1
|
Brewer KR, Vanoye CG, Huang H, Clowes Moster KR, Desai RR, Hayes JB, Burnette DT, George AL, Sanders CR. Integrative analysis of KCNQ1 variants reveals molecular mechanisms of type 1 long QT syndrome pathogenesis. Proc Natl Acad Sci U S A 2025; 122:e2412971122. [PMID: 39969993 PMCID: PMC11873829 DOI: 10.1073/pnas.2412971122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/08/2025] [Indexed: 02/21/2025] Open
Abstract
Loss-of-function (LOF) pathogenic variants in KCNQ1 encoding a cardiac potassium channel predispose to sudden cardiac death in type 1 congenital long QT syndrome (LQT1). To determine the spectrum of molecular mechanisms responsible for this life-threatening condition, we used an integrative approach to determine the biophysical, functional, and trafficking properties of 61 KCNQ1 variants distributed throughout all domains of the channel. Impaired trafficking to the plasma membrane was the most common cause of LOF across all channel domains, often but not always coinciding with protein instability. However, many LOF variants, particularly in transmembrane domains, trafficked normally, but when coexpressed with KCNE1 exhibited impaired conductance, altered voltage dependence, or abnormal gating kinetics, highlighting diverse pathogenic mechanisms. This indicates a need for personalized treatment approaches for LQT1. Use of our data to benchmark variant pathogenicity prediction methods demonstrated that prediction accuracy depends on the exact mechanism of pathogenicity associated with a given variant.
Collapse
Affiliation(s)
- Kathryn R. Brewer
- Department of Biochemistry, Vanderbilt University, Nashville, TN37240
- Center for Structural Biology, Vanderbilt University, Nashville, TN37240
| | - Carlos G. Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Hui Huang
- Department of Biochemistry, Vanderbilt University, Nashville, TN37240
- Center for Structural Biology, Vanderbilt University, Nashville, TN37240
| | - Katherine R. Clowes Moster
- Department of Biochemistry, Vanderbilt University, Nashville, TN37240
- Center for Structural Biology, Vanderbilt University, Nashville, TN37240
| | - Reshma R. Desai
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - James B. Hayes
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN37240
| | - Dylan T. Burnette
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN37240
| | - Alfred L. George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Charles R. Sanders
- Department of Biochemistry, Vanderbilt University, Nashville, TN37240
- Center for Structural Biology, Vanderbilt University, Nashville, TN37240
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| |
Collapse
|
2
|
d’Apolito M, Santoro F, Ranaldi A, Cannito S, Santacroce R, Ragnatela I, Margaglione A, D’Andrea G, Brunetti ND, Margaglione M. Genetic Background and Clinical Phenotype in an Italian Cohort with Inherited Arrhythmia Syndromes and Arrhythmogenic Cardiomyopathy (ACM): A Whole-Exome Sequencing Study. Int J Mol Sci 2025; 26:1200. [PMID: 39940965 PMCID: PMC11818934 DOI: 10.3390/ijms26031200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Inherited arrhythmia syndromes include several different diseases, as well as Brugada syndrome (BrS), long QT syndrome (LQTS), catecholaminergic polymorphic ventricular tachycardia (CPVT), and short QT syndrome (SQTS). They represent, together with arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C), an important cause of sudden cardiac death in the young. Most arrhythmia syndromes are inherited in an autosomal dominant manner, and genetic studies are suggested.: to report the spectrum of genetic variations and clinical phenotype in an Italian cohort with confirmed inherited arrhythmia syndromes and arrhythmogenic cardiomyopathy using whole-exome sequencing (WES). Patients with confirmed inherited arrhythmia syndromes and hereditary cardiomyopathy were recruited at the Cardiology Unit, University Polyclinic Hospital of Foggia, Italy and were included in this study. Genomic DNA samples were extracted from peripheral blood and conducted for WES. The variants were annotated using BaseSpace Variant Interpreter Annotation Engine 3.15.0.0 (Illumina). Reported variants were investigated using ClinVar, VarSome Franklin and a literature review. They were categorised agreeing to the criteria of the American College of Medical Genetics and Genomics. Overall, 62 patients were enrolled. Most of them had a clinical diagnosis of BrS (n 48, 77%). The remaining patients included in the present study had diagnosis of confirmed LQT (n 7, 11%), AR-DCM (n 4, 6.5%), ARVD (n 2, 3%), and SQT (n 1, 1.6%). Using the WES technique, 22 variants in 15 genes associated with Brugada syndrome were identified in 21 patients (34%). Among these, the SCN5A gene had the highest number of variants (6 variants, 27%), followed by KCNJ5 and CASQ2 (2 variants). Only one variant was identified in the remaining genes. In 27 patients with a clinical diagnosis of BrS, no gene variant was detected. In patients with confirmed LQT, SQT, 10 variants in 9 genes were identified. Among patients with ARVD and AR-DCM, 6 variants in 5 genes were found. Variants found in our cohort were classified as pathogenic (6), likely pathogenic (3), of uncertain significance (26), and benign (1). Two additional gene variants were classified as risk factors. In this study, 13 novel genetic variations were recognized to be associated with inherited arrhythmogenic cardiomyopathies. Our understanding of inherited arrhythmia syndromes continues to progress. The era of next-generation sequencing has advanced quickly, given new genetic evidence including pathogenicity, background genetic noise, and increased discovery of variants of uncertain significance. Although NGS study has some limits in finding the full genetic data of probands, large-scale gene sequencing can promptly be applied in real clinical practices, especially in inherited and possibly fatal arrhythmