium were treated with a connexin 43 blocker as a negative control. To determine gap junction intercellular communication, scrape load dye transfer assay was performed at the three time points. Cells were assessed for apoptosis and cell monolayer permeability by differential dye staining and in vitro permeability assays, respectively. Cells treated with danegaptide preserved gap junction intercellular communication, decreased cell death, and reduced cell monolayer permeability. Scrape load dye transfer assay indicated that cells exposed to danegaptide for 3, 5, and 7 days under high glucose condition maintained gap junction intercellular communication. Importantly, danegaptide significantly prevented high glucose-induced apoptosis at all three time points, and inhibited cell monolayer permeability by day 5. Cells exposed to a connexin 43 blocker, which decreased cell coupling, showed excess apoptosis and cell monolayer permeability. These findings suggest that prevention of high glucose-induced compromised cell-cell coupling may be a useful strategy for inhibiting apoptosis and excess vascular permeability associated with diabetic retinopathy.
Collapse
|
17
|
Connexin 43 and ATP-sensitive potassium channels crosstalk: a missing link in hypoxia/ischemia stress. Cell Tissue Res 2017; 371:213-222. [PMID: 29185069 DOI: 10.1007/s00441-017-2736-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/06/2017] [Indexed: 12/28/2022]
Abstract
Connexin 43 (Cx43) is a gap junction protein expressed in various tissues and organs of vertebrates. Besides functioning as a gap junction, Cx43 also regulates diverse cellular processes like cell growth and differentiation, cell migration, cell survival, etc. Cx43 is critical for normal cardiac functioning and is therefore abundantly expressed in cardiomyocytes. On the other hand, ATP-sensitive potassium (KATP) channels are metabolic sensors converting metabolic changes into electrical activity. These channels are important in maintaining the neurotransmitter release, smooth muscle relaxation, cardiac action potential repolarization, normal physiology of cellular repolarization, insulin secretion and immune function. Cx43 and KATP channels are part of the same signaling pathway, regulating cell survival during stress conditions and ischemia/hypoxia preconditioning. However, the underlying molecular mechanism for their combined role in ischemia/hypoxia preconditioning is largely unknown. The current review focuses on understanding the molecular mechanism responsible for the coordinated role of Cx43 and KATP channel protein in protecting cardiomyocytes against ischemia/hypoxia stress.
Collapse
|
18
|
Boengler K, Bulic M, Schreckenberg R, Schlüter K, Schulz R. The gap junction modifier ZP1609 decreases cardiomyocyte hypercontracture following ischaemia/reperfusion independent from mitochondrial connexin 43. Br J Pharmacol 2017; 174:2060-2073. [PMID: 28369703 PMCID: PMC5466543 DOI: 10.1111/bph.13804] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Dysregulation of gap junction-mediated cell coupling contributes to development of arrhythmias and myocardial damage after ischaemia/reperfusion (I/R). Connexin 43 (Cx43) is present at ventricular gap junctions and also in the mitochondria of cardiomyocytes. The dipeptide (2S, 4R)-1-(2-aminoacetyl)-4-benzamidopyrrolidine-2-carboxylic acid (ZP1609) has antiarrhythmic properties and reduces infarct size when given at reperfusion. However, it is unclear, whether ZP1609 targets Cx43-containing mitochondria and affects cardiomyocyte hypercontracture following I/R. EXPERIMENTAL APPROACH We studied the effects of ZP1609 on the function of murine sub-sarcolemmal mitochondria (SSM, containing Cx43) and interfibrillar mitochondria (IFM, lacking Cx43). Murine isolated cardiomyocytes were subjected to simulated I/R without and with ZP1609 (applied during I/R or at the onset of reperfusion only), and the number of cardiomyocytes undergoing hypercontracture was quantified. Biochemical pathways targeted by ZP1609 in cardiomyocytes were analysed. KEY RESULTS ZP1609 inhibited ADP-stimulated respiration and ATP production in SSM and IFM. ROS formation and calcium retention capacities in SSM and IFM were not affected by ZP1609, whereas potassium uptake was enhanced in IFM. The number of rod-shaped cardiomyocytes was increased by ZP1609 (10 μM) when administered either during I/R or reperfusion. ZP1609 altered the phosphorylation of proteins contributing to the protection against I/R injury. CONCLUSIONS AND IMPLICATIONS ZP1609 reduced mitochondrial respiration and ATP production, but enhanced potassium uptake of IFM. Additionally, ZP1609 reduced the extent of cardiomyocytes undergoing hypercontracture following I/R. The protective effect was independent of mitochondrial Cx43, as ZP1609 exerts its effects in Cx43-containing SSM and Cx43-lacking IFM.
