1
|
Ganesan P, Pedron M, Feng R, Rogers AJ, Deb B, Chang HJ, Ruiperez-Campillo S, Srivastava V, Brennan KA, Giles W, Baykaner T, Clopton P, Wang PJ, Schotten U, Krummen DE, Narayan SM. Comparing Phenotypes for Acute and Long-Term Response to Atrial Fibrillation Ablation Using Machine Learning. Circ Arrhythm Electrophysiol 2025; 18:e012860. [PMID: 39925268 PMCID: PMC11921988 DOI: 10.1161/circep.124.012860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 12/19/2024] [Indexed: 02/11/2025]
Abstract
BACKGROUND It is difficult to identify patients with atrial fibrillation (AF) most likely to respond to ablation. While any arrhythmia patient may recur after acutely successful ablation, AF is unusual in that patients may have long-term arrhythmia freedom despite a lack of acute success. We hypothesized that acute and chronic AF ablation outcomes may reflect distinct physiology and used machine learning of multimodal data to identify their phenotypes. METHODS We studied 561 consecutive patients in the Stanford AF ablation registry (66±10 years, 28% women, 67% nonparoxysmal), from whom we extracted 72 data features of electrograms, electrocardiogram, cardiac structure, lifestyle, and clinical variables. We compared 6 machine learning models to predict acute and long-term end points after ablation and used Shapley explainability analysis to contrast phenotypes. We validated our results in an independent external population of n=77 patients with AF. RESULTS The 1-year success rate was 69.5%, and the acute termination rate was 49.6%, which correlated poorly on a patient-by-patient basis (φ coefficient=0.08). The best model for acute termination (area under the curve=0.86, Random Forest) was more predictive than for long-term outcomes (area under the curve=0.67, logistic regression; P<0.001). Phenotypes for long-term success reflected clinical and lifestyle features, while phenotypes for AF termination reflected electrical features. The need for AF induction predicted both phenotypes. The external validation cohort showed similar results (area under the curve=0.81 and 0.64, respectively) with similar phenotypes. CONCLUSIONS Long-term and acute responses to AF ablation reflect distinct clinical and electrical physiology, respectively. This de-linking of phenotypes raises the question of whether long-term success operates through factors such as attenuated AF progression. There remains an urgent need to develop procedural predictors of long-term AF ablation success.
Collapse
Affiliation(s)
- Prasanth Ganesan
- Division of Cardiology, Stanford Cardiovascular Institute (CVI), Stanford Univ, Palo Alto, CA
| | - Maxime Pedron
- Division of Cardiology, Stanford Cardiovascular Institute (CVI), Stanford Univ, Palo Alto, CA
| | - Ruibin Feng
- Division of Cardiology, Stanford Cardiovascular Institute (CVI), Stanford Univ, Palo Alto, CA
| | - Albert J. Rogers
- Division of Cardiology, Stanford Cardiovascular Institute (CVI), Stanford Univ, Palo Alto, CA
| | - Brototo Deb
- Division of Cardiology, Stanford Cardiovascular Institute (CVI), Stanford Univ, Palo Alto, CA
| | - Hui Ju Chang
- Division of Cardiology, Stanford Cardiovascular Institute (CVI), Stanford Univ, Palo Alto, CA
| | - Samuel Ruiperez-Campillo
- Division of Cardiology, Stanford Cardiovascular Institute (CVI), Stanford Univ, Palo Alto, CA
- Dept of Computer Science (D-INFK), ETH Zurich, Zurich, Switzerland
| | - Viren Srivastava
- Division of Cardiology, Stanford Cardiovascular Institute (CVI), Stanford Univ, Palo Alto, CA
| | - Kelly A. Brennan
- Division of Cardiology, Stanford Cardiovascular Institute (CVI), Stanford Univ, Palo Alto, CA
| | | | - Tina Baykaner
- Division of Cardiology, Stanford Cardiovascular Institute (CVI), Stanford Univ, Palo Alto, CA
| | - Paul Clopton
- Division of Cardiology, Stanford Cardiovascular Institute (CVI), Stanford Univ, Palo Alto, CA
| | - Paul J. Wang
- Division of Cardiology, Stanford Cardiovascular Institute (CVI), Stanford Univ, Palo Alto, CA
| | - Ulrich Schotten
- Depts of Physiology & Cardiology, Maastricht Univ & Maastricht Univ Medical Ctr, Maastricht, the Netherlands
| | | | - Sanjiv M. Narayan
- Division of Cardiology, Stanford Cardiovascular Institute (CVI), Stanford Univ, Palo Alto, CA
| |
Collapse
|
2
|
Castellano S, Kong MH. Electrographic flow mapping of atrial fibrillation. Curr Opin Cardiol 2025; 40:8-14. [PMID: 39365281 PMCID: PMC11623381 DOI: 10.1097/hco.0000000000001182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
PURPOSE OF REVIEW A low ceiling of efficacy exists for the treatment of persistent atrial fibrillation via pulmonary vein isolation without adjunctive ablations, which is likely because they do not target an individual patient's specific underlying disease mechanisms. Electrographic flow (EGF) mapping is the first system that reliably displays wavefront propagation through the atria. It is a promising tool for localizing sources of atrial fibrillation, guiding targeted ablation, and visualizing conduction through the atrial substrate. RECENT FINDINGS We describe EGF mapping with emphasis on contemporary studies examining map reproducibility and use cases in the preclinical and clinical environment. Animal experiments demonstrated that maps were interpretable across increasingly complex rhythms with pacing during spontaneously persistent atrial fibrillation reliably simulating EGF sources. The FLOW-AF randomized controlled trial showed that source ablation improved outcomes and that EGF map properties may be used to phenotype patients based on their atrial fibrillation mechanisms and recurrence likelihoods. SUMMARY Targeted ablation strategies balance the risks of insufficiently ablating atrial fibrillation triggers with exacerbating disease through additional scar formation. EGF mapping leverages spatiotemporal relationships in voltage to localize sources and quantify substrate health. Further research is needed to optimize phenotyping and treatment efforts.
Collapse
|
3
|
Tzeis S, Gerstenfeld EP, Kalman J, Saad EB, Sepehri Shamloo A, Andrade JG, Barbhaiya CR, Baykaner T, Boveda S, Calkins H, Chan N, Chen M, Chen S, Dagres N, Damiano RJ, De Potter T, Deisenhofer I, Derval N, Di Biase L, Duytschaever M, Dyrda K, Hindricks G, Hocini M, Kim Y, la Meir M, Merino JL, Michaud GF, Natale A, Nault I, Nava S, Nitta T, O’Neill M, Pak H, Piccini JP, Pürerfellner H, Reichlin T, Saenz LC, Sanders P, Schilling R, Schmidt B, Supple GE, Thomas KL, Tondo C, Verma A, Wan EY. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. J Arrhythm 2024; 40:1217-1354. [PMID: 39669937 PMCID: PMC11632303 DOI: 10.1002/joa3.13082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 12/14/2024] Open
Abstract
In the last three decades, ablation of atrial fibrillation (AF) has become an evidence-based safe and efficacious treatment for managing the most common cardiac arrhythmia. In 2007, the first joint expert consensus document was issued, guiding healthcare professionals involved in catheter or surgical AF ablation. Mounting research evidence and technological advances have resulted in a rapidly changing landscape in the field of catheter and surgical AF ablation, thus stressing the need for regularly updated versions of this partnership which were issued in 2012 and 2017. Seven years after the last consensus, an updated document was considered necessary to define a contemporary framework for selection and management of patients considered for or undergoing catheter or surgical AF ablation. This consensus is a joint effort from collaborating cardiac electrophysiology societies, namely the European Heart Rhythm Association, the Heart Rhythm Society, the Asia Pacific Heart Rhythm Society, and the Latin American Heart Rhythm Society.
Collapse
Affiliation(s)
| | | | - Jonathan Kalman
- Department of CardiologyRoyal Melbourne HospitalMelbourneAustralia
- Department of MedicineUniversity of Melbourne and Baker Research InstituteMelbourneAustralia
| | - Eduardo B. Saad
- Electrophysiology and PacingHospital Samaritano BotafogoRio de JaneiroBrazil
- Cardiac Arrhythmia Service, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | | | - Jason G. Andrade
- Department of MedicineVancouver General HospitalVancouverBritish ColumbiaCanada
| | | | - Tina Baykaner
- Division of Cardiology and Cardiovascular InstituteStanford UniversityStanfordCAUSA
| | - Serge Boveda
- Heart Rhythm Management DepartmentClinique PasteurToulouseFrance
- Universiteit Brussel (VUB)BrusselsBelgium
| | - Hugh Calkins
- Division of Cardiology, Department of MedicineJohns Hopkins UniversityBaltimoreMDUSA
| | - Ngai‐Yin Chan
- Department of Medicine and GeriatricsPrincess Margaret Hospital, Hong Kong Special Administrative RegionChina
| | - Minglong Chen
- The First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Shih‐Ann Chen
- Heart Rhythm CenterTaipei Veterans General Hospital, Taipei, and Cardiovascular Center, Taichung Veterans General HospitalTaichungTaiwan
| | | | - Ralph J. Damiano
- Division of Cardiothoracic Surgery, Department of SurgeryWashington University School of Medicine, Barnes‐Jewish HospitalSt. LouisMOUSA
| | | | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center MunichTechnical University of Munich (TUM) School of Medicine and HealthMunichGermany
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation DepartmentFondation Bordeaux Université and Bordeaux University Hospital (CHU)Pessac‐BordeauxFrance
| | - Luigi Di Biase
- Montefiore Medical CenterAlbert Einstein College of MedicineBronxNYUSA
| | | | - Katia Dyrda
- Department of Medicine, Montreal Heart InstituteUniversité de MontréalMontrealCanada
| | | | - Meleze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation DepartmentFondation Bordeaux Université and Bordeaux University Hospital (CHU)Pessac‐BordeauxFrance
| | - Young‐Hoon Kim
- Division of CardiologyKorea University College of Medicine and Korea University Medical CenterSeoulRepublic of Korea
| | - Mark la Meir
- Cardiac Surgery DepartmentVrije Universiteit Brussel, Universitair Ziekenhuis BrusselBrusselsBelgium
| | - Jose Luis Merino
- La Paz University Hospital, IdipazUniversidad AutonomaMadridSpain
- Hospital Viamed Santa ElenaMadridSpain
| | | | - Andrea Natale
- Texas Cardiac Arrhythmia InstituteSt. David's Medical CenterAustinTXUSA
- Case Western Reserve UniversityClevelandOHUSA
- Interventional ElectrophysiologyScripps ClinicSan DiegoCAUSA
- Department of Biomedicine and Prevention, Division of CardiologyUniversity of Tor VergataRomeItaly
| | - Isabelle Nault
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec (IUCPQ)QuebecCanada
| | - Santiago Nava
- Departamento de ElectrocardiologíaInstituto Nacional de Cardiología ‘Ignacio Chávez’Ciudad de MéxicoMéxico
| | - Takashi Nitta
- Department of Cardiovascular SurgeryNippon Medical SchoolTokyoJapan
| | - Mark O’Neill
- Cardiovascular DirectorateSt. Thomas’ Hospital and King's CollegeLondonUK
| | - Hui‐Nam Pak
- Division of Cardiology, Department of Internal MedicineYonsei University College of MedicineSeoulRepublic of Korea
| | | | | | - Tobias Reichlin
- Department of Cardiology, Inselspital BernBern University Hospital, University of BernBernSwitzerland
| | - Luis Carlos Saenz
- International Arrhythmia CenterCardioinfantil FoundationBogotaColombia
| | - Prashanthan Sanders
- Centre for Heart Rhythm DisordersUniversity of Adelaide and Royal Adelaide HospitalAdelaideAustralia
| | | | - Boris Schmidt
- Cardioangiologisches Centrum BethanienMedizinische Klinik III, Agaplesion MarkuskrankenhausFrankfurtGermany
| | - Gregory E. Supple
- Cardiac Electrophysiology SectionUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | | | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico MonzinoIRCCSMilanItaly
- Department of Biomedical, Surgical and Dental SciencesUniversity of MilanMilanItaly
| | - Atul Verma
- McGill University Health CentreMcGill UniversityMontrealCanada
| | - Elaine Y. Wan
- Department of Medicine, Division of CardiologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkNYUSA
| |
Collapse
|
4
|
Hunt B, Kwan E, Paccione E, Orkild B, Yazaki K, Bergquist J, Dong J, MacLeod RS, Dosdall DJ, Ranjan R. Are drivers recurring or ephemeral? observations from serial mapping of persistent atrial fibrillation. Europace 2024; 26:euae269. [PMID: 39418392 PMCID: PMC11542584 DOI: 10.1093/europace/euae269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
AIMS Rotational re-entries and ectopic foci, or 'drivers', are proposed mechanisms for persistent atrial fibrillation (persAF), but driver-based interventions have had mixed success in clinical trials. Selective targeting of drivers with multi-month stability may improve these interventions, but no prior work has investigated whether drivers can be stable on such a long timescale. OBJECTIVE We hypothesized that drivers could recur even several months after initial observation. METHODS AND RESULTS We performed serial electrophysiology studies on paced canines (n = 18, 27-35 kg) at 1-, 3-, and 6 months post-initiation of continual persAF. Using a high-density 64-electrode catheter, we captured endocardial electrograms in the left atrium (LA) and right atrium (RA) to determine the presence of drivers at each major anatomical site. We defined drivers that were repeatedly observed across consecutive studies to be recurrent. The mean probability that any driver would recur was 66% (LA: 73%, RA: 41%). We also found evidence of 'multi-recurring' drivers, i.e. those seen in all three studies. Multi-recurring drivers constituted 53% of initially observed drivers with at least one found in 92% of animals, and we found more multi-recurring drivers per animal than predicted by random chance (2.6 ± 1.5 vs. 1.2 ± 1.1, P < 0.001). Driver sites showed more enhancement than non-drivers during late gadolinium enhancement-magnetic resonance imaging (P = 0.04), but we observed no relationship between enhancement and driver recurrence type. CONCLUSION We observed recurring drivers over a 6-month period at fixed locations, confirming our hypothesis. We also found drivers to be associated with fibrosis, implying a structural basis.
Collapse
Affiliation(s)
- Bram Hunt
- Department of Biomedical Engineering, 36 S. Wasatch Drive, SMBB 3100, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, 95 S 2000 E, Bldg. 500, University of Utah, Salt Lake City, UT 84112, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, 30 North Mario Capecchi Dr, 3rd Floor North, University of Utah, Salt Lake City, UT 84112, USA
| | - Eugene Kwan
- Department of Biomedical Engineering, 36 S. Wasatch Drive, SMBB 3100, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, 95 S 2000 E, Bldg. 500, University of Utah, Salt Lake City, UT 84112, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, 30 North Mario Capecchi Dr, 3rd Floor North, University of Utah, Salt Lake City, UT 84112, USA
| | - Eric Paccione
- Department of Biomedical Engineering, 36 S. Wasatch Drive, SMBB 3100, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, 95 S 2000 E, Bldg. 500, University of Utah, Salt Lake City, UT 84112, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, 30 North Mario Capecchi Dr, 3rd Floor North, University of Utah, Salt Lake City, UT 84112, USA
| | - Benjamin Orkild
- Department of Biomedical Engineering, 36 S. Wasatch Drive, SMBB 3100, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, 95 S 2000 E, Bldg. 500, University of Utah, Salt Lake City, UT 84112, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, 30 North Mario Capecchi Dr, 3rd Floor North, University of Utah, Salt Lake City, UT 84112, USA
| | - Kyoichiro Yazaki
- Nora Eccles Harrison Cardiovascular Research and Training Institute, 95 S 2000 E, Bldg. 500, University of Utah, Salt Lake City, UT 84112, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, 30 North Mario Capecchi Dr, 3rd Floor North, University of Utah, Salt Lake City, UT 84112, USA
| | - Jake Bergquist
- Department of Biomedical Engineering, 36 S. Wasatch Drive, SMBB 3100, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, 95 S 2000 E, Bldg. 500, University of Utah, Salt Lake City, UT 84112, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, 30 North Mario Capecchi Dr, 3rd Floor North, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiawei Dong
- Department of Biomedical Engineering, 36 S. Wasatch Drive, SMBB 3100, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, 95 S 2000 E, Bldg. 500, University of Utah, Salt Lake City, UT 84112, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, 30 North Mario Capecchi Dr, 3rd Floor North, University of Utah, Salt Lake City, UT 84112, USA
| | - Robert S MacLeod
- Department of Biomedical Engineering, 36 S. Wasatch Drive, SMBB 3100, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, 95 S 2000 E, Bldg. 500, University of Utah, Salt Lake City, UT 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
| | - Derek J Dosdall
- Department of Biomedical Engineering, 36 S. Wasatch Drive, SMBB 3100, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, 95 S 2000 E, Bldg. 500, University of Utah, Salt Lake City, UT 84112, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, 30 North Mario Capecchi Dr, 3rd Floor North, University of Utah, Salt Lake City, UT 84112, USA
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah, Salt Lake City, UT, USA
| | - Ravi Ranjan
- Department of Biomedical Engineering, 36 S. Wasatch Drive, SMBB 3100, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, 95 S 2000 E, Bldg. 500, University of Utah, Salt Lake City, UT 84112, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, 30 North Mario Capecchi Dr, 3rd Floor North, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
5
|
Franco E, Lozano-Granero C, Matía Francés R, Hernández-Madrid A, Sánchez I, Zamorano JL, Moreno J. Subjective identification and ablation of drivers improves rhythm control in patients with persistent atrial fibrillation. The CHAOS-AF study. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2024; 77:723-733. [PMID: 38336154 DOI: 10.1016/j.rec.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
INTRODUCTION AND OBJECTIVES The optimal approach for persistent atrial fibrillation (AF) ablation remains unknown. In patients with persistent AF, we compared an ablation strategy based on pulmonary vein isolation (PVI) plus ablation of drivers (PVI+D), with a conventional PVI-only approach performed in a 1:1 propensity score-matched cohort. METHODS Drivers were subjectively identified using conventional high-density mapping catheters (IntellaMap ORION, PentaRay NAV or Advisor HD Grid), without dedicated software, as fractionated continuous or quasicontinuous electrograms on 1 to 2 adjacent bipoles, which were ablated first; and as sites with spatiotemporal dispersion (the entire cycle length comprised within the mapping catheter) plus noncontinuous fractionation, which were only targeted in patients without fractionated continuous electrograms, or without AF conversion after ablation of fractionated continuous electrograms. Ablation included PVI plus focal or linear ablation targeting drivers. RESULTS A total of 50 patients were included in each group (61±10 years, 25% women). Fractionated continuous electrograms were found and ablated in 21 patients from the PVI+D group (42%), leading to AF conversion in 7 patients. In the remaining 43 patients, 143 sites with spatiotemporal dispersion plus noncontinuous fractionation were targeted. Globally, AF conversion was achieved in 21 patients (42%). The PVI+D group showed lower atrial arrhythmia recurrences at 1 year of follow-up (30.6% vs 48%; P=.048) and at the last follow-up (46% vs 72%; P=.013), and less progression to permanent AF (10% vs 40%; P=.001). CONCLUSIONS Subjective identification and ablation of drivers, added to PVI, increased 1-year freedom from atrial arrhythmia and decreased long-term recurrences and progression to permanent AF.
Collapse
Affiliation(s)
- Eduardo Franco
- Departamento de Cardiología, Hospital Universitario Ramón y Cajal, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain.
| | - Cristina Lozano-Granero
- Departamento de Cardiología, Hospital Universitario Ramón y Cajal, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | | | | | - Inmaculada Sánchez
- Departamento de Cardiología Pediátrica, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - José Luis Zamorano
- Departamento de Cardiología, Hospital Universitario Ramón y Cajal, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Javier Moreno
- Departamento de Cardiología, Hospital Universitario Ramón y Cajal, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| |
Collapse
|
6
|
Tzeis S, Gerstenfeld EP, Kalman J, Saad EB, Shamloo AS, Andrade JG, Barbhaiya CR, Baykaner T, Boveda S, Calkins H, Chan NY, Chen M, Chen SA, Dagres N, Damiano RJ, De Potter T, Deisenhofer I, Derval N, Di Biase L, Duytschaever M, Dyrda K, Hindricks G, Hocini M, Kim YH, la Meir M, Merino JL, Michaud GF, Natale A, Nault I, Nava S, Nitta T, O'Neill M, Pak HN, Piccini JP, Pürerfellner H, Reichlin T, Saenz LC, Sanders P, Schilling R, Schmidt B, Supple GE, Thomas KL, Tondo C, Verma A, Wan EY. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm 2024; 21:e31-e149. [PMID: 38597857 DOI: 10.1016/j.hrthm.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
In the last three decades, ablation of atrial fibrillation (AF) has become an evidence-based safe and efficacious treatment for managing the most common cardiac arrhythmia. In 2007, the first joint expert consensus document was issued, guiding healthcare professionals involved in catheter or surgical AF ablation. Mounting research evidence and technological advances have resulted in a rapidly changing landscape in the field of catheter and surgical AF ablation, thus stressing the need for regularly updated versions of this partnership which were issued in 2012 and 2017. Seven years after the last consensus, an updated document was considered necessary to define a contemporary framework for selection and management of patients considered for or undergoing catheter or surgical AF ablation. This consensus is a joint effort from collaborating cardiac electrophysiology societies, namely the European Heart Rhythm Association, the Heart Rhythm Society, the Asia Pacific Heart Rhythm Society, and the Latin American Heart Rhythm Society.
Collapse
Affiliation(s)
- Stylianos Tzeis
- Department of Cardiology, Mitera Hospital, 6, Erythrou Stavrou Str., Marousi, Athens, PC 151 23, Greece.
| | - Edward P Gerstenfeld
- Section of Cardiac Electrophysiology, University of California, San Francisco, CA, USA
| | - Jonathan Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne and Baker Research Institute, Melbourne, Australia
| | - Eduardo B Saad
- Electrophysiology and Pacing, Hospital Samaritano Botafogo, Rio de Janeiro, Brazil; Cardiac Arrhythmia Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Jason G Andrade
- Department of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | - Tina Baykaner
- Division of Cardiology and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Serge Boveda
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France; Universiteit Brussel (VUB), Brussels, Belgium
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ngai-Yin Chan
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region, China
| | - Minglong Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shih-Ann Chen
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, and Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | - Ralph J Damiano
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO, USA
| | | | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM) School of Medicine and Health, Munich, Germany
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Luigi Di Biase
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Katia Dyrda
- Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | | | - Meleze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Young-Hoon Kim
- Division of Cardiology, Korea University College of Medicine and Korea University Medical Center, Seoul, Republic of Korea
| | - Mark la Meir
- Cardiac Surgery Department, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Jose Luis Merino
- La Paz University Hospital, Idipaz, Universidad Autonoma, Madrid, Spain; Hospital Viamed Santa Elena, Madrid, Spain
| | | | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, TX, USA; Case Western Reserve University, Cleveland, OH, USA; Interventional Electrophysiology, Scripps Clinic, San Diego, CA, USA; Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Isabelle Nault
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec (IUCPQ), Quebec, Canada
| | - Santiago Nava
- Departamento de Electrocardiología, Instituto Nacional de Cardiología 'Ignacio Chávez', Ciudad de México, México
| | - Takashi Nitta
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| | - Mark O'Neill
- Cardiovascular Directorate, St. Thomas' Hospital and King's College, London, UK
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Tobias Reichlin
- Department of Cardiology, Inselspital Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luis Carlos Saenz
- International Arrhythmia Center, Cardioinfantil Foundation, Bogota, Colombia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | | | - Boris Schmidt
- Cardioangiologisches Centrum Bethanien, Medizinische Klinik III, Agaplesion Markuskrankenhaus, Frankfurt, Germany
| | - Gregory E Supple
- Cardiac Electrophysiology Section, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Atul Verma
- McGill University Health Centre, McGill University, Montreal, Canada
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
7
|
Ma C, Narayan SM, Baykaner T. Navigating the Ebb and Flow of Atrial Fibrillation. JACC Clin Electrophysiol 2024; 10:1870-1872. [PMID: 39001759 PMCID: PMC11927096 DOI: 10.1016/j.jacep.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 07/15/2024]
Affiliation(s)
- Connie Ma
- Department of Medicine, Stanford University, Stanford, California, USA
| | - Sanjiv M Narayan
- Department of Medicine, Stanford University, Stanford, California, USA; Cardiovascular Institute, Stanford University, Stanford, California, USA
| | - Tina Baykaner
- Department of Medicine, Stanford University, Stanford, California, USA; Cardiovascular Institute, Stanford University, Stanford, California, USA.
| |
Collapse
|
8
|
Zaman JAB, Khan A, Nielsen J, Kristiansen SB, Kronborg MB, Witt CT, Gerdes C, Kristensen J, Jensen HK, Lukac P, Agarwal SC. Repeat ablation of atrial fibrillation using electrogram dispersion to identify additional areas of mechanistic significance. Heart Rhythm O2 2024; 5:543-550. [PMID: 39263613 PMCID: PMC11385402 DOI: 10.1016/j.hroo.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Background Electrogram dispersion identifies putative atrial fibrillation (AF) drivers in first time ablation procedures, with high acute termination rates and long-term outcomes akin to extensive ablation approaches. Its use in a population that had undergone repeat ablation is unknown, particularly where the pulmonary veins are already isolated. Objective This purpose of this study was to assess electrogram dispersion mapping during repeat ablation procedures for persistent AF. Methods One hundred sixty-seven patients from the United Kingdom and Denmark, all with persistent AF recurrence after prior ablation procedure(s), were mapped using a five splined catheter for electrogram dispersion before ablation. Areas were manually tagged on biatrial electroanatomic maps and ablated once pulmonary vein isolation was confirmed or reisolated if required. All patients had 12-month continuous monitoring, with most of the cohort having follow-up beyond 24 months. Results Of the 167 patients [53 (32%) female; mean age 66 ± 8 years; mean left atrial (LA) diameter 4.8 cm; mean ejection fraction 53%], 108 had pulmonary veins already isolated. Dispersion sites occurred in both atria (3.2 LA, 1.4 right atrium). Acute termination to sinus rhythm occurred in 71 (42%) of the cohort patients, with a further 73 (44%) terminating to atrial tachycardia/flutter. At 12-month follow-up, 95% of patients were free of AF, with 74% overall freedom from all atrial arrhythmias. Heart failure and severely enlarged LA predicted recurrence, and termination to sinus improved freedom from all atrial arrhythmias. Conclusion Dispersion mapping is a promising approach at repeat ablation procedures for persistent AF, with high acute termination rates and good clinical outcomes. Further prospective randomized trials are needed to evaluate this approach in a population that had undergone repeat ablation.
Collapse
Affiliation(s)
- Junaid A B Zaman
- Keck School of Medicine, University of Southern California, Los Angeles, California
- Royal Papworth Hospital, Cambridge, United Kingdom
| | - Abdulhaseeb Khan
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jan Nielsen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Mads B Kronborg
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Christian Gerdes
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Kristensen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik K Jensen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Peter Lukac
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Sharad C Agarwal
- Royal Papworth Hospital, Cambridge, United Kingdom
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Tzeis S, Gerstenfeld EP, Kalman J, Saad E, Shamloo AS, Andrade JG, Barbhaiya CR, Baykaner T, Boveda S, Calkins H, Chan NY, Chen M, Chen SA, Dagres N, Damiano RJ, De Potter T, Deisenhofer I, Derval N, Di Biase L, Duytschaever M, Dyrda K, Hindricks G, Hocini M, Kim YH, la Meir M, Merino JL, Michaud GF, Natale A, Nault I, Nava S, Nitta T, O'Neill M, Pak HN, Piccini JP, Pürerfellner H, Reichlin T, Saenz LC, Sanders P, Schilling R, Schmidt B, Supple GE, Thomas KL, Tondo C, Verma A, Wan EY. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. J Interv Card Electrophysiol 2024; 67:921-1072. [PMID: 38609733 DOI: 10.1007/s10840-024-01771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
In the last three decades, ablation of atrial fibrillation (AF) has become an evidence-based safe and efficacious treatment for managing the most common cardiac arrhythmia. In 2007, the first joint expert consensus document was issued, guiding healthcare professionals involved in catheter or surgical AF ablation. Mounting research evidence and technological advances have resulted in a rapidly changing landscape in the field of catheter and surgical AF ablation, thus stressing the need for regularly updated versions of this partnership which were issued in 2012 and 2017. Seven years after the last consensus, an updated document was considered necessary to define a contemporary framework for selection and management of patients considered for or undergoing catheter or surgical AF ablation. This consensus is a joint effort from collaborating cardiac electrophysiology societies, namely the European Heart Rhythm Association, the Heart Rhythm Society (HRS), the Asia Pacific HRS, and the Latin American HRS.
Collapse
Affiliation(s)
| | - Edward P Gerstenfeld
- Section of Cardiac Electrophysiology, University of California, San Francisco, CA, USA
| | - Jonathan Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne and Baker Research Institute, Melbourne, Australia
| | - Eduardo Saad
- Electrophysiology and Pacing, Hospital Samaritano Botafogo, Rio de Janeiro, Brazil
- Cardiac Arrhythmia Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Jason G Andrade
- Department of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | - Tina Baykaner
- Division of Cardiology and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Serge Boveda
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France
- Universiteit Brussel (VUB), Brussels, Belgium
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ngai-Yin Chan
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region, China
| | - Minglong Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shih-Ann Chen
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Nikolaos Dagres
- Department of Cardiac Electrophysiology, Charité University Berlin, Berlin, Germany
| | - Ralph J Damiano
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO, USA
| | | | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM) School of Medicine and Health, Munich, Germany
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Luigi Di Biase
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Katia Dyrda
- Department of Cardiology, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - Gerhard Hindricks
- Department of Cardiac Electrophysiology, Charité University Berlin, Berlin, Germany
| | - Meleze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Young-Hoon Kim
- Division of Cardiology, Korea University College of Medicine and Korea University Medical Center, Seoul, Republic of Korea
| | - Mark la Meir
- Cardiac Surgery Department, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Jose Luis Merino
- La Paz University Hospital, Idipaz, Universidad Autonoma, Madrid, Spain
- Hospital Viamed Santa Elena, Madrid, Spain
| | - Gregory F Michaud
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, TX, USA
- Case Western Reserve University, Cleveland, OH, USA
- Interventional Electrophysiology, Scripps Clinic, San Diego, CA, USA
- Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Isabelle Nault
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec (IUCPQ), Quebec, Canada
| | - Santiago Nava
- Departamento de Electrocardiología, Instituto Nacional de Cardiología 'Ignacio Chávez', Ciudad de México, México
| | - Takashi Nitta
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| | - Mark O'Neill
- Cardiovascular Directorate, St. Thomas' Hospital and King's College, London, UK
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Tobias Reichlin
- Department of Cardiology, Inselspital Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luis Carlos Saenz
- International Arrhythmia Center, Cardioinfantil Foundation, Bogota, Colombia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | | | - Boris Schmidt
- Cardioangiologisches Centrum Bethanien, Medizinische Klinik III, Agaplesion Markuskrankenhaus, Frankfurt, Germany
| | - Gregory E Supple
- Cardiac Electrophysiology Section, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Atul Verma
- McGill University Health Centre, McGill University, Montreal, Canada
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
10
|
Goldberger JJ, Mitrani RD, Zaatari G, Narayan SM. Mechanistic Insights From Trials of Atrial Fibrillation Ablation: Charting a Course for the Future. Circ Arrhythm Electrophysiol 2024; 17:e012939. [PMID: 39041221 PMCID: PMC11993243 DOI: 10.1161/circep.124.012939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Success rates for catheter ablation of atrial fibrillation (AF), particularly persistent AF, remain suboptimal. Pulmonary vein isolation has been the cornerstone for catheter ablation of AF for over a decade. While successful for most patients, pulmonary vein isolation alone is still insufficient for a substantial minority. Frustratingly, multiple clinical trials testing a diverse array of additional ablation approaches have led to mixed results, with no current strategy that improves AF outcomes beyond pulmonary vein isolation in all patients. Nevertheless, this large collection of data could be used to extract important insights regarding AF mechanisms and the diversity of the AF syndrome. Mechanistically, the general model for arrhythmogenesis prompts the need for tools to individually assess triggers, drivers, and substrates in individual patients. A key goal is to identify those who will not respond to pulmonary vein isolation, with novel approaches to phenotyping that may include mapping to identify alternative drivers or critical substrates. This, in turn, can allow for the implementation of phenotype-based, targeted approaches that may categorize patients into groups who would or would not be likely to respond to catheter ablation, pharmacological therapy, and risk factor modification programs. One major goal is to predict individuals in whom additional empirical ablation, while feasible, may be futile or lead to atrial scarring or proarrhythmia. This work attempts to integrate key lessons from successful and failed trials of catheter ablation, as well as models of AF, to suggest future paradigms for AF treatment.
Collapse
Affiliation(s)
- Jeffrey J Goldberger
- Cardiovascular Division, Department of Medicine, University of Miami Miller School of Medicine, FL (J.J.G., R.D.M., G.Z.)
| | - Raul D Mitrani
- Cardiovascular Division, Department of Medicine, University of Miami Miller School of Medicine, FL (J.J.G., R.D.M., G.Z.)
| | - Ghaith Zaatari
- Cardiovascular Division, Department of Medicine, University of Miami Miller School of Medicine, FL (J.J.G., R.D.M., G.Z.)
| | - Sanjiv M Narayan
- Cardiovascular Division, Department of Medicine and Cardiovascular Institute, Stanford University, Palo Alto, CA (S.M.N.)
| |
Collapse
|
11
|
Tzeis S, Gerstenfeld EP, Kalman J, Saad EB, Sepehri Shamloo A, Andrade JG, Barbhaiya CR, Baykaner T, Boveda S, Calkins H, Chan NY, Chen M, Chen SA, Dagres N, Damiano RJ, De Potter T, Deisenhofer I, Derval N, Di Biase L, Duytschaever M, Dyrda K, Hindricks G, Hocini M, Kim YH, la Meir M, Merino JL, Michaud GF, Natale A, Nault I, Nava S, Nitta T, O’Neill M, Pak HN, Piccini JP, Pürerfellner H, Reichlin T, Saenz LC, Sanders P, Schilling R, Schmidt B, Supple GE, Thomas KL, Tondo C, Verma A, Wan EY. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. Europace 2024; 26:euae043. [PMID: 38587017 PMCID: PMC11000153 DOI: 10.1093/europace/euae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 04/09/2024] Open
Abstract
In the last three decades, ablation of atrial fibrillation (AF) has become an evidence-based safe and efficacious treatment for managing the most common cardiac arrhythmia. In 2007, the first joint expert consensus document was issued, guiding healthcare professionals involved in catheter or surgical AF ablation. Mounting research evidence and technological advances have resulted in a rapidly changing landscape in the field of catheter and surgical AF ablation, thus stressing the need for regularly updated versions of this partnership which were issued in 2012 and 2017. Seven years after the last consensus, an updated document was considered necessary to define a contemporary framework for selection and management of patients considered for or undergoing catheter or surgical AF ablation. This consensus is a joint effort from collaborating cardiac electrophysiology societies, namely the European Heart Rhythm Association, the Heart Rhythm Society, the Asia Pacific Heart Rhythm Society, and the Latin American Heart Rhythm Society .
Collapse
Affiliation(s)
- Stylianos Tzeis
- Department of Cardiology, Mitera Hospital, 6, Erythrou Stavrou Str., Marousi, Athens, PC 151 23, Greece
| | - Edward P Gerstenfeld
- Section of Cardiac Electrophysiology, University of California, San Francisco, CA, USA
| | - Jonathan Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne and Baker Research Institute, Melbourne, Australia
| | - Eduardo B Saad
- Electrophysiology and Pacing, Hospital Samaritano Botafogo, Rio de Janeiro, Brazil
- Cardiac Arrhythmia Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Jason G Andrade
- Department of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | - Tina Baykaner
- Division of Cardiology and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Serge Boveda
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France
- Universiteit Brussel (VUB), Brussels, Belgium
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ngai-Yin Chan
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region, China
| | - Minglong Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shih-Ann Chen
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, and Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | - Ralph J Damiano
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO, USA
| | | | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM) School of Medicine and Health, Munich, Germany
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Luigi Di Biase
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Katia Dyrda
- Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | | | - Meleze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Young-Hoon Kim
- Division of Cardiology, Korea University College of Medicine and Korea University Medical Center, Seoul, Republic of Korea
| | - Mark la Meir
- Cardiac Surgery Department, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Jose Luis Merino
- La Paz University Hospital, Idipaz, Universidad Autonoma, Madrid, Spain
- Hospital Viamed Santa Elena, Madrid, Spain
| | | | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David’s Medical Center, Austin, TX, USA
- Case Western Reserve University, Cleveland, OH, USA
- Interventional Electrophysiology, Scripps Clinic, San Diego, CA, USA
- Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Isabelle Nault
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec (IUCPQ), Quebec, Canada
| | - Santiago Nava
- Departamento de Electrocardiología, Instituto Nacional de Cardiología ‘Ignacio Chávez’, Ciudad de México, México
| | - Takashi Nitta
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| | - Mark O’Neill
- Cardiovascular Directorate, St. Thomas’ Hospital and King’s College, London, UK
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Tobias Reichlin
- Department of Cardiology, Inselspital Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luis Carlos Saenz
- International Arrhythmia Center, Cardioinfantil Foundation, Bogota, Colombia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | | | - Boris Schmidt
- Cardioangiologisches Centrum Bethanien, Medizinische Klinik III, Agaplesion Markuskrankenhaus, Frankfurt, Germany
| | - Gregory E Supple
- Cardiac Electrophysiology Section, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Atul Verma
- McGill University Health Centre, McGill University, Montreal, Canada
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
12
|
Riku S, Inden Y, Yanagisawa S, Fujii A, Tomomatsu T, Nakagomi T, Shimojo M, Okajima T, Furui K, Suga K, Suzuki S, Shibata R, Murohara T. Distributions and number of drivers on real-time phase mapping associated with successful atrial fibrillation termination during catheter ablation for non-paroxysmal atrial fibrillation. J Interv Card Electrophysiol 2024; 67:303-317. [PMID: 37354370 DOI: 10.1007/s10840-023-01588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/31/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Real-time phase mapping (ExTRa™) is useful in determining the strategy of catheter ablation for non-paroxysmal atrial fibrillation (AF). This study aimed to investigate the features of drivers of AF associated with its termination during ablation. METHODS Thirty-six patients who underwent catheter ablation for non-paroxysmal AF using online real-time phase mapping (ExTRa™) were enrolled. A significant AF driver was defined as an area with a non-passively activated ratio of ≥ 50% on mapping analysis in the left atrium (LA). All drivers were simultaneously evaluated using a low-voltage area, complex fractionated atrial electrogram (CFAE), and rotational activity by unipolar electrogram analysis. The electrical characteristics of drivers were compared between patients with and without AF termination during the procedure. RESULTS Twelve patients achieved AF termination during the procedure. The total number of drivers detected on the mapping was significantly lower (4.4 ± 1.6 vs. 7.4 ± 3.8, p = 0.007), and the drivers were more concentrated in limited LA regions (2.8 ± 0.9 vs. 3.9 ± 1.4, p = 0.009) in the termination group than in the non-termination group. The presence of drivers 2-6 with limited (≤ 3) LA regions showed a tenfold increase in the likelihood of AF termination, with 83% specificity and 67% sensitivity. Among 231 AF drivers, the drivers related to termination exhibited a greater overlap of CFAE (56.8 ± 34.1% vs. 39.5 ± 30.4%, p = 0.004) than the non-related drivers. The termination group showed a trend toward a lower recurrence rate after ablation (p = 0.163). CONCLUSIONS Rotors responsible for AF maintenance may be characterized in cases with concentrated regions and fewer drivers on mapping.
Collapse
Affiliation(s)
- Shuro Riku
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Yasuya Inden
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Satoshi Yanagisawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan.
| | - Aya Fujii
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Toshiro Tomomatsu
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Toshifumi Nakagomi
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Masafumi Shimojo
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Takashi Okajima
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Koichi Furui
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Kazumasa Suga
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Susumu Suzuki
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Rei Shibata
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
13
|
Rappel WJ, Baykaner T, Zaman J, Ganesan P, Rogers AJ, Narayan SM. Spatially Conserved Spiral Wave Activity During Human Atrial Fibrillation. Circ Arrhythm Electrophysiol 2024; 17:e012041. [PMID: 38348685 PMCID: PMC10950516 DOI: 10.1161/circep.123.012041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 01/17/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Atrial fibrillation is the most common cardiac arrhythmia in the world and increases the risk for stroke and morbidity. During atrial fibrillation, the electric activation fronts are no longer coherently propagating through the tissue and, instead, show rotational activity, consistent with spiral wave activation, focal activity, collision, or partial versions of these spatial patterns. An unexplained phenomenon is that although simulations of cardiac models abundantly demonstrate spiral waves, clinical recordings often show only intermittent spiral wave activity. METHODS In silico data were generated using simulations in which spiral waves were continuously created and annihilated and in simulations in which a spiral wave was intermittently trapped at a heterogeneity. Clinically, spatio-temporal activation maps were constructed using 60 s recordings from a 64 electrode catheter within the atrium of N=34 patients (n=24 persistent atrial fibrillation). The location of clockwise and counterclockwise rotating spiral waves was quantified and all intervals during which these spiral waves were present were determined. For each interval, the angle of rotation as a function of time was computed and used to determine whether the spiral wave returned in step or changed phase at the start of each interval. RESULTS In both simulations, spiral waves did not come back in phase and were out of step." In contrast, spiral waves returned in step in the majority (68%; P=0.05) of patients. Thus, the intermittently observed rotational activity in these patients is due to a temporally and spatially conserved spiral wave and not due to ones that are newly created at the onset of each interval. CONCLUSIONS Intermittency of spiral wave activity represents conserved spiral wave activity of long, but interrupted duration or transient spiral activity, in the majority of patients. This finding could have important ramifications for identifying clinically important forms of atrial fibrillation and in guiding treatment.
Collapse
Affiliation(s)
| | - Tina Baykaner
- Department of Medicine, Stanford University, Palo Alto
| | - Junaid Zaman
- Department of Cardiovascular Medicine, University of Southern California, Los Angeles, CA
| | | | | | | |
Collapse
|
14
|
Lin CY, Lin YJ, Higa S, Tsai WC, Lo MT, Chiang CH, Chang SL, Lo LW, Hu YF, Chao TF, Chung FP, Liao JN, Chang TY, Lin C, Tuan TC, Kuo L, Wu CI, Liu CM, Liu SH, Kuo MJ, Liao YC, Chuang CM, Chen YY, Hsieh YC, Chen SA. Catheter Ablation With Morphologic Repetitiveness Mapping for Persistent Atrial Fibrillation. JAMA Netw Open 2023; 6:e2344535. [PMID: 37991761 PMCID: PMC10665974 DOI: 10.1001/jamanetworkopen.2023.44535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/09/2023] [Indexed: 11/23/2023] Open
Abstract
Importance Catheter ablation for persistent atrial fibrillation (AF) has shown limited success. Objective To determine whether AF drivers could be accurately identified by periodicity and similarity (PRISM) mapping ablation results for persistent AF when added to pulmonary vein isolation (PVI). Design, Setting, and Participants This prospective randomized clinical trial was performed between June 1, 2019, and December 31, 2020, and included patients with persistent AF enrolled in 3 centers across Asia. Data were analyzed on October 1, 2022. Intervention Patients were assigned to the PRISM-guided approach (group 1) or the conventional approach (group 2) at a 1:1 ratio. Main Outcomes and Measures The primary outcome was freedom from AF or other atrial arrhythmia for longer than 30 seconds at 6 and 12 months. Results A total of 170 patients (mean [SD] age, 62.0 [12.3] years; 136 men [80.0%]) were enrolled (85 patients in group 1 and 85 patients in group 2). More group 1 patients achieved freedom from AF at 12 months compared with group 2 patients (60 [70.6%] vs 40 [47.1%]). Multivariate analysis indicated that the PRISM-guided approach was associated with freedom from the recurrence of atrial arrhythmia (hazard ratio, 0.53 [95% CI, 0.33-0.85]). Conclusions and Relevance The waveform similarity and recurrence pattern derived from high-density mapping might provide an improved guiding approach for ablation of persistent AF. Compared with the conventional procedure, this novel specific substrate ablation strategy reduced the frequency of recurrent AF and increased the likelihood of maintenance of sinus rhythm. Trial Registration ClinicalTrials.gov Identifier: NCT05333952.
Collapse
Affiliation(s)
- Chin-Yu Lin
- Medicine and Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yenn-Jiang Lin
- Medicine and Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Satoshi Higa
- Cardiac Electrophysiology and Pacing Laboratory, Division of Cardiovascular Medicine, Makiminato Central Hospital, Okinawa, Japan
| | - Wen-Chin Tsai
- Division of Cardiology, Tzu-Chi General Hospital, Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Men-Tzung Lo
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Chia-Hsin Chiang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Shih-Lin Chang
- Medicine and Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Li-Wei Lo
- Medicine and Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Feng Hu
- Medicine and Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tze-Fan Chao
- Medicine and Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Fa-Po Chung
- Medicine and Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jo-Nan Liao
- Medicine and Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ting-Yung Chang
- Medicine and Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chen Lin
- Cardiac Electrophysiology and Pacing Laboratory, Division of Cardiovascular Medicine, Makiminato Central Hospital, Okinawa, Japan
| | - Ta-Chuan Tuan
- Medicine and Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ling Kuo
- Medicine and Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-I. Wu
- Medicine and Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Min Liu
- Medicine and Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shin-Huei Liu
- Medicine and Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Jen Kuo
- Medicine and Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ying-Chieh Liao
- Division of Cardiovascular Medicine, Changhua Christian Hospital, Changhua City, Taiwan
| | - Chieh-Mao Chuang
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yun-Yu Chen
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Institute of Epidemiology and Preventive Medicine College of Public Health, National Taiwan University, Taipei City, Taiwan
| | - Yu-Cheng Hsieh
- Medicine and Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Shih-Ann Chen
- Medicine and Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
15
|
Shi X, Sau A, Li X, Patel K, Bajaj N, Varela M, Wu H, Handa B, Arnold A, Shun-Shin M, Keene D, Howard J, Whinnett Z, Peters N, Christensen K, Jensen HJ, Ng FS. Information theory-based direct causality measure to assess cardiac fibrillation dynamics. J R Soc Interface 2023; 20:20230443. [PMID: 37817583 PMCID: PMC10565370 DOI: 10.1098/rsif.2023.0443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/19/2023] [Indexed: 10/12/2023] Open
Abstract
Understanding the mechanism sustaining cardiac fibrillation can facilitate the personalization of treatment. Granger causality analysis can be used to determine the existence of a hierarchical fibrillation mechanism that is more amenable to ablation treatment in cardiac time-series data. Conventional Granger causality based on linear predictability may fail if the assumption is not met or given sparsely sampled, high-dimensional data. More recently developed information theory-based causality measures could potentially provide a more accurate estimate of the nonlinear coupling. However, despite their successful application to linear and nonlinear physical systems, their use is not known in the clinical field. Partial mutual information from mixed embedding (PMIME) was implemented to identify the direct coupling of cardiac electrophysiology signals. We show that PMIME requires less data and is more robust to extrinsic confounding factors. The algorithms were then extended for efficient characterization of fibrillation organization and hierarchy using clinical high-dimensional data. We show that PMIME network measures correlate well with the spatio-temporal organization of fibrillation and demonstrated that hierarchical type of fibrillation and drivers could be identified in a subset of ventricular fibrillation patients, such that regions of high hierarchy are associated with high dominant frequency.
Collapse
Affiliation(s)
- Xili Shi
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Arunashis Sau
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Cardiology, Imperial College Healthcare NHS Trust, London, UK
| | - Xinyang Li
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Kiran Patel
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Cardiology, Imperial College Healthcare NHS Trust, London, UK
| | - Nikesh Bajaj
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Marta Varela
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Huiyi Wu
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Balvinder Handa
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Cardiology, Imperial College Healthcare NHS Trust, London, UK
| | - Ahran Arnold
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Cardiology, Imperial College Healthcare NHS Trust, London, UK
| | - Matthew Shun-Shin
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Cardiology, Imperial College Healthcare NHS Trust, London, UK
| | - Daniel Keene
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Cardiology, Imperial College Healthcare NHS Trust, London, UK
| | - James Howard
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Cardiology, Imperial College Healthcare NHS Trust, London, UK
| | - Zachary Whinnett
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Cardiology, Imperial College Healthcare NHS Trust, London, UK
| | - Nicholas Peters
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Cardiology, Imperial College Healthcare NHS Trust, London, UK
| | - Kim Christensen
- Department of Physics, Imperial College London, London, UK
- Centre for Complexity Science, Imperial College London, London, UK
| | - Henrik Jeldtoft Jensen
- Department of Mathematics, Imperial College London, London, UK
- Centre for Complexity Science, Imperial College London, London, UK
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Fu Siong Ng
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Cardiology, Imperial College Healthcare NHS Trust, London, UK
- Department of Cardiology, Chelsea and Westminster NHS Foundation Trust, London, UK
| |
Collapse
|
16
|
Aoyama D, Miyazaki S, Hasegawa K, Nomura R, Kakehashi S, Mukai M, Miyoshi M, Yamaguchi J, Sato Y, Shiomi Y, Ikeda H, Ishida K, Uzui H, Tada H. Atrial fibrillation activation patterns predict freedom from arrhythmias after catheter ablation: utility of ExTRa mapping™. Front Cardiovasc Med 2023; 10:1161691. [PMID: 37576113 PMCID: PMC10416434 DOI: 10.3389/fcvm.2023.1161691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023] Open
Abstract
Background Mechanisms underlying atrial fibrillation (AF) are widely complex and vary tremendously among individuals. Objectives This retrospective study aimed to investigate the association between AF activation patterns and clinical outcomes post-ablation. Methods Fifty-five AF patients (64.0 ± 12.9 years; 41 men; 17 paroxysmal) underwent bi-atrial endocardial driver mapping during AF pre-ablation with a real-time phase mapping system (ExTRa Mapping). The nonpassively activated ratio (%NP) of meandering rotors and multiple wavelets relative to the recording time was evaluated in 26 atrial segments [15 in the left atrium (LA) and 11 in the right atrium]. Irrespective of the mapping results, all patients underwent standard AF ablation via cryoballoons and/or radiofrequency catheters. Results In a median follow-up interval of 27(14-30) months, 69.1% of patients were free from recurrent arrhythmias and antiarrhythmic drugs at one year post-procedure. Patients with recurrent AF were more likely to have non-paroxysmal AF, a significantly larger LA size, and higher LA maximal %NP(LAmax%NP) and LA anterior wall %NP(LAAW%NP) than those without recurrent AF. A multivariate Cox regression analysis showed that both an LAmax%NP (hazard ratio [HR] = 1.075; 95% confidence interval [CI] = 1.02-1.14, p = 0.012) and LAAW%NP (HR = 1.061; 95% CI = 1.01-1.11, p = 0.013) were independent predictors of atrial arrhythmia recurrence. The optimal cutoff points for the LAmax%NP and LAAW%NP for predicting AF recurrence were 64.5% and 60.0%, respectively. A Kaplan-Meier analysis demonstrated that both an LAmax%NP > 64.5% (p = 0.0062) and LAAW%NP > 60.0% (p = 0.014) were associated with more frequent AF recurrences. Conclusion Baseline AF activation pattern mapping may aid in predicting freedom from arrhythmias after standard AF ablation procedures.
Collapse
Affiliation(s)
- Daisetsu Aoyama
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Shinsuke Miyazaki
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kanae Hasegawa
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Ryohei Nomura
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Shota Kakehashi
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Moe Mukai
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Machiko Miyoshi
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Junya Yamaguchi
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yusuke Sato
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yuichiro Shiomi
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hiroyuki Ikeda
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Kentaro Ishida
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hiroyasu Uzui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hiroshi Tada
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
17
|
Hu D, Barajas-Martinez H, Zhang ZH, Duan HY, Zhao QY, Bao MW, Du YM, Burashnikov A, Monasky MM, Pappone C, Huang CX, Antzelevitch C, Jiang H. Advances in basic and translational research in atrial fibrillation. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220174. [PMID: 37122214 PMCID: PMC10150218 DOI: 10.1098/rstb.2022.0174] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/08/2023] [Indexed: 05/02/2023] Open
Abstract
Atrial fibrillation (AF) is a very common cardiac arrhythmia with an estimated prevalence of 33.5 million patients globally. It is associated with an increased risk of death, stroke and peripheral embolism. Although genetic studies have identified a growing number of genes associated with AF, the definitive impact of these genetic findings is yet to be established. Several mechanisms, including electrical, structural and neural remodelling of atrial tissue, have been proposed to contribute to the development of AF. Despite over a century of exploration, the molecular and cellular mechanisms underlying AF have not been fully established. Current antiarrhythmic drugs are associated with a significant rate of adverse events and management of AF using ablation is not optimal, especially in cases of persistent AF. This review discusses recent advances in our understanding and management of AF, including new concepts of epidemiology, genetics and pathophysiological mechanisms. We review the current status of antiarrhythmic drug therapy for AF, new potential agents, as well as mechanism-based AF ablation. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Dan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Hector Barajas-Martinez
- Lankenau Institute for Medical Research, and Lankenau Heart Institute, Wynnwood, PA 19096, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19104, USA
| | - Zhong-He Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Hong-Yi Duan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Qing-Yan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Ming-Wei Bao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Yi-Mei Du
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Alexander Burashnikov
- Lankenau Institute for Medical Research, and Lankenau Heart Institute, Wynnwood, PA 19096, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19104, USA
| | - Michelle M. Monasky
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan 20097, Italy
| | - Carlo Pappone
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan 20097, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, Milan 20097, Italy
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, and Lankenau Heart Institute, Wynnwood, PA 19096, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19104, USA
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| |
Collapse
|
18
|
Özgül O, Hermans BJ, van Hunnik A, Verheule S, Schotten U, Bonizzi P, Zeemering S. High-density and high coverage composite mapping of repetitive atrial activation patterns. Comput Biol Med 2023; 159:106920. [PMID: 37119551 DOI: 10.1016/j.compbiomed.2023.106920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/18/2023] [Accepted: 04/13/2023] [Indexed: 05/01/2023]
Abstract
BACKGROUND Repetitive atrial activation patterns (RAAPs) during atrial fibrillation (AF) may be associated with localized mechanisms that maintain AF. Current electro-anatomical mapping systems are unsuitable for analyzing RAAPs due to the trade-off between spatial coverage and electrode density in clinical catheters. This work proposes a technique to overcome this trade-off by constructing composite maps from spatially overlapping sequential recordings. METHODS High-density epicardial contact mapping was performed during open-chest surgery in goats (n=16, left and right atria) with 3 or 22 weeks of sustained AF (249-electrode array, electrode distance 2.4 mm). A dataset mimicking sequential recordings was generated by segmenting the grid into four spatially overlapping regions (each region 6.5 cm2, 48±10% overlap) without temporal overlap. RAAPs were detected in each region using recurrence plots of activation times. RAAPs in two different regions were joined in case of RAAP cross-recurrence between overlapping electrodes. We quantified the reconstruction success rate and quality of the composite maps. RESULTS Of 1021 RAAPs found in the full mapping array (32±13 per recording), 328 spatiotemporally stable RAAPs were analyzed. 247 composite maps were generated (75% success) with a quality of 0.86±0.21 (Pearson correlation). Success was significantly affected by the RAAP area. Quality was weakly correlated with the number of repetitions of RAAPs (r=0.13, p<0.05) and not affected by the atrial side (left or right) or AF duration (3 or 22 weeks of AF). CONCLUSIONS Constructing composite maps by combining spatially overlapping sequential recordings is feasible. Interpretation of these maps can play a central role in ablation planning.
Collapse
Affiliation(s)
- Ozan Özgül
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Ben Jm Hermans
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Arne van Hunnik
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Sander Verheule
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Ulrich Schotten
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands.
| | - Pietro Bonizzi
- Department of Advanced Computing Sciences, Maastricht University, Maastricht, the Netherlands
| | - Stef Zeemering
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
19
|
Kappel C, Reiss M, Rodrigo M, Ganesan P, Narayan SM, Rappel WJ. Predicting acute termination and non-termination during ablation of human atrial fibrillation using quantitative indices. Front Physiol 2022; 13:939350. [PMID: 36483297 PMCID: PMC9725096 DOI: 10.3389/fphys.2022.939350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Termination of atrial fibrillation (AF), the most common arrhythmia in the United States, during catheter ablation is an attractive procedural endpoint, which has been associated with improved long-term outcome in some studies. It is not clear, however, whether it is possible to predict termination using clinical data. We developed and applied three quantitative indices in global multielectrode recordings of AF prior to ablation: average dominant frequency (ADF), spectral power index (SPI), and electrogram quality index (EQI). Methods: In N = 42 persistent AF patients (65 ± 9 years, 14% female) we collected unipolar electrograms from 64-pole baskets (Abbott, CA). We studied N = 17 patients in whom AF terminated during ablation ("Term") and N = 25 in whom it did not ("Non-term"). For each index, we determined its ability to predict ablation by computing receiver operating characteristic (ROC) and calculated the area under the curve (AUC). Results: The ADF did not differ for Term and Non-term patients at 5.28 ± 0.82 Hz and 5.51 ± 0.81 Hz, respectively (p = 0.34). Conversely, the SPI for these two groups was. 0.85 (0.80-0.92) and 0.97 (0.93-0.98) and the EQI was 0.61 (0.58-0.64) and 0.56 (0.55-0.59) (p < 0.0001). The AUC for predicting AF termination for the SPI was 0.85 ([0.68, 0.95] 95% CI), and for the EQI, 0.86 ([0.72, 0.95] 95% CI). Conclusion: Both the EQI and the SPI may provide a useful clinical tool to predict procedural ablation outcome in persistent AF patients. Future studies are required to identify which physiological features of AF are revealed by these indices and hence linked to AF termination or non-termination.
Collapse
Affiliation(s)
- Cole Kappel
- Department of Physics, UC Irvine, Irvine, CA, United States
| | - Michael Reiss
- Department of Physics, UC San Diego, La Jolla, CA, United States
| | - Miguel Rodrigo
- CoMMLab, Electronic Engineering Department, Universitat de Valencia, Valencia, Spain
| | - Prasanth Ganesan
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Sanjiv M. Narayan
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Wouter-Jan Rappel
- Department of Physics, UC San Diego, La Jolla, CA, United States,*Correspondence: Wouter-Jan Rappel,
| |
Collapse
|
20
|
Osorio-Jaramillo E, Cox JL, Klenk S, Kaider A, Angleitner P, Werner P, Strassl A, Mach M, Laufer G, Ehrlich MP, Ad N. Dynamic electrophysiological mechanism in patients with long-standing persistent atrial fibrillation. Front Cardiovasc Med 2022; 9:953622. [PMID: 36247427 PMCID: PMC9556291 DOI: 10.3389/fcvm.2022.953622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Background Improved understanding of the mechanisms that sustain persistent and long-standing persistent atrial fibrillation (LSpAF) is essential for providing better ablation solutions. The findings of traditional catheter-based electrophysiological studies can be impacted by the sedation required for these procedures. This is not required in non-invasive body-surface mapping (ECGI). ECGI allows for multiple mappings in the same patient at different times. This would expose potential electrophysiological changes over time, such as the location and stability of extra-pulmonary vein drivers and activation patterns in sustained AF. Materials and methods In this electrophysiological study, 10 open-heart surgery candidates with LSpAF, without previous ablation procedures (6 male, median age 73 years), were mapped on two occasions with a median interval of 11 days (IQR: 8–19) between mappings. Bi-atrial epicardial activation sequences were acquired using ECGI (CardioInsight™, Minneapolis, MN, United States). Results Bi-atrial electrophysiological abnormalities were documented in all 20 mappings. Interestingly, the anatomic location of focal and rotor activities changed between the mappings in all patients [100% showed changes, 95%CI (69.2–100%), p < 0.001]. Neither AF driver type nor their number varied significantly between the mappings in any patient (median total number of focal activities 8 (IQR: 1–16) versus 6 (IQR: 2–12), p = 0.68; median total number of rotor activities 48 (IQR: 44–67) versus 55 (IQR: 44–61), p = 0.30). However, individual zones showed a high number of quantitative changes (increase/decrease) of driver activity. Most changes of focal activity were found in the left atrial appendage, the region of the left lower pulmonary vein and the right atrial appendage. Most changes in rotor activity were found also at the left lower pulmonary vein region, the upper half of the right atrium and the right atrial appendage. Conclusion This clinical study documented that driver location and activation patterns in patients with LSpAF changes constantly. Furthermore, bi-atrial pathophysiology was demonstrated, which underscores the importance of treating both atria in LSpAF and the significant role that arrhythmogenic drivers outside the pulmonary veins seem to have in maintaining this complex arrhythmia.
Collapse
Affiliation(s)
- Emilio Osorio-Jaramillo
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
- *Correspondence: Emilio Osorio-Jaramillo,
| | - James L. Cox
- Division of Cardiac Surgery, Bluhm Cardiovascular Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Sarah Klenk
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
- Division of Cardiology, Clinic Favoriten, Vienna, Austria
| | - Alexandra Kaider
- Department of Cardiac Surgery, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Philipp Angleitner
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Paul Werner
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Andreas Strassl
- Division of Cardiovascular and Interventional Radiology, Medical University of Vienna, Vienna, Austria
| | - Markus Mach
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Guenther Laufer
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Marek P. Ehrlich
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Niv Ad
- Cardiothoracic Surgery, Adventist HealthCare White Oak Medical Center, Silver Spring, MD, United States
- Division of Cardiac Surgery, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
21
|
Abstract
The global burden caused by cardiovascular disease is substantial, with heart disease representing the most common cause of death around the world. There remains a need to develop better mechanistic models of cardiac function in order to combat this health concern. Heart rhythm disorders, or arrhythmias, are one particular type of disease which has been amenable to quantitative investigation. Here we review the application of quantitative methodologies to explore dynamical questions pertaining to arrhythmias. We begin by describing single-cell models of cardiac myocytes, from which two and three dimensional models can be constructed. Special focus is placed on results relating to pattern formation across these spatially-distributed systems, especially the formation of spiral waves of activation. Next, we discuss mechanisms which can lead to the initiation of arrhythmias, focusing on the dynamical state of spatially discordant alternans, and outline proposed mechanisms perpetuating arrhythmias such as fibrillation. We then review experimental and clinical results related to the spatio-temporal mapping of heart rhythm disorders. Finally, we describe treatment options for heart rhythm disorders and demonstrate how statistical physics tools can provide insights into the dynamics of heart rhythm disorders.
Collapse
Affiliation(s)
- Wouter-Jan Rappel
- Department of Physics, University of California San Diego, La Jolla, CA 92037
| |
Collapse
|
22
|
Franco E, Lozano Granero C, Matía R, Hernández-Madrid A, Sánchez Pérez I, Zamorano JL, Moreno J. Stabilization of unstable reentrant atrial tachycardias via fractionated continuous electrical activity ablation (CHAOS study). Cardiol J 2022; 30:799-809. [PMID: 35578756 PMCID: PMC10635713 DOI: 10.5603/cj.a2022.0036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Unstable reentrant atrial tachycardias (ATs) (i.e., those with frequent circuit modification or conversion to atrial fibrillation) are challenging to ablate. We tested a strategy to achieve arrhythmia stabilization into mappable stable ATs based on the detection and ablation of rotors. METHODS All consecutive patients from May 2017 to December 2019 were included. Mapping was performed using conventional high-density mapping catheters (IntellaMap ORION, PentaRay NAV, or Advisor HD Grid). Rotors were subjectively identified as fractionated continuous (or quasi-continuous) electrograms on 1-2 adjacent bipoles, without dedicated software. In patients without detectable rotors, sites with spatiotemporal dispersion (i.e., all the cycle length comprised within the mapping catheter) plus non-continuous fractionation on single bipoles were targeted. Ablation success was defined as conversion to a stable AT or sinus rhythm. RESULTS Ninety-seven patients with reentrant ATs were ablated. Of these, 18 (18.6%) presented unstable circuits. Thirteen (72%) patients had detectable rotors (median 2 [1-3] rotors per patient); focal ablation was successful in 12 (92%). In the other 5 patients, 17 sites with spatiotemporal dispersion were identified and targeted. Globally, and excluding 1 patient with spontaneous AT stabilization, ablation success was achieved in 16/17 patients (94.1%). One-year freedom from atrial arrhythmias was similar between patients with unstable and stable ATs (66.7% vs. 65.8%, p = 0.946). CONCLUSIONS Most unstable reentrant ATs show detectable rotors, identified as sites with single-bipole fractionated quasi-continuous signals, or spatiotemporal dispersion plus non-continuous fractionation. Ablation of these sites is highly effective to stabilize the AT or convert it into sinus rhythm.
Collapse
Affiliation(s)
- Eduardo Franco
- Arrhythmia Unit, Cardiology Department, University Hospital Ramón y Cajal, Madrid, Spain.
| | | | - Roberto Matía
- Arrhythmia Unit, Cardiology Department, University Hospital Ramón y Cajal, Madrid, Spain
| | | | | | - José Luis Zamorano
- Arrhythmia Unit, Cardiology Department, University Hospital Ramón y Cajal, Madrid, Spain
| | - Javier Moreno
- Arrhythmia Unit, Cardiology Department, University Hospital Ramón y Cajal, Madrid, Spain
| |
Collapse
|
23
|
Frontera A, Pagani S, Limite LR, Peirone A, Fioravanti F, Enache B, Cuellar Silva J, Vlachos K, Meyer C, Montesano G, Manzoni A, Dedé L, Quarteroni A, Lațcu DG, Rossi P, Della Bella P. Slow Conduction Corridors and Pivot Sites Characterize the Electrical Remodeling in Atrial Fibrillation. JACC Clin Electrophysiol 2022; 8:561-577. [PMID: 35589168 DOI: 10.1016/j.jacep.2022.01.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/14/2021] [Accepted: 01/12/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVES This study aimed to evaluate the progression of electrophysiological phenomena in a cohort of patients with paroxysmal atrial fibrillation (PAF) and persistent atrial fibrillation (PsAF). BACKGROUND Electrical remodeling has been conjectured to determine atrial fibrillation (AF) progression. METHODS High-density electroanatomic maps during sinus rhythm of 20 patients with AF (10 PAF, 10 PsAF) were compared with 5 healthy control subjects (subjects undergoing ablation of a left-sided accessory pathway). A computational postprocessing of electroanatomic maps was performed to identify specific electrophysiological phenomena: slow conductions corridors, defined as discrete areas of conduction velocity <50 cm/s, and pivot points, defined as sites showing high wave-front curvature documented by a curl module >2.5 1/s. RESULTS A progressive decrease of mean conduction velocity was recorded across the groups (111.6 ± 55.5 cm/s control subjects, 97.1 ± 56.3 cm/s PAF, and 84.7 ± 55.7 cm/s PsAF). The number and density of slow conduction corridors increase in parallel with the progression of AF (8.6 ± 2.2 control subjects, 13.3 ± 3.2 PAF, and 20.5 ± 4.5 PsAF). In PsAF the atrial substrate is characterized by a higher curvature of wave-front propagation (0.86 ± 0.71 1/s PsAF vs 0.74 ± 0.63 1/s PAF; P = 0.003) and higher number of pivot points (25.1 ± 13.8 PsAF vs 9.5 ± 6.7 PAF; P < 0.0001). Slow conductions: corridors were mostly associated with pivot sites tending to cluster around pulmonary veins antra. CONCLUSIONS The electrical remodeling hinges mainly on corridors of slow conduction and higher curvature of wave-front propagation. Pivot points associated to SC corridors may be the major determinants for functional localized re-entrant circuits creating the substrate for maintenance of AF.
Collapse
Affiliation(s)
- Antonio Frontera
- Department of Arrhythmology, San Raffaele Hospital, Milan, Italy.
| | - Stefano Pagani
- MOX-Department of Mathematics, Politecnico di Milano, Milan, Italy
| | | | - Andrea Peirone
- Department of Arrhythmology, San Raffaele Hospital, Milan, Italy
| | | | | | - Jose Cuellar Silva
- University of Texas Health Science Center at Houston (UTHealth), Houston, Texas
| | | | - Christian Meyer
- Division of Cardiology, Angiology, and Intensive Care, EVK Düsseldorf, University of Düsseldorf, Düsseldorf, Germany
| | - Giovanni Montesano
- Optometry and Vision Science - City, University of London, London, United Kingdom
| | - Andrea Manzoni
- MOX-Department of Mathematics, Politecnico di Milano, Milan, Italy
| | - Luca Dedé
- MOX-Department of Mathematics, Politecnico di Milano, Milan, Italy
| | - Alfio Quarteroni
- MOX-Department of Mathematics, Politecnico di Milano, Milan, Italy; Institute of Mathematics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Pietro Rossi
- San Giovanni Calibita Hospital, Fatebenefratelli, Rome, Italy
| | | |
Collapse
|
24
|
Liu FZ, Zaman JAB, Ehdaie A, Xue YM, Cingolani E, Bresee C, Chugh SS, Wu SL, Shehata M, Wang X. Atrial Fibrillation Mechanisms Before and After Pulmonary Vein Isolation Characterized by Non-Contact Charge Density Mapping. Heart Rhythm 2022; 19:1423-1432. [PMID: 35381379 DOI: 10.1016/j.hrthm.2022.03.1232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND The interaction of pulmonary vein and putative non-pulmonary triggers of atrial fibrillation (AF) remains unclear, and has yet to translate into patient tailored ablation strategies. OBJECTIVE To use non-contact mapping to detail the global conduction patterns in paroxysmal and persistent AF and how they are modified during pulmonary vein ablation. METHODS 40 patients at atrial fibrillation ablation underwent mapping using a non-contact catheter (AcQMap, Acutus Medical Inc) before and after pulmonary vein isolation (PVI). Propagation history maps were analysed post-procedure for each patient to categorise conduction patterns into Focal, Organised reentrant and Disorganized patterns. RESULTS Activation patterns identified by using a non-contact mapping system can be sub-classified from three main patterns into subtypes (MacroReentrant and LocalisedReentrant subtypes, Disorganized 1 and Disorganized 2 subtypes). Persistent AF demonstrated more D-Patterns, and less O-Patterns and F-Patterns than paroxysmal AF. In addition, PAF patients inducible after PVI demonstrated a greater number and higher prevalence of MR subtypes than those non-inducible. PVs remained the critical region and included almost one third of all patterns across any AF-types. PVI was effective to eliminate PV-related functional phenotypes, and impacted on recurrence with other patterns. CONCLUSION Activation patterns identified using AcQMap can be classified into three main patterns (F-Patterns, O-Patterns and D-Patterns) as well as subtypes (MR and LR subtype, D1 and D2 subtype). PerAF was different from PAF in demonstrating a greater region number and prevalence of D-Patterns, but lower region number and prevalence of O-Patterns and F-Patterns.
Collapse
Affiliation(s)
- Fang-Zhou Liu
- Guandong Medical College, Guanzhou, China; Cedars Sinai Heart Institute, Los Angeles, CA USA
| | - Junaid A B Zaman
- Cedars Sinai Heart Institute, Los Angeles, CA USA; Keck Medicine of USC, Los Angeles, CA USA
| | | | - Yu-Mei Xue
- Guandong Medical College, Guanzhou, China
| | | | | | | | - Shu-Lin Wu
- Guandong Medical College, Guanzhou, China
| | | | | |
Collapse
|
25
|
Zaman JAB, Grace AA, Narayan SM. Future Directions for Mapping Atrial Fibrillation. Arrhythm Electrophysiol Rev 2022; 11:e08. [PMID: 35734143 PMCID: PMC9194915 DOI: 10.15420/aer.2021.52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/08/2021] [Indexed: 01/14/2023] Open
Abstract
Mapping for AF focuses on the identification of regions of interest that may guide management and - in particular - ablation therapy. Mapping may point to specific mechanisms associated with localised scar or fibrosis, or electrical features, such as localised repetitive, rotational or focal activation. In patients in whom AF is caused by disorganised waves with no spatial predilection, as proposed in the multiwavelet theory for AF, mapping would be of less benefit. The role of AF mapping is controversial at the current time in view of the debate over the underlying mechanisms. However, recent clinical expansions of mapping technologies confirm the importance of understanding the state of the art, including limitations of current approaches and potential areas of future development.
Collapse
Affiliation(s)
- Junaid AB Zaman
- Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Andrew A Grace
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Sanjiv M Narayan
- Cardiovascular Institute and Department of Medicine, Stanford University, CA, US
| |
Collapse
|
26
|
A Review on Atrial Fibrillation (Computer Simulation and Clinical Perspectives). HEARTS 2022. [DOI: 10.3390/hearts3010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Atrial fibrillation (AF), a heart condition, has been a well-researched topic for the past few decades. This multidisciplinary field of study deals with signal processing, finite element analysis, mathematical modeling, optimization, and clinical procedure. This article is focused on a comprehensive review of journal articles published in the field of AF. Topics from the age-old fundamental concepts to specialized modern techniques involved in today’s AF research are discussed. It was found that a lot of research articles have already been published in modeling and simulation of AF. In comparison to that, the diagnosis and post-operative procedures for AF patients have not yet been totally understood or explored by the researchers. The simulation and modeling of AF have been investigated by many researchers in this field. Cellular model, tissue model, and geometric model among others have been used to simulate AF. Due to a very complex nature, the causes of AF have not been fully perceived to date, but the simulated results are validated with real-life patient data. Many algorithms have been proposed to detect the source of AF in human atria. There are many ablation strategies for AF patients, but the search for more efficient ablation strategies is still going on. AF management for patients with different stages of AF has been discussed in the literature as well but is somehow limited mostly to the patients with persistent AF. The authors hope that this study helps to find existing research gaps in the analysis and the diagnosis of AF.
Collapse
|
27
|
Lee JMS, Nelson TA, Clayton RH, Kelland NF. Characterization of persistent atrial fibrillation with non-contact charge density mapping and relationship to voltage. J Arrhythm 2022; 38:77-85. [PMID: 35222753 PMCID: PMC8851595 DOI: 10.1002/joa3.12661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/01/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Despite studies using localized high density contact mapping and lower resolution panoramic approaches, the mechanisms that sustain human persistent atrial fibrillation (AF) remain unresolved. Voltage mapping is commonly employed as a surrogate of atrial substrate to guide ablation procedures. OBJECTIVE To study the distribution and temporal stability of activation during persistent AF using a global non-contact charge density approach and compare the findings with bipolar contact mapping. METHODS Patients undergoing either redo or de novo ablation for persistent AF underwent charge density and voltage mapping to guide the ablation procedure. Offline analysis was performed to measure the temporal stability of three specific charge density activation (CDA) patterns, and the degree of spatial overlap between CDA patterns and low voltage regions. RESULTS CDA was observed in patient-specific locations that partially overlapped, comprising local rotational activity (18% of LA), local irregular activity (41% of LA), and focal activity (39% of LA). Local irregular activity had the highest temporal stability. LA voltage was similar in regions with and without CDA. CONCLUSION In persistent AF, CDA patterns appear unrelated to low voltage areas but occur in varying locations with high temporal stability.
Collapse
Affiliation(s)
- Justin M. S. Lee
- Department of CardiologySheffield Teaching Hospitals NHS TrustSheffieldUK
- INSIGNEO Institute of In Silico MedicineUniversity of SheffieldSheffieldUK
| | - Thomas A. Nelson
- Department of CardiologySheffield Teaching Hospitals NHS TrustSheffieldUK
- INSIGNEO Institute of In Silico MedicineUniversity of SheffieldSheffieldUK
| | - Richard H. Clayton
- INSIGNEO Institute of In Silico MedicineUniversity of SheffieldSheffieldUK
- Department of Computer ScienceUniversity of SheffieldSheffieldUK
| | | |
Collapse
|
28
|
Rappel WJ, Krummen DE, Baykaner T, Zaman J, Donsky A, Swarup V, Miller JM, Narayan SM. Stochastic termination of spiral wave dynamics in cardiac tissue. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:809532. [PMID: 36187938 PMCID: PMC9524168 DOI: 10.3389/fnetp.2022.809532] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Rotating spiral waves are self-organized features in spatially extended excitable media and may play an important role in cardiac arrhythmias including atrial fibrillation (AF). In homogeneous media, spiral wave dynamics are perpetuated through spiral wave breakup, leading to the continuous birth and death of spiral waves, but have a finite probability of termination. In non-homogeneous media, however, heterogeneities can act as anchoring sources that result in sustained spiral wave activity. It is thus unclear how and if AF may terminate following the removal of putative spiral wave sources in patients. Here, we address this question using computer simulations in which a stable spiral wave is trapped by an heterogeneity and is surrounded by spiral wave breakup. We show that, following ablation of spatial heterogeneity to render that region of the medium unexcitable, termination of spiral wave dynamics is stochastic and Poisson-distributed. Furthermore, we show that the dynamics can be accurately described by a master equation using birth and death rates. To validate these predictions in vivo, we mapped spiral wave activity in patients with AF and targeted the locations of spiral wave sources using radiofrequency ablation. Targeted ablation was indeed able to terminate AF, but only after a variable delay of up to several minutes. Furthermore, and consistent with numerical simulations, termination was not accompanied by gradual temporal or spatial organization. Our results suggest that spiral wave sources and tissue heterogeneities play a critical role in the maintenance of AF and that the removal of sources results in spiral wave dynamics with a finite termination time, which could have important clinical implications.
Collapse
Affiliation(s)
| | | | - Tina Baykaner
- Department of Medicine and Cardiovascular Institute, Stanford University, Palo Alto, California
| | - Junaid Zaman
- Department of Medicine, Division of Cardiology, University of Southern California, Los Angeles, California
| | | | - Vijay Swarup
- Arizona Heart Rhythm Institute, Phoenix, Arizona
| | - John M Miller
- Krannert Institute, Indiana University, Indianapolis, Indiana
| | - Sanjiv M Narayan
- Department of Medicine and Cardiovascular Institute, Stanford University, Palo Alto, California
| |
Collapse
|
29
|
Yamashita S, Tokuda M, Mahida S, Sato H, Ikewaki H, Oseto H, Yokoyama M, Isogai R, Tokutake K, Yokoyama K, Narui R, Kato M, Tanigawa SI, Sugimoto KI, Yoshimura M, Yamane T. Very long term outcome after linear versus electrogram guided ablation for persistent atrial fibrillation. Sci Rep 2021; 11:23591. [PMID: 34880293 PMCID: PMC8654861 DOI: 10.1038/s41598-021-02935-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/22/2021] [Indexed: 11/10/2022] Open
Abstract
The optimal ablation strategy for persistent atrial fibrillation (PsAF) remains to be defined. We sought to compare very long-term outcomes between linear ablation and electrogram (EGM)-guided ablation for PsAF. In a retrospective analysis, long-term arrhythmia-free survival compared between two propensity-score matched cohorts, one with pulmonary vein isolation (PVI) and linear ablation including roof/mitral isthmus line (LINE-group, n = 52) and one with PVI and EGM-guided ablation (EGM-group; n = 52). Overall, 99% of patients underwent successful PVI. Complete block following linear ablation was achieved for 94% of roof lines and 81% of mitral lines (both lines blocked in 75%). AF termination by EGM-guided ablation was accomplished in 40% of patients. Non-PV foci were targeted in 7 (13%) in the LINE-group and 5 (10%) patients in the EGM-group (p = 0.76). During 100 ± 28 months of follow-up, linear ablation was associated with superior arrhythmia-free survival after the initial and last procedure (1.8 ± 0.9 procedures) compared with EGM-group (Logrank test: p = 0.0001 and p = 0.045, respectively). In multivariable analysis, longer AF duration and EGM-guided ablation remained as independent predictors of atrial arrhythmia recurrence. Linear ablation might be a more effective complementary technique to PVI than EGM-guided ablation for PsAF ablation.
Collapse
Affiliation(s)
- Seigo Yamashita
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-19-18 Nishishinbashi, Minato-ku, Tokyo, Japan.
| | - Michifumi Tokuda
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-19-18 Nishishinbashi, Minato-ku, Tokyo, Japan
| | - Saagar Mahida
- Department of Cardiac Electrophysiology, Liverpool Heart and Chest Hospital, Liverpool, UK
| | - Hidenori Sato
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-19-18 Nishishinbashi, Minato-ku, Tokyo, Japan
| | - Hirotsugu Ikewaki
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-19-18 Nishishinbashi, Minato-ku, Tokyo, Japan
| | - Hirotsuna Oseto
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-19-18 Nishishinbashi, Minato-ku, Tokyo, Japan
| | - Masaaki Yokoyama
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-19-18 Nishishinbashi, Minato-ku, Tokyo, Japan
| | - Ryota Isogai
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-19-18 Nishishinbashi, Minato-ku, Tokyo, Japan
| | - Kenichi Tokutake
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-19-18 Nishishinbashi, Minato-ku, Tokyo, Japan
| | - Kenichi Yokoyama
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-19-18 Nishishinbashi, Minato-ku, Tokyo, Japan
| | - Ryohsuke Narui
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-19-18 Nishishinbashi, Minato-ku, Tokyo, Japan
| | - Mika Kato
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-19-18 Nishishinbashi, Minato-ku, Tokyo, Japan
| | - Shin-Ichi Tanigawa
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-19-18 Nishishinbashi, Minato-ku, Tokyo, Japan
| | - Ken-Ichi Sugimoto
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-19-18 Nishishinbashi, Minato-ku, Tokyo, Japan
| | - Michihiro Yoshimura
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-19-18 Nishishinbashi, Minato-ku, Tokyo, Japan
| | - Teiichi Yamane
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-19-18 Nishishinbashi, Minato-ku, Tokyo, Japan
| |
Collapse
|
30
|
Identifying Atrial Fibrillation Mechanisms for Personalized Medicine. J Clin Med 2021; 10:jcm10235679. [PMID: 34884381 PMCID: PMC8658178 DOI: 10.3390/jcm10235679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 01/02/2023] Open
Abstract
Atrial fibrillation (AF) is a major cause of heart failure and stroke. The early maintenance of sinus rhythm has been shown to reduce major cardiovascular endpoints, yet is difficult to achieve. For instance, it is unclear how discoveries at the genetic and cellular level can be used to tailor pharmacotherapy. For non-pharmacologic therapy, pulmonary vein isolation (PVI) remains the cornerstone of rhythm control, yet has suboptimal success. Improving these therapies will likely require a multifaceted approach that personalizes therapy based on mechanisms measured in individuals across biological scales. We review AF mechanisms from cell-to-organ-to-patient from this perspective of personalized medicine, linking them to potential clinical indices and biomarkers, and discuss how these data could influence therapy. We conclude by describing approaches to improve ablation, including the emergence of several mapping systems that are in use today.
Collapse
|
31
|
Seno H, Yamazaki M, Shibata N, Sakuma I, Tomii N. In-Silico Deep Reinforcement Learning for Effective Cardiac Ablation Strategy. J Med Biol Eng 2021. [DOI: 10.1007/s40846-021-00664-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Molero R, Soler Torro JM, Martínez Alzamora N, M Climent A, Guillem MS. Higher reproducibility of phase derived metrics from electrocardiographic imaging during atrial fibrillation in patients remaining in sinus rhythm after pulmonary vein isolation. Comput Biol Med 2021; 139:104934. [PMID: 34688171 DOI: 10.1016/j.compbiomed.2021.104934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Electrocardiographic imaging (ECGI) allows evaluating the complexity of the reentrant activity of atrial fibrillation (AF) patients. In this study, we evaluated the ability of ECGI metrics to predict the success of pulmonary vein isolation (PVI) to treat AF. METHODS ECGI of 24 AF patients (6 males, 13 paroxysmal, 61.8 ± 14 years) was recorded prior to PVI. Patients were distributed into two groups based on their PVI outcome 6 months after ablation (sinus vs. arrhythmia recurrence). Metrics derived from phase analysis of ECGI signals were computed for two different temporal segments before ablation. Correlation analysis and variability over time were studied between the two recorded segments and were compared between patient groups. RESULTS Temporal variability of both rotor duration and spatial entropy of the rotor histogram presented statistical differences between groups with different PVI outcome (p < 0.05). The reproducibility of reentrant metrics was higher (R2 > 0.8) in patients with good outcome rather than arrhythmia recurrence patients (R2 < 0.62). Prediction of PVI success based on ECGI temporal variability metrics allows for an increased specificity over the classification into paroxysmal or persistent (0.85 vs. 0.64). CONCLUSIONS Patients with favorable PVI outcome present ECGI metrics more reproducible over time than patients with AF recurrence. These results suggest that ECGI derived metrics may allow selecting which patients would benefit from ablation therapies.
Collapse
Affiliation(s)
- Rubén Molero
- ITACA Institute, Universitat Politècnica de València, València, Spain.
| | - José Manuel Soler Torro
- Department of Applied Statistics and Operational Research and Quality, Universitat Politècnica de València, València, Spain.
| | - Nieves Martínez Alzamora
- Department of Applied Statistics and Operational Research and Quality, Universitat Politècnica de València, València, Spain.
| | - Andreu M Climent
- ITACA Institute, Universitat Politècnica de València, València, Spain.
| | - María S Guillem
- ITACA Institute, Universitat Politècnica de València, València, Spain.
| |
Collapse
|
33
|
Papathanasiou KA, Giotaki SG, Vrachatis DA, Siasos G, Lambadiari V, Iliodromitis KE, Kossyvakis C, Kaoukis A, Raisakis K, Deftereos G, Papaioannou TG, Giannopoulos G, Avramides D, Deftereos SG. Molecular Insights in Atrial Fibrillation Pathogenesis and Therapeutics: A Narrative Review. Diagnostics (Basel) 2021; 11:diagnostics11091584. [PMID: 34573926 PMCID: PMC8470040 DOI: 10.3390/diagnostics11091584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
The prevalence of atrial fibrillation (AF) is bound to increase globally in the following years, affecting the quality of life of millions of people, increasing mortality and morbidity, and beleaguering health care systems. Increasingly effective therapeutic options against AF are the constantly evolving electroanatomic substrate mapping systems of the left atrium (LA) and ablation catheter technologies. Yet, a prerequisite for better long-term success rates is the understanding of AF pathogenesis and maintenance. LA electrical and anatomical remodeling remains in the epicenter of current research for novel diagnostic and treatment modalities. On a molecular level, electrical remodeling lies on impaired calcium handling, enhanced inwardly rectifying potassium currents, and gap junction perturbations. In addition, a wide array of profibrotic stimuli activates fibroblast to an increased extracellular matrix turnover via various intermediaries. Concomitant dysregulation of the autonomic nervous system and the humoral function of increased epicardial adipose tissue (EAT) are established mediators in the pathophysiology of AF. Local atrial lymphomononuclear cells infiltrate and increased inflammasome activity accelerate and perpetuate arrhythmia substrate. Finally, impaired intracellular protein metabolism, excessive oxidative stress, and mitochondrial dysfunction deplete atrial cardiomyocyte ATP and promote arrhythmogenesis. These overlapping cellular and molecular alterations hinder us from distinguishing the cause from the effect in AF pathogenesis. Yet, a plethora of therapeutic modalities target these molecular perturbations and hold promise in combating the AF burden. Namely, atrial selective ion channel inhibitors, AF gene therapy, anti-fibrotic agents, AF drug repurposing, immunomodulators, and indirect cardiac neuromodulation are discussed here.
Collapse
Affiliation(s)
- Konstantinos A. Papathanasiou
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | - Sotiria G. Giotaki
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | - Dimitrios A. Vrachatis
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | - Gerasimos Siasos
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | - Vaia Lambadiari
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | | | - Charalampos Kossyvakis
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Andreas Kaoukis
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Konstantinos Raisakis
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Gerasimos Deftereos
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Theodore G. Papaioannou
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | | | - Dimitrios Avramides
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Spyridon G. Deftereos
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
- Correspondence: ; Tel.: +30-21-0583-2355
| |
Collapse
|
34
|
Tilz RR, Lenz C, Sommer P, Roza MS, Sarver AE, Williams CG, Heeger C, Hindricks G, Vogler J, Eitel C. Focal Impulse and Rotor Modulation Ablation vs. Pulmonary Vein isolation for the treatment of paroxysmal Atrial Fibrillation: results from the FIRMAP AF study. Europace 2021; 23:722-730. [PMID: 33351076 PMCID: PMC8139814 DOI: 10.1093/europace/euaa378] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
AIMS Pulmonary vein isolation (PVI) is the gold standard for atrial fibrillation (AF) ablation. Recently, catheter ablation targeting rotors or focal sources has been developed for treatment of AF. This study sought to compare the safety and effectiveness of Focal Impulse and Rotor Modulation (FIRM)-guided ablation as the sole ablative strategy with PVI in patients with paroxysmal AF. METHODS AND RESULTS We conducted a multicentre, randomized trial to determine whether FIRM-guided radiofrequency ablation without PVI (FIRM group) was non-inferior to PVI (PVI group) for treatment of paroxysmal AF. The two primary efficacy end points were (i) acute success defined as elimination of AF rotors (FIRM group) or isolation of all pulmonary veins (PVI group) and (ii) long-term success defined as single-procedure freedom from AF/atrial tachycardia (AT) recurrence 12 months after ablation. The study was closed early by the sponsor. At the time of study closure, any pending follow-up visits were waived. A total of 51 patients (mean age 63 ± 10.6 years, 57% male) were enrolled. All PVs were successfully isolated in the PVI group and all rotors were successfully eliminated in the FIRM group. Single-procedure effectiveness was 31.3% (5/16) in the FIRM group and 80% (8/10) in the PVI group at 12 months. Three vascular access complications occurred in the FIRM group. CONCLUSION These partial study effectiveness results reinforce the importance of PVI in paroxysmal AF patients and indicate that FIRM-guided ablation alone (without PVI) is not an effective strategy for treatment of paroxysmal AF in most patients.
Collapse
Affiliation(s)
- Roland R Tilz
- University Heart Center Lübeck, Medical Clinic II, Department of Electrophysiology, Lübeck, Germany
| | - Corinna Lenz
- Unfallkrankenhaus Berlin, Klinik für Innere Medizin/Kardiologie, Berlin, Germany
| | - Philipp Sommer
- Heart Center Leipzig, Department of Electrophysiology, Leipzig, Germany
| | - Meyer-Saraei Roza
- University Heart Center Lübeck, Medical Clinic II, Department of Electrophysiology, Lübeck, Germany
| | | | | | - Christian Heeger
- University Heart Center Lübeck, Medical Clinic II, Department of Electrophysiology, Lübeck, Germany
| | - Gerhard Hindricks
- Heart Center Leipzig, Department of Electrophysiology, Leipzig, Germany
| | - Julia Vogler
- University Heart Center Lübeck, Medical Clinic II, Department of Electrophysiology, Lübeck, Germany
| | - Charlotte Eitel
- University Heart Center Lübeck, Medical Clinic II, Department of Electrophysiology, Lübeck, Germany
| |
Collapse
|
35
|
Find Me If You Can: First Clinical Experience Using the Novel CARTOFINDER Algorithm in a Routine Workflow for Atrial Fibrillation Ablation. J Clin Med 2021; 10:jcm10132979. [PMID: 34279463 PMCID: PMC8269300 DOI: 10.3390/jcm10132979] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022] Open
Abstract
Aims: The CARTOFINDER module allows for simultaneous and automated detection of repetitive focal and rotational activations in patients with atrial arrhythmias. This study aimed to validate the CARTOFINDER algorithm for the detection of potential drivers for atrial fibrillation (AF) and to access their potential impact on individual arrhythmia substrates. Methods: Fifty consecutive patients underwent AF ablation for persistent AF (PERS), using a 3D-mapping system with the integrated CARTOFINDER module. Regions of interest (ROIs) were identified before and after ablation, and their spatial and temporal relationship was correlated with areas of fibrosis. Results: Procedural success was achieved in all patients and 42% received ablation beyond pulmonary vein isolation (PVI). AF termination was observed in 6 patients (12%). The mean procedure duration was 134 ± 29 min. ROIs were revealed in all patients (mean n = 77 ± 52) and there was no statistical evidence for a predilection site. There was no significant anatomical correlation between ROIs and bipolar low voltage. Remapping confirmed the elimination of ROIs in relation to the individual ablation site, a limited reproducibility of rotational ROIs and persistent focal activity over time in some anatomical segments. ROIs were not a predictor for AF recurrence during following ablation. Conclusions: CARTOFINDER mapping can be integrated into a routine workflow for AF ablation. ROIs could be discriminated in all patients and an ablation effect was observed in some patients, whereas persistent activity was found in certain anatomical segments, even after ablation. ROIs might be an additional ablation target when we are able to understand the individual substrate.
Collapse
|
36
|
Rodrigo M, Narayan SM. Re-interpreting complex atrial tachycardia maps using global atrial vectors. J Cardiovasc Electrophysiol 2021; 32:1918-1920. [PMID: 33955113 PMCID: PMC9836027 DOI: 10.1111/jce.15073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/16/2023]
Affiliation(s)
- Miguel Rodrigo
- Cardiovascular Institute, Stanford University, Stanford, CA, USA,Electronic Engineering Department, Universitat de Valencia, Spain
| | | |
Collapse
|
37
|
Quintanilla JG, Shpun S, Jalife J, Filgueiras-Rama D. Novel approaches to mechanism-based atrial fibrillation ablation. Cardiovasc Res 2021; 117:1662-1681. [PMID: 33744913 PMCID: PMC8208747 DOI: 10.1093/cvr/cvab108] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/12/2021] [Accepted: 03/18/2021] [Indexed: 01/23/2023] Open
Abstract
Modern cardiac electrophysiology has reported significant advances in the understanding of mechanisms underlying complex wave propagation patterns during atrial fibrillation (AF), although disagreements remain. One school of thought adheres to the long-held postulate that AF is the result of randomly propagating wavelets that wonder throughout the atria. Another school supports the notion that AF is deterministic in that it depends on a small number of high-frequency rotors generating three-dimensional scroll waves that propagate throughout the atria. The spiralling waves are thought to interact with anatomic and functional obstacles, leading to fragmentation and new wavelet formation associated with the irregular activation patterns documented on AF tracings. The deterministic hypothesis is consistent with demonstrable hierarchical gradients of activation frequency and AF termination on ablation at specific (non-random) atrial regions. During the last decade, data from realistic animal models and pilot clinical series have triggered a new era of novel methodologies to identify and ablate AF drivers outside the pulmonary veins. New generation electroanatomical mapping systems and multielectrode mapping catheters, complimented by powerful mathematical analyses, have generated the necessary platforms and tools for moving these approaches into clinical procedures. Recent clinical data using such platforms have provided encouraging evidence supporting the feasibility of targeting and effectively ablating driver regions in addition to pulmonary vein isolation in persistent AF. Here, we review state-of-the-art technologies and provide a comprehensive historical perspective, characterization, classification, and expected outcomes of current mechanism-based methods for AF ablation. We discuss also the challenges and expected future directions that scientists and clinicians will face in their efforts to understand AF dynamics and successfully implement any novel method into regular clinical practice.
Collapse
Affiliation(s)
- Jorge G Quintanilla
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Internal Medicine, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - David Filgueiras-Rama
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
38
|
Rosa GL, Quintanilla JG, Salgado R, González-Ferrer JJ, Cañadas-Godoy V, Pérez-Villacastín J, Pérez-Castellano N, Jalife J, Filgueiras-Rama D. Mapping Technologies for Catheter Ablation of Atrial Fibrillation Beyond Pulmonary Vein Isolation. Eur Cardiol 2021; 16:e21. [PMID: 34093742 PMCID: PMC8157391 DOI: 10.15420/ecr.2020.39] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/25/2021] [Indexed: 11/17/2022] Open
Abstract
Catheter ablation remains the most effective and relatively minimally invasive therapy for rhythm control in patients with AF. Ablation has consistently shown a reduction of arrhythmia-related symptoms and significant improvement in patients’ quality of life compared with medical treatment. The ablation strategy relies on a well-established anatomical approach of effective pulmonary vein isolation. Additional anatomical targets have been reported with the aim of increasing procedure success in complex substrates. However, larger ablated areas with uncertainty of targeting relevant regions for AF initiation or maintenance are not exempt from the potential risk of complications and pro-arrhythmia. Recent developments in mapping tools and computational methods for advanced signal processing during AF have reported novel strategies to identify atrial regions associated with AF maintenance. These novel tools – although mainly limited to research series – represent a significant step forward towards the understanding of complex patterns of propagation during AF and the potential achievement of patient-tailored AF ablation strategies for the near future.
Collapse
Affiliation(s)
- Giulio La Rosa
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute Madrid, Spain
| | - Jorge G Quintanilla
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) Madrid, Spain
| | - Ricardo Salgado
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute Madrid, Spain
| | - Juan José González-Ferrer
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) Madrid, Spain
| | - Victoria Cañadas-Godoy
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) Madrid, Spain
| | - Julián Pérez-Villacastín
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) Madrid, Spain.,Fundación Interhospitalaria para la Investigación Cardiovascular (FIC) Madrid, Spain
| | - Nicasio Pérez-Castellano
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) Madrid, Spain.,Fundación Interhospitalaria para la Investigación Cardiovascular (FIC) Madrid, Spain
| | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) Madrid, Spain
| | - David Filgueiras-Rama
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) Madrid, Spain
| |
Collapse
|
39
|
Kowalewski C. Mapping atrial fibrillation : An overview of potential mechanisms underlying atrial fibrillation. Herz 2021; 46:305-311. [PMID: 34104977 DOI: 10.1007/s00059-021-05045-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 11/24/2022]
Abstract
Mechanisms sustaining atrial fibrillation are yet to be clarified. This article focuses on milestones in the theory of atrial fibrillation and addresses the different leading hypotheses concerning atrial fibrillation mechanisms. We start off with electric potential originating from the pulmonary vein, which triggers atrial fibrillation, discuss classic activation mapping and phase mapping as well as computer models, which have contributed to the our understanding of atrial fibrillation, and end with new mapping methods and studies highlighting the advantages and disadvantages of current mechanistic hypotheses. The technical evolution of mapping atrial fibrillation has led to new insights into the potential mechanisms underlying atrial fibrillation. A comparison between methods is essential for understanding the advantages and disadvantages of each method when mapping atrial fibrillation. Ultimately, the combination of several methods might shed light on the underlying mechanisms of atrial fibrillation and lead to a better understanding of atrial fibrillation and subsequently improve treatment of this condition.
Collapse
|
40
|
Szili-Torok T, Kis Z, Bhagwandien R, Wijchers S, Yap SC, Hoogendijk M, Dumas N, Haeusser P, Geczy T, Kong MH, Ruppersberg P. Functional electrographic flow patterns in patients with persistent atrial fibrillation predict outcome of catheter ablation. J Cardiovasc Electrophysiol 2021; 32:2148-2158. [PMID: 34041824 PMCID: PMC8453922 DOI: 10.1111/jce.15115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/19/2021] [Accepted: 04/01/2021] [Indexed: 11/26/2022]
Abstract
Aims Electrographic flow (EGF) mapping is a method to detect action potential sources within the atria. In a double‐blinded retrospective study we evaluated whether sources detected by EGF are related to procedural outcome. Methods EGF maps were retrospectively generated using the Ablamap® software from unipolar data recorded with a 64‐pole basket catheter from patients who previously underwent focal impulse and rotor modulation‐guided ablation. We analyzed patient outcomes based on source activity (SAC) and variability. Freedom from atrial fibrillation (AF) was defined as no recurrence of AF, atypical flutter or atrial tachycardia at the follow‐up visits. Results EGF maps were from 123 atria in 64 patients with persistent or long‐standing persistent AF. Procedural outcome correlation with SAC peaked at >26%. S‐type EGF signature (source‐dependent AF) is characterized by stable sources with SAC > 26% and C‐type (source‐independent AF) is characterized by sources with SAC ≤ 26%. Cases with AF recurrence at 3‐, 6‐, or 12‐month follow‐up showed a median final SAC 34%; while AF‐free patients had sources with significantly lower median final SAC 21% (p = .0006). Patients with final SAC and Variability above both thresholds had 94% recurrence, while recurrence was only 36% for patients with leading source SAC and variability below threshold (p = .0001). S‐type EGF signature post‐ablation was associated with an AF recurrence rate 88.5% versus 38.1% with C‐type EGF signature. Conclusions EGF mapping enables the visualization of active AF sources. Sources with SAC > 26% appear relevant and their presence post‐ablation correlates with high rates of AF recurrence.
Collapse
Affiliation(s)
| | - Zsuzsanna Kis
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Sip Wijchers
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Sing-Chien Yap
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Mark Hoogendijk
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Nadege Dumas
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Philip Haeusser
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Tamas Geczy
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | | | | |
Collapse
|
41
|
Romero J, Gabr M, Alviz I, Briceno D, Diaz JC, Rodriguez D, Patel K, Polanco D, Trivedi C, Mohanty S, Della Rocca D, Lakkireddy D, Natale A, Di Biase L. Focal impulse and rotor modulation guided ablation versus pulmonary vein isolation for atrial fibrillation: A meta-analysis of head-to-head comparative studies. J Cardiovasc Electrophysiol 2021; 32:1822-1832. [PMID: 33844385 DOI: 10.1111/jce.15036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2021] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Empirical pulmonary vein isolation (PVI) remains the cornerstone for catheter ablation of atrial fibrillation (AF). Various ablation strategies and modalities are continually tested with the aim of improving ablation outcomes. Although focal impulse and rotor modulation (FIRM)-guided ablation is currently used as an adjunct to PVI, evidence supporting this strategy is conflicting. We sought to examine whether the utilization of FIRM-guided ablation with or without PVI is associated with a decrease in all-atrial arrhythmia recurrence as compared to PVI alone. METHODS A systematic review of PubMed, Cochrane, and Embase was performed for head-to-head study designs comparing outcomes of patients who underwent FIRM-guided ablation with or without PVI to those who underwent PVI alone. The primary efficacy endpoint was all-atrial arrhythmia recurrence. The secondary endpoints were complications rates and procedural characteristics. RESULTS Overall, six studies comprising 674 patients undergoing either FIRM-guided ablation ± PVI versus PVI were included (mean age 63.4 ± 9.2, male 74%, 9% paroxysmal AF, 91% nonparoxysmal AF). After a mean follow-up of 18.8 months, FIRM-guided ablation with or without PVI was not associated with improvement in all-atrial arrhythmia recurrence rate compared to PVI alone (43.4% vs. 45.9%, risk ratio [RR]: 1.06; 95% confidence interval [CI]: 0.77-1.47; p = .70). No statistically significant difference was noted in complication rates between the two groups (RR: 1.66; 95% CI: 0.08-34.54; p = .74). CONCLUSION In this meta-analysis of head-to-head comparison studies, FIRM-guided ablation with or without PVI did not provide any benefit in improving all-atrial arrhythmia recurrence at follow-up when compared to PVI alone.
Collapse
Affiliation(s)
- Jorge Romero
- Division of Cardiology, Department of Medicine, Cardiac Arrhythmia Center, Montefiore-Einstein Center for Heart and Vascular Care, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Mohamed Gabr
- Division of Cardiology, Department of Medicine, Cardiac Arrhythmia Center, Montefiore-Einstein Center for Heart and Vascular Care, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Isabella Alviz
- Division of Cardiology, Department of Medicine, Cardiac Arrhythmia Center, Montefiore-Einstein Center for Heart and Vascular Care, Albert Einstein College of Medicine, Bronx, New York, USA
| | - David Briceno
- Division of Cardiology, Department of Medicine, Cardiac Arrhythmia Center, Montefiore-Einstein Center for Heart and Vascular Care, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Juan Carlos Diaz
- Division of Cardiology, Department of Medicine, Cardiac Arrhythmia Center, Montefiore-Einstein Center for Heart and Vascular Care, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Daniel Rodriguez
- Division of Cardiology, Department of Medicine, Cardiac Arrhythmia Center, Montefiore-Einstein Center for Heart and Vascular Care, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kavisha Patel
- Division of Cardiology, Department of Medicine, Cardiac Arrhythmia Center, Montefiore-Einstein Center for Heart and Vascular Care, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Dalvert Polanco
- Division of Cardiology, Department of Medicine, Cardiac Arrhythmia Center, Montefiore-Einstein Center for Heart and Vascular Care, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Chintan Trivedi
- St. David's Medical Center, Texas Cardiac Arrhythmia Institute, Austin, Texas, USA
| | - Sanghamitra Mohanty
- St. David's Medical Center, Texas Cardiac Arrhythmia Institute, Austin, Texas, USA
| | - Domenico Della Rocca
- St. David's Medical Center, Texas Cardiac Arrhythmia Institute, Austin, Texas, USA
| | | | - Andrea Natale
- St. David's Medical Center, Texas Cardiac Arrhythmia Institute, Austin, Texas, USA
| | - Luigi Di Biase
- Division of Cardiology, Department of Medicine, Cardiac Arrhythmia Center, Montefiore-Einstein Center for Heart and Vascular Care, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
42
|
Abad R, Collart O, Ganesan P, Rogers AJ, Alhusseini MI, Rodrigo M, Narayan SM, Rappel WJ. Three dimensional reconstruction to visualize atrial fibrillation activation patterns on curved atrial geometry. PLoS One 2021; 16:e0249873. [PMID: 33836026 PMCID: PMC8034734 DOI: 10.1371/journal.pone.0249873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 03/26/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The rotational activation created by spiral waves may be a mechanism for atrial fibrillation (AF), yet it is unclear how activation patterns obtained from endocardial baskets are influenced by the 3D geometric curvature of the atrium or 'unfolding' into 2D maps. We develop algorithms that can visualize spiral waves and their tip locations on curved atrial geometries. We use these algorithms to quantify differences in AF maps and spiral tip locations between 3D basket reconstructions, projection onto 3D anatomical shells and unfolded 2D surfaces. METHODS We tested our algorithms in N = 20 patients in whom AF was recorded from 64-pole baskets (Abbott, CA). Phase maps were generated by non-proprietary software to identify the tips of spiral waves, indicated by phase singularities. The number and density of spiral tips were compared in patient-specific 3D shells constructed from the basket, as well as 3D maps from clinical electroanatomic mapping systems and 2D maps. RESULTS Patients (59.4±12.7 yrs, 60% M) showed 1.7±0.8 phase singularities/patient, in whom ablation terminated AF in 11/20 patients (55%). There was no difference in the location of phase singularities, between 3D curved surfaces and 2D unfolded surfaces, with a median correlation coefficient between phase singularity density maps of 0.985 (0.978-0.990). No significant impact was noted by phase singularities location in more curved regions or relative to the basket location (p>0.1). CONCLUSIONS AF maps and phase singularities mapped by endocardial baskets are qualitatively and quantitatively similar whether calculated by 3D phase maps on patient-specific curved atrial geometries or in 2D. Phase maps on patient-specific geometries may be easier to interpret relative to critical structures for ablation planning.
Collapse
Affiliation(s)
- Ricardo Abad
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Orvil Collart
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Prasanth Ganesan
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - A. J. Rogers
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Mahmood I. Alhusseini
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Miguel Rodrigo
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
- Universitat Politècnica de València, Valencia, Spain
| | - Sanjiv M. Narayan
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (SMN); (WJR)
| | - Wouter-Jan Rappel
- Department of Physics, UC San Diego, La Jolla, California, United States of America
- * E-mail: (SMN); (WJR)
| |
Collapse
|
43
|
Shi R, Chen Z, Pope MTB, Zaman JAB, Debney M, Marinelli A, Boyalla V, Sathishkumar A, Karim N, Cantor E, Valli H, Haldar S, Jones DG, Hussain W, Markides V, Betts TR, Wong T. Individualized ablation strategy to treat persistent atrial fibrillation: Core-to-boundary approach guided by charge-density mapping. Heart Rhythm 2021; 18:862-870. [PMID: 33610744 DOI: 10.1016/j.hrthm.2021.02.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Noncontact charge-density mapping allows rapid real-time global mapping of atrial fibrillation (AF), offering the opportunity for a personalized ablation strategy. OBJECTIVE The purpose of this study was to compare the 2-year outcome of an individualized strategy consisting of pulmonary vein isolation (PVI) plus core-to-boundary ablation (targeting the conduction pattern core with an extension to the nearest nonconducting boundary) guided by charge-density mapping, with an empirical PVI plus posterior wall electrical isolation (PWI) strategy. METHODS Forty patients (age 62 ± 12 years; 29 male) with persistent AF (10 ± 5 months) prospectively underwent charge-density mapping-guided PVI, followed by core-to-boundary stepwise ablation until termination of AF or depletion of identified cores. Freedom from AF/atrial tachycardia (AT) at 24 months was compared with a propensity score-matched control group of 80 patients with empirical PVI + PWI guided by conventional contact mapping. RESULTS Acute AF termination occurred in 8 of 40 patients after charge-density mapping-guided PVI alone and in 21 of the remaining 32 patients after core-to-boundary ablation in the study cohort, compared with 8 of 80 (10%) in the control cohort (P <.001). On average, 2.2 ± 0.6 cores were ablated post-PVI before acute AF termination. At 24 months, freedom from AF/AT after a single procedure was 68% in the study group vs 46% in the control group (P = .043). CONCLUSION An individualized ablation strategy consisting of PVI plus core-to-boundary ablation guided by noncontact charge-density mapping is a feasible and effective strategy for treating persistent AF, with a favorable 24-month outcome.
Collapse
Affiliation(s)
- Rui Shi
- Heart Rhythm Centre, Royal Brompton and Harefield Hospitals, Part of Guys & St Thomas NHS Foundation Trust, London, United Kingdom
| | - Zhong Chen
- Heart Rhythm Centre, Royal Brompton and Harefield Hospitals, Part of Guys & St Thomas NHS Foundation Trust, London, United Kingdom
| | - Michael T B Pope
- Oxford Biomedical Research Centre, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | - Junaid A B Zaman
- Heart Rhythm Centre, Royal Brompton and Harefield Hospitals, Part of Guys & St Thomas NHS Foundation Trust, London, United Kingdom
| | - Mike Debney
- Heart Rhythm Centre, Royal Brompton and Harefield Hospitals, Part of Guys & St Thomas NHS Foundation Trust, London, United Kingdom
| | - Alessio Marinelli
- Heart Rhythm Centre, Royal Brompton and Harefield Hospitals, Part of Guys & St Thomas NHS Foundation Trust, London, United Kingdom
| | - Vennela Boyalla
- Heart Rhythm Centre, Royal Brompton and Harefield Hospitals, Part of Guys & St Thomas NHS Foundation Trust, London, United Kingdom
| | - Anitha Sathishkumar
- Heart Rhythm Centre, Royal Brompton and Harefield Hospitals, Part of Guys & St Thomas NHS Foundation Trust, London, United Kingdom
| | - Nabeela Karim
- Heart Rhythm Centre, Royal Brompton and Harefield Hospitals, Part of Guys & St Thomas NHS Foundation Trust, London, United Kingdom
| | - Emily Cantor
- Heart Rhythm Centre, Royal Brompton and Harefield Hospitals, Part of Guys & St Thomas NHS Foundation Trust, London, United Kingdom
| | - Haseeb Valli
- Heart Rhythm Centre, Royal Brompton and Harefield Hospitals, Part of Guys & St Thomas NHS Foundation Trust, London, United Kingdom
| | - Shouvik Haldar
- Heart Rhythm Centre, Royal Brompton and Harefield Hospitals, Part of Guys & St Thomas NHS Foundation Trust, London, United Kingdom
| | - David G Jones
- Heart Rhythm Centre, Royal Brompton and Harefield Hospitals, Part of Guys & St Thomas NHS Foundation Trust, London, United Kingdom
| | - Wajid Hussain
- Heart Rhythm Centre, Royal Brompton and Harefield Hospitals, Part of Guys & St Thomas NHS Foundation Trust, London, United Kingdom
| | - Vias Markides
- Heart Rhythm Centre, Royal Brompton and Harefield Hospitals, Part of Guys & St Thomas NHS Foundation Trust, London, United Kingdom
| | - Timothy R Betts
- Oxford Biomedical Research Centre, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | - Tom Wong
- Heart Rhythm Centre, Royal Brompton and Harefield Hospitals, Part of Guys & St Thomas NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
44
|
Nakamura T, Kiuchi K, Fukuzawa K, Takami M, Watanabe Y, Izawa Y, Suehiro H, Akita T, Takemoto M, Sakai J, Yatomi A, Sonoda Y, Takahara H, Nakasone K, Yamamoto K, Negi N, Kono A, Ashihara T, Hirata KI. Late-gadolinium enhancement properties associated with atrial fibrillation rotors in patients with persistent atrial fibrillation. J Cardiovasc Electrophysiol 2021; 32:1005-1013. [PMID: 33556994 DOI: 10.1111/jce.14933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND A computational model demonstrated that atrial fibrillation (AF) rotors could be distributed in patchy late-gadolinium enhancement (LGE) areas and play an important role in AF drivers. However, this was not validated in humans. OBJECTIVE The purpose of this study was to evaluate the LGE properties of AF rotors in patients with persistent AF. METHODS A total of 287 segments in 15 patients with persistent AF (long-standing persistent AF in 9 patients) that underwent AF ablation were assessed. Non-passively activated areas (NPAs), where rotational activation (AF rotor) was frequently observed, were detected by the novel real-time phase mapping (ExTRa Mapping). The properties of the LGE areas were assessed using the LGE heterogeneity and the density which was evaluated by the entropy (LGE-entropy) and the volume ratio of the enhancement voxel (LGE-volume ratio), respectively. RESULTS NPAs were found in 61 (21%) of 287 segments and were mostly found around the pulmonary vein antrum. A receiver operating characteristic curve analysis yielded an optimal cutoff value of 5.7% and 10% for the LGE-entropy and LGE-volume ratio, respectively. The incidence of NPAs was significantly higher at segments with an LGE-entropy of >5.7 and LGE-volume ratio of >10% than at the other segments (38 [30%] of 126 vs. 23 [14%] of 161 segments; p = .001). No NPAs were found at segments with an LGE-volume ratio of >50% regardless of the LGE-entropy. Of five patients with AF recurrence, NPAs outside the PV antrum were not ablated in three patients and the remaining NPAs were ablated, but their LGE-entropy and LGE-volume ratio were low. CONCLUSION AF rotors are mostly distributed in relatively weak and much more heterogenous LGE areas.
Collapse
Affiliation(s)
- Toshihiro Nakamura
- Section of Arrhythmia, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kunihiko Kiuchi
- Section of Arrhythmia, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Koji Fukuzawa
- Section of Arrhythmia, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mitsuru Takami
- Section of Arrhythmia, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshiaki Watanabe
- Division of Radiology, Center for Radiology and Radiation Oncology, Kobe University Hospital, Kobe, Japan
| | - Yu Izawa
- Section of Arrhythmia, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hideya Suehiro
- Section of Arrhythmia, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomomi Akita
- Section of Arrhythmia, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Makoto Takemoto
- Section of Arrhythmia, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Jun Sakai
- Section of Arrhythmia, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Atsusuke Yatomi
- Section of Arrhythmia, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yusuke Sonoda
- Section of Arrhythmia, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroyuki Takahara
- Section of Arrhythmia, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazutaka Nakasone
- Section of Arrhythmia, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kyoko Yamamoto
- Section of Arrhythmia, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Noriyuki Negi
- Division of Radiology, Center for Radiology and Radiation Oncology, Kobe University Hospital, Kobe, Japan
| | - Atsushi Kono
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Ashihara
- Department of Medical Informatics and Biomedical Engineering, Shiga University of Medical Science, Otsu, Japan
| | - Ken-Ichi Hirata
- Section of Arrhythmia, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
45
|
Ma Y, Zaman JAB, Shi R, Karim N, Panikker S, Chen Z, Chen W, Jones DG, Hussain W, Markides V, Wong T. Spectral characterization and impact of stepwise ablation protocol including LAA electrical isolation on persistent AF. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2020; 44:318-326. [PMID: 33377500 DOI: 10.1111/pace.14151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/04/2020] [Accepted: 12/13/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To study how left atrial appendage electrical isolation (LAAEI) impacts atrial dominant frequency (DF) in patients with long-standing persistent atrial fibrillation (LSPAF). BACKGROUND LAAEI is associated with a high probability of freedom from atrial fibrillation (AF) and spectral analysis may identify high-frequency sources. How LAAEI impacts the AF dynamics and the subgroup of LSPAF patients in whom LAAEI would be most beneficial, is unclear. METHODS Twenty patients with LSPAF were included in the study. Fast Fourier transforms (FFT) were performed on atrial electrograms recorded from 13 sites in the LA and RA. The highest peak frequency was defined as DF. RESULTS There was no significant difference in DF between atrial sites except for at the superior vena cava which had the lowest DF at baseline. Stepwise ablation consisting of circumferential pulmonary vein isolation and a linear ablation set of mitral isthmus and roof significantly reduced the DF within the coronary sinus (CS) (5.93 ± 0.98 Hz vs. 5.09 ± 0.72 Hz, p < .05) and the LA posterior wall (LApos) (6.26 ± 0.92 Hz vs. 5.43 ± 0.98 Hz, p < .01). LAAEI preferentially further decreased the DF at the LApos (p < .01), but not at the CS. In cases where there was < 13.6% reduction in the DF of the LApos following the stepwise ablation, the addition of LAAEI was associated with an increased restoration of sinus rhythm (55%, p < .05). CONCLUSION LAAEI in addition to stepwise ablation results in further reduction of the DF in the LApos, which is associated with acute termination of AF and favorable ablation outcome.
Collapse
Affiliation(s)
- Yuedong Ma
- Heart Rhythm Centre, The Royal Brompton and Harefield NHS Foundation Trust, National Heart and Lung Institute, Imperial College London, London, UK.,Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Junaid A B Zaman
- Heart Rhythm Centre, The Royal Brompton and Harefield NHS Foundation Trust, National Heart and Lung Institute, Imperial College London, London, UK
| | - Rui Shi
- Heart Rhythm Centre, The Royal Brompton and Harefield NHS Foundation Trust, National Heart and Lung Institute, Imperial College London, London, UK.,Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Nabeela Karim
- Heart Rhythm Centre, The Royal Brompton and Harefield NHS Foundation Trust, National Heart and Lung Institute, Imperial College London, London, UK
| | - Sandeep Panikker
- Heart Rhythm Centre, The Royal Brompton and Harefield NHS Foundation Trust, National Heart and Lung Institute, Imperial College London, London, UK
| | - Zhong Chen
- Heart Rhythm Centre, The Royal Brompton and Harefield NHS Foundation Trust, National Heart and Lung Institute, Imperial College London, London, UK
| | - Wen Chen
- Department of Medical Statistics, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - David Gareth Jones
- Heart Rhythm Centre, The Royal Brompton and Harefield NHS Foundation Trust, National Heart and Lung Institute, Imperial College London, London, UK
| | - Wajid Hussain
- Heart Rhythm Centre, The Royal Brompton and Harefield NHS Foundation Trust, National Heart and Lung Institute, Imperial College London, London, UK
| | - Vias Markides
- Heart Rhythm Centre, The Royal Brompton and Harefield NHS Foundation Trust, National Heart and Lung Institute, Imperial College London, London, UK
| | - Tom Wong
- Heart Rhythm Centre, The Royal Brompton and Harefield NHS Foundation Trust, National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
46
|
Lațcu DG, Enache B, Hasni K, Wedn AM, Zarqane N, Pathak A, Saoudi N. Sequential ultrahigh-density contact mapping of persistent atrial fibrillation: An efficient technique for driver identification. J Cardiovasc Electrophysiol 2020; 32:29-40. [PMID: 33155347 DOI: 10.1111/jce.14803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/03/2020] [Accepted: 10/29/2020] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Literature supports the existence of drivers as maintainers of atrial fibrillation (AF). Whether ultrahigh density (UHD) contact mapping may detect them is unknown. METHODS We sequentially mapped the left atrial (LA) activation during spontaneous persistent AF and performed circumferential pulmonary vein isolation (CPVI), followed by remapping and ablation of potential drivers (rotational and focal propagation sites) with Rhythmia™ in 90 patients. The time reference was an LA appendage (LAA) electrogram (EGM). Regions with uniform color were defined as "organized." Only patients (51) with no previous ablation were considered for acute results and follow-up reporting. RESULTS LA maps (175 ± 28 ml, 43578 ± 18013 EGM) were acquired in 23 ± 7 min. In all post-CPVI maps potential drivers (7.3 ± 3.2/patient) were visualized: 85% with rotational propagation and continuous low voltage in the center; the remaining with focal propagation and an organized EGM at the site of earliest activation. The RF delivery time for extra-PV driver ablation was 12.2 ± 7.9 min. There was a progressive increase of AF organization: the LAA cycle length prolonged, the number of potential drivers decreased, and the organized LA surface in AF increased from 14 ± 6% to 28 ± 16% (p = .0007). Termination of AF without cardioversion was obtained in 67%. AF recurrence rate at 15 ± 7.3 months was 17.6% after the first procedure. CONCLUSIONS Sequential UHD contact activation mapping of persistent AF allows visualization of potential drivers. A sequential strategy of CPVI followed by ablation of potential drivers with limited RF time resulted in an increasing organization of AF and good acute and long-term results.
Collapse
Affiliation(s)
| | - Bogdan Enache
- Centre Hospitalier Princesse Grace, Monaco.,University of Medecine and Pharmacy Timişoara, Timişoara, Romania
| | | | - Ahmed M Wedn
- Centre Hospitalier Princesse Grace, Monaco.,Department of Critical Care, Cairo University, Cairo, Egypt
| | | | | | | |
Collapse
|
47
|
Ho G, Lin AY, Krummen DE. Linking Electrical Drivers With Atrial Cardiomyopathy for the Targeted Treatment of Atrial Fibrillation. Front Physiol 2020; 11:570740. [PMID: 33281614 PMCID: PMC7689158 DOI: 10.3389/fphys.2020.570740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
The relationship between atrial fibrillation (AF) and underlying functional and structural abnormalities has received substantial attention in the research literature over the past decade. Significant progress has been made in identifying these changes using non-invasive imaging, voltage mapping, and electrical recordings. Advances in computed tomography and cardiac magnetic resonance imaging can now provide insight regarding the presence and extent of cardiac fibrosis. Additionally, multiple technologies able to identify electrical targets during AF have emerged. However, an organized strategy to employ these resources in the targeted treatment of AF remains elusive. In this work, we will discuss the basis for mechanistic importance of atrial fibrosis and scar as potential sites promoting AF and emerging technologies to identify and target these structural and functional substrates in the electrophysiology laboratory. We also propose an approach to the use of such technologies to serve as a basis for ongoing work in the field.
Collapse
Affiliation(s)
- Gordon Ho
- Division of Cardiology, Department of Medicine, University of California, San Diego, San Diego, CA, United States
- Division of Cardiology, Veterans Affairs San Diego Medical Center, San Diego, CA, United States
| | - Andrew Y. Lin
- Division of Cardiology, Department of Medicine, University of California, San Diego, San Diego, CA, United States
- Division of Cardiology, Veterans Affairs San Diego Medical Center, San Diego, CA, United States
| | - David E. Krummen
- Division of Cardiology, Department of Medicine, University of California, San Diego, San Diego, CA, United States
- Division of Cardiology, Veterans Affairs San Diego Medical Center, San Diego, CA, United States
| |
Collapse
|
48
|
Mikhailov AV, Kalyanasundaram A, Li N, Scott SS, Artiga EJ, Subr MM, Zhao J, Hansen BJ, Hummel JD, Fedorov VV. Comprehensive evaluation of electrophysiological and 3D structural features of human atrial myocardium with insights on atrial fibrillation maintenance mechanisms. J Mol Cell Cardiol 2020; 151:56-71. [PMID: 33130148 DOI: 10.1016/j.yjmcc.2020.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022]
Abstract
Atrial fibrillation (AF) occurrence and maintenance is associated with progressive remodeling of electrophysiological (repolarization and conduction) and 3D structural (fibrosis, fiber orientations, and wall thickness) features of the human atria. Significant diversity in AF etiology leads to heterogeneous arrhythmogenic electrophysiological and structural substrates within the 3D structure of the human atria. Since current clinical methods have yet to fully resolve the patient-specific arrhythmogenic substrates, mechanism-based AF treatments remain underdeveloped. Here, we review current knowledge from in-vivo, ex-vivo, and in-vitro human heart studies, and discuss how these studies may provide new insights on the synergy of atrial electrophysiological and 3D structural features in AF maintenance. In-vitro studies on surgically acquired human atrial samples provide a great opportunity to study a wide spectrum of AF pathology, including functional changes in single-cell action potentials, ion channels, and gene/protein expression. However, limited size of the samples prevents evaluation of heterogeneous AF substrates and reentrant mechanisms. In contrast, coronary-perfused ex-vivo human hearts can be studied with state-of-the-art functional and structural technologies, such as high-resolution near-infrared optical mapping and contrast-enhanced MRI. These imaging modalities can resolve atrial arrhythmogenic substrates and their role in reentrant mechanisms maintaining AF and validate clinical approaches. Nonetheless, longitudinal studies are not feasible in explanted human hearts. As no approach is perfect, we suggest that combining the strengths of direct human atrial studies with high fidelity approaches available in the laboratory and in realistic patient-specific computer models would elucidate deeper knowledge of AF mechanisms. We propose that a comprehensive translational pipeline from ex-vivo human heart studies to longitudinal clinically relevant AF animal studies and finally to clinical trials is necessary to identify patient-specific arrhythmogenic substrates and develop novel AF treatments.
Collapse
Affiliation(s)
- Aleksei V Mikhailov
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Arrhythmology Research Department, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Anuradha Kalyanasundaram
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ning Li
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Shane S Scott
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Esthela J Artiga
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Megan M Subr
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Brian J Hansen
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - John D Hummel
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Vadim V Fedorov
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
49
|
Hansen BJ, Zhao J, Helfrich KM, Li N, Iancau A, Zolotarev AM, Zakharkin SO, Kalyanasundaram A, Subr M, Dastagir N, Sharma R, Artiga EJ, Salgia N, Houmsse MM, Kahaly O, Janssen PML, Mohler PJ, Mokadam NA, Whitson BA, Afzal MR, Simonetti OP, Hummel JD, Fedorov VV. Unmasking Arrhythmogenic Hubs of Reentry Driving Persistent Atrial Fibrillation for Patient-Specific Treatment. J Am Heart Assoc 2020; 9:e017789. [PMID: 33006292 PMCID: PMC7792422 DOI: 10.1161/jaha.120.017789] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Atrial fibrillation (AF) driver mechanisms are obscured to clinical multielectrode mapping approaches that provide partial, surface‐only visualization of unstable 3‐dimensional atrial conduction. We hypothesized that transient modulation of refractoriness by pharmacologic challenge during multielectrode mapping improves visualization of hidden paths of reentrant AF drivers for targeted ablation. Methods and Results Pharmacologic challenge with adenosine was tested in ex vivo human hearts with a history of AF and cardiac diseases by multielectrode and high‐resolution subsurface near‐infrared optical mapping, integrated with 3‐dimensional structural imaging and heart‐specific computational simulations. Adenosine challenge was also studied on acutely terminated AF drivers in 10 patients with persistent AF. Ex vivo, adenosine stabilized reentrant driver paths within arrhythmogenic fibrotic hubs and improved visualization of reentrant paths, previously seen as focal or unstable breakthrough activation pattern, for targeted AF ablation. Computational simulations suggested that shortening of atrial refractoriness by adenosine may (1) improve driver stability by annihilating spatially unstable functional blocks and tightening reentrant circuits around fibrotic substrates, thus unmasking the common reentrant path; and (2) destabilize already stable reentrant drivers along fibrotic substrates by accelerating competing fibrillatory wavelets or secondary drivers. In patients with persistent AF, adenosine challenge unmasked hidden common reentry paths (9/15 AF drivers, 41±26% to 68±25% visualization), but worsened visualization of previously visible reentry paths (6/15, 74±14% to 34±12%). AF driver ablation led to acute termination of AF. Conclusions Our ex vivo to in vivo human translational study suggests that transiently altering atrial refractoriness can stabilize reentrant paths and unmask arrhythmogenic hubs to guide targeted AF driver ablation treatment.
Collapse
Affiliation(s)
- Brian J Hansen
- Department of Physiology & Cell Biology and Frick Center for Heart Failure and Arrhythmia The Ohio State University Wexner Medical Center Columbus OH.,Davis Heart & Lung Research InstituteThe Ohio State University Wexner Medical Center Columbus OH
| | | | - Katelynn M Helfrich
- Department of Physiology & Cell Biology and Frick Center for Heart Failure and Arrhythmia The Ohio State University Wexner Medical Center Columbus OH.,Davis Heart & Lung Research InstituteThe Ohio State University Wexner Medical Center Columbus OH
| | - Ning Li
- Department of Physiology & Cell Biology and Frick Center for Heart Failure and Arrhythmia The Ohio State University Wexner Medical Center Columbus OH.,Davis Heart & Lung Research InstituteThe Ohio State University Wexner Medical Center Columbus OH
| | - Alexander Iancau
- Department of Physiology & Cell Biology and Frick Center for Heart Failure and Arrhythmia The Ohio State University Wexner Medical Center Columbus OH
| | - Alexander M Zolotarev
- Department of Physiology & Cell Biology and Frick Center for Heart Failure and Arrhythmia The Ohio State University Wexner Medical Center Columbus OH.,Skolkovo Institute of Science and Technology Moscow Russia
| | - Stanislav O Zakharkin
- Department of Physiology & Cell Biology and Frick Center for Heart Failure and Arrhythmia The Ohio State University Wexner Medical Center Columbus OH
| | - Anuradha Kalyanasundaram
- Department of Physiology & Cell Biology and Frick Center for Heart Failure and Arrhythmia The Ohio State University Wexner Medical Center Columbus OH.,Davis Heart & Lung Research InstituteThe Ohio State University Wexner Medical Center Columbus OH
| | - Megan Subr
- Department of Physiology & Cell Biology and Frick Center for Heart Failure and Arrhythmia The Ohio State University Wexner Medical Center Columbus OH
| | | | | | - Esthela J Artiga
- Department of Physiology & Cell Biology and Frick Center for Heart Failure and Arrhythmia The Ohio State University Wexner Medical Center Columbus OH.,Davis Heart & Lung Research InstituteThe Ohio State University Wexner Medical Center Columbus OH
| | - Nicholas Salgia
- Department of Physiology & Cell Biology and Frick Center for Heart Failure and Arrhythmia The Ohio State University Wexner Medical Center Columbus OH
| | - Mustafa M Houmsse
- Department of Physiology & Cell Biology and Frick Center for Heart Failure and Arrhythmia The Ohio State University Wexner Medical Center Columbus OH
| | - Omar Kahaly
- Davis Heart & Lung Research InstituteThe Ohio State University Wexner Medical Center Columbus OH.,Department of Internal Medicine The Ohio State University Wexner Medical Center Columbus OH
| | - Paul M L Janssen
- Department of Physiology & Cell Biology and Frick Center for Heart Failure and Arrhythmia The Ohio State University Wexner Medical Center Columbus OH.,Davis Heart & Lung Research InstituteThe Ohio State University Wexner Medical Center Columbus OH
| | - Peter J Mohler
- Department of Physiology & Cell Biology and Frick Center for Heart Failure and Arrhythmia The Ohio State University Wexner Medical Center Columbus OH.,Davis Heart & Lung Research InstituteThe Ohio State University Wexner Medical Center Columbus OH
| | - Nahush A Mokadam
- Davis Heart & Lung Research InstituteThe Ohio State University Wexner Medical Center Columbus OH.,Division of Cardiac Surgery The Ohio State University Wexner Medical Center Columbus OH
| | - Bryan A Whitson
- Davis Heart & Lung Research InstituteThe Ohio State University Wexner Medical Center Columbus OH.,Division of Cardiac Surgery The Ohio State University Wexner Medical Center Columbus OH
| | - Muhammad R Afzal
- Davis Heart & Lung Research InstituteThe Ohio State University Wexner Medical Center Columbus OH.,Department of Internal Medicine The Ohio State University Wexner Medical Center Columbus OH
| | - Orlando P Simonetti
- Davis Heart & Lung Research InstituteThe Ohio State University Wexner Medical Center Columbus OH.,Department of Biomedical Engineering The Ohio State University Wexner Medical Center Columbus OH
| | - John D Hummel
- Davis Heart & Lung Research InstituteThe Ohio State University Wexner Medical Center Columbus OH.,Department of Internal Medicine The Ohio State University Wexner Medical Center Columbus OH
| | - Vadim V Fedorov
- Department of Physiology & Cell Biology and Frick Center for Heart Failure and Arrhythmia The Ohio State University Wexner Medical Center Columbus OH.,Davis Heart & Lung Research InstituteThe Ohio State University Wexner Medical Center Columbus OH
| |
Collapse
|
50
|
Ng FS, Handa BS, Li X, Peters NS. Toward Mechanism-Directed Electrophenotype-Based Treatments for Atrial Fibrillation. Front Physiol 2020; 11:987. [PMID: 33013435 PMCID: PMC7493660 DOI: 10.3389/fphys.2020.00987] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022] Open
Abstract
Current treatment approaches for persistent atrial fibrillation (AF) have a ceiling of success of around 50%. This is despite 15 years of developing adjunctive ablation strategies in addition to pulmonary vein isolation to target the underlying arrhythmogenic substrate in AF. A major shortcoming of our current approach to AF treatment is its predominantly empirical nature. This has in part been due to a lack of consensus on the mechanisms that sustain human AF. In this article, we review evidence suggesting that the previous debates on AF being either an organized arrhythmia with a focal driver or a disorganized rhythm sustained by multiple wavelets, may prove to be a false dichotomy. Instead, a range of fibrillation electrophenotypes exists along a continuous spectrum, and the predominant mechanism in an individual case is determined by the nature and extent of remodeling of the underlying substrate. We propose moving beyond the current empirical approach to AF treatment, highlight the need to prescribe AF treatments based on the underlying AF electrophenotype, and review several possible novel mapping algorithms that may be useful in discerning the AF electrophenotype to guide tailored treatments, including Granger Causality mapping.
Collapse
Affiliation(s)
- Fu Siong Ng
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | | | | | | |
Collapse
|