1
|
Dong W, Wong KHY, Liu Y, Levy-Sakin M, Hung WC, Li M, Li B, Jin SC, Choi J, Lopez-Giraldez F, Vaka D, Poon A, Chu C, Lao R, Balamir M, Movsesyan I, Malloy MJ, Zhao H, Kwok PY, Kane JP, Lifton RP, Pullinger CR. Whole-exome sequencing reveals damaging gene variants associated with hypoalphalipoproteinemia. J Lipid Res 2022; 63:100209. [PMID: 35460704 PMCID: PMC9126845 DOI: 10.1016/j.jlr.2022.100209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Low levels of high density lipoprotein-cholesterol (HDL-C) are associated with an elevated risk of arteriosclerotic coronary heart disease. Heritability of HDL-C levels is high. In this research discovery study, we used whole-exome sequencing to identify damaging gene variants that may play significant roles in determining HDL-C levels. We studied 204 individuals with a mean HDL-C level of 27.8 ± 6.4 mg/dl (range: 4-36 mg/dl). Data were analyzed by statistical gene burden testing and by filtering against candidate gene lists. We found 120 occurrences of probably damaging variants (116 heterozygous; four homozygous) among 45 of 104 recognized HDL candidate genes. Those with the highest prevalence of damaging variants were ABCA1 (n = 20), STAB1 (n = 9), OSBPL1A (n = 8), CPS1 (n = 8), CD36 (n = 7), LRP1 (n = 6), ABCA8 (n = 6), GOT2 (n = 5), AMPD3 (n = 5), WWOX (n = 4), and IRS1 (n = 4). Binomial analysis for damaging missense or loss-of-function variants identified the ABCA1 and LDLR genes at genome-wide significance. In conclusion, whole-exome sequencing of individuals with low HDL-C showed the burden of damaging rare variants in the ABCA1 and LDLR genes is particularly high and revealed numerous occurrences in HDL candidate genes, including many genes identified in genome-wide association study reports. Many of these genes are involved in cancer biology, which accords with epidemiologic findings of the association of HDL deficiency with increased risk of cancer, thus presenting a new area of interest in HDL genomics.
Collapse
Affiliation(s)
- Weilai Dong
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Karen H Y Wong
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Youbin Liu
- Department of Cardiology, The Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Michal Levy-Sakin
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Wei-Chien Hung
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Mo Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Boyang Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Sheng Chih Jin
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jungmin Choi
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA; Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | | | - Dedeepya Vaka
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Annie Poon
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Catherine Chu
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Richard Lao
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Melek Balamir
- Department of Internal Medicine, Istanbul University, Istanbul, Turkey
| | - Irina Movsesyan
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Mary J Malloy
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, CA, USA; Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, CA, USA; Department of Dermatology, University of California, San Francisco, CA, USA
| | - John P Kane
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Clive R Pullinger
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA; Physiological Nursing, University of California, San Francisco, CA, USA.
| |
Collapse
|
2
|
Bailetti D, Sentinelli F, Prudente S, Cimini FA, Barchetta I, Totaro M, Di Costanzo A, Barbonetti A, Leonetti F, Cavallo MG, Baroni MG. Deep Resequencing of 9 Candidate Genes Identifies a Role for ARAP1 and IGF2BP2 in Modulating Insulin Secretion Adjusted for Insulin Resistance in Obese Southern Europeans. Int J Mol Sci 2022; 23:ijms23031221. [PMID: 35163144 PMCID: PMC8835579 DOI: 10.3390/ijms23031221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes is characterized by impairment in insulin secretion, with an established genetic contribution. We aimed to evaluate common and low-frequency (1–5%) variants in nine genes strongly associated with insulin secretion by targeted sequencing in subjects selected from the extremes of insulin release measured by the disposition index. Collapsing data by gene and/or function, the association between disposition index and nonsense variants were significant, also after adjustment for confounding factors (OR = 0.25, 95% CI = 0.11–0.59, p = 0.001). Evaluating variants individually, three novel variants in ARAP1, IGF2BP2 and GCK, out of eight reaching significance singularly, remained associated after adjustment. Constructing a genetic risk model combining the effects of the three variants, only carriers of the ARAP1 and IGF2BP2 variants were significantly associated with a reduced probability to be in the lower, worst, extreme of insulin secretion (OR = 0.223, 95% CI = 0.105–0.473, p < 0.001). Observing a high number of normal glucose tolerance between carriers, a regression posthoc analysis was performed. Carriers of genetic risk model variants had higher probability to be normoglycemic, also after adjustment (OR = 2.411, 95% CI = 1.136–5.116, p = 0.022). Thus, in our southern European cohort, nonsense variants in all nine candidate genes showed association with better insulin secretion adjusted for insulin resistance, and we established the role of ARAP1 and IGF2BP2 in modulating insulin secretion.
Collapse
Affiliation(s)
- Diego Bailetti
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA), University of L’Aquila, 67100 L’Aquila, Italy; (F.S.); (M.T.); (A.B.)
- Correspondence: (D.B.); (M.G.B.); Tel.: +39-862-433327 (M.G.B.)
| | - Federica Sentinelli
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA), University of L’Aquila, 67100 L’Aquila, Italy; (F.S.); (M.T.); (A.B.)
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (F.A.C.); (I.B.); (M.G.C.)
| | - Sabrina Prudente
- Research Unit of Metabolic and Cardiovascular Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Flavia Agata Cimini
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (F.A.C.); (I.B.); (M.G.C.)
| | - Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (F.A.C.); (I.B.); (M.G.C.)
| | - Maria Totaro
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA), University of L’Aquila, 67100 L’Aquila, Italy; (F.S.); (M.T.); (A.B.)
| | - Alessia Di Costanzo
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy;
| | - Arcangelo Barbonetti
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA), University of L’Aquila, 67100 L’Aquila, Italy; (F.S.); (M.T.); (A.B.)
| | - Frida Leonetti
- Diabetes Unit, Department of Medical-Surgical Sciences and Biotechnologies, Santa Maria Goretti Hospital, Sapienza University of Rome, 04100 Latina, Italy;
| | - Maria Gisella Cavallo
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (F.A.C.); (I.B.); (M.G.C.)
| | - Marco Giorgio Baroni
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA), University of L’Aquila, 67100 L’Aquila, Italy; (F.S.); (M.T.); (A.B.)
- Neuroendocrinology and Metabolic Diseases, IRCCS Neuromed, 86077 Pozzilli, Italy
- Correspondence: (D.B.); (M.G.B.); Tel.: +39-862-433327 (M.G.B.)
| |
Collapse
|
3
|
Abstract
PURPOSE OF THE REVIEW To evaluate recent studies related to the paradox of high HDL-C with mortality and atherosclerotic cardiovascular disease (ASCVD) risk. RECENT FINDINGS Two observational studies (Cardiovascular Health in Ambulatory Care Research Team [CANHEART] and Copenhagen City Heart Study and the Copenhagen General Population Study [Copenhagen Heart Studies]) of adults without pre-existing ASCVD have shown a significant U-shaped association of HDL-C with all-cause and cause-specific mortality. Both studies showed that low HDL-C levels consistently increased hazard risk (HR) for all-cause and cause-specific mortality. In the CANHEART study, high HDL-C levels, HDL-C > 90 mg/dL, were associated with increased HR for non-CVD/non-cancer mortality. In the Copenhagen Heart Studies, women with HDL-C ≥ 135 mg/dL showed increased HR for all-cause and CVD mortality, while men with HDL-C > 97 mg/dL showed increased HR for all-cause and CVD mortality. Genetic association studies failed to show that genetic etiologies of high HDL-C significantly reduced risk for myocardial infarction (MI), while hepatocyte nuclear factor-4 (HNF4A) was significantly associated with high HDL-C and increased MI risk. Candidate gene studies have identified scavenger receptor B class I (SCARB1) and lymphocyte activation gene-3 (LAG3) as genes significantly associated with high HDL-C and increased MI risk. Low HDL-C remains as a significant factor for increased disease risk while high HDL-C levels are not associated with cardioprotection. Clinical CVD risk calculators need revision.
Collapse
Affiliation(s)
- Annabelle Rodriguez
- Cell Biology, Linda and David Roth Chair of Cardiovascular Health, Center for Vascular Biology, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| |
Collapse
|
4
|
Klück V, van Deuren RC, Cavalli G, Shaukat A, Arts P, Cleophas MC, Crișan TO, Tausche AK, Riches P, Dalbeth N, Stamp LK, Hindmarsh JH, Jansen TLTA, Janssen M, Steehouwer M, Lelieveld S, van de Vorst M, Gilissen C, Dagna L, Van de Veerdonk FL, Eisenmesser EZ, Kim S, Merriman TR, Hoischen A, Netea MG, Dinarello CA, Joosten LA. Rare genetic variants in interleukin-37 link this anti-inflammatory cytokine to the pathogenesis and treatment of gout. Ann Rheum Dis 2020; 79:536-544. [PMID: 32114511 DOI: 10.1136/annrheumdis-2019-216233] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Gout is characterised by severe interleukin (IL)-1-mediated joint inflammation induced by monosodium urate crystals. Since IL-37 is a pivotal anti-inflammatory cytokine suppressing the activity of IL-1, we conducted genetic and functional studies aimed at elucidating the role of IL-37 in the pathogenesis and treatment of gout. METHODS Variant identification was performed by DNA sequencing of all coding bases of IL37 using molecular inversion probe-based resequencing (discovery cohort: gout n=675, controls n=520) and TaqMan genotyping (validation cohort: gout n=2202, controls n=2295). Predictive modelling of the effects of rare variants on protein structure was followed by in vitro experiments evaluating the impact on protein function. Treatment with recombinant IL-37 was evaluated in vitro and in vivo in a mouse model of gout. RESULTS We identified four rare variants in IL37 in six of the discovery gout patients; p.(A144P), p.(G174Dfs*16), p.(C181*) and p.(N182S), whereas none emerged in healthy controls (Fisher's exact p-value=0.043). All variants clustered in the functional domain of IL-37 in exon 5 (p-value=5.71×10-5). Predictive modelling and functional studies confirmed loss of anti-inflammatory functions and we substantiated the therapeutic potential of recombinant IL-37 in the treatment of gouty inflammation. Furthermore, the carrier status of p.(N182S)(rs752113534) was associated with increased risk (OR=1.81, p-value=0.031) of developing gout in hyperuricaemic individuals of Polynesian ancestry. CONCLUSION Here, we provide genetic as well as mechanistic evidence for the role of IL-37 in the pathogenesis of gout, and highlight the therapeutic potential of recombinant IL-37 for the treatment of gouty arthritis.
Collapse
Affiliation(s)
- Viola Klück
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rosanne C van Deuren
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Giulio Cavalli
- Internal Medicine and Clinical Immunology, Vita-Salute San Raffaele University, Milan, Italy
- Department of Medicine, University of Colorado Denver, Denver, Colorado, USA
| | - Amara Shaukat
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Peer Arts
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Maartje C Cleophas
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tania O Crișan
- Department of Medical Genetics, Universitatea de Medicina si Farmacie Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Anne-Kathrin Tausche
- Department of Internal Medicine, Section of Rheumatology, University Clinic Carl Gustav Carus, Dresden, Saxonia, Germany
| | - Philip Riches
- Rheumatology and Bone Disease, University of Edinburgh, Edinburgh, UK
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Lisa K Stamp
- Department of Medicine, Otago University, Christchurch, Canterbury, New Zealand
| | - Jennie Harré Hindmarsh
- Te Rangawairua o Paratene Ngata Research Centre, Ngāti Porou Hauora Charitable Trust, Te Puia Springs, Tairāwhiti, New Zealand
| | - Tim L Th A Jansen
- Department of Rheumatology, VieCuri Medical Center, Venlo, The Netherlands
| | - Matthijs Janssen
- Department of Rheumatology, VieCuri Medical Center, Venlo, The Netherlands
| | - Marloes Steehouwer
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stefan Lelieveld
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maartje van de Vorst
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Gilissen
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lorenzo Dagna
- Internal Medicine and Clinical Immunology, Vita-Salute San Raffaele University, Milan, Italy
| | - Frank L Van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elan Z Eisenmesser
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Denver, Colorado, USA
| | - SooHyun Kim
- Laboratory of Cytokine Immunology, Konkuk University, Seoul, Korea (the Republic of)
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Alexander Hoischen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Charles A Dinarello
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medicine, University of Colorado Denver, Denver, Colorado, USA
| | - Leo Ab Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Genetics, Universitatea de Medicina si Farmacie Iuliu Hatieganu, Cluj-Napoca, Romania
| |
Collapse
|
5
|
CETP, LIPC, and SCARB1 variants in individuals with extremely high high-density lipoprotein-cholesterol levels. Sci Rep 2019; 9:10915. [PMID: 31358896 PMCID: PMC6662756 DOI: 10.1038/s41598-019-47456-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/17/2019] [Indexed: 11/12/2022] Open
Abstract
The concentration of high-density lipoprotein-cholesterol (HDL-C) in humans is partially determined by genetic factors; however, the role of these factors is incompletely understood. The aim of this study was to examine the prevalence and characteristics of CETP, LIPC, and SCARB1 variants in Korean individuals with extremely high HDL-C levels. We also analysed associations between these variants and cholesterol efflux capacity (CEC), reactive oxygen species (ROS) generation, and vascular cell adhesion molecule-1 (VCAM-1) expression. Of 13,545 participants in the cardiovascular genome cohort, 42 subjects with HDL-C levels >100 mg/dL were analysed. The three target genes were sequenced by targeted next-generation sequencing, the functional effects of detected variants were predicted, and CEC was assessed using a radioisotope and apolipoprotein B-depleted sera. We observed two rare variants of CETP in 13 individuals (rare variant c.A1196G [p.D399G] of CETP was discovered in 12 subjects) and one rare variant of SCARB1 in one individual. Furthermore, all subjects had at least one of four common variants (one CETP and three LIPC variants). Two additional novel CETP variants of unknown frequency were found in two subjects. However, the identified variants did not show significant associations with CEC, ROS generation, or VCAM-1 expression. Our study provides additional insights into the role of genetics in individuals with extremely high HDL-C.
Collapse
|