1
|
Wiedmann F, Schmidt C. Precision medicine in the management of cardiac arrhythmias. Herz 2025; 50:88-95. [PMID: 40056164 DOI: 10.1007/s00059-025-05298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 03/10/2025]
Abstract
Precision medicine in cardiac electrophysiology tailors diagnosis, treatment, and prevention by integrating genetic, environmental, and lifestyle factors. Unlike traditional, generalized strategies, precision medicine focuses on individual patient characteristics to enhance care. Significant progress has been made, especially in managing channelopathies, where genetic insights now already drive personalized therapies. Identifying specific mutations has clarified molecular mechanisms and enabled targeted interventions, improving outcomes in conditions such as long QT syndrome. The integration of big data from clinical records, omics datasets, and biosignals from devices such as cardiac implantable electronic devices (CIEDs) or wearables may be on the verge of revolutionizing the diagnosis of cardiac arrhythmias once again. Progress is also expected in the field of human-induced pluripotent stem cells (hiPSCs) and in silico modeling, which may overcome the limitations of traditional expression systems for the functional evaluation of patient-specific mutations. Genome-wide association studies (GWAS) and polygenic risk scores (PRS) provide deeper insights into complex arrhythmogenic disorders, aiding in risk stratification and targeted treatment strategies. Finally, emerging technologies such as CRISPR/Cas9 promise gene editing for inherited and acquired arrhythmias. In summary, precision medicine offers the potential for individualized treatment of cardiac arrhythmias.
Collapse
Affiliation(s)
- Felix Wiedmann
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Constanze Schmidt
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
2
|
Hunt B, Kwan E, Bergquist J, Brundage J, Orkild B, Dong J, Paccione E, Yazaki K, MacLeod RS, Dosdall DJ, Tasdizen T, Ranjan R. Contrastive pretraining improves deep learning classification of endocardial electrograms in a preclinical model. Heart Rhythm O2 2025; 6:473-480. [PMID: 40321744 PMCID: PMC12047512 DOI: 10.1016/j.hroo.2025.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 05/08/2025] Open
Abstract
Background Rotors and focal ectopies, or "drivers," are hypothesized mechanisms of persistent atrial fibrillation (AF). Machine learning algorithms have been used to identify these drivers, but the limited size of current driver data sets constrains their performance. Objective We proposed that pretraining using unsupervised learning on a substantial data set of unlabeled electrograms could enhance classifier accuracy when applied to a smaller driver data set. Methods We used a SimCLR-based framework to pretrain a residual neural network on 113,000 unlabeled 64-electrode measurements from a canine model of AF. The network was then fine-tuned to identify drivers from intracardiac electrograms. Various augmentations, including cropping, Gaussian blurring, and rotation, were applied during pretraining to improve the robustness of the learned representations. Results Pretraining significantly improved driver detection accuracy compared with a non-pretrained network (80.8% vs 62.5%). The pretrained network also demonstrated greater resilience to reductions in training data set size, maintaining higher accuracy even with a 30% reduction in data. Gradient-weighted Class Activation Mapping analysis revealed that the network's attention aligned well with manually annotated driver regions, suggesting that the network learned meaningful features for driver detection. Conclusion This study demonstrates that contrastive pretraining can enhance the accuracy of driver detection algorithms in AF. The findings support the broader application of transfer learning to other electrogram-based tasks, potentially improving outcomes in clinical electrophysiology.
Collapse
Affiliation(s)
- Bram Hunt
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Eugene Kwan
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Jake Bergquist
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah
| | - James Brundage
- Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, Utah
| | - Benjamin Orkild
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Jiawei Dong
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Eric Paccione
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Kyoichiro Yazaki
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Rob S. MacLeod
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah
| | - Derek J. Dosdall
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah, Salt Lake City, Utah
| | - Tolga Tasdizen
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah
| | - Ravi Ranjan
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah
| |
Collapse
|
3
|
Luo A, Chen W, Zhu H, Xie W, Chen X, Liu Z, Xin Z. Machine Learning in the Management of Patients Undergoing Catheter Ablation for Atrial Fibrillation: Scoping Review. J Med Internet Res 2025; 27:e60888. [PMID: 39928932 PMCID: PMC11851043 DOI: 10.2196/60888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/21/2024] [Accepted: 12/30/2024] [Indexed: 02/12/2025] Open
Abstract
BACKGROUND Although catheter ablation (CA) is currently the most effective clinical treatment for atrial fibrillation, its variable therapeutic effects among different patients present numerous problems. Machine learning (ML) shows promising potential in optimizing the management and clinical outcomes of patients undergoing atrial fibrillation CA (AFCA). OBJECTIVE This scoping review aimed to evaluate the current scientific evidence on the application of ML for managing patients undergoing AFCA, compare the performance of various models across specific clinical tasks within AFCA, and summarize the strengths and limitations of ML in this field. METHODS Adhering to the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines, relevant studies published up to October 7, 2023, were searched from PubMed, Web of Science, Embase, the Cochrane Library, and ScienceDirect. The final included studies were confirmed based on inclusion and exclusion criteria and manual review. The PROBAST (Prediction model Risk Of Bias Assessment Tool) and QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies-2) methodological quality assessment tools were used to review the included studies, and narrative data synthesis was performed on the modeled results provided by these studies. RESULTS The analysis of 23 included studies showcased the contributions of ML in identifying potential ablation targets, improving ablation strategies, and predicting patient prognosis. The patient data used in these studies comprised demographics, clinical characteristics, various types of imaging (9/23, 39%), and electrophysiological signals (7/23, 30%). In terms of model type, deep learning, represented by convolutional neural networks, was most frequently applied (14/23, 61%). Compared with traditional clinical scoring models or human clinicians, the model performance reported in the included studies was generally satisfactory, but most models (14/23, 61%) showed a high risk of bias due to lack of external validation. CONCLUSIONS Our evidence-based findings suggest that ML is a promising tool for improving the effectiveness and efficiency of managing patients undergoing AFCA. While guiding data preparation and model selection for future studies, this review highlights the need to address prevalent limitations, including lack of external validation, and to further explore model generalization and interpretability.
Collapse
Affiliation(s)
- Aijing Luo
- The Second Xiangya Hospital, Central South University, Changsha, China
- School of Life Sciences, Central South University, Changsha, China
- Key Laboratory of Medical Information Research (Central South University), College of Hunan Province, Changsha, China
- Clinical Research Center For Cardiovascular Intelligent Healthcare In Hunan Province, Changsha, China
| | - Wei Chen
- The Second Xiangya Hospital, Central South University, Changsha, China
- School of Life Sciences, Central South University, Changsha, China
- Key Laboratory of Medical Information Research (Central South University), College of Hunan Province, Changsha, China
- Clinical Research Center For Cardiovascular Intelligent Healthcare In Hunan Province, Changsha, China
| | - Hongtao Zhu
- The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Medical Information Research (Central South University), College of Hunan Province, Changsha, China
- Clinical Research Center For Cardiovascular Intelligent Healthcare In Hunan Province, Changsha, China
- Information and Network Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenzhao Xie
- School of Life Sciences, Central South University, Changsha, China
- Key Laboratory of Medical Information Research (Central South University), College of Hunan Province, Changsha, China
- Clinical Research Center For Cardiovascular Intelligent Healthcare In Hunan Province, Changsha, China
- The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xi Chen
- The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center For Cardiovascular Intelligent Healthcare In Hunan Province, Changsha, China
- Information and Network Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhenjiang Liu
- The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center For Cardiovascular Intelligent Healthcare In Hunan Province, Changsha, China
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zirui Xin
- The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Medical Information Research (Central South University), College of Hunan Province, Changsha, China
- Clinical Research Center For Cardiovascular Intelligent Healthcare In Hunan Province, Changsha, China
- Information and Network Center, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Islam MS, Kalmady SV, Hindle A, Sandhu R, Sun W, Sepehrvand N, Greiner R, Kaul P. Diagnostic and Prognostic Electrocardiogram-Based Models for Rapid Clinical Applications. Can J Cardiol 2024; 40:1788-1803. [PMID: 38992812 DOI: 10.1016/j.cjca.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024] Open
Abstract
Leveraging artificial intelligence (AI) for the analysis of electrocardiograms (ECGs) has the potential to transform diagnosis and estimate the prognosis of not only cardiac but, increasingly, noncardiac conditions. In this review, we summarize clinical studies and AI-enhanced ECG-based clinical applications in the early detection, diagnosis, and estimating prognosis of cardiovascular diseases in the past 5 years (2019-2023). With advancements in deep learning and the rapid increased use of ECG technologies, a large number of clinical studies have been published. However, most of these studies are single-centre, retrospective, proof-of-concept studies that lack external validation. Prospective studies that progress from development toward deployment in clinical settings account for < 15% of the studies. Successful implementations of ECG-based AI applications that have received approval from the Food and Drug Administration have been developed through commercial collaborations, with approximately half of them being for mobile or wearable devices. The field is in its early stages, and overcoming several obstacles is essential, such as prospective validation in multicentre large data sets, addressing technical issues, bias, privacy, data security, model generalizability, and global scalability. This review concludes with a discussion of these challenges and potential solutions. By providing a holistic view of the state of AI in ECG analysis, this review aims to set a foundation for future research directions, emphasizing the need for comprehensive, clinically integrated, and globally deployable AI solutions in cardiovascular disease management.
Collapse
Affiliation(s)
- Md Saiful Islam
- Canadian VIGOUR Centre, University of Alberta, Edmonton, Alberta, Canada; Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Sunil Vasu Kalmady
- Canadian VIGOUR Centre, University of Alberta, Edmonton, Alberta, Canada; Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
| | - Abram Hindle
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
| | - Roopinder Sandhu
- Canadian VIGOUR Centre, University of Alberta, Edmonton, Alberta, Canada; Smidt Heart Institute, Cedars-Sinai Medical Center Hospital System, Los Angeles, California, USA
| | - Weijie Sun
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
| | - Nariman Sepehrvand
- Canadian VIGOUR Centre, University of Alberta, Edmonton, Alberta, Canada; Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Russell Greiner
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada; Alberta Machine Intelligence Institute, Edmonton, Alberta, Canada
| | - Padma Kaul
- Canadian VIGOUR Centre, University of Alberta, Edmonton, Alberta, Canada; Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
5
|
Alreshidi FS, Alsaffar M, Chengoden R, Alshammari NK. Fed-CL- an atrial fibrillation prediction system using ECG signals employing federated learning mechanism. Sci Rep 2024; 14:21038. [PMID: 39251753 PMCID: PMC11383942 DOI: 10.1038/s41598-024-71366-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
Deep learning has shown great promise in predicting Atrial Fibrillation using ECG signals and other vital signs. However, a major hurdle lies in the privacy concerns surrounding these datasets, which often contain sensitive patient information. Balancing accurate AFib prediction with robust user privacy remains a critical challenge to address. We suggest Federated Learning , a privacy-preserving machine learning technique, to address this privacy barrier. Our approach makes use of FL by presenting Fed-CL, a advanced method that combines Long Short-Term Memory networks and Convolutional Neural Networks to accurately predict AFib. In addition, the article explores the importance of analysing mean heart rate variability to differentiate between healthy and abnormal heart rhythms. This combined approach within the proposed system aims to equip healthcare professionals with timely alerts and valuable insights. Ultimately, the goal is to facilitate early detection of AFib risk and enable preventive care for susceptible individuals.
Collapse
Affiliation(s)
- Fayez Saud Alreshidi
- Department of Family and Community Medicine, College of Medicine, University of Ha'il, Ha'il, Saudi Arabia
| | - Mohammad Alsaffar
- Department of Computer Science and Software Engineering, College of Computer Science and Engineering, University of Ha'il, 81481, Ha'il, Saudi Arabia
| | - Rajeswari Chengoden
- School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - Naif Khalaf Alshammari
- Mechanical Engineering Department, Engineering College, University of Ha'il, 8148, Ha'il, Saudi Arabia
| |
Collapse
|
6
|
Shah S, Chahil V, Battisha A, Haq S, Kalra DK. Postoperative Atrial Fibrillation: A Review. Biomedicines 2024; 12:1968. [PMID: 39335482 PMCID: PMC11428825 DOI: 10.3390/biomedicines12091968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Atrial fibrillation (AF) in the postoperative phase is a manifestation of numerous factors, including surgical stress, anesthetic effects, and underlying cardiovascular conditions. The resultant cardiac hyperactivity can induce new onset or exacerbate existing AF. A common phenomenon, postoperative atrial fibrillation (POAF) affects nearly 40% of patients and is associated with longer hospitalization stays, and increased mortality, heart failure, stroke, and healthcare costs. Areas of controversy in POAF include whether to anticoagulate patients who have short-lived POAF, especially given their higher bleeding risk in the postoperative period, and the identification of patients who would benefit the most from preventive drug therapy for POAF. This review discusses the pathophysiology and management of POAF, and strategies to reduce its occurrence.
Collapse
Affiliation(s)
| | | | | | | | - Dinesh K. Kalra
- Division of Cardiology, Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (S.S.); (A.B.); (S.H.)
| |
Collapse
|
7
|
Liang H, Zhang H, Wang J, Shao X, Wu S, Lyu S, Xu W, Wang L, Tan J, Wang J, Yang Y. The Application of Artificial Intelligence in Atrial Fibrillation Patients: From Detection to Treatment. Rev Cardiovasc Med 2024; 25:257. [PMID: 39139434 PMCID: PMC11317345 DOI: 10.31083/j.rcm2507257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 08/15/2024] Open
Abstract
Atrial fibrillation (AF) is the most prevalent arrhythmia worldwide. Although the guidelines for AF have been updated in recent years, its gradual onset and associated risk of stroke pose challenges for both patients and cardiologists in real-world practice. Artificial intelligence (AI) is a powerful tool in image analysis, data processing, and for establishing models. It has been widely applied in various medical fields, including AF. In this review, we focus on the progress and knowledge gap regarding the use of AI in AF patients and highlight its potential throughout the entire cycle of AF management, from detection to drug treatment. More evidence is needed to demonstrate its ability to improve prognosis through high-quality randomized controlled trials.
Collapse
Affiliation(s)
- Hanyang Liang
- Emergency Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease of China, National Center for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Han Zhang
- Emergency Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease of China, National Center for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Juan Wang
- Emergency Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease of China, National Center for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Xinghui Shao
- Emergency Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease of China, National Center for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Shuang Wu
- Emergency Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease of China, National Center for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Siqi Lyu
- Emergency Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease of China, National Center for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Wei Xu
- Emergency Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease of China, National Center for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Lulu Wang
- Emergency Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease of China, National Center for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Jiangshan Tan
- Emergency Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease of China, National Center for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Jingyang Wang
- Emergency Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease of China, National Center for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Yanmin Yang
- Emergency Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease of China, National Center for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| |
Collapse
|
8
|
Riaz Gondal MU, Atta Mehdi H, Khenhrani RR, Kumari N, Ali MF, Kumar S, Faraz M, Malik J. Role of Machine Learning and Artificial Intelligence in Arrhythmias and Electrophysiology. Cardiol Rev 2024:00045415-990000000-00270. [PMID: 38761137 DOI: 10.1097/crd.0000000000000715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Machine learning (ML), a subset of artificial intelligence (AI) centered on machines learning from extensive datasets, stands at the forefront of a technological revolution shaping various facets of society. Cardiovascular medicine has emerged as a key domain for ML applications, with considerable efforts to integrate these innovations into routine clinical practice. Within cardiac electrophysiology, ML applications, especially in the automated interpretation of electrocardiograms, have garnered substantial attention in existing literature. However, less recognized are the diverse applications of ML in cardiac electrophysiology and arrhythmias, spanning basic science research on arrhythmia mechanisms, both experimental and computational, as well as contributions to enhanced techniques for mapping cardiac electrical function and translational research related to arrhythmia management. This comprehensive review delves into various ML applications within the scope of this journal, organized into 3 parts. The first section provides a fundamental understanding of general ML principles and methodologies, serving as a foundational resource for readers interested in exploring ML applications in arrhythmia research. The second part offers an in-depth review of studies in arrhythmia and electrophysiology that leverage ML methodologies, showcasing the broad potential of ML approaches. Each subject is thoroughly outlined, accompanied by a review of notable ML research advancements. Finally, the review delves into the primary challenges and future perspectives surrounding ML-driven cardiac electrophysiology and arrhythmias research.
Collapse
Affiliation(s)
| | - Hassan Atta Mehdi
- Department of Medicine, Jinnah Postgraduate Medical Centre, Karachi, Pakistan
| | - Raja Ram Khenhrani
- Department of Medicine, Internal Medicine Fellow, Shaheed Mohtarma Benazir Bhutto Medical College and Lyari General Hospital, Karachi, Pakistan
| | - Neha Kumari
- Department of Medicine, Jinnah Postgraduate Medical Centre, Karachi, Pakistan
| | - Muhammad Faizan Ali
- Department of Medicine, Jinnah Postgraduate Medical Centre, Karachi, Pakistan
| | - Sooraj Kumar
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan; and
| | - Maria Faraz
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Rawalpindi, Pakistan
| | - Jahanzeb Malik
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Rawalpindi, Pakistan
| |
Collapse
|
9
|
Rostock T, Benz AP, Spittler R. Artificial intelligence-guided mapping of persistent atrial fibrillation: Complementary to or better than the electrophysiologist? J Cardiovasc Electrophysiol 2024; 35:415-417. [PMID: 38351476 DOI: 10.1111/jce.16214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Affiliation(s)
- Thomas Rostock
- Department of Cardiology II/Electrophysiology, Center for Cardiology, University Hospital Mainz, Mainz, Germany
| | - Alexander P Benz
- Department of Cardiology II/Electrophysiology, Center for Cardiology, University Hospital Mainz, Mainz, Germany
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Raphael Spittler
- Department of Cardiology II/Electrophysiology, Center for Cardiology, University Hospital Mainz, Mainz, Germany
| |
Collapse
|
10
|
常 益, 董 明, 王 彬, 范 力. [Developments of ex vivo cardiac electrical mapping and intelligent labeling of atrial fibrillation substrates]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:184-190. [PMID: 38403620 PMCID: PMC10894749 DOI: 10.7507/1001-5515.202211046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 10/13/2023] [Indexed: 02/27/2024]
Abstract
Cardiac three-dimensional electrophysiological labeling technology is the prerequisite and foundation of atrial fibrillation (AF) ablation surgery, and invasive labeling is the current clinical method, but there are many shortcomings such as large trauma, long procedure duration, and low success rate. In recent years, because of its non-invasive and convenient characteristics, ex vivo labeling has become a new direction for the development of electrophysiological labeling technology. With the rapid development of computer hardware and software as well as the accumulation of clinical database, the application of deep learning technology in electrocardiogram (ECG) data is becoming more extensive and has made great progress, which provides new ideas for the research of ex vivo cardiac mapping and intelligent labeling of AF substrates. This paper reviewed the research progress in the fields of ECG forward problem, ECG inverse problem, and the application of deep learning in AF labeling, discussed the problems of ex vivo intelligent labeling of AF substrates and the possible approaches to solve them, prospected the challenges and future directions for ex vivo cardiac electrophysiology labeling.