Collapse
Affiliation(s)
- Kerstin Boengler
- Physiologisches InstitutJustus‐Liebig‐Universität GiessenGiessenGermany
| | - Marko Bulic
- Physiologisches InstitutJustus‐Liebig‐Universität GiessenGiessenGermany
| | | | | | - Rainer Schulz
- Physiologisches InstitutJustus‐Liebig‐Universität GiessenGiessenGermany
| |
Collapse
|
19
|
Grandi E, Maleckar MM. Anti-arrhythmic strategies for atrial fibrillation: The role of computational modeling in discovery, development, and optimization. Pharmacol Ther 2016; 168:126-142. [PMID: 27612549 DOI: 10.1016/j.pharmthera.2016.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Atrial fibrillation (AF), the most common cardiac arrhythmia, is associated with increased risk of cerebrovascular stroke, and with several other pathologies, including heart failure. Current therapies for AF are targeted at reducing risk of stroke (anticoagulation) and tachycardia-induced cardiomyopathy (rate or rhythm control). Rate control, typically achieved by atrioventricular nodal blocking drugs, is often insufficient to alleviate symptoms. Rhythm control approaches include antiarrhythmic drugs, electrical cardioversion, and ablation strategies. Here, we offer several examples of how computational modeling can provide a quantitative framework for integrating multiscale data to: (a) gain insight into multiscale mechanisms of AF; (b) identify and test pharmacological and electrical therapy and interventions; and (c) support clinical decisions. We review how modeling approaches have evolved and contributed to the research pipeline and preclinical development and discuss future directions and challenges in the field.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, USA.
| | | |
Collapse
|
20
|
Gap junction modifiers regulate electrical activities of the sinoatrial node and pulmonary vein: Therapeutic implications in atrial arrhythmogenesis. Int J Cardiol 2016; 221:529-36. [PMID: 27414735 DOI: 10.1016/j.ijcard.2016.07.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/04/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND Gap junction (GJ) dysfunctions predispose cardiac tissues to various arrhythmias. Sinoatrial node (SAN) and pulmonary veins (PVs) are closely related atrial dysrhythmia. This study evaluated whether GJ modifications modulate SAN and PVs electrical activities. METHODS Conventional microelectrodes were used to record action potentials in isolated rabbit SAN, PVs, and connected PV-SAN tissue preparations before and after heptanol (GJ inhibitor) and PQ1 (GJ enhancer) administration with and without isoproterenol. A whole-cell patch clamp was used to record the electrical activities before and after heptanol in single SAN and PV cardiomyocytes. RESULTS Heptanol (1, 3, and 10μM) reduced the spontaneous beating rates of isolated SAN preparations but not PVs. Heptanol (10μM) decelerated the SAN leading rhythm in the PV-SAN preparations and induced PV burst firings without (3 of 6, 50%) and with (6 of 6, 100%) isoproterenol (1μM). Heptanol (10μM) also reduced the spontaneous beating rates in single SAN cardiomyocyte, but not PV cardiomyocyte, with a decreased pacemaker current. PQ1 (50 and 500nM) treatment did not change the spontaneous beating rates in isolated SAN and PV preparations. In the connected PV-SAN preparations, PQ1 (500nM) did not induce any PV firing even having additional isoproterenol treatment (1μM). Moreover, PQ1 (500nM) prevented heptanol-induced electrical changes in SAN and PVs preparations. CONCLUSION GJ dysfunction modulates SAN and PV electrical activity, which may contribute to atrial arrhythmogenesis. GJ enhancer has a therapeutic potential in SAN dysfunction and atrial arrhythmogenesis.
Collapse
|
21
|
Gigout S, Deisz R, Dehnicke C, Turak B, Devaux B, Pumain R, Louvel J. Role of gap junctions on synchronization in human neocortical networks. Brain Res 2016; 1637:14-21. [DOI: 10.1016/j.brainres.2016.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/30/2016] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
|
22
|
Michela P, Velia V, Aldo P, Ada P. Role of connexin 43 in cardiovascular diseases. Eur J Pharmacol 2015; 768:71-6. [PMID: 26499977 DOI: 10.1016/j.ejphar.2015.10.030] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/08/2015] [Accepted: 10/16/2015] [Indexed: 12/21/2022]
Abstract
Gap junctions (GJs) channels provide the basis for intercellular communication in the cardiovascular system for maintenance of the normal cardiac rhythm, regulation of vascular tone and endothelial function as well as metabolic interchange between the cells. They allow the transfer of small molecules and may enable slow calcium wave spreading, transfer of "death" or of "survival" signals. In the cardiomyocytes the most abundant isoform is Connexin 43 (Cx43). Alterations in Cx43 expression and distribution were observed in myocardium disease; i.e. in hypertrophic cardiomyopathy, heart failure and ischemia. Recent reports suggest the presence of Cx43 in the mitochondria as well, at least in the inner mitochondrial membrane, where it plays a central role in ischemic preconditioning. In this review, the current knowledge on the relationship between the remodeling of cardiac gap junctions and cardiac diseases are summarized.
Collapse
Affiliation(s)
| | | | - Pinto Aldo
- Department of Pharmacy, University of Salerno, Italy
| | - Popolo Ada
- Department of Pharmacy, University of Salerno, Italy.
| |
Collapse
|
23
|
Abstract
Optimal cardiac function depends on proper timing of excitation and contraction in various regions of the heart, as well as on appropriate heart rate. This is accomplished via specialized electrical properties of various components of the system, including the sinoatrial node, atria, atrioventricular node, His-Purkinje system, and ventricles. Here we review the major regionally determined electrical properties of these cardiac regions and present the available data regarding the molecular and ionic bases of regional cardiac function and dysfunction. Understanding these differences is of fundamental importance for the investigation of arrhythmia mechanisms and pharmacotherapy.
Collapse
Affiliation(s)
- Daniel C Bartos
- Department of Pharmacology, University of California Davis, Davis, California, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, California, USA
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California Davis, Davis, California, USA
| |
Collapse
|
24
|
Abdulmajeed R, Ramadeen A, Masse S, Foomany FH, Balasundaram K, Hu X, Nanthakumar K, Dorian P, Umapathy K. The effects of long chain polyunsaturated fatty acids on local activation properties in dogs vulnerable to atrial fibrillation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:1067-70. [PMID: 25570146 DOI: 10.1109/embc.2014.6943778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Marine derived long chain polyunsaturated fatty acids (PUFAs) were found to have benefits in reducing inducibility and maintenance of atrial fibrillation (AF) in a dog model. This study was conducted to evaluate the effect of PUFAs on local atrial electrical conduction properties acquired via a multi-electrode plaque sutured to the posterior wall of the left atrium of the heart in these dogs. Eleven dogs underwent simultaneous atrioventricular pacing (SAVP) for 2 weeks, and were organized into 2 groups: 5 dogs received no PUFAs (SAVP-PLACEBO), 6 dogs received Eicosapentaenoic or Docosahexaenoic acid derived from fish oils (SAVP-PUFA), where PUFAs were given for 21 days, starting 1 week prior to pacing and during the 2 week pacing period. Three features were extracted, which were the average conduction velocity, average intra atrial conduction time, and total activation time. The PUFA group had a faster average conduction velocity (0.82±0.19 m/s) than the PLACEBO group (0.47±0.21 m/s, P=0.02). Using the average conduction velocity feature, classification was performed with a linear classifier and leave-one-out method. In the SAVP-PLACEBO group, 60% of the dogs were correctly classified, and 66% of the dogs were correctly classified in SAVP-PUFA group, leading to an overall classification accuracy of 63.5%.
Collapse
|
25
|
Gap junction remodelling by chronic pressure overload is related to the increased susceptibility to atrial fibrillation in rat heart. ACTA ACUST UNITED AC 2014; 17:655-63. [DOI: 10.1093/europace/euu294] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 09/29/2014] [Indexed: 12/31/2022]
|
26
|
|
27
|
Nielsen MS, Axelsen LN, Sorgen PL, Verma V, Delmar M, Holstein-Rathlou NH. Gap junctions. Compr Physiol 2013; 2:1981-2035. [PMID: 23723031 DOI: 10.1002/cphy.c110051] [Citation(s) in RCA: 311] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease.
Collapse
Affiliation(s)
- Morten Schak Nielsen
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Cardiac Arrhythmia, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
28
|
Skyschally A, Walter B, Schultz Hansen R, Heusch G. The antiarrhythmic dipeptide ZP1609 (danegaptide) when given at reperfusion reduces myocardial infarct size in pigs. Naunyn Schmiedebergs Arch Pharmacol 2013; 386:383-91. [PMID: 23397587 DOI: 10.1007/s00210-013-0840-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/28/2013] [Indexed: 12/12/2022]
Abstract
Connexin 43 is located in the cardiomyocyte sarcolemma and in the mitochondrial membrane. Sarcolemmal connexin 43 contributes to the spread of myocardial ischemia/reperfusion injury, whereas mitochondrial connexin 43 contributes to cardioprotection. We have now investigated the antiarrhythmic dipeptide ZP1609 (danegaptide), which is an analog of the connexin 43 targeting antiarrhythmic peptide rotigaptide (ZP123), in an established and clinically relevant experimental model of ischemia/reperfusion in pigs. Pigs were subjected to 60 min coronary occlusion and 3 h reperfusion. ZP1609 (n = 10) was given 10 min prior to reperfusion (75 μg/kg b.w. bolus i.v. + 57 μg/kg/min i.v. infusion for 3 h). Immediate full reperfusion (IFR, n = 9) served as control. Ischemic postconditioning (PoCo, n = 9; 1 min LAD reocclusion after 1 min reperfusion; four repetitions) was used as a positive control of cardioprotection. Infarct size (TTC) was determined as the end point of cardioprotection. Systemic hemodynamics and regional myocardial blood flow during ischemia were not different between groups. PoCo and ZP1609 reduced infarct size vs. IFR (IFR, 46 ± 4 % of area at risk; mean ± SEM; PoCo, 31 ± 4 %; ZP1609, 25 ± 5 %; both p < 0.05 vs. IFR; ANOVA). There were only few arrhythmias during reperfusion such that no antiarrhythmic action of ZP1609 was observed. ZP1609 when given before reperfusion reduces infarct size to a similar extent as ischemic postconditioning. Further studies are necessary to define the mechanism/action of ZP1609 on connexin 43 in cardiomyocytes.
Collapse
Affiliation(s)
- Andreas Skyschally
- Institut für Pathophysiologie, Universitätsklinikum Essen, Hufelandstr. 55, 45122 Essen, Germany
| | | | | | | |
Collapse
|
29
|
|
30
|
Burashnikov A, Antzelevitch C. Novel pharmacological targets for the rhythm control management of atrial fibrillation. Pharmacol Ther 2011; 132:300-13. [PMID: 21867730 PMCID: PMC3205214 DOI: 10.1016/j.pharmthera.2011.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 08/05/2011] [Indexed: 12/19/2022]
Abstract
Atrial fibrillation (AF) is a growing clinical problem associated with increased morbidity and mortality. Development of safe and effective pharmacological treatments for AF is one of the greatest unmet medical needs facing our society. In spite of significant progress in non-pharmacological AF treatments (largely due to the use of catheter ablation techniques), anti-arrhythmic agents (AADs) remain first line therapy for rhythm control management of AF for most AF patients. When considering efficacy, safety and tolerability, currently available AADs for rhythm control of AF are less than optimal. Ion channel inhibition remains the principal strategy for termination of AF and prevention of its recurrence. Practical clinical experience indicates that multi-ion channel blockers are generally more optimal for rhythm control of AF compared to ion channel-selective blockers. Recent studies suggest that atrial-selective sodium channel block can lead to safe and effective suppression of AF and that concurrent inhibition of potassium ion channels may potentiate this effect. An important limitation of the ion channel block approach for AF treatment is that non-electrical factors (largely structural remodeling) may importantly determine the generation of AF, so that "upstream therapy", aimed at preventing or reversing structural remodeling, may be required for effective rhythm control management. This review focuses on novel pharmacological targets for the rhythm control management of AF.
Collapse
|
31
|
Thomsen MB. Strengthening intercellular communication to prevent atrial fibrillation. Cardiovasc Res 2011; 92:187-8. [DOI: 10.1093/cvr/cvr241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Abstract
The appearance of multicellular organisms imposed the development of several mechanisms for cell-to-cell communication, whereby different types of cells coordinate their function. Some of these mechanisms depend on the intercellular diffusion of signal molecules in the extracellular spaces, whereas others require cell-to-cell contact. Among the latter mechanisms, those provided by the proteins of the connexin family are widespread in most tissues. Connexin signaling is achieved via direct exchanges of cytosolic molecules between adjacent cells at gap junctions, for cell-to-cell coupling, and possibly also involves the formation of membrane "hemi-channels," for the extracellular release of cytosolic signals, direct interactions between connexins and other cell proteins, and coordinated influence on the expression of multiple genes. Connexin signaling appears to be an obligatory attribute of all multicellular exocrine and endocrine glands. Specifically, the experimental evidence we review here points to a direct participation of the Cx36 isoform in the function of the insulin-producing β-cells of the endocrine pancreas, and of the Cx40 isoform in the function of the renin-producing juxtaglomerular epithelioid cells of the kidney cortex.
Collapse
Affiliation(s)
- Domenico Bosco
- Department of Surgery, University of Geneva Medical School, Geneva, Switzerland
| | | | | |
Collapse
|
33
|
Kim SJ, Choisy SC, Barman P, Zhang H, Hancox JC, Jones SA, James AF. Atrial Remodeling and the Substrate for Atrial Fibrillation in Rat Hearts With Elevated Afterload. Circ Arrhythm Electrophysiol 2011; 4:761-9. [DOI: 10.1161/circep.111.964783] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Although arterial hypertension and left ventricular hypertrophy are considered good epidemiological indicators of the risk of atrial fibrillation (AF) in patients, the link between elevated afterload and AF remains unclear. We investigated atrial remodeling and the substrate for arrhythmia in a surgical model of elevated afterload in rats.
Methods and Results—
Male Wistar rats (aged 3–4 weeks) were anesthetized and subjected to either partial stenosis of the ascending aorta (AoB) or sham operation (Sham). Experiments were performed on excised hearts 8, 14, and 20 weeks after surgery. Unipolar electrograms were recorded from the left atrial epicardial surface of perfused hearts using a 5×5 electrode array. Cryosections of left atrial tissue were retained for histological and immunocytochemical analyses. Compared to Sham, AoB hearts showed marked left atrial hypertrophy and fibrosis at 14 and 20 weeks postsurgery. The incidence and duration of pacing-induced AF was increased in hearts from AoB rats at 20 weeks postsurgery. The substrate for arrhythmia was associated with reduced vectorial conduction velocity and greater inhomogeneity in conduction but without changes in effective refractory period. Left atrial expression of the gap junction protein, connexin43, was markedly reduced in AoB compared with Sham hearts.
Conclusions—
Using a small-animal model, we demonstrate that elevated afterload in the absence of systemic hypertension results in increased inducibility of AF and left atrial remodeling involving fibrosis, altered atrial connexin43 expression, and marked conduction abnormalities.
Collapse
Affiliation(s)
- Shang-Jin Kim
- From the Cardiovascular Research Laboratories, School of Physiology & Pharmacology, University of Bristol, Bristol, UK (S.-J.K., S.C.M.C, P.B., H.Z., J.C.H., A.F.J.); Department of Pharmacology and Toxicology, College of Veterinary Medicine, Chonbuk National University, Jeonju-City, South Korea (S.-J.K.); and Department of Biological Sciences and Hull York Medical School, University of Hull, Hull, UK (S.A.J.)
| | - Stéphanie C.M. Choisy
- From the Cardiovascular Research Laboratories, School of Physiology & Pharmacology, University of Bristol, Bristol, UK (S.-J.K., S.C.M.C, P.B., H.Z., J.C.H., A.F.J.); Department of Pharmacology and Toxicology, College of Veterinary Medicine, Chonbuk National University, Jeonju-City, South Korea (S.-J.K.); and Department of Biological Sciences and Hull York Medical School, University of Hull, Hull, UK (S.A.J.)
| | - Palash Barman
- From the Cardiovascular Research Laboratories, School of Physiology & Pharmacology, University of Bristol, Bristol, UK (S.-J.K., S.C.M.C, P.B., H.Z., J.C.H., A.F.J.); Department of Pharmacology and Toxicology, College of Veterinary Medicine, Chonbuk National University, Jeonju-City, South Korea (S.-J.K.); and Department of Biological Sciences and Hull York Medical School, University of Hull, Hull, UK (S.A.J.)
| | - Haifei Zhang
- From the Cardiovascular Research Laboratories, School of Physiology & Pharmacology, University of Bristol, Bristol, UK (S.-J.K., S.C.M.C, P.B., H.Z., J.C.H., A.F.J.); Department of Pharmacology and Toxicology, College of Veterinary Medicine, Chonbuk National University, Jeonju-City, South Korea (S.-J.K.); and Department of Biological Sciences and Hull York Medical School, University of Hull, Hull, UK (S.A.J.)
| | - Jules C. Hancox
- From the Cardiovascular Research Laboratories, School of Physiology & Pharmacology, University of Bristol, Bristol, UK (S.-J.K., S.C.M.C, P.B., H.Z., J.C.H., A.F.J.); Department of Pharmacology and Toxicology, College of Veterinary Medicine, Chonbuk National University, Jeonju-City, South Korea (S.-J.K.); and Department of Biological Sciences and Hull York Medical School, University of Hull, Hull, UK (S.A.J.)
| | - Sandra A. Jones
- From the Cardiovascular Research Laboratories, School of Physiology & Pharmacology, University of Bristol, Bristol, UK (S.-J.K., S.C.M.C, P.B., H.Z., J.C.H., A.F.J.); Department of Pharmacology and Toxicology, College of Veterinary Medicine, Chonbuk National University, Jeonju-City, South Korea (S.-J.K.); and Department of Biological Sciences and Hull York Medical School, University of Hull, Hull, UK (S.A.J.)
| | - Andrew F. James
- From the Cardiovascular Research Laboratories, School of Physiology & Pharmacology, University of Bristol, Bristol, UK (S.-J.K., S.C.M.C, P.B., H.Z., J.C.H., A.F.J.); Department of Pharmacology and Toxicology, College of Veterinary Medicine, Chonbuk National University, Jeonju-City, South Korea (S.-J.K.); and Department of Biological Sciences and Hull York Medical School, University of Hull, Hull, UK (S.A.J.)
| |
Collapse
|
34
|
De Vuyst E, Boengler K, Antoons G, Sipido KR, Schulz R, Leybaert L. Pharmacological modulation of connexin-formed channels in cardiac pathophysiology. Br J Pharmacol 2011; 163:469-83. [PMID: 21265827 PMCID: PMC3101610 DOI: 10.1111/j.1476-5381.2011.01244.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/09/2010] [Accepted: 01/02/2011] [Indexed: 12/17/2022] Open
Abstract
Coordinated electrical activity in the heart is supported by gap junction channels located at the intercalated discs of cardiomyocytes. Impaired gap junctional communication between neighbouring cardiomyocytes contributes to the development of re-entry arrhythmias after myocardial ischaemia. Current antiarrhythmic therapy is hampered by a lack of efficiency and side effects, creating the need for a new generation of drugs. In this review, we focus on compounds that increase gap junctional communication, thereby increasing the conduction velocity and decreasing the risk of arrhythmias. Some of these compounds also inhibit connexin 43 (Cx43) hemichannels, thereby limiting adenosine triphosphate loss and volume overload following ischaemia/reperfusion, thus potentially increasing the survival of cardiomyocytes. The compounds discussed in this review are: (i) antiarrythmic peptide (AAP), AAP10, ZP123; (ii) GAP-134; (iii) RXP-E; and (vi) the Cx mimetic peptides Gap 26 and Gap 27. None of these compounds have effects on Na(+) , Ca(2+) and K(+) channels, and therefore have no proarrhythmic activity associated with currently available antiarrhythmic drugs. GAP-134, RXP-E, Gap 26 and Gap 27 are pharmalogical agents with a favorable clinical safety profile, as already confirmed in phase I clinical trials for GAP-134. These agents show an excellent promise for treatment of arrhythmias in patients with ischaemic cardiomyopathy.
Collapse
Affiliation(s)
- Elke De Vuyst
- Department of Basic Medical Sciences – Physiology group, Faculty of Medicine and Health Sciences, Ghent UniversityGhent, Belgium
| | - Kerstin Boengler
- Institut für Pathophysiologie, Zentrum für Innere Medizin, Universitätsklinikum EssenEssen, Germany
| | - Gudrun Antoons
- Department for Experimental Cardiology, O & N1, K.U.LeuvenLeuven, Belgium
| | - Karin R Sipido
- Department for Experimental Cardiology, O & N1, K.U.LeuvenLeuven, Belgium
| | - Rainer Schulz
- Institut für Physiologie, Justus-Liebig Universität GießenGießen, Germany
| | - Luc Leybaert
- Department of Basic Medical Sciences – Physiology group, Faculty of Medicine and Health Sciences, Ghent UniversityGhent, Belgium
| |
Collapse
|
35
|
Workman AJ, Smith GL, Rankin AC. Mechanisms of termination and prevention of atrial fibrillation by drug therapy. Pharmacol Ther 2011; 131:221-41. [PMID: 21334377 DOI: 10.1016/j.pharmthera.2011.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 02/09/2011] [Indexed: 01/13/2023]
Abstract
Atrial fibrillation (AF) is a disorder of the rhythm of electrical activation of the cardiac atria. It is the most common cardiac arrhythmia, has multiple aetiologies, and increases the risk of death from stroke. Pharmacological therapy is the mainstay of treatment for AF, but currently available anti-arrhythmic drugs have limited efficacy and safety. An improved understanding of how anti-arrhythmic drugs affect the electrophysiological mechanisms of AF initiation and maintenance, in the setting of the different cardiac diseases that predispose to AF, is therefore required. A variety of animal models of AF has been developed, to represent and control the pathophysiological causes and risk factors of AF, and to permit the measurement of detailed and invasive parameters relating to the associated electrophysiological mechanisms of AF. The purpose of this review is to examine, consolidate and compare available relevant data on in-vivo electrophysiological mechanisms of AF suppression by currently approved and investigational anti-arrhythmic drugs in such models. These include the Vaughan Williams class I-IV drugs, namely Na(+) channel blockers, β-adrenoceptor antagonists, action potential prolonging drugs, and Ca(2+) channel blockers; the "upstream therapies", e.g., angiotensin converting enzyme inhibitors, statins and fish oils; and a variety of investigational drugs such as "atrial-selective" multiple ion channel blockers, gap junction-enhancers, and intracellular Ca(2+)-handling modulators. It is hoped that this will help to clarify the main electrophysiological mechanisms of action of different and related drug types in different disease settings, and the likely clinical significance and potential future exploitation of such mechanisms.
Collapse
Affiliation(s)
- A J Workman
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, United Kingdom.
| | | | | |
Collapse
|
36
|
Li LD, Zhang CT, Ruan L, Ni MK, Quan XQ. Gap junctions enhancer combined with Vaughan Williams class III antiarrhythmic drugs, a promising antiarrhythmic method? Med Hypotheses 2010; 76:119-21. [PMID: 20889260 DOI: 10.1016/j.mehy.2010.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 08/24/2010] [Accepted: 08/27/2010] [Indexed: 11/18/2022]
Abstract
Arrhythmias is one of the leading causes of death in the world. Current antiarrhythmic drugs are limited by unsatisfactory efficacy and adverse effects such as proarrhythmias. Reentry mechanism plays an important role in persistence of arrhythmias. Reentry can only continue when reentry path-length is longer than cardiac wavelength which is equal to the product of conduction velocity (CV) and effective refractory period (ERP). Gap junctions uncoupling is associated with proarrhythmic CV slowing and transmural dispersion of repolarization (TDR) increasing in many cardiac diseases. Vaughan Williams class III antiarrhythmic drugs prolong ERP with an augmented TDR which is the main mechanism of the proarrhythmic effects. Gap junctions enhancer can augment CV and diminish TDR. As a result, gap junctions enhancer combined with class III drugs may be a promising antiarrhythmic method.
Collapse
Affiliation(s)
- Lian-dong Li
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | | | | | | | | |
Collapse
|
37
|
Ravens U. Antiarrhythmic therapy in atrial fibrillation. Pharmacol Ther 2010; 128:129-45. [DOI: 10.1016/j.pharmthera.2010.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 06/11/2010] [Indexed: 12/19/2022]
|
38
|
Pinter A, Dorian P. Advances in Antiarrhythmic Drug Therapy: New and Emerging Therapies. Card Electrophysiol Clin 2010; 2:471-478. [PMID: 28770804 DOI: 10.1016/j.ccep.2010.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Despite major advances in the nonpharmacologic therapy for arrhythmias in the past decades, there is still a substantial role for antiarrhythmic drugs especially in the treatment of atrial fibrillation and ventricular tachycardia, the most effective of which is amiodarone. Dronedarone has been developed by modifying the amiodarone molecule, thus retaining its multichannel blocking action while still reducing its toxicity. New potassium channel blockers such as vernakalant are currently under development for the treatment of atrial fibrillation and flutter. So-called upstream therapies such as renin-angiotension system antagonists, statins, and n-3 polyunsaturated fatty acids offer promise for the treatment of antiarrhythmia. This article reviews dronedarone, which is already approved and available; antiarrhythmic agents that are the most advanced in development; and upstream therapy for atrial fibrillation.
Collapse
Affiliation(s)
- Arnold Pinter
- Division of Cardiology, St Michael's Hospital, University of Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | | |
Collapse
|
39
|
Abstract
Atrial fibrillation (AF) is a growing clinical problem associated with increased morbidity and mortality. Currently available antiarrhythmic drugs (AADs), although highly effective in acute cardioversion of paroxysmal AF, are generally only moderately successful in long-term maintenance of sinus rhythm. The use of AADs is often associated with an increased risk of ventricular proarrhythmia, extracardiac toxicity, and exacerbation of concomitant diseases such as heart failure. AF is commonly associated with intracardiac and extracardiac disease, which can modulate the efficacy and safety of AAD therapy. In light of the multifactorial intracardiac and extracardiac causes of AF generation, current development of anti-AF agents is focused on modulation of ion channel activity as well as on upstream therapies that reduce structural substrates. The available data indicate that multiple ion channel blockers exhibiting potent inhibition of peak I(Na) with relatively rapid unbinding kinetics, as well as inhibition of late I(Na) and I(Kr), may be preferable for the management of AF when considering both safety and efficacy.
Collapse
|
40
|
GAP-134 ([2S,4R]-1-[2-Aminoacetyl]4-Benzamidopyrrolidine-2-Carboxylic Acid) Prevents Spontaneous Ventricular Arrhythmias and Reduces Infarct Size During Myocardial Ischemia/Reperfusion Injury in Open-Chest Dogs. J Cardiovasc Pharmacol Ther 2009; 14:207-14. [DOI: 10.1177/1074248409340779] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The antiarrhythmic dipeptide, GAP-134, ([2S,4R]-1[2-aminoacetyl]-4-benzamido-pyrrolidine-2-carboxylic acid) was evaluated in canine ischemia/reperfusion model. In dogs subjected to 60-minute ischemia and 4-hour reperfusion, GAP-134 was administered 10 minutes before reperfusion as a bolus + intravenous (IV) infusion. The doses administered were 0.25 µg/kg bolus + 0.19 µg/kg per hour infusion; 2.5 µg/kg + 1.9 µg/kg per hour; 25 mg/kg + 19 mg/kg per hour; 75 mg/kg + 57 mg/kg per hour. Ventricular ectopy was quantified during reperfusion, including premature ventricular contractions (PVC) and ventricular tachycardia (VT). Total incidence of VT was reduced significantly with the 2 highest doses of GAP-134 (1.7 + 0.8; 2.2 + 1.4 events; P < .05) compared to controls (23.0 + 6.1). Total PVCs were reduced significantly from 11.1 + 1.6% in control animals to 2.0% + 0.7% and 1.8% + 0.8% after the 2 highest doses of GAP-134. Infarct size, expressed as percentage of left ventricle, was reduced significantly from 19.0% + 3.5% in controls to 7.9% + 1.5% and 7.1% + 0.8% (P < .05) at the 2 highest doses of GAP-134. GAP-134 is an effective antiarrhythmic agent with potential to reduce ischemia/reperfusion injury.
Collapse
|
41
|
Rossman EI, Liu K, Morgan GA, Swillo RE, Krueger JA, Gardell SJ, Butera J, Gruver M, Kantrowitz J, Feldman HS, Petersen JS, Haugan K, Hennan JK. The gap junction modifier, GAP-134 [(2S,4R)-1-(2-aminoacetyl)-4-benzamido-pyrrolidine-2-carboxylic acid], improves conduction and reduces atrial fibrillation/flutter in the canine sterile pericarditis model. J Pharmacol Exp Ther 2009; 329:1127-33. [PMID: 19252062 DOI: 10.1124/jpet.108.150102] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Gap junction uncoupling can alter conduction pathways and promote cardiac re-entry mechanisms that potentiate many supraventricular arrhythmias, such as atrial fibrillation (AF) and atrial flutter (AFL). Our objective was to determine whether GAP-134 [(2S,4R)-1-(2-aminoacetyl)-4-benzamido-pyrrolidine-2-carboxylic acid], a small dipeptide gap junction modifier, can improve conduction and ultimately prevent AF/AFL. In rat atrial strips subjected to metabolic stress, GAP-134 prevented significantly conduction velocity slowing at 10 nM compared with vehicle (p < 0.01). In the canine sterile pericarditis model, conduction time (CT; n = 5), atrial effective refractory period (AERP; n = 3), and AF/AFL duration/inducibility (n = 16) were measured 2 to 3 days postoperatively in conscious dogs. CT was significantly faster after GAP-134 infusion (average plasma concentration, 250 nM) at cycle lengths of 300 ms (66.2 +/- 1.0 versus 62.0 +/- 1.0 ms; p < 0.001) and 200 ms (64.4 +/- 0.9 versus 61.0 +/- 1.3 ms; p < 0.001). No significant changes in AERP were noted after GAP-134 infusion. The mean number of AF/AFL inductions per animal was significantly decreased after GAP-134 infusion (2.7 +/- 0.6 versus 1.6 +/- 0.8; p < 0.01), with total AF/AFL burden being decreased from 12,280 to 6063 s. Western blot experiments showed no change in connexin 43 expression. At concentrations exceeding those described in the AF/AFL experiments, GAP-134 had no effect on heart rate, blood pressure, or any electrocardiogram parameters. In conclusion, GAP-134 shows consistent efficacy on measures of conduction and AF/AFL inducibility in the canine sterile pericarditis model. These findings, along with its oral bioavailability, underscore its potential antiarrhythmic efficacy.
Collapse
Affiliation(s)
- Eric I Rossman
- Cardiovascular and Metabolic Disease, Wyeth Research, Collegeville, PA 19426, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|