1
|
Lan T, Palm KCA, Hoeben L, Diez Benavente E, Perry RN, Civelek M, de Kleijn DPV, den Ruijter HM, Pasterkamp G, Mokry M. Tobacco smoking is associated with sex- and plaque-type specific upregulation of CRLF1 in atherosclerotic lesions. Atherosclerosis 2024; 397:118554. [PMID: 39137621 DOI: 10.1016/j.atherosclerosis.2024.118554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/18/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND AND AIMS Tobacco smoking is a known risk factor for atherosclerotic disease, with more elevated risks in women compared to men. We hypothesized that atherosclerotic plaques from smokers show different gene expression patterns compared to non-smokers, in a sex-specific manner. METHODS Gene expression data of 625 carotid plaques (151 females and 474 males) were analyzed for differential gene expression between current smokers (n = 226) and non-smokers (n = 399). All analyses were stratified by sex and by molecular plaque characteristics. Finally, we projected the activity of gene regulatory networks and utilized single-cell transcriptomics from 38 plaques (26 males and 12 females) to interpret the sex- and plaque-type specific signals. RESULTS We observed higher expression levels of CRLF1 gene in atherosclerotic plaques from smokers compared to non-smokers (log2FC = 0.48, FDR = 0.012). CRLF1 upregulation was interacting with sex (p = 0.01) and was more pronounced in females (log2FC = 0.93, p = 1.53E-05) compared to males (log2FC = 0.35, p = 0.0018). Through single-cell RNA-seq analysis, we identified the highest CRLF1 expression within the transitioning and synthetic smooth muscle cell populations. CRLF1 expression was increased in fibro-inflammatory and fibro-cellular plaque types. Gene annotations pointed to increased expression of CRLF1 in networks with extracellular matrix related genes. CONCLUSIONS Atherosclerotic plaques from current smokers show sex-dependent upregulation of smooth muscle cell gene CRLF1. This may explain the different contributions of smoking to cardiovascular risk in females.
Collapse
Affiliation(s)
- Tian Lan
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands; Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Kaylin C A Palm
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Luka Hoeben
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Ernest Diez Benavente
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - R Noah Perry
- Center for Public Health Genomics, University of Virginia, Charlottesville, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, USA
| | - Mete Civelek
- Center for Public Health Genomics, University of Virginia, Charlottesville, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, USA
| | | | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Michal Mokry
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands; Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Diez Benavente E, Hartman RJG, Sakkers TR, Wesseling M, Sloots Y, Slenders L, Boltjes A, Mol BM, de Borst GJ, de Kleijn DPV, Prange KHM, de Winther MPJ, Kuiper J, Civelek M, van der Laan SW, Horvath S, Onland-Moret NC, Mokry M, Pasterkamp G, den Ruijter HM. Atherosclerotic Plaque Epigenetic Age Acceleration Predicts a Poor Prognosis and Is Associated With Endothelial-to-Mesenchymal Transition in Humans. Arterioscler Thromb Vasc Biol 2024; 44:1419-1431. [PMID: 38634280 DOI: 10.1161/atvbaha.123.320692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Epigenetic age estimators (clocks) are predictive of human mortality risk. However, it is not yet known whether the epigenetic age of atherosclerotic plaques is predictive for the risk of cardiovascular events. METHODS Whole-genome DNA methylation of human carotid atherosclerotic plaques (n=485) and of blood (n=93) from the Athero-Express endarterectomy cohort was used to calculate epigenetic age acceleration (EAA). EAA was linked to clinical characteristics, plaque histology, and future cardiovascular events (n=136). We studied whole-genome DNA methylation and bulk and single-cell transcriptomics to uncover molecular mechanisms of plaque EAA. We experimentally confirmed our in silico findings using in vitro experiments in primary human coronary endothelial cells. RESULTS Male and female patients with severe atherosclerosis had a median chronological age of 69 years. The median epigenetic age was 65 years in females (median EAA, -2.2 [interquartile range, -4.3 to 2.2] years) and 68 years in males (median EAA, -0.3 [interquartile range, -2.9 to 3.8] years). Patients with diabetes and a high body mass index had higher plaque EAA. Increased EAA of plaque predicted future events in a 3-year follow-up in a Cox regression model (univariate hazard ratio, 1.7; P=0.0034) and adjusted multivariate model (hazard ratio, 1.56; P=0.02). Plaque EAA predicted outcome independent of blood EAA (hazard ratio, 1.3; P=0.018) and of plaque hemorrhage (hazard ratio, 1.7; P=0.02). Single-cell RNA sequencing in plaque samples from 46 patients in the same cohort revealed smooth muscle and endothelial cells as important cell types in plaque EAA. Endothelial-to-mesenchymal transition was associated with EAA, which was experimentally confirmed by TGFβ-triggered endothelial-to-mesenchymal transition inducing rapid epigenetic aging in coronary endothelial cells. CONCLUSIONS Plaque EAA is a strong and independent marker of poor outcome in patients with severe atherosclerosis. Plaque EAA was linked to mesenchymal endothelial and smooth muscle cells. Endothelial-to-mesenchymal transition was associated with EAA, which was experimentally validated. Epigenetic aging mechanisms may provide new targets for treatments that reduce atherosclerosis complications.
Collapse
Affiliation(s)
- Ernest Diez Benavente
- Laboratory of Experimental Cardiology (E.D.B., R.J.G.H., T.R.S., Y.S., M.M., H.M.d.R.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Robin J G Hartman
- Laboratory of Experimental Cardiology (E.D.B., R.J.G.H., T.R.S., Y.S., M.M., H.M.d.R.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Tim R Sakkers
- Laboratory of Experimental Cardiology (E.D.B., R.J.G.H., T.R.S., Y.S., M.M., H.M.d.R.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Marian Wesseling
- Central Diagnostic Laboratory (M.W., L.S., A.B., S.W.v.d.L., M.M., G.P.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Yannicke Sloots
- Laboratory of Experimental Cardiology (E.D.B., R.J.G.H., T.R.S., Y.S., M.M., H.M.d.R.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Lotte Slenders
- Central Diagnostic Laboratory (M.W., L.S., A.B., S.W.v.d.L., M.M., G.P.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Arjan Boltjes
- Central Diagnostic Laboratory (M.W., L.S., A.B., S.W.v.d.L., M.M., G.P.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Barend M Mol
- Department of Vascular Surgery (B.M.M., G.J.d.B., D.P.V.d.K.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Gert J de Borst
- Department of Vascular Surgery (B.M.M., G.J.d.B., D.P.V.d.K.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Dominique P V de Kleijn
- Department of Vascular Surgery (B.M.M., G.J.d.B., D.P.V.d.K.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Koen H M Prange
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands (K.H.M.P., M.P.J.d.W., J.K.)
| | - Menno P J de Winther
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands (K.H.M.P., M.P.J.d.W., J.K.)
| | - Johan Kuiper
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands (K.H.M.P., M.P.J.d.W., J.K.)
| | - Mete Civelek
- Center for Public Health Genomics (M.C.), University of Virginia, Charlottesville
- Department of Biomedical Engineering (M.C.), University of Virginia, Charlottesville
| | - Sander W van der Laan
- Central Diagnostic Laboratory (M.W., L.S., A.B., S.W.v.d.L., M.M., G.P.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine (S.H.), University of California, Los Angeles
- Department of Biostatistics, Fielding School of Public Health (S.H.), University of California, Los Angeles
- Altos Labs, Cambridge Institute of Science, United Kingdom (S.H.)
| | - N Charlotte Onland-Moret
- Julius Center for Health Sciences and Primary Care (N.C.O.-M.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Michal Mokry
- Laboratory of Experimental Cardiology (E.D.B., R.J.G.H., T.R.S., Y.S., M.M., H.M.d.R.), University Medical Center Utrecht, Utrecht University, the Netherlands
- Central Diagnostic Laboratory (M.W., L.S., A.B., S.W.v.d.L., M.M., G.P.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Gerard Pasterkamp
- Central Diagnostic Laboratory (M.W., L.S., A.B., S.W.v.d.L., M.M., G.P.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology (E.D.B., R.J.G.H., T.R.S., Y.S., M.M., H.M.d.R.), University Medical Center Utrecht, Utrecht University, the Netherlands
| |
Collapse
|
3
|
van der Ark-Vonk EM, Puijk MV, Pasterkamp G, van der Laan SW. The Effects of FABP4 on Cardiovascular Disease in the Aging Population. Curr Atheroscler Rep 2024; 26:163-175. [PMID: 38698167 PMCID: PMC11087245 DOI: 10.1007/s11883-024-01196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 05/05/2024]
Abstract
PURPOSE OF REVIEW Fatty acid-binding protein 4 (FABP4) plays a role in lipid metabolism and cardiovascular health. In this paper, we cover FABP4 biology, its implications in atherosclerosis from observational studies, genetic factors affecting FABP4 serum levels, and ongoing drug development to target FABP4 and offer insights into future FABP4 research. RECENT FINDINGS FABP4 impacts cells through JAK2/STAT2 and c-kit pathways, increasing inflammatory and adhesion-related proteins. In addition, FABP4 induces angiogenesis and vascular smooth muscle cell proliferation and migration. FABP4 is established as a reliable predictive biomarker for cardiovascular disease in specific at-risk groups. Genetic studies robustly link PPARG and FABP4 variants to FABP4 serum levels. Considering the potential effects on atherosclerotic lesion development, drug discovery programs have been initiated in search for potent inhibitors of FABP4. Elevated FABP4 levels indicate an increased cardiovascular risk and is causally related to acceleration of atherosclerotic disease, However, clinical trials for FABP4 inhibition are lacking, possibly due to concerns about available compounds' side effects. Further research on FABP4 genetics and its putative causal role in cardiovascular disease is needed, particularly in aging subgroups.
Collapse
Affiliation(s)
- Ellen M van der Ark-Vonk
- Central Diagnostics Laboratory, Division Laboratory, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Mike V Puijk
- Central Diagnostics Laboratory, Division Laboratory, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, Division Laboratory, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratory, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Li JL, Jain N, Tamayo LI, Tong L, Jasmine F, Kibriya MG, Demanelis K, Oliva M, Chen LS, Pierce BL. The association of cigarette smoking with DNA methylation and gene expression in human tissue samples. Am J Hum Genet 2024; 111:636-653. [PMID: 38490207 PMCID: PMC11023923 DOI: 10.1016/j.ajhg.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/17/2024] Open
Abstract
Cigarette smoking adversely affects many aspects of human health, and epigenetic responses to smoking may reflect mechanisms that mediate or defend against these effects. Prior studies of smoking and DNA methylation (DNAm), typically measured in leukocytes, have identified numerous smoking-associated regions (e.g., AHRR). To identify smoking-associated DNAm features in typically inaccessible tissues, we generated array-based DNAm data for 916 tissue samples from the GTEx (Genotype-Tissue Expression) project representing 9 tissue types (lung, colon, ovary, prostate, blood, breast, testis, kidney, and muscle). We identified 6,350 smoking-associated CpGs in lung tissue (n = 212) and 2,735 in colon tissue (n = 210), most not reported previously. For all 7 other tissue types (sample sizes 38-153), no clear associations were observed (false discovery rate 0.05), but some tissues showed enrichment for smoking-associated CpGs reported previously. For 1,646 loci (in lung) and 22 (in colon), smoking was associated with both DNAm and local gene expression. For loci detected in both lung and colon (e.g., AHRR, CYP1B1, CYP1A1), top CpGs often differed between tissues, but similar clusters of hyper- or hypomethylated CpGs were observed, with hypomethylation at regulatory elements corresponding to increased expression. For lung tissue, 17 hallmark gene sets were enriched for smoking-associated CpGs, including xenobiotic- and cancer-related gene sets. At least four smoking-associated regions in lung were impacted by lung methylation quantitative trait loci (QTLs) that co-localize with genome-wide association study (GWAS) signals for lung function (FEV1/FVC), suggesting epigenetic alterations can mediate the effects of smoking on lung health. Our multi-tissue approach has identified smoking-associated regions in disease-relevant tissues, including effects that are shared across tissue types.
Collapse
Affiliation(s)
- James L Li
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA; Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL 60637, USA
| | - Niyati Jain
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA; Committee on Genetics, Genomics, Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Lizeth I Tamayo
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Lin Tong
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Farzana Jasmine
- Institute for Population and Precision Health (IPPH), Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Muhammad G Kibriya
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Kathryn Demanelis
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Meritxell Oliva
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA; Genomics Research Center, AbbVie, North Chicago, IL 60064, USA
| | - Lin S Chen
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Brandon L Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA; Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA; Comprehensive Cancer Center, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
5
|
Garrett ME, Dennis MF, Bourassa KJ, Hauser MA, Kimbrel NA, Beckham JC, Ashley-Koch AE. Genome-wide DNA methylation analysis of cannabis use disorder in a veteran cohort enriched for posttraumatic stress disorder. Psychiatry Res 2024; 333:115757. [PMID: 38309009 PMCID: PMC10922626 DOI: 10.1016/j.psychres.2024.115757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
Cannabis use has been increasing over the past decade, not only in the general US population, but particularly among military veterans. With this rise in use has come a concomitant increase in cannabis use disorder (CUD) among veterans. Here, we performed an epigenome-wide association study for lifetime CUD in an Iraq/Afghanistan era veteran cohort enriched for posttraumatic stress disorder (PTSD) comprising 2,310 total subjects (1,109 non-Hispanic black and 1,201 non-Hispanic white). We also investigated CUD interactions with current PTSD status and examined potential indirect effects of DNA methylation (DNAm) on the relationship between CUD and psychiatric diagnoses. Four CpGs were associated with lifetime CUD, even after controlling for the effects of current smoking (AHRR cg05575921, LINC00299 cg23079012, VWA7 cg22112841, and FAM70A cg08760398). Importantly, cg05575921, a CpG strongly linked to smoking, remained associated with lifetime CUD even when restricting the analysis to veterans who reported never smoking cigarettes. Moreover, CUD interacted with current PTSD to affect cg05575921 and cg23079012 such that those with both CUD and PTSD displayed significantly lower DNAm compared to the other groups. Finally, we provide preliminary evidence that AHRR cg05575921 helps explain the association between CUD and any psychiatric diagnoses, specifically mood disorders.
Collapse
Affiliation(s)
- Melanie E Garrett
- Duke Molecular Physiology Institute, Duke University Medical Center, 300N Duke St, Durham, NC 27701, USA
| | - Michelle F Dennis
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, USA; VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center, Durham, NC, USA; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Kyle J Bourassa
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, USA; VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center, Durham, NC, USA; Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, USA
| | - Michael A Hauser
- Duke Molecular Physiology Institute, Duke University Medical Center, 300N Duke St, Durham, NC 27701, USA
| | - Nathan A Kimbrel
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, USA; VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center, Durham, NC, USA; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Jean C Beckham
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, USA; VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center, Durham, NC, USA; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Allison E Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, 300N Duke St, Durham, NC 27701, USA.
| |
Collapse
|
6
|
Ridany I, Akika R, Saliba NA, Tamim H, Badr K, Zgheib NK. Aromatic Hydrocarbon Receptor Repressor (AHRR) is a biomarker of ambient air pollution exposure and Coronary Artery Disease (CAD). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104344. [PMID: 38103810 DOI: 10.1016/j.etap.2023.104344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Two hundred and twenty subjects were recruited while undergoing cardiac catheterization. AHRR cg05575921 methylation was shown to be significantly decreased in ever smokers compared to never smokers (Mean± SD = 64.2 ± 17.2 vs 80.1 ± 11.1 respectively; P < 0.0001). In addition, higher urinary levels of 2-OHNAP and 2-OHFLU were significantly associated with more AHRR cg05575921 hypomethylation, even after correcting for smoking (β[95%CI]= -4.161[-7.553, -0.769]; P = 0.016 and -5.190[-9.761, -0.618]; P = 0.026, respectively) but not 1-OHPYR (β[95%CI]= -3.545 [-10.935, 3.845]; P = 0.345). Additionally, hypomethylation of AHRR ROI was significantly associated with obstructive coronary artery disease (CAD) after adjusting for smoking, age, sex, diabetes and dyslipidemia (OR [95%CI] = 1.024[1.000 - 1.048]; P = 0.046). Results of this study necessitate further validation to potentially consider clinical incorporation of AHRR methylation status as an early predictive biomarker for the potential association between ambient air pollution and CAD.
Collapse
Affiliation(s)
- Ibrahim Ridany
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Reem Akika
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Najat Aoun Saliba
- Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon; Vascular Medicine Program, American University of Beirut, Beirut, Lebanon
| | - Hani Tamim
- Vascular Medicine Program, American University of Beirut, Beirut, Lebanon; Clinical Research Institute, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Kamal Badr
- Vascular Medicine Program, American University of Beirut, Beirut, Lebanon; Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nathalie Khoueiry Zgheib
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Vascular Medicine Program, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
7
|
Bergonzini M, Loreni F, Lio A, Russo M, Saitto G, Cammardella A, Irace F, Tramontin C, Chello M, Lusini M, Nenna A, Ferrisi C, Ranocchi F, Musumeci F. Panoramic on Epigenetics in Coronary Artery Disease and the Approach of Personalized Medicine. Biomedicines 2023; 11:2864. [PMID: 37893238 PMCID: PMC10604795 DOI: 10.3390/biomedicines11102864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Epigenetic modifications play a fundamental role in the progression of coronary artery disease (CAD). This panoramic review aims to provide an overview of the current understanding of the epigenetic mechanisms involved in CAD pathogenesis and highlights the potential implications for personalized medicine approaches. Epigenetics is the study of heritable changes that do not influence alterations in the DNA sequence of the genome. It has been shown that epigenetic processes, including DNA/histone methylation, acetylation, and phosphorylation, play an important role. Additionally, miRNAs, lncRNAs, and circRNAs are also involved in epigenetics, regulating gene expression patterns in response to various environmental factors and lifestyle choices. In the context of CAD, epigenetic alterations contribute to the dysregulation of genes involved in inflammation, oxidative stress, lipid metabolism, and vascular function. These epigenetic changes can occur during early developmental stages and persist throughout life, predisposing individuals to an increased risk of CAD. Furthermore, in recent years, the concept of personalized medicine has gained significant attention. Personalized medicine aims to tailor medical interventions based on an individual's unique genetic, epigenetic, environmental, and lifestyle factors. In the context of CAD, understanding the interplay between genetic variants and epigenetic modifications holds promise for the development of more precise diagnostic tools, risk stratification models, and targeted therapies. This review summarizes the current knowledge of epigenetic mechanisms in CAD and discusses the fundamental principles of personalized medicine.
Collapse
Affiliation(s)
- Marcello Bergonzini
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Francesco Loreni
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Antonio Lio
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Marco Russo
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Guglielmo Saitto
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Antonio Cammardella
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Francesco Irace
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Corrado Tramontin
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Massimo Chello
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Mario Lusini
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Antonio Nenna
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Chiara Ferrisi
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Federico Ranocchi
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Francesco Musumeci
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| |
Collapse
|
8
|
The Genetic Architecture of the Etiology of Lower Extremity Peripheral Artery Disease: Current Knowledge and Future Challenges in the Era of Genomic Medicine. Int J Mol Sci 2022; 23:ijms231810481. [PMID: 36142394 PMCID: PMC9499674 DOI: 10.3390/ijms231810481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022] Open
Abstract
Lower extremity artery disease (LEAD), caused by atherosclerotic obstruction of the arteries of the lower limb extremities, has exhibited an increase in mortality and morbidity worldwide. The phenotypic variability of LEAD is correlated with its complex, multifactorial etiology. In addition to traditional risk factors, it has been shown that the interaction between genetic factors (epistasis) or between genes and the environment potentially have an independent role in the development and progression of LEAD. In recent years, progress has been made in identifying genetic variants associated with LEAD, by Genome-Wide Association Studies (GWAS), Whole Exome Sequencing (WES) studies, and epigenetic profiling. The aim of this review is to present the current knowledge about the genetic factors involved in the etiopathogenic mechanisms of LEAD, as well as possible directions for future research. We analyzed data from the literature, starting with candidate gene-based association studies, and then continuing with extensive association studies, such as GWAS and WES. The results of these studies showed that the genetic architecture of LEAD is extremely heterogeneous. In the future, the identification of new genetic factors will allow for the development of targeted molecular therapies, and the use of polygenic risk scores (PRS) to identify individuals at an increased risk of LEAD will allow for early prophylactic measures and personalized therapy to improve their prognosis.
Collapse
|
9
|
Zhu L, Zhu C, Wang J, Yang R, Zhao X. The association between DNA methylation of 6p21.33 and AHRR in blood and coronary heart disease in Chinese population. BMC Cardiovasc Disord 2022; 22:370. [PMID: 35964014 PMCID: PMC9375073 DOI: 10.1186/s12872-022-02766-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Early detection could significantly improve the prognosis of coronary heart disease (CHD). In-invitro diagnostic technique may provide a solution when sufficient biomarkers could be identified. Pertinent associations between blood-based aberrant DNA methylation and smoking, the pathogenesis of atherosclerosis, and CHD have been robustly demonstrated and replicated, but that studies in Chinese populations are rare. The blood-based methylation of aryl-hydrocarbon receptor repressor (AHRR) cg05575921 and 6p21.33 cg06126421 has been associated with cardiovascular mortality in Caucasians. Here, we aim to investigate whether the AHRR and 6p21.33 methylation in the blood is associated with CHD in the Chinese population. METHODS In this case-control study, 180 CHD patients recruited at their first registration in our study center, and 184 controls randomly selected from the people who participated in the annual health examination were enrolled. Methylation intensities of 19 CpG sites, including AHRR cg05575921, 6p21.33 cg06126421, and their flanking CpG sites, were quantified by mass spectrometry. The association between methylation intensities and CHD was estimated by logistic regression analyses adjusted for covariant. RESULTS Compared to the controls, lower methylation of 6p21.33_CpG_4.5/cg06126421 was independently associated with increased odds of being a CHD patient (OR per - 10% methylation = 1.42 after adjustment for age, gender, and batch effect; p = 0.032 by multiple testing corrections). No association between blood-based AHRR methylation and CHD was found. CONCLUSIONS 6p21.33 methylation exhibits a significant association with CHD. The combination of 6p21.33 methylation and conventional risk factors might be an intermediate step towards the early detection of CHD.
Collapse
Affiliation(s)
- Liya Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chao Zhu
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, West District, Beijing, 100050, China
| | - Jinxin Wang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Rongxi Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Xiaojing Zhao
- Military Translational Medicine Lab, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, 100853, China. .,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
10
|
Iglesies-Grau J, Fernandez-Jimenez R, Diaz-Munoz R, Jaslow R, de Cos-Gandoy A, Santos-Beneit G, Hill CA, Turco A, Kadian-Dodov D, Kovacic JC, Fayad ZA, Fuster V. Subclinical Atherosclerosis in Young, Socioeconomically Vulnerable Hispanic and Non-Hispanic Black Adults. J Am Coll Cardiol 2022; 80:219-229. [PMID: 35835495 DOI: 10.1016/j.jacc.2022.04.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Non-Hispanic Black persons are at greater risk of cardiovascular (CV) events than other racial/ethnic groups; however, their differential vulnerability to early subclinical atherosclerosis is poorly understood. OBJECTIVES This work aims to study the impact of race/ethnicity on early subclinical atherosclerosis in young socioeconomically disadvantaged adults. METHODS Bilateral carotid and femoral 3-dimensional vascular ultrasound examinations were performed on 436 adults (parents/caregivers and staff) with a mean age of 38.0 ± 11.1 years, 82.3% female, 66% self-reported as Hispanic, 34% self-reported as non-Hispanic Black, and no history of CV disease recruited in the FAMILIA (Family-Based Approach in a Minority Community Integrating Systems-Biology for Promotion of Health) trial from 15 Head Start preschools in Harlem (neighborhood in New York, New York, USA). The 10-year Framingham CV risk score was calculated, and the relationship between race/ethnicity and the presence and extent of subclinical atherosclerosis was analyzed with multivariable logistic and linear regression models. RESULTS The mean 10-year Framingham CV risk was 4.0%, with no differences by racial/ethnic category. The overall prevalence of subclinical atherosclerosis was significantly higher in the non-Hispanic Black (12.9%) than in the Hispanic subpopulation (6.6%). After adjusting for 10-year Framingham CV risk score, body mass index, fruit and vegetable consumption, physical activity, and employment status, non-Hispanic Black individuals were more likely than Hispanic individuals to have subclinical atherosclerosis (OR: 3.45; 95% CI: 1.44-8.29; P = 0.006) and multiterritorial disease (P = 0.026). CONCLUSIONS After adjustment for classic CV risk, lifestyle, and socioeconomic factors, non-Hispanic Black younger adults seem more vulnerable to early subclinical atherosclerosis than their Hispanic peers, suggesting that the existence of emerging or undiscovered CV factors underlying the residual excess risk (Family-Based Approach in a Minority Community Integrating Systems-Biology for Promotion of Health [FAMILIA (Project 2)]; NCT02481401).
Collapse
Affiliation(s)
| | - Rodrigo Fernandez-Jimenez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Hospital Universitario Clínico San Carlos, Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| | - Raquel Diaz-Munoz
- Centro Nacional de Epidemiología (CNE), Instituto de Salud Carlos III, Madrid, Spain
| | - Risa Jaslow
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Amaya de Cos-Gandoy
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Foundation for Science, Health and Education (SHE), Barcelona, Spain
| | - Gloria Santos-Beneit
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Foundation for Science, Health and Education (SHE), Barcelona, Spain
| | - Christopher A Hill
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alexandra Turco
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Daniella Kadian-Dodov
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Zahi A Fayad
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Valentin Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
11
|
Hilser JR, Hartiala JA, Sriprasert I, Kono N, Cai Z, Karim R, DeYoung J, Mack WJ, Hodis HN, Allayee H. Effect of menopausal hormone therapy on methylation levels in early and late postmenopausal women. Clin Epigenetics 2022; 14:90. [PMID: 35850911 PMCID: PMC9295504 DOI: 10.1186/s13148-022-01311-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/28/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) remains the leading cause of death among postmenopausal women but standard primary prevention strategies in women are not as effective as in men. By comparison, the Early versus Late Intervention Trial with Estradiol (ELITE) study demonstrated that hormone therapy (HT) was associated with significant reduction in atherosclerosis progression in women who were within six years of menopause compared to those who were 10 or more years from menopause. These findings are consistent with other studies showing significant reductions in all-cause mortality and CVD with HT, particularly when initiated in women younger than 60 years of age or within 10 years since menopause. To explore the biological mechanisms underlying the age-related atheroprotective effects of HT, we investigated changes in methylation of blood cells of postmenopausal women who participated in ELITE. RESULTS We first validated the epigenetic data generated from blood leukocytes of ELITE participants by replicating previously known associations between smoking and methylation levels at previously identified CpG sites, such as cg05575921 at the AHRR locus. An epigenome-wide association study (EWAS) evaluating changes in methylation through interactions with time-since-menopause and HT revealed two significantly associated CpG sites on chromosomes 12 (cg19552895; p = 1.1 × 10-9) and 19 (cg18515510; p = 2.4 × 10-8). Specifically, HT resulted in modest, but significant, increases in methylation levels at both CpGs but only in women who were 10 or more years since menopause and randomized to HT. Changes in carotid artery intima-media thickness (CIMT) from baseline to 36 months after HT were not significantly correlated with changes in methylation levels at either cg19552895 or cg18515510. Evaluation of other previously identified CpG sites at which methylation levels in either blood or vascular tissue were associated with atherosclerosis also did not reveal any differences in methylation as a function of HT and time-since-menopause or with changes in CIMT. CONCLUSIONS We identified specific methylation differences in blood in response to HT among women who were 10 or more years since menopause. The functional consequence of these change with respect to atherosclerosis progression and protective effects of HT remains to be determined and will require additional studies.
Collapse
Affiliation(s)
- James R. Hilser
- grid.42505.360000 0001 2156 6853Departments of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC202, Los Angeles, CA 90033 USA ,grid.42505.360000 0001 2156 6853Departments of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| | - Jaana A. Hartiala
- grid.42505.360000 0001 2156 6853Departments of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC202, Los Angeles, CA 90033 USA
| | - Intira Sriprasert
- grid.42505.360000 0001 2156 6853Departments of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| | - Naoko Kono
- grid.42505.360000 0001 2156 6853Departments of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC202, Los Angeles, CA 90033 USA ,grid.42505.360000 0001 2156 6853Atherosclerosis Research Unit, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| | - Zhiheng Cai
- grid.42505.360000 0001 2156 6853Departments of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC202, Los Angeles, CA 90033 USA ,grid.42505.360000 0001 2156 6853Departments of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| | - Roksana Karim
- grid.42505.360000 0001 2156 6853Departments of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC202, Los Angeles, CA 90033 USA ,grid.42505.360000 0001 2156 6853Atherosclerosis Research Unit, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| | - Joseph DeYoung
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095 USA
| | - Wendy J. Mack
- grid.42505.360000 0001 2156 6853Departments of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC202, Los Angeles, CA 90033 USA ,grid.42505.360000 0001 2156 6853Atherosclerosis Research Unit, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| | - Howard N. Hodis
- grid.42505.360000 0001 2156 6853Departments of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC202, Los Angeles, CA 90033 USA ,grid.42505.360000 0001 2156 6853Departments of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA ,grid.42505.360000 0001 2156 6853Atherosclerosis Research Unit, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| | - Hooman Allayee
- grid.42505.360000 0001 2156 6853Departments of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC202, Los Angeles, CA 90033 USA ,grid.42505.360000 0001 2156 6853Departments of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| |
Collapse
|
12
|
Takeuchi F, Takano K, Yamamoto M, Isono M, Miyake W, Mori K, Hara H, Hiroi Y, Kato N. Clinical Implication of Smoking-Related Aryl-Hydrocarbon Receptor Repressor (AHRR) Hypomethylation in Japanese Adults. Circ J 2022; 86:986-992. [PMID: 35110429 DOI: 10.1253/circj.cj-21-0958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Tobacco smoking is a leading preventable cause of morbidity and mortality worldwide; still, the success rate of smoking cessation is low in general. From the viewpoint of public health and clinical care, an objective biomarker of long-term smoking behavior is sought. METHODS AND RESULTS This study assessed DNA methylation as a biomarker of smoking in a hospital setting through a combination of molecular approaches including genetic, DNA methylation and mRNA expression analyses. First, in an epigenome-wide association study involving Japanese individuals with chronic cardiovascular disease (n=94), genome-wide significant smoking association was identified at 2 CpG sites on chromosome 5, with the strongest signal at cg05575921 located in intron 3 of the aryl-hydrocarbon receptor repressor (AHRR) gene. Highly significant (P<1×10-27) smoking-cg05575921 association was validated in 2 additional panels (n=339 and n=300). For the relationship of cg05575921 methylation extent with time after smoking cessation and cumulative cigarette consumption among former smokers, smoking-related hypomethylation was found to remain for ≥20 years after smoking cessation and to be affected by multiple factors, such as cis-interaction of genetic variation. There was a significant inverse correlation (P=0.0005) between cg05575921 methylation extent and AHRR mRNA expression. CONCLUSIONS The present study results support that reversion of AHRR hypomethylation can be a quantifiable biomarker for progress in and observance of smoking cessation, although some methodological points need to be considered.
Collapse
Affiliation(s)
- Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine
- Medical Genomics Center, Research Institute, National Center for Global Health and Medicine
| | - Kozue Takano
- Medical Genomics Center, Research Institute, National Center for Global Health and Medicine
- Department of Genomic Medicine, Center Hospital, National Center for Global Health and Medicine
| | - Masaya Yamamoto
- Department of Cardiology, Center Hospital, National Center for Global Health and Medicine
| | - Masato Isono
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine
| | - Wataru Miyake
- Department of Cardiology, Center Hospital, National Center for Global Health and Medicine
| | - Kotaro Mori
- Medical Genomics Center, Research Institute, National Center for Global Health and Medicine
| | - Hisao Hara
- Department of Cardiology, Center Hospital, National Center for Global Health and Medicine
| | - Yukio Hiroi
- Department of Cardiology, Center Hospital, National Center for Global Health and Medicine
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine
- Medical Genomics Center, Research Institute, National Center for Global Health and Medicine
- Department of Genomic Medicine, Center Hospital, National Center for Global Health and Medicine
| |
Collapse
|
13
|
Pasterkamp G, den Ruijter HM, Giannarelli C. False Utopia of One Unifying Description of the Vulnerable Atherosclerotic Plaque: A Call for Recalibration That Appreciates the Diversity of Mechanisms Leading to Atherosclerotic Disease. Arterioscler Thromb Vasc Biol 2022; 42:e86-e95. [PMID: 35139657 DOI: 10.1161/atvbaha.121.316693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Atherosclerosis is a complex disease characterized by the formation of arterial plaques with a broad diversity of morphological phenotypic presentations. Researchers often apply one description of the vulnerable plaque as a gold standard in preclinical and clinical research that could be applied as a surrogate measure of a successful therapeutic intervention, despite the variability in lesion characteristics that may underly a thrombotic occlusion. The complex mechanistic interplay underlying progression of atherosclerotic disease is a consequence of the broad range of determinants such as sex, risk factors, hemodynamics, medications, and the genetic landscape. Currently, we are facing an overwhelming amount of data based on genetic, transcriptomic, proteomic, and metabolomic studies that all point to heterogeneous molecular profiles of atherosclerotic lesions that lead to a myocardial infarction or stroke. The observed molecular diversity implies that one unifying model cannot fully recapitulate the natural history of atherosclerosis. Despite emerging data obtained from -omics studies, a description of a natural history of atherosclerotic disease in which cell-specific expression of proteins or genes are included is still lacking. This also applies to the insights provided by genome-wide association studies. This review will critically discuss the dogma that the progression of atherosclerotic disease can be captured in one unifying natural history model of atherosclerosis.