Collapse
Affiliation(s)
- 益 常
- 西安交通大学 电工材料电气绝缘国家重点实验室(西安 710049)State Key Library of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - 明 董
- 西安交通大学 电工材料电气绝缘国家重点实验室(西安 710049)State Key Library of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - 彬 王
- 西安交通大学 电工材料电气绝缘国家重点实验室(西安 710049)State Key Library of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - 力宏 范
- 西安交通大学 电工材料电气绝缘国家重点实验室(西安 710049)State Key Library of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| |
Collapse
|
11
|
Shu Y, Smith TG, Arunachalam SP, Tolkacheva EG, Cheng C. Image-Decomposition-Enhanced Deep Learning for Detection of Rotor Cores in Cardiac Fibrillation. IEEE Trans Biomed Eng 2024; 71:68-76. [PMID: 37440380 DOI: 10.1109/tbme.2023.3292383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
OBJECTIVE Rotors, regions of spiral wave reentry in cardiac tissues, are considered as the drivers of atrial fibrillation (AF), the most common arrhythmia. Whereas physics-based approaches have been widely deployed to detect the rotors, in-depth knowledge in cardiac physiology and electrogram interpretation skills are typically needed. The recent leap forward in smart sensing, data acquisition, and Artificial Intelligence (AI) has offered an unprecedented opportunity to transform diagnosis and treatment in cardiac ailment, including AF. This study aims to develop an image-decomposition-enhanced deep learning framework for automatic identification of rotor cores on both simulation and optical mapping data. METHODS We adopt the Ensemble Empirical Mode Decomposition algorithm (EEMD) to decompose the original image, and the most representative component is then fed into a You-Only-Look-Once (YOLO) object-detection architecture for rotor detection. Simulation data from a bi-domain simulation model and optical mapping acquired from isolated rabbit hearts are used for training and validation. RESULTS This integrated EEMD-YOLO model achieves high accuracy on both simulation and optical mapping data (precision: 97.2%, 96.8%, recall: 93.8%, 92.2%, and F1 score: 95.5%, 94.4%, respectively). CONCLUSION The proposed EEMD-YOLO yields comparable accuracy in rotor detection with the gold standard in literature.
Collapse
|
12
|
Xie C, Wang Z, Yang C, Liu J, Liang H. Machine Learning for Detecting Atrial Fibrillation from ECGs: Systematic Review and Meta-Analysis. Rev Cardiovasc Med 2024; 25:8. [PMID: 39077651 PMCID: PMC11262392 DOI: 10.31083/j.rcm2501008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Atrial fibrillation (AF) is a common arrhythmia that can result in adverse cardiovascular outcomes but is often difficult to detect. The use of machine learning (ML) algorithms for detecting AF has become increasingly prevalent in recent years. This study aims to systematically evaluate and summarize the overall diagnostic accuracy of the ML algorithms in detecting AF in electrocardiogram (ECG) signals. METHODS The searched databases included PubMed, Web of Science, Embase, and Google Scholar. The selected studies were subjected to a meta-analysis of diagnostic accuracy to synthesize the sensitivity and specificity. RESULTS A total of 14 studies were included, and the forest plot of the meta-analysis showed that the pooled sensitivity and specificity were 97% (95% confidence interval [CI]: 0.94-0.99) and 97% (95% CI: 0.95-0.99), respectively. Compared to traditional machine learning (TML) algorithms (sensitivity: 91.5%), deep learning (DL) algorithms (sensitivity: 98.1%) showed superior performance. Using multiple datasets and public datasets alone or in combination demonstrated slightly better performance than using a single dataset and proprietary datasets. CONCLUSIONS ML algorithms are effective for detecting AF from ECGs. DL algorithms, particularly those based on convolutional neural networks (CNN), demonstrate superior performance in AF detection compared to TML algorithms. The integration of ML algorithms can help wearable devices diagnose AF earlier.
Collapse
Affiliation(s)
- Chenggong Xie
- Hunan Provincial Key Laboratory of TCM Diagnostics, Hunan University of
Chinese Medicine, 410208 Changsha, Hunan, China
- School of Acupuncture and Tui-na and Rehabilitation, Hunan University of
Chinese Medicine, 410208 Changsha, Hunan, China
| | - Zhao Wang
- School of Chinese Medicine, Hunan University of Chinese Medicine, 410208
Changsha, Hunan, China
| | - Chenglong Yang
- Cardiovascular Department, the First Hospital of Hunan University of
Chinese Medicine, 410021 Changsha, Hunan, China
| | - Jianhe Liu
- Cardiovascular Department, the First Hospital of Hunan University of
Chinese Medicine, 410021 Changsha, Hunan, China
| | - Hao Liang
- Hunan Provincial Key Laboratory of TCM Diagnostics, Hunan University of
Chinese Medicine, 410208 Changsha, Hunan, China
- School of Chinese Medicine, Hunan University of Chinese Medicine, 410208
Changsha, Hunan, China
| |
Collapse
|
13
|
Hunt B, Kwan E, Tasdizen T, Bergquist J, Lange M, Orkild B, MacLeod RS, Dosdall DJ, Ranjan R. Transfer Learning for Improved Classification of Drivers in Atrial Fibrillation. COMPUTING IN CARDIOLOGY 2023; 50:10.22489/cinc.2023.412. [PMID: 38405161 PMCID: PMC10887411 DOI: 10.22489/cinc.2023.412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
"Drivers" are theorized mechanisms for persistent atrial fibrillation. Machine learning algorithms have been used to identify drivers, but the small size of current driver datasets limits their performance. We hypothesized that pretraining with unsupervised learning on a large dataset of unlabeled electrograms would improve classifier accuracy on a smaller driver dataset. In this study, we used a SimCLR-based framework to pretrain a residual neural network on a dataset of 113K unlabeled 64-electrode measurements and found weighted testing accuracy to improve over a non-pretrained network (78.6±3.9% vs 71.9±3.3%). This lays ground for development of superior driver detection algorithms and supports use of transfer learning for other datasets of endocardial electrograms.
Collapse
Affiliation(s)
- Bram Hunt
- Department of Biomedical Engineering, University of Utah, SLC, UT, USA
- Nora Eccles Cardiovascular Research and Training Institute, University of Utah, SLC, UT, USA
- Division of Cardiovascular Medicine, University of Utah, SLC, UT, USA
| | - Eugene Kwan
- Department of Biomedical Engineering, University of Utah, SLC, UT, USA
- Nora Eccles Cardiovascular Research and Training Institute, University of Utah, SLC, UT, USA
- Division of Cardiovascular Medicine, University of Utah, SLC, UT, USA
| | - Tolga Tasdizen
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, USA
- Department of Electrical and Computer Engineering, University of Utah, SLC, UT, USA
| | - Jake Bergquist
- Department of Biomedical Engineering, University of Utah, SLC, UT, USA
- Nora Eccles Cardiovascular Research and Training Institute, University of Utah, SLC, UT, USA
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, USA
| | - Matthias Lange
- Nora Eccles Cardiovascular Research and Training Institute, University of Utah, SLC, UT, USA
- Division of Cardiovascular Medicine, University of Utah, SLC, UT, USA
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, USA
| | - Benjamin Orkild
- Department of Biomedical Engineering, University of Utah, SLC, UT, USA
- Nora Eccles Cardiovascular Research and Training Institute, University of Utah, SLC, UT, USA
- Division of Cardiovascular Medicine, University of Utah, SLC, UT, USA
| | - Robert S MacLeod
- Department of Biomedical Engineering, University of Utah, SLC, UT, USA
- Nora Eccles Cardiovascular Research and Training Institute, University of Utah, SLC, UT, USA
- Scientific Computing and Imaging Institute, University of Utah, SLC, UT, USA
| | - Derek J Dosdall
- Department of Biomedical Engineering, University of Utah, SLC, UT, USA
- Nora Eccles Cardiovascular Research and Training Institute, University of Utah, SLC, UT, USA
- Division of Cardiovascular Medicine, University of Utah, SLC, UT, USA
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah, SLC, UT, USA
| | - Ravi Ranjan
- Department of Biomedical Engineering, University of Utah, SLC, UT, USA
- Nora Eccles Cardiovascular Research and Training Institute, University of Utah, SLC, UT, USA
- Division of Cardiovascular Medicine, University of Utah, SLC, UT, USA
| |
Collapse
|
14
|
Arad D, Rosenfeld A, Magnezi R. Factors contributing to preventing operating room "never events": a machine learning analysis. Patient Saf Surg 2023; 17:6. [PMID: 37004090 PMCID: PMC10067209 DOI: 10.1186/s13037-023-00356-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/09/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND A surgical "Never Event" is a preventable error occurring immediately before, during or immediately following surgery. Various factors contribute to the occurrence of major Never Events, but little is known about their quantified risk in relation to a surgery's characteristics. Our study uses machine learning to reveal and quantify risk factors with the goal of improving patient safety and quality of care. METHODS We used data from 9,234 observations on safety standards and 101 root-cause analyses from actual, major "Never Events" including wrong site surgery and retained foreign item, and three random forest supervised machine learning models to identify risk factors. Using a standard 10-cross validation technique, we evaluated the models' metrics, measuring their impact on the occurrence of the two types of Never Events through Gini impurity. RESULTS We identified 24 contributing factors in six surgical departments: two had an impact of > 900% in Urology, Orthopedics, and General Surgery; six had an impact of 0-900% in Gynecology, Urology, and Cardiology; and 17 had an impact of < 0%. Combining factors revealed 15-20 pairs with an increased probability in five departments: Gynecology, 875-1900%; Urology, 1900-2600%; Cardiology, 833-1500%; Orthopedics,1825-4225%; and General Surgery, 2720-13,600%. Five factors affected wrong site surgery's occurrence (-60.96 to 503.92%) and five affected retained foreign body (-74.65 to 151.43%): two nurses (66.26-87.92%), surgery length < 1 h (85.56-122.91%), and surgery length 1-2 h (-60.96 to 85.56%). CONCLUSIONS Using machine learning, we could quantify the risk factors' potential impact on wrong site surgeries and retained foreign items in relation to a surgery's characteristics, suggesting that safety standards should be adjusted to surgery's characteristics based on risk assessment in each operating room. . TRIAL REGISTRATION NUMBER MOH 032-2019.
Collapse
Affiliation(s)
- Dana Arad
- Department of Management, Health Management Program, Faculty of Sciences, Bar-Ilan University, Ramat Gan, Israel.
- Patient Safety Division, Ministry of Health, Ramat Gan, Israel.
| | - Ariel Rosenfeld
- Department of Information Science, Bar-Ilan University, Ramat Gan, Israel
| | - Racheli Magnezi
- Department of Management, Health Management Program, Faculty of Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
15
|
Ogbomo-Harmitt S, Muffoletto M, Zeidan A, Qureshi A, King AP, Aslanidi O. Exploring interpretability in deep learning prediction of successful ablation therapy for atrial fibrillation. Front Physiol 2023; 14:1054401. [PMID: 36998987 PMCID: PMC10043207 DOI: 10.3389/fphys.2023.1054401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Background: Radiofrequency catheter ablation (RFCA) therapy is the first-line treatment for atrial fibrillation (AF), the most common type of cardiac arrhythmia globally. However, the procedure currently has low success rates in dealing with persistent AF, with a reoccurrence rate of ∼50% post-ablation. Therefore, deep learning (DL) has increasingly been applied to improve RFCA treatment for AF. However, for a clinician to trust the prediction of a DL model, its decision process needs to be interpretable and have biomedical relevance. Aim: This study explores interpretability in DL prediction of successful RFCA therapy for AF and evaluates if pro-arrhythmogenic regions in the left atrium (LA) were used in its decision process. Methods: AF and its termination by RFCA have been simulated in MRI-derived 2D LA tissue models with segmented fibrotic regions (n = 187). Three ablation strategies were applied for each LA model: pulmonary vein isolation (PVI), fibrosis-based ablation (FIBRO) and a rotor-based ablation (ROTOR). The DL model was trained to predict the success of each RFCA strategy for each LA model. Three feature attribution (FA) map methods were then used to investigate interpretability of the DL model: GradCAM, Occlusions and LIME. Results: The developed DL model had an AUC (area under the receiver operating characteristic curve) of 0.78 ± 0.04 for predicting the success of the PVI strategy, 0.92 ± 0.02 for FIBRO and 0.77 ± 0.02 for ROTOR. GradCAM had the highest percentage of informative regions in the FA maps (62% for FIBRO and 71% for ROTOR) that coincided with the successful RFCA lesions known from the 2D LA simulations, but unseen by the DL model. Moreover, GradCAM had the smallest coincidence of informative regions of the FA maps with non-arrhythmogenic regions (25% for FIBRO and 27% for ROTOR). Conclusion: The most informative regions of the FA maps coincided with pro-arrhythmogenic regions, suggesting that the DL model leveraged structural features of MRI images to identify such regions and make its prediction. In the future, this technique could provide a clinician with a trustworthy decision support tool.
Collapse
Affiliation(s)
| | | | | | | | | | - Oleg Aslanidi
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital, London, United Kingdom
| |
Collapse
|
16
|
Song J, Kim YJ, Leem CH. Improving the hERG model fitting using a deep learning-based method. Front Physiol 2023; 14:1111967. [PMID: 36814480 PMCID: PMC9939657 DOI: 10.3389/fphys.2023.1111967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
The hERG channel is one of the essential ion channels composing the cardiac action potential and the toxicity assay for new drug. Recently, the comprehensive in vitro proarrhythmia assay (CiPA) was adopted for cardiac toxicity evaluation. One of the hurdles for this protocol is identifying the kinetic effect of the new drug on the hERG channel. This procedure included the model-based parameter identification from the experiments. There are many mathematical methods to infer the parameters; however, there are two main difficulties in fitting parameters. The first is that, depending on the data and model, parametric inference can be highly time-consuming. The second is that the fitting can fail due to local minima problems. The simplest and most effective way to solve these issues is to provide an appropriate initial value. In this study, we propose a deep learning-based method for improving model fitting by providing appropriate initial values, even the right answer. We generated the dataset by changing the model parameters and trained our deep learning-based model. To improve the accuracy, we used the spectrogram with time, frequency, and amplitude. We obtained the experimental dataset from https://github.com/CardiacModelling/hERGRapidCharacterisation. Then, we trained the deep-learning model using the data generated with the hERG model and tested the validity of the deep-learning model with the experimental data. We successfully identified the initial value, significantly improved the fitting speed, and avoided fitting failure. This method is useful when the model is fixed and reflects the real data, and it can be applied to any in silico model for various purposes, such as new drug development, toxicity identification, environmental effect, etc. This method will significantly reduce the time and effort to analyze the data.
Collapse
Affiliation(s)
- Jaekyung Song
- Department of Physiology, Asan Medical Center, Seoul, South Korea,Department of Physiology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yu Jin Kim
- Department of Physiology, Asan Medical Center, Seoul, South Korea
| | - Chae Hun Leem
- Department of Physiology, Asan Medical Center, Seoul, South Korea,Department of Physiology, University of Ulsan College of Medicine, Seoul, South Korea,*Correspondence: Chae Hun Leem,
| |
Collapse
|
17
|
Kress GT, Chan F, Garcia CA, Merrifield WS. Utilizing machine learning algorithms to predict subject genetic mutation class from in silico models of neuronal networks. BMC Med Inform Decis Mak 2022; 22:290. [DOI: 10.1186/s12911-022-02038-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
Abstract
Background
Epilepsy is the fourth-most common neurological disorder, affecting an estimated 50 million patients globally. Nearly 40% of patients have uncontrolled seizures yet incur 80% of the cost. Anti-epileptic drugs commonly result in resistance and reversion to uncontrolled drug-resistant epilepsy and are often associated with significant adverse effects. This has led to a trial-and-error system in which physicians spend months to years attempting to identify the optimal therapeutic approach.
Objective
To investigate the potential clinical utility from the context of optimal therapeutic prediction of characterizing cellular electrophysiology. It is well-established that genomic data alone can sometimes be predictive of effective therapeutic approach. Thus, to assess the predictive power of electrophysiological data, machine learning strategies are implemented to predict a subject’s genetically defined class in an in silico model using brief electrophysiological recordings obtained from simulated neuronal networks.
Methods
A dynamic network of isogenic neurons is modeled in silico for 1-s for 228 dynamically modeled patients falling into one of three categories: healthy, general sodium channel gain of function, or inhibitory sodium channel loss of function. Data from previous studies investigating the electrophysiological and cellular properties of neurons in vitro are used to define the parameters governing said models. Ninety-two electrophysiological features defining the nature and consistency of network connectivity, activity, waveform shape, and complexity are extracted for each patient network and t-tests are used for feature selection for the following machine learning algorithms: Neural Network, Support Vector Machine, Gaussian Naïve Bayes Classifier, Decision Tree, and Gradient Boosting Decision Tree. Finally, their performance in accurately predicting which genetic category the subjects fall under is assessed.
Results
Several machine learning algorithms excel in using electrophysiological data from isogenic neurons to accurately predict genetic class with a Gaussian Naïve Bayes Classifier predicting healthy, gain of function, and overall, with the best accuracy, area under the curve, and F1. The Gradient Boosting Decision Tree performs the best for loss of function models indicated by the same metrics.
Conclusions
It is possible for machine learning algorithms to use electrophysiological data to predict clinically valuable metrics such as optimal therapeutic approach, especially when combining several models.
Collapse
|
18
|
Seitz J, Durdez TM, Albenque JP, Pisapia A, Gitenay E, Durand C, Monteau J, Moubarak G, Théodore G, Lepillier A, Zhao A, Bremondy M, Maluski A, Cauchemez B, Combes S, Guyomar Y, Heuls S, Thomas O, Penaranda G, Siame S, Appetiti A, Milpied P, Bars C, Kalifa J. Artificial intelligence software standardizes electrogram-based ablation outcome for persistent atrial fibrillation. J Cardiovasc Electrophysiol 2022; 33:2250-2260. [PMID: 35989543 PMCID: PMC9826214 DOI: 10.1111/jce.15657] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/15/2022] [Accepted: 07/04/2022] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Multiple groups have reported on the usefulness of ablating in atrial regions exhibiting abnormal electrograms during atrial fibrillation (AF). Still, previous studies have suggested that ablation outcomes are highly operator- and center-dependent. This study sought to evaluate a novel machine learning software algorithm named VX1 (Volta Medical), trained to adjudicate multipolar electrogram dispersion. METHODS This study was a prospective, multicentric, nonrandomized study conducted to assess the feasibility of generating VX1 dispersion maps. In 85 patients, 8 centers, and 17 operators, we compared the acute and long-term outcomes after ablation in regions exhibiting dispersion between primary and satellite centers. We also compared outcomes to a control group in which dispersion-guided ablation was performed visually by trained operators. RESULTS The study population included 29% of long-standing persistent AF. AF termination occurred in 92% and 83% of the patients in primary and satellite centers, respectively, p = 0.31. The average rate of freedom from documented AF, with or without antiarrhythmic drugs (AADs), was 86% after a single procedure, and 89% after an average of 1.3 procedures per patient (p = 0.4). The rate of freedom from any documented atrial arrhythmia, with or without AADs, was 54% and 73% after a single or an average of 1.3 procedures per patient, respectively (p < 0.001). No statistically significant differences between outcomes of the primary versus satellite centers were observed for one (p = 0.8) or multiple procedures (p = 0.4), or between outcomes of the entire study population versus the control group (p > 0.2). Interestingly, intraprocedural AF termination and type of recurrent arrhythmia (i.e., AF vs. AT) appear to be predictors of the subsequent clinical course. CONCLUSION VX1, an expertise-based artificial intelligence software solution, allowed for robust center-to-center standardization of acute and long-term ablation outcomes after electrogram-based ablation.
Collapse
|
19
|
Loh HW, Ooi CP, Seoni S, Barua PD, Molinari F, Acharya UR. Application of explainable artificial intelligence for healthcare: A systematic review of the last decade (2011-2022). COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107161. [PMID: 36228495 DOI: 10.1016/j.cmpb.2022.107161] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVES Artificial intelligence (AI) has branched out to various applications in healthcare, such as health services management, predictive medicine, clinical decision-making, and patient data and diagnostics. Although AI models have achieved human-like performance, their use is still limited because they are seen as a black box. This lack of trust remains the main reason for their low use in practice, especially in healthcare. Hence, explainable artificial intelligence (XAI) has been introduced as a technique that can provide confidence in the model's prediction by explaining how the prediction is derived, thereby encouraging the use of AI systems in healthcare. The primary goal of this review is to provide areas of healthcare that require more attention from the XAI research community. METHODS Multiple journal databases were thoroughly searched using PRISMA guidelines 2020. Studies that do not appear in Q1 journals, which are highly credible, were excluded. RESULTS In this review, we surveyed 99 Q1 articles covering the following XAI techniques: SHAP, LIME, GradCAM, LRP, Fuzzy classifier, EBM, CBR, rule-based systems, and others. CONCLUSION We discovered that detecting abnormalities in 1D biosignals and identifying key text in clinical notes are areas that require more attention from the XAI research community. We hope this is review will encourage the development of a holistic cloud system for a smart city.
Collapse
Affiliation(s)
- Hui Wen Loh
- School of Science and Technology, Singapore University of Social Sciences, Singapore
| | - Chui Ping Ooi
- School of Science and Technology, Singapore University of Social Sciences, Singapore
| | - Silvia Seoni
- Department of Electronics and Telecommunications, Biolab, Politecnico di Torino, Torino 10129, Italy
| | - Prabal Datta Barua
- Faculty of Engineering and Information Technology, University of Technology Sydney, Australia; School of Business (Information Systems), Faculty of Business, Education, Law & Arts, University of Southern Queensland, Australia
| | - Filippo Molinari
- Department of Electronics and Telecommunications, Biolab, Politecnico di Torino, Torino 10129, Italy
| | - U Rajendra Acharya
- School of Science and Technology, Singapore University of Social Sciences, Singapore; School of Business (Information Systems), Faculty of Business, Education, Law & Arts, University of Southern Queensland, Australia; School of Engineering, Ngee Ann Polytechnic, Singapore; Department of Bioinformatics and Medical Engineering, Asia University, Taiwan; Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
20
|
Sivanandarajah P, Wu H, Bajaj N, Khan S, Ng FS. Is machine learning the future for atrial fibrillation screening? CARDIOVASCULAR DIGITAL HEALTH JOURNAL 2022; 3:136-145. [PMID: 35720677 PMCID: PMC9204790 DOI: 10.1016/j.cvdhj.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia and causes significant morbidity and mortality. Early identification of AF may lead to early treatment of AF and may thus prevent AF-related strokes and complications. However, there is no current formal, cost-effective strategy for population screening for AF. In this review, we give a brief overview of targeted screening for AF, AF risk score models used for screening and describe the different screening tools. We then go on to extensively discuss the potential applications of machine learning in AF screening.
Collapse
Affiliation(s)
- Pavidra Sivanandarajah
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Chelsea and Westminster NHS Foundation Trust, London, United Kingdom
| | - Huiyi Wu
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nikesh Bajaj
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sadia Khan
- Chelsea and Westminster NHS Foundation Trust, London, United Kingdom
| | - Fu Siong Ng
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Chelsea and Westminster NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
21
|
Atrial fibrillation signatures on intracardiac electrograms identified by deep learning. Comput Biol Med 2022; 145:105451. [PMID: 35429831 PMCID: PMC9951584 DOI: 10.1016/j.compbiomed.2022.105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Automatic detection of atrial fibrillation (AF) by cardiac devices is increasingly common yet suboptimally groups AF, flutter or tachycardia (AT) together as 'high rate events'. This may delay or misdirect therapy. OBJECTIVE We hypothesized that deep learning (DL) can accurately classify AF from AT by revealing electrogram (EGM) signatures. METHODS We studied 86 patients in whom the diagnosis of AF or AT was established at electrophysiological study (25 female, 65 ± 11 years). Custom DL architectures were trained to identify AF using N = 29,340 unipolar and N = 23,760 bipolar EGM segments. We compared DL to traditional classifiers based on rate or regularity. We explained DL using computer models to assess the impact of controlled variations in shape, rate and timing on AF/AT classification in 246,067 EGMs reconstructed from clinical data. RESULTS DL identified AF with AUC of 0.97 ± 0.04 (unipolar) and 0.92 ± 0.09 (bipolar). Rule-based classifiers misclassified ∼10-12% of cases. DL classification was explained by regularity in EGM shape (13%) or timing (26%), and rate (60%; p < 0.001), and also by a set of unipolar EGM shapes that classified as AF independent of rate or regularity. Overall, the optimal AF 'fingerprint' comprised these specific EGM shapes, >15% timing variation, <0.48 correlation in beat-to-beat EGM shapes and CL < 190 ms (p < 0.001). CONCLUSIONS Deep learning of intracardiac EGMs can identify AF or AT via signatures of rate, regularity in timing or shape, and specific EGM shapes. Future work should examine if these signatures differ between different clinical subpopulations with AF.
Collapse
|
22
|
Zaman JAB, Grace AA, Narayan SM. Future Directions for Mapping Atrial Fibrillation. Arrhythm Electrophysiol Rev 2022; 11:e08. [PMID: 35734143 PMCID: PMC9194915 DOI: 10.15420/aer.2021.52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/08/2021] [Indexed: 01/14/2023] Open
Abstract
Mapping for AF focuses on the identification of regions of interest that may guide management and - in particular - ablation therapy. Mapping may point to specific mechanisms associated with localised scar or fibrosis, or electrical features, such as localised repetitive, rotational or focal activation. In patients in whom AF is caused by disorganised waves with no spatial predilection, as proposed in the multiwavelet theory for AF, mapping would be of less benefit. The role of AF mapping is controversial at the current time in view of the debate over the underlying mechanisms. However, recent clinical expansions of mapping technologies confirm the importance of understanding the state of the art, including limitations of current approaches and potential areas of future development.
Collapse
Affiliation(s)
- Junaid AB Zaman
- Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Andrew A Grace
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Sanjiv M Narayan
- Cardiovascular Institute and Department of Medicine, Stanford University, CA, US
| |
Collapse
|
23
|
Nedios S, Iliodromitis K, Kowalewski C, Bollmann A, Hindricks G, Dagres N, Bogossian H. Big Data in electrophysiology. Herzschrittmacherther Elektrophysiol 2022; 33:26-33. [PMID: 35137276 DOI: 10.1007/s00399-022-00837-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The quantity of data produced and captured in medicine today is unprecedented. Technological improvements and automation have expanded the traditional statistical methods and enabled the analysis of Big Data. This has permitted the discovery of new associations with a granularity that was previously hidden to human eyes. In the first part of this review, the authors would like to provide an overview of basic Machine Learning (ML) principles and techniques in order to better understand their application in recent publications about cardiac arrhythmias. In the second part, ML-enabled advances in disease detection and diagnosis, outcome prediction, and novel disease characterization in topics like electrocardiography, atrial fibrillation, ventricular arrhythmias, and cardiac devices are presented. Finally, the limitations and challenges of applying ML in clinical practice, such as validation, replication, generalizability, and regulatory issues, are discussed. More carefully designed studies and collaborations are needed for ML to become feasible, trustworthy, accurate, and reproducible and to reach its full potential for patient-oriented precision medicine.
Collapse
Affiliation(s)
- Sotirios Nedios
- Department of Electrophysiology, Heart Center Leipzig at the University of Leipzig, Leipzig, Germany.
- Rhythmologie, Herzzentrum Leipzig, Universität Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany.
| | - Konstantinos Iliodromitis
- Department of Cardiology and Rhythmology, Ev. Krankenhaus Hagen, Hagen, Germany
- Department of Cardiology, University Witten/Herdecke, Witten, Germany
| | - Christopher Kowalewski
- Department of Electrophysiology, Heart Center Leipzig at the University of Leipzig, Leipzig, Germany
| | - Andreas Bollmann
- Department of Electrophysiology, Heart Center Leipzig at the University of Leipzig, Leipzig, Germany
| | - Gerhard Hindricks
- Department of Electrophysiology, Heart Center Leipzig at the University of Leipzig, Leipzig, Germany
| | - Nikolaos Dagres
- Department of Electrophysiology, Heart Center Leipzig at the University of Leipzig, Leipzig, Germany
| | - Harilaos Bogossian
- Department of Cardiology and Rhythmology, Ev. Krankenhaus Hagen, Hagen, Germany
- Department of Cardiology, University Witten/Herdecke, Witten, Germany
| |
Collapse
|
24
|
de Groot NMS, Shah D, Boyle PM, Anter E, Clifford GD, Deisenhofer I, Deneke T, van Dessel P, Doessel O, Dilaveris P, Heinzel FR, Kapa S, Lambiase PD, Lumens J, Platonov PG, Ngarmukos T, Martinez JP, Sanchez AO, Takahashi Y, Valdigem BP, van der Veen AJ, Vernooy K, Casado-Arroyo R, De Potter T, Dinov B, Kosiuk J, Linz D, Neubeck L, Svennberg E, Kim YH, Wan E, Lopez-Cabanillas N, Locati ET, Macfarlane P. Critical appraisal of technologies to assess electrical activity during atrial fibrillation: a position paper from the European Heart Rhythm Association and European Society of Cardiology Working Group on eCardiology in collaboration with the Heart Rhythm Society, Asia Pacific Heart Rhythm Society, Latin American Heart Rhythm Society and Computing in Cardiology. Europace 2022; 24:313-330. [PMID: 34878119 PMCID: PMC11636570 DOI: 10.1093/europace/euab254] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
We aim to provide a critical appraisal of basic concepts underlying signal recording and processing technologies applied for (i) atrial fibrillation (AF) mapping to unravel AF mechanisms and/or identifying target sites for AF therapy and (ii) AF detection, to optimize usage of technologies, stimulate research aimed at closing knowledge gaps, and developing ideal AF recording and processing technologies. Recording and processing techniques for assessment of electrical activity during AF essential for diagnosis and guiding ablative therapy including body surface electrocardiograms (ECG) and endo- or epicardial electrograms (EGM) are evaluated. Discussion of (i) differences in uni-, bi-, and multi-polar (omnipolar/Laplacian) recording modes, (ii) impact of recording technologies on EGM morphology, (iii) global or local mapping using various types of EGM involving signal processing techniques including isochronal-, voltage- fractionation-, dipole density-, and rotor mapping, enabling derivation of parameters like atrial rate, entropy, conduction velocity/direction, (iv) value of epicardial and optical mapping, (v) AF detection by cardiac implantable electronic devices containing various detection algorithms applicable to stored EGMs, (vi) contribution of machine learning (ML) to further improvement of signals processing technologies. Recording and processing of EGM (or ECG) are the cornerstones of (body surface) mapping of AF. Currently available AF recording and processing technologies are mainly restricted to specific applications or have technological limitations. Improvements in AF mapping by obtaining highest fidelity source signals (e.g. catheter-electrode combinations) for signal processing (e.g. filtering, digitization, and noise elimination) is of utmost importance. Novel acquisition instruments (multi-polar catheters combined with improved physical modelling and ML techniques) will enable enhanced and automated interpretation of EGM recordings in the near future.
Collapse
Affiliation(s)
- Natasja M S de Groot
- Department of Cardiology, Erasmus University Medical Centre, Rotterdam, Delft University of Technology, Delft the Netherlands
| | - Dipen Shah
- Cardiology Service, University Hospitals Geneva, Geneva, Switzerland
| | - Patrick M Boyle
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Elad Anter
- Cardiac Electrophysiology Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Gari D Clifford
- Department of Biomedical Informatics, Emory University, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA
| | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center Munich and Technical University of Munich, Munich, Germany
| | - Thomas Deneke
- Department of Cardiology, Rhon-klinikum Campus Bad Neustadt, Germany
| | - Pascal van Dessel
- Department of Cardiology, Medisch Spectrum Twente, Twente, the Netherlands
| | - Olaf Doessel
- Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany
| | - Polychronis Dilaveris
- 1st University Department of Cardiology, National & Kapodistrian University of Athens School of Medicine, Hippokration Hospital, Athens, Greece
| | - Frank R Heinzel
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum and DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Suraj Kapa
- Department of Cardiology, Mayo Clinic, Rochester, USA
| | | | - Joost Lumens
- Cardiovascular Research Institute Maastricht (CARIM) Maastricht University, Maastricht, the Netherlands
| | - Pyotr G Platonov
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Tachapong Ngarmukos
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Juan Pablo Martinez
- Aragon Institute of Engineering Research/IIS-Aragon and University of Zaragoza, Zaragoza, Spain, CIBER Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Alejandro Olaya Sanchez
- Department of Cardiology, Hospital San José, Fundacion Universitaia de Ciencas de la Salud, Bogota, Colombia
| | - Yoshihide Takahashi
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Bruno P Valdigem
- Department of Cardiology, Hospital Rede D’or São Luiz, hospital Albert einstein and Dante pazzanese heart institute, São Paulo, Brasil
| | - Alle-Jan van der Veen
- Department Circuits and Systems, Delft University of Technology, Delft, the Netherlands
| | - Kevin Vernooy
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Ruben Casado-Arroyo
- Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | - Jedrzej Kosiuk
- Department of Electrophysiology, Helios Clinic Koethen, Koethen, Germany
| | - Dominik Linz
- MUMC, Maastricht Hart en Vaat Centrum, Maastricht, The Netherlands
| | | | - Emma Svennberg
- Cardiology Department, Karolinska University Hospital, Sweden
- Department of Clinical Sciences, Danderyd's Hospital, Danderyd, Sweden
| | - Young-Hoon Kim
- Cardiology Department, Korea University Medical Center, Seoul, Republic of Korea
| | | | - Nestor Lopez-Cabanillas
- Adventist Cardiovascular Institute of Buenos Aires, Argentina
- Medical School, 8 College Road, Singapore
| | - Emanuela T Locati
- Department of Arrhythmology and Electrophysiology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Peter Macfarlane
- Electrocardiology Group, Institute of Health and Wellbeing, University of Glasgow, Level 1, New Lister Building, Royal Infirmary, Glasgow, UK
| |
Collapse
|
25
|
Lebert J, Ravi N, Fenton FH, Christoph J. Rotor Localization and Phase Mapping of Cardiac Excitation Waves Using Deep Neural Networks. Front Physiol 2022; 12:782176. [PMID: 34975536 PMCID: PMC8718715 DOI: 10.3389/fphys.2021.782176] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/11/2021] [Indexed: 11/15/2022] Open
Abstract
The analysis of electrical impulse phenomena in cardiac muscle tissue is important for the diagnosis of heart rhythm disorders and other cardiac pathophysiology. Cardiac mapping techniques acquire local temporal measurements and combine them to visualize the spread of electrophysiological wave phenomena across the heart surface. However, low spatial resolution, sparse measurement locations, noise and other artifacts make it challenging to accurately visualize spatio-temporal activity. For instance, electro-anatomical catheter mapping is severely limited by the sparsity of the measurements, and optical mapping is prone to noise and motion artifacts. In the past, several approaches have been proposed to create more reliable maps from noisy or sparse mapping data. Here, we demonstrate that deep learning can be used to compute phase maps and detect phase singularities in optical mapping videos of ventricular fibrillation, as well as in very noisy, low-resolution and extremely sparse simulated data of reentrant wave chaos mimicking catheter mapping data. The self-supervised deep learning approach is fundamentally different from classical phase mapping techniques. Rather than encoding a phase signal from time-series data, a deep neural network instead learns to directly associate phase maps and the positions of phase singularities with short spatio-temporal sequences of electrical data. We tested several neural network architectures, based on a convolutional neural network (CNN) with an encoding and decoding structure, to predict phase maps or rotor core positions either directly or indirectly via the prediction of phase maps and a subsequent classical calculation of phase singularities. Predictions can be performed across different data, with models being trained on one species and then successfully applied to another, or being trained solely on simulated data and then applied to experimental data. Neural networks provide a promising alternative to conventional phase mapping and rotor core localization methods. Future uses may include the analysis of optical mapping studies in basic cardiovascular research, as well as the mapping of atrial fibrillation in the clinical setting.
Collapse
Affiliation(s)
- Jan Lebert
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Namita Ravi
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States.,Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Flavio H Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States
| | - Jan Christoph
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
26
|
Nagarajan VD, Lee SL, Robertus JL, Nienaber CA, Trayanova NA, Ernst S. Artificial intelligence in the diagnosis and management of arrhythmias. Eur Heart J 2021; 42:3904-3916. [PMID: 34392353 PMCID: PMC8497074 DOI: 10.1093/eurheartj/ehab544] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 01/06/2021] [Accepted: 07/27/2021] [Indexed: 01/05/2023] Open
Abstract
The field of cardiac electrophysiology (EP) had adopted simple artificial intelligence (AI) methodologies for decades. Recent renewed interest in deep learning techniques has opened new frontiers in electrocardiography analysis including signature identification of diseased states. Artificial intelligence advances coupled with simultaneous rapid growth in computational power, sensor technology, and availability of web-based platforms have seen the rapid growth of AI-aided applications and big data research. Changing lifestyles with an expansion of the concept of internet of things and advancements in telecommunication technology have opened doors to population-based detection of atrial fibrillation in ways, which were previously unimaginable. Artificial intelligence-aided advances in 3D cardiac imaging heralded the concept of virtual hearts and the simulation of cardiac arrhythmias. Robotics, completely non-invasive ablation therapy, and the concept of extended realities show promise to revolutionize the future of EP. In this review, we discuss the impact of AI and recent technological advances in all aspects of arrhythmia care.
Collapse
Affiliation(s)
- Venkat D Nagarajan
- Department of Cardiology, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London SW3 6NP, UK.,Department of Cardiology, Doncaster and Bassetlaw Hospitals, NHS Foundation Trust, Thorne Road, Doncaster DN2 5LT, UK
| | - Su-Lin Lee
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), UCL, Foley Street, London W1W 7TS, UK
| | - Jan-Lukas Robertus
- Department of Pathology, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London SW3 6NP, UK.,National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
| | - Christoph A Nienaber
- Department of Cardiology, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London SW3 6NP, UK.,National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
| | - Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Charles Street, Baltimore, MD 21218, USA
| | - Sabine Ernst
- Department of Cardiology, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London SW3 6NP, UK.,National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
| |
Collapse
|
27
|
Liao S, Ragot D, Nayyar S, Suszko A, Zhang Z, Wang B, Chauhan VS. Deep Learning Classification of Unipolar Electrograms in Human Atrial Fibrillation: Application in Focal Source Mapping. Front Physiol 2021; 12:704122. [PMID: 34393823 PMCID: PMC8360838 DOI: 10.3389/fphys.2021.704122] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/02/2021] [Indexed: 11/14/2022] Open
Abstract
Focal sources are potential targets for atrial fibrillation (AF) catheter ablation, but they can be time-consuming and challenging to identify when unipolar electrograms (EGM) are numerous and complex. Our aim was to apply deep learning (DL) to raw unipolar EGMs in order to automate putative focal sources detection. We included 78 patients from the Focal Source and Trigger (FaST) randomized controlled trial that evaluated the efficacy of adjunctive FaST ablation compared to pulmonary vein isolation alone in reducing AF recurrence. FaST sites were identified based on manual classification of sustained periodic unipolar QS EGMs over 5-s. All periodic unipolar EGMs were divided into training (n = 10,004) and testing cohorts (n = 3,180). DL was developed using residual convolutional neural network to discriminate between FaST and non-FaST. A gradient-based method was applied to interpret the DL model. DL classified FaST with a receiver operator characteristic area under curve of 0.904 ± 0.010 (cross-validation) and 0.923 ± 0.003 (testing). At a prespecified sensitivity of 90%, the specificity and accuracy were 81.9 and 82.5%, respectively, in detecting FaST. DL had similar performance (sensitivity 78%, specificity 89%) to that of FaST re-classification by cardiologists (sensitivity 78%, specificity 79%). The gradient-based interpretation demonstrated accurate tracking of unipolar QS complexes by select DL convolutional layers. In conclusion, our novel DL model trained on raw unipolar EGMs allowed automated and accurate classification of FaST sites. Performance was similar to FaST re-classification by cardiologists. Future application of DL to classify FaST may improve the efficiency of real-time focal source detection for targeted AF ablation therapy.
Collapse
Affiliation(s)
- Shun Liao
- Peter Munk Cardiac Centre, Division of Cardiology, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Don Ragot
- Peter Munk Cardiac Centre, Division of Cardiology, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Sachin Nayyar
- Peter Munk Cardiac Centre, Division of Cardiology, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Adrian Suszko
- Peter Munk Cardiac Centre, Division of Cardiology, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Zhaolei Zhang
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Bo Wang
- Peter Munk Cardiac Centre, Division of Cardiology, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Vijay S Chauhan
- Peter Munk Cardiac Centre, Division of Cardiology, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
28
|
The Role of Artificial Intelligence and Machine Learning in Clinical Cardiac Electrophysiology. Can J Cardiol 2021; 38:246-258. [PMID: 34333029 DOI: 10.1016/j.cjca.2021.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/11/2021] [Accepted: 07/25/2021] [Indexed: 11/21/2022] Open
Abstract
In recent years, artificial intelligence (AI) has found numerous applications in cardiology due in part to large digitized datasets and the evolution of high performance computing. In the discipline of cardiac electrophysiology (EP), a number of clinical, imaging, and electrical waveform data are considered in the diagnosis, prognostication and management of arrhythmias, which lend themselves well to automation through AI. But equally relevant, AI offers a unique opportunity to discover novel EP concepts and improve clinical care through its inherent, hierarchical tenets of self-learning. This review will focus on the application of AI in clinical EP and summarize state-of-the art, large, clinical studies in the following key domains: (1) ECG-based arrhythmia and disease classification, (2) atrial fibrillation source detection, (3) substrate and risk assessment for atrial fibrillation and ventricular tachyarrhythmias, and (4) predicting outcomes after cardiac resynchronization therapy. Many are small, single-center, proof-of-concept investigations, but they still demonstrate groundbreaking performance of deep learning, a subdomain of AI, which surpasses traditional statistical analysis. Larger studies, for instance classifying arrhythmias from ECG recordings, have further provided external validation of their high accuracy. Ultimately, the performance of AI is dependent on the quality of the input data and the rigor of algorithm development. The field is still nascent and several barriers will need to be overcome, including prospective validation in large, well-labelled datasets and more seamless information technology-based data collection/integration, before AI can be adopted into broader clinical EP practice. This review will conclude with a discussion of these challenges and future work.
Collapse
|
29
|
Aghasafari P, Yang PC, Kernik DC, Sakamoto K, Kanda Y, Kurokawa J, Vorobyov I, Clancy CE. A deep learning algorithm to translate and classify cardiac electrophysiology. eLife 2021; 10:68335. [PMID: 34212860 PMCID: PMC8282335 DOI: 10.7554/elife.68335] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/29/2021] [Indexed: 01/15/2023] Open
Abstract
The development of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) has been a critical in vitro advance in the study of patient-specific physiology, pathophysiology, and pharmacology. We designed a new deep learning multitask network approach intended to address the low throughput, high variability, and immature phenotype of the iPSC-CM platform. The rationale for combining translation and classification tasks is because the most likely application of the deep learning technology we describe here is to translate iPSC-CMs following application of a perturbation. The deep learning network was trained using simulated action potential (AP) data and applied to classify cells into the drug-free and drugged categories and to predict the impact of electrophysiological perturbation across the continuum of aging from the immature iPSC-CMs to the adult ventricular myocytes. The phase of the AP extremely sensitive to perturbation due to a steep rise of the membrane resistance was found to contain the key information required for successful network multitasking. We also demonstrated successful translation of both experimental and simulated iPSC-CM AP data validating our network by prediction of experimental drug-induced effects on adult cardiomyocyte APs by the latter.
Collapse
Affiliation(s)
- Parya Aghasafari
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States
| | - Pei-Chi Yang
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States
| | - Divya C Kernik
- Washington University in St. Louis, St. Louis, United States
| | - Kazuho Sakamoto
- Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, Japan
| | - Junko Kurokawa
- Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Igor Vorobyov
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States.,Department of Pharmacology, University of California, Davis, Davis, United States
| | - Colleen E Clancy
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States
| |
Collapse
|
30
|
Heijman J, Sutanto H, Crijns HJGM, Nattel S, Trayanova NA. Computational models of atrial fibrillation: achievements, challenges, and perspectives for improving clinical care. Cardiovasc Res 2021; 117:1682-1699. [PMID: 33890620 PMCID: PMC8208751 DOI: 10.1093/cvr/cvab138] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Despite significant advances in its detection, understanding and management, atrial fibrillation (AF) remains a highly prevalent cardiac arrhythmia with a major impact on morbidity and mortality of millions of patients. AF results from complex, dynamic interactions between risk factors and comorbidities that induce diverse atrial remodelling processes. Atrial remodelling increases AF vulnerability and persistence, while promoting disease progression. The variability in presentation and wide range of mechanisms involved in initiation, maintenance and progression of AF, as well as its associated adverse outcomes, make the early identification of causal factors modifiable with therapeutic interventions challenging, likely contributing to suboptimal efficacy of current AF management. Computational modelling facilitates the multilevel integration of multiple datasets and offers new opportunities for mechanistic understanding, risk prediction and personalized therapy. Mathematical simulations of cardiac electrophysiology have been around for 60 years and are being increasingly used to improve our understanding of AF mechanisms and guide AF therapy. This narrative review focuses on the emerging and future applications of computational modelling in AF management. We summarize clinical challenges that may benefit from computational modelling, provide an overview of the different in silico approaches that are available together with their notable achievements, and discuss the major limitations that hinder the routine clinical application of these approaches. Finally, future perspectives are addressed. With the rapid progress in electronic technologies including computing, clinical applications of computational modelling are advancing rapidly. We expect that their application will progressively increase in prominence, especially if their added value can be demonstrated in clinical trials.
Collapse
Affiliation(s)
- Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Henry Sutanto
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Harry J G M Crijns
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Stanley Nattel
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Duisburg, Germany
- IHU Liryc and Fondation Bordeaux Université, Bordeaux, France
| | - Natalia A Trayanova
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
31
|
Olier I, Ortega-Martorell S, Pieroni M, Lip GYH. How machine learning is impacting research in atrial fibrillation: implications for risk prediction and future management. Cardiovasc Res 2021; 117:1700-1717. [PMID: 33982064 PMCID: PMC8477792 DOI: 10.1093/cvr/cvab169] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/11/2021] [Indexed: 02/01/2023] Open
Abstract
There has been an exponential growth of artificial intelligence (AI) and machine learning (ML) publications aimed at advancing our understanding of atrial fibrillation (AF), which has been mainly driven by the confluence of two factors: the advances in deep neural networks (DeepNNs) and the availability of large, open access databases. It is observed that most of the attention has centred on applying ML for dvsetecting AF, particularly using electrocardiograms (ECGs) as the main data modality. Nearly a third of them used DeepNNs to minimize or eliminate the need for transforming the ECGs to extract features prior to ML modelling; however, we did not observe a significant advantage in following this approach. We also found a fraction of studies using other data modalities, and others centred in aims, such as risk prediction, AF management, and others. From the clinical perspective, AI/ML can help expand the utility of AF detection and risk prediction, especially for patients with additional comorbidities. The use of AI/ML for detection and risk prediction into applications and smart mobile health (mHealth) technology would enable ‘real time’ dynamic assessments. AI/ML could also adapt to treatment changes over time, as well as incident risk factors. Incorporation of a dynamic AI/ML model into mHealth technology would facilitate ‘real time’ assessment of stroke risk, facilitating mitigation of modifiable risk factors (e.g. blood pressure control). Overall, this would lead to an improvement in clinical care for patients with AF.
Collapse
Affiliation(s)
- Ivan Olier
- School of Computer Science and Mathematics, Liverpool John Moores University, 3 Byrom Street, Liverpool L3 3AF, UK.,Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK
| | - Sandra Ortega-Martorell
- School of Computer Science and Mathematics, Liverpool John Moores University, 3 Byrom Street, Liverpool L3 3AF, UK.,Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK
| | - Mark Pieroni
- School of Computer Science and Mathematics, Liverpool John Moores University, 3 Byrom Street, Liverpool L3 3AF, UK.,Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK.,Liverpool Heart and Chest Hospital, Liverpool, UK
| |
Collapse
|
32
|
Abstract
Machine learning (ML), a branch of artificial intelligence, where machines learn from big data, is at the crest of a technological wave of change sweeping society. Cardiovascular medicine is at the forefront of many ML applications, and there is a significant effort to bring them into mainstream clinical practice. In the field of cardiac electrophysiology, ML applications have also seen a rapid growth and popularity, particularly the use of ML in the automatic interpretation of ECGs, which has been extensively covered in the literature. Much lesser known are the other aspects of ML application in cardiac electrophysiology and arrhythmias, such as those in basic science research on arrhythmia mechanisms, both experimental and computational; in the development of better techniques for mapping of cardiac electrical function; and in translational research related to arrhythmia management. In the current review, we examine comprehensively such ML applications as they match the scope of this journal. The current review is organized in 3 parts. The first provides an overview of general ML principles and methodologies that will afford readers of the necessary information on the subject, serving as the foundation for inviting further ML applications in arrhythmia research. The basic information we provide can serve as a guide on how one might design and conduct an ML study. The second part is a review of arrhythmia and electrophysiology studies in which ML has been utilized, highlighting the broad potential of ML approaches. For each subject, we outline comprehensively the general topics, while reviewing some of the research advances utilizing ML under the subject. Finally, we discuss the main challenges and the perspectives for ML-driven cardiac electrophysiology and arrhythmia research.
Collapse
Affiliation(s)
- Natalia A. Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, USA 21218
- Alliance for Cardiovascular Diagnosis and Treatment Innovation, Whiting School of Engineering and School of Medicine, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, USA 21218
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD, USA 21205
| | - Dan M. Popescu
- Alliance for Cardiovascular Diagnosis and Treatment Innovation, Whiting School of Engineering and School of Medicine, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, USA 21218
- Department of Applied Mathematics and Statistics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, USA 21218
| | - Julie K. Shade
- Department of Biomedical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, USA 21218
- Alliance for Cardiovascular Diagnosis and Treatment Innovation, Whiting School of Engineering and School of Medicine, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, USA 21218
| |
Collapse
|
33
|
Sánchez de la Nava AM, Atienza F, Bermejo J, Fernández-Avilés F. Artificial intelligence for a personalized diagnosis and treatment of atrial fibrillation. Am J Physiol Heart Circ Physiol 2021; 320:H1337-H1347. [PMID: 33513086 DOI: 10.1152/ajpheart.00764.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although atrial fibrillation (AF) is the most common cardiac arrhythmia, its early identification, diagnosis, and treatment is still challenging. Due to its heterogeneous mechanisms and risk factors, targeting an individualized treatment of AF demands a large amount of patient data to identify specific patterns. Artificial intelligence (AI) algorithms are particularly well suited for treating high-dimensional data, predicting outcomes, and eventually, optimizing strategies for patient management. The analysis of large patient samples combining different sources of information such as blood biomarkers, electrical signals, and medical images opens a new paradigm for improving diagnostic algorithms. In this review, we summarize suitable AI techniques for this purpose. In particular, we describe potential applications for understanding the structural and functional bases of the disease, as well as for improving early noninvasive diagnosis, developing more efficient therapies, and predicting long-term clinical outcomes of patients with AF.
Collapse
Affiliation(s)
- Ana María Sánchez de la Nava
- Department of Cardiology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, Spain.,CIBERCV, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain.,Universitat Politècnica de València, València, Spain
| | - Felipe Atienza
- Department of Cardiology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, Spain.,CIBERCV, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain.,Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier Bermejo
- Department of Cardiology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, Spain.,CIBERCV, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain.,Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Fernández-Avilés
- Department of Cardiology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, Spain.,CIBERCV, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain.,Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
34
|
Mikhailov AV, Kalyanasundaram A, Li N, Scott SS, Artiga EJ, Subr MM, Zhao J, Hansen BJ, Hummel JD, Fedorov VV. Comprehensive evaluation of electrophysiological and 3D structural features of human atrial myocardium with insights on atrial fibrillation maintenance mechanisms. J Mol Cell Cardiol 2020; 151:56-71. [PMID: 33130148 DOI: 10.1016/j.yjmcc.2020.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022]
Abstract
Atrial fibrillation (AF) occurrence and maintenance is associated with progressive remodeling of electrophysiological (repolarization and conduction) and 3D structural (fibrosis, fiber orientations, and wall thickness) features of the human atria. Significant diversity in AF etiology leads to heterogeneous arrhythmogenic electrophysiological and structural substrates within the 3D structure of the human atria. Since current clinical methods have yet to fully resolve the patient-specific arrhythmogenic substrates, mechanism-based AF treatments remain underdeveloped. Here, we review current knowledge from in-vivo, ex-vivo, and in-vitro human heart studies, and discuss how these studies may provide new insights on the synergy of atrial electrophysiological and 3D structural features in AF maintenance. In-vitro studies on surgically acquired human atrial samples provide a great opportunity to study a wide spectrum of AF pathology, including functional changes in single-cell action potentials, ion channels, and gene/protein expression. However, limited size of the samples prevents evaluation of heterogeneous AF substrates and reentrant mechanisms. In contrast, coronary-perfused ex-vivo human hearts can be studied with state-of-the-art functional and structural technologies, such as high-resolution near-infrared optical mapping and contrast-enhanced MRI. These imaging modalities can resolve atrial arrhythmogenic substrates and their role in reentrant mechanisms maintaining AF and validate clinical approaches. Nonetheless, longitudinal studies are not feasible in explanted human hearts. As no approach is perfect, we suggest that combining the strengths of direct human atrial studies with high fidelity approaches available in the laboratory and in realistic patient-specific computer models would elucidate deeper knowledge of AF mechanisms. We propose that a comprehensive translational pipeline from ex-vivo human heart studies to longitudinal clinically relevant AF animal studies and finally to clinical trials is necessary to identify patient-specific arrhythmogenic substrates and develop novel AF treatments.
Collapse
Affiliation(s)
- Aleksei V Mikhailov
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Arrhythmology Research Department, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Anuradha Kalyanasundaram
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ning Li
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Shane S Scott
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Esthela J Artiga
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Megan M Subr
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Brian J Hansen
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - John D Hummel
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Vadim V Fedorov
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
35
|
Integration of novel monitoring devices with machine learning technology for scalable cardiovascular management. Nat Rev Cardiol 2020; 18:75-91. [PMID: 33037325 PMCID: PMC7545156 DOI: 10.1038/s41569-020-00445-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 01/19/2023]
Abstract
Ambulatory monitoring is increasingly important for cardiovascular care but is often limited by the unpredictability of cardiovascular events, the intermittent nature of ambulatory monitors and the variable clinical significance of recorded data in patients. Technological advances in computing have led to the introduction of novel physiological biosignals that can increase the frequency at which abnormalities in cardiovascular parameters can be detected, making expert-level, automated diagnosis a reality. However, use of these biosignals for diagnosis also raises numerous concerns related to accuracy and actionability within clinical guidelines, in addition to medico-legal and ethical issues. Analytical methods such as machine learning can potentially increase the accuracy and improve the actionability of device-based diagnoses. Coupled with interoperability of data to widen access to all stakeholders, seamless connectivity (an internet of things) and maintenance of anonymity, this approach could ultimately facilitate near-real-time diagnosis and therapy. These tools are increasingly recognized by regulatory agencies and professional medical societies, but several technical and ethical issues remain. In this Review, we describe the current state of cardiovascular monitoring along the continuum from biosignal acquisition to the identification of novel biosensors and the development of analytical techniques and ultimately to regulatory and ethical issues. Furthermore, we outline new paradigms for cardiovascular monitoring. Advances in cardiovascular monitoring technologies have resulted in an influx of consumer-targeted wearable sensors that have the potential to detect numerous heart conditions. In this Review, Krittanawong and colleagues describe processes involved in biosignal acquisition and analysis of cardiovascular monitors, as well as their associated ethical, regulatory and legal challenges. Advances in the use of cardiovascular monitoring technologies, such as the development of novel portable sensors and machine learning algorithms that can provide near-real-time diagnosis, have the potential to provide personalized care. Wearable sensor technologies can detect numerous biosignals, such as cardiac output, blood-pressure levels and heart rhythm, and can integrate multiple modalities. The use of novel biosignals for diagnosis raises concerns regarding accuracy and actionability within clinical guidelines, in addition to medical, legal and ethical issues. Machine learning-based interpretation of biosensor data can facilitate rapid evaluation of the haemodynamic consequences of heart failure or arrhythmias, but is limited by the presence of noise and training data that might not be representative of the real-world clinical setting. The use of data derived from cardiovascular monitoring devices is associated with numerous challenges, such as data security, accessibility and ownership, in addition to other ethical and regulatory concerns.
Collapse
|