Collapse
Affiliation(s)
- Gerard Pasterkamp
- Circulatory Health Laboratories (G.P., H.M.d.R.), University Medical Center Utrecht, the Netherlands.,Central Diagnostics Laboratories (G.P.), University Medical Center Utrecht, the Netherlands
| | - Hester M den Ruijter
- Circulatory Health Laboratories (G.P., H.M.d.R.), University Medical Center Utrecht, the Netherlands.,Laboratory of Experimental Cardiology (H.M.d.R.), University Medical Center Utrecht, the Netherlands
| | - Chiara Giannarelli
- NYU Cardiovascular Research Center (C.G.), New York University Grossman School of Medicine.,Department of Pathology (C.G.), New York University Grossman School of Medicine
| |
Collapse
|
14
|
Ammous F, Zhao W, Lin L, Ratliff SM, Mosley TH, Bielak LF, Zhou X, Peyser PA, Kardia SLR, Smith JA. Epigenetics of single-site and multi-site atherosclerosis in African Americans from the Genetic Epidemiology Network of Arteriopathy (GENOA). Clin Epigenetics 2022; 14:10. [PMID: 35039093 PMCID: PMC8764761 DOI: 10.1186/s13148-022-01229-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND DNA methylation, an epigenetic mechanism modulated by lifestyle and environmental factors, may be an important biomarker of complex diseases including cardiovascular diseases (CVD) and subclinical atherosclerosis. METHODS DNA methylation in peripheral blood samples from 391 African-Americans from the Genetic Epidemiology Network of Arteriopathy (GENOA) was assessed at baseline, and atherosclerosis was assessed 5 and 12 years later. Using linear mixed models, we examined the association between previously identified CpGs for coronary artery calcification (CAC) and carotid plaque, both individually and aggregated into methylation risk scores (MRSCAC and MRScarotid), and four measures of atherosclerosis (CAC, abdominal aorta calcification (AAC), ankle-brachial index (ABI), and multi-site atherosclerosis based on gender-specific quartiles of the single-site measures). We also examined the association between four epigenetic age acceleration measures (IEAA, EEAA, PhenoAge acceleration, and GrimAge acceleration) and the four atherosclerosis measures. Finally, we characterized the temporal stability of the epigenetic measures using repeated DNA methylation measured 5 years after baseline (N = 193). RESULTS After adjusting for CVD risk factors, four CpGs (cg05575921(AHRR), cg09935388 (GFI1), cg21161138 (AHRR), and cg18168448 (LRRC52)) were associated with multi-site atherosclerosis (FDR < 0.1). cg05575921 was also associated with AAC and cg09935388 with ABI. MRSCAC was associated with ABI (Beta = 0.016, P = 0.006), and MRScarotid was associated with both AAC (Beta = 0.605, equivalent to approximately 1.8-fold increase in the Agatston score of AAC, P = 0.004) and multi-site atherosclerosis (Beta = 0.691, P = 0.002). A 5-year increase in GrimAge acceleration (~ 1 SD) was associated with a 1.6-fold (P = 0.012) increase in the Agatston score of AAC and 0.7 units (P = 0.0003) increase in multi-site atherosclerosis, all after adjusting for CVD risk factors. All epigenetic measures were relatively stable over 5 years, with the highest intraclass correlation coefficients observed for MRScarotid and GrimAge acceleration (0.87 and 0.89, respectively). CONCLUSIONS We found evidence of an association between DNA methylation and atherosclerosis at multiple vascular sites in a sample of African-Americans. Further evaluation of these potential biomarkers is warranted to deepen our understanding of the relationship between epigenetics and atherosclerosis.
Collapse
Affiliation(s)
- Farah Ammous
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lisha Lin
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Thomas H Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Buono MF, Slenders L, Wesseling M, Hartman RJG, Monaco C, den Ruijter HM, Pasterkamp G, Mokry M. The changing landscape of the vulnerable plaque: a call for fine-tuning of preclinical models. Vascul Pharmacol 2021; 141:106924. [PMID: 34607015 DOI: 10.1016/j.vph.2021.106924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/08/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022]
Abstract
For decades, the pathological definition of the vulnerable plaque led to invaluable insights into the mechanisms that underlie myocardial infarction and stroke. Beyond plaque rupture, other mechanisms, such as erosion, may elicit thrombotic events underlining the complexity and diversity of the atherosclerotic disease. Novel insights, based on single-cell transcriptomics and other "omics" methods, provide tremendous opportunities in the ongoing search for cell-specific determinants that will fine-tune the description of the thrombosis prone lesion. It coincides with an increasing awareness that knowledge on lesion characteristics, cell plasticity and clinical presentation of ischemic cardiovascular events have shifted over the past decades. This shift correlates with an observed changes of cell composition towards phenotypical stabilizing of human plaques. These stabilization features and mechanisms are directly mediated by the cells present in plaques and can be mimicked in vitro via primary plaque cells derived from human atherosclerotic tissues. In addition, the rapidly evolving of sequencing technologies identify many candidate genes and molecular mechanisms that may influence the risk of developing an atherosclerotic thrombotic event - which bring the next challenge in sharp focus: how to translate these cell-specific insights into tangible functional and translational discoveries?
Collapse
Affiliation(s)
- Michele F Buono
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, the Netherlands
| | - Lotte Slenders
- Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marian Wesseling
- Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Robin J G Hartman
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, the Netherlands
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, the Netherlands
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Michal Mokry
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, the Netherlands; Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
16
|
Wang Z, Zhou S, Zhao J, Nie S, Sun J, Gao X, Lenahan C, Lin Z, Huang Y, Chen G. Tobacco Smoking Increases Methylation of Polypyrimidine Tract Binding Protein 1 Promoter in Intracranial Aneurysms. Front Aging Neurosci 2021; 13:688179. [PMID: 34295240 PMCID: PMC8292010 DOI: 10.3389/fnagi.2021.688179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/14/2021] [Indexed: 11/20/2022] Open
Abstract
DNA methylation at the gene promoter region is reportedly involved in the development of intracranial aneurysm (IA). This study aims to investigate the methylation levels of polypyrimidine tract-binding protein 1 (PTBP1) in IA, as well as its potential to predict IA. Forty-eight patients with IA and 48 age- and sex-matched healthy controls were recruited into this study. Methylation levels of CpG sites were determined via bisulfite pyrosequencing. The PTBP1 levels in the blood were determined using a real-time quantitative reverse transcription-polymerase chain reaction test. Significant differences were found between IAs and controls in CpG1 (p = 0.001), CpG2 (p < 0.001), CpG3 (p = 0.037), CpG4 (p = 0.003), CpG5 (p = 0.006), CpG6 (p = 0.02), and mean methylation (p < 0.001). The mRNA level of PTBP1 in the blood was much lower in IAs compared with controls (p = 0.002), and the PTBP1 expression was significantly associated with DNA methylation promoter levels in individuals (r = −0.73, p < 0.0001). In addition, stratification analysis comparing smokers and non-smokers revealed that tobacco smokers had significantly higher levels of DNA methylation in PTBP1 than non-smokers (p = 0.002). However, no statistical difference in PTBP1 methylation was found between ruptured and unruptured IA groups (p > 0.05). The ROC analyses of curves revealed that PTBP1 methylation may be a predictor of IA regardless of sex (both sexes, area under curve (AUC) = 0.78, p < 0.0001; male, AUC = 0.76, p = 0.002; female, AUC = 0.79, p < 0.0001). These findings suggest that long-term tobacco smoke exposure led to DNA methylation in the promoter region of the PTBP1 gene, which further decreased PTBP1 gene expression and participated in the pathogenesis of IA. The methylation of PTBP1 may be a potential predictive marker for the occurrence of IA.
Collapse
Affiliation(s)
- Zhepei Wang
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China.,Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengjun Zhou
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China.,Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jikuang Zhao
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China.,Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Nie
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Jie Sun
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Xiang Gao
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Zhiqin Lin
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Yi Huang
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China.,Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Fernández-Sanlés A, Sayols-Baixeras S, Subirana I, Sentí M, Pérez-Fernández S, de Castro Moura M, Esteller M, Marrugat J, Elosua R. DNA methylation biomarkers of myocardial infarction and cardiovascular disease. Clin Epigenetics 2021; 13:86. [PMID: 33883000 PMCID: PMC8061080 DOI: 10.1186/s13148-021-01078-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The epigenetic landscape underlying cardiovascular disease (CVD) is not completely understood and the clinical value of the identified biomarkers is still limited. We aimed to identify differentially methylated loci associated with acute myocardial infarction (AMI) and assess their validity as predictive and causal biomarkers. RESULTS We designed a case-control, two-stage, epigenome-wide association study on AMI (ndiscovery = 391, nvalidation = 204). DNA methylation was assessed using the Infinium MethylationEPIC BeadChip. We performed a fixed-effects meta-analysis of the two samples. 34 CpGs were associated with AMI. Only 12 of them were available in two independent cohort studies (n ~ 1800 and n ~ 2500) with incident coronary and cardiovascular disease (CHD and CVD, respectively). The Infinium HumanMethylation450 BeadChip was used in those two studies. Four of the 12 CpGs were validated in association with incident CHD: AHRR-mapping cg05575921, PTCD2-mapping cg25769469, intergenic cg21566642 and MPO-mapping cg04988978. We then assessed whether methylation risk scores based on those CpGs improved the predictive capacity of the Framingham risk function, but they did not. Finally, we aimed to study the causality of those associations using a Mendelian randomization approach but only one of the CpGs had a genetic influence and therefore the results were not conclusive. CONCLUSIONS We have identified 34 CpGs related to AMI. These loci highlight the relevance of smoking, lipid metabolism, and inflammation in the biological mechanisms related to AMI. Four were additionally associated with incident CHD and CVD but did not provide additional predictive information.
Collapse
Affiliation(s)
- Alba Fernández-Sanlés
- Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, IMIM (Hospital del Mar Medical Research Institute), Dr Aiguader 88, 08003, Barcelona, Catalonia, Spain.,Pompeu Fabra University (UPF), Barcelona, Catalonia, Spain.,Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Sergi Sayols-Baixeras
- Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, IMIM (Hospital del Mar Medical Research Institute), Dr Aiguader 88, 08003, Barcelona, Catalonia, Spain.,CIBER Cardiovascular Diseases (CIBERCV), Madrid, Spain.,Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Isaac Subirana
- Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, IMIM (Hospital del Mar Medical Research Institute), Dr Aiguader 88, 08003, Barcelona, Catalonia, Spain.,CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Mariano Sentí
- Pompeu Fabra University (UPF), Barcelona, Catalonia, Spain
| | - S Pérez-Fernández
- Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, IMIM (Hospital del Mar Medical Research Institute), Dr Aiguader 88, 08003, Barcelona, Catalonia, Spain.,CIBER Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | | | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Catalonia, Spain.,CIBER Oncology (CIBERONC), Madrid, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Jaume Marrugat
- Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, IMIM (Hospital del Mar Medical Research Institute), Dr Aiguader 88, 08003, Barcelona, Catalonia, Spain.,CIBER Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Roberto Elosua
- Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, IMIM (Hospital del Mar Medical Research Institute), Dr Aiguader 88, 08003, Barcelona, Catalonia, Spain. .,CIBER Cardiovascular Diseases (CIBERCV), Madrid, Spain. .,Medicine Department, Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Catalonia, Spain.
| |
Collapse
|
18
|
Methorst R, Pasterkamp G, van der Laan SW. Exploring the causal inference of shear stress associated DNA methylation in carotid plaque on cardiovascular risk. Atherosclerosis 2021; 325:30-37. [PMID: 33887531 DOI: 10.1016/j.atherosclerosis.2021.03.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/05/2021] [Accepted: 03/31/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIMS Atherosclerosis is a lipid-driven inflammatory disease presumably initiated by endothelial activation. Low vascular shear stress is known for its ability to activate endothelial cells. Differential DNA methylation (DNAm) is a relatively unexplored player in atherosclerotic disease development and endothelial dysfunction. Previous studies showed that the expression of 11 genes was associated with differential DNAm due to low shear stress in murine endothelial cells. We hypothesized a causal relationship between DNAm of shear stress associated genes in human carotid plaque and increased risk of cardiovascular disease. METHODS Using Mendelian randomisation (MR) analysis, we explored the potential causal role of DNAm of shear stress associated genes on cardiovascular disease risk. We used data from the Athero-Expression Biobank Study for the discovery of methylation quantitative trait loci (mQTLs) in 442 advanced carotid plaques. Next, we performed MR analysis using these mQTLs and publicly available GWAS summary statistics of coronary artery disease (CAD) and ischemic stroke (IS). RESULTS We discovered 9 mQTLs in plaque in the promoters of shear stress associated genes. We found no significant effect of shear stress gene promoter methylation and increased risk of CAD and IS. CONCLUSIONS Differential methylation of shear stress associated genes in advanced atherosclerotic plaques in unlikely to increase cardiovascular risk in human.
Collapse
Affiliation(s)
- Ruben Methorst
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
19
|
Sumi MP, Mahajan B, Sattar RSA, Nimisha, Apurva, Kumar A, Sharma AK, Ahmad E, Ali A, Saluja SS. Elucidation of Epigenetic Landscape in Coronary Artery Disease: A Review on Basic Concept to Personalized Medicine. Epigenet Insights 2021; 14:2516865720988567. [PMID: 33598635 PMCID: PMC7863167 DOI: 10.1177/2516865720988567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022] Open
Abstract
Despite extensive clinical research and management protocols applied in the field of coronary artery diseases (CAD), it still holds the number 1 position in mortality worldwide. This indicates that we need to work on precision medicine to discover the diagnostic, therapeutic, and prognostic targets to improve the outcome of CAD. In precision medicine, epigenetic changes play a vital role in disease onset and progression. Epigenetics is the study of heritable changes that do not affect the alterations of DNA sequence in the genome. It comprises various covalent modifications that occur in DNA or histone proteins affecting the spatial arrangement of the DNA and histones. These multiple modifications include DNA/histone methylation, acetylation, phosphorylation, and SUMOylation. Besides these covalent modifications, non-coding RNAs-viz. miRNA, lncRNA, and circRNA are also involved in epigenetics. Smoking, alcohol, diet, environmental pollutants, obesity, and lifestyle are some of the prime factors affecting epigenetic alterations. Novel molecular techniques such as next-generation sequencing, chromatin immunoprecipitation, and mass spectrometry have been developed to identify important cross points in the epigenetic web in relation to various diseases. The studies regarding exploration of epigenetics, have led researchers to identify multiple diagnostic markers and therapeutic targets that are being used in different disease diagnosis and management. Here in this review, we will discuss various ground-breaking contributions of past and recent studies in the epigenetic field in concert with coronary artery diseases. Future prospects of epigenetics and its implication in CAD personalized medicine will also be discussed in brief.
Collapse
Affiliation(s)
- Mamta P Sumi
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
- Department of Biochemistry, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Abhay Kumar Sharma
- Department of Biochemistry, All India Institute of Medical Science, Patna, Bihar, India
| | - Ejaz Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Asgar Ali
- Department of Biochemistry, All India Institute of Medical Science, Patna, Bihar, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| |
Collapse
|
20
|
AHRR hypomethylation as an epigenetic marker of smoking history predicts risk of myocardial infarction in former smokers. Atherosclerosis 2020; 312:8-15. [PMID: 32947224 DOI: 10.1016/j.atherosclerosis.2020.08.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Smoking causes cardiovascular disease. AHRR hypomethylation at the cg05575921 site is associated with active and former smoking status at baseline, and cumulative amount of tobacco smoked. We tested the hypothesis that AHRR cg05575921 hypomethylation as an epigenetic marker of smoking history predicts the risk of myocardial infarction in former smokers. METHODS We included 10,510 individuals with methylation extent measurements and information on smoking status from the Copenhagen City Heart Study (CCHS), a prospective, cohort study of the general population carried out from 1991 to 2003. The endpoint myocardial infarction was retrieved from the national Danish Patient Registry and the national Danish Causes of Death Registry. RESULTS For individuals in the 1st (lowest) quartile of AHRR cg05575921 methylation (≤49% methylation extent), 99% were ever smokers at baseline (active and former smokers combined) compared to 42% in the 4th (highest) quartile (>62% methylation extent). For former smokers, the cumulative incidence of myocardial infarction was higher in the lowest methylation extent (1st-50th percentile) compared to the highest methylation extent (51st-100th percentile). Compared to never smokers, the multivariable adjusted subhazard ratio for myocardial infarction was 1.09 (95%CI:0.88-1.35) for former smokers with the highest methylation degree, 1.38 (1.06-1.80) for active smokers with the highest methylation extent, 1.39 (1.08-1.78) for former smokers with the lowest methylation extent, and 1.61 (1.35-1.92) for active smokers with the lowest methylation extent. CONCLUSIONS AHRR cg05575921 hypomethylation as an epigenetic marker of smoking history predicts risk of myocardial infarction, particularly in former smokers. Further, AHRR hypomethylation, regardless of smoking status, was associated with increased risk of myocardial infarction.
Collapse
|
21
|
Abstract
Epigenetic regulatory mechanisms, encompassing diverse molecular processes including DNA methylation, histone post-translational modifications, and noncoding RNAs, are essential to numerous processes such as cell differentiation, growth and development, environmental adaptation, aging, and disease states. In many cases, epigenetic changes occur in response to environmental cues and lifestyle factors, resulting in persistent changes in gene expression that affect vascular disease risk during the lifetime of the individual. Biological aging-a powerful cardiovascular risk factor-is partly genetically determined yet strongly influenced by traditional risk factors, reflecting epigenetic modulation. Quantification of specific DNA methylation patterns may serve as an accurate predictor of biological age-a concept known as the epigenetic clock, which could help to refine cardiovascular risk assessment. Epigenetic reprogramming of monocytes rewires cellular immune signaling and induces a metabolic shift toward aerobic glycolysis, thereby increasing innate immune responses. This form of trained epigenetic memory can be maladaptive, thus augmenting vascular inflammation. Somatic mutations in epigenetic regulatory enzymes lead to clonal hematopoiesis of indeterminate potential, a precursor of hematologic malignancies and a recently recognized cardiovascular risk factor; moreover, epigenetic regulators are increasingly being targeted in cancer therapeutics. Thus, understanding epigenetic regulatory mechanisms lies at the intersection between cancer and cardiovascular disease and is of paramount importance to the burgeoning field of cardio-oncology (Graphic Abstract).
Collapse
Affiliation(s)
- Abdalrahman Zarzour
- From the Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University
| | - Ha Won Kim
- From the Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University
| | - Neal L Weintraub
- From the Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University
| |
Collapse
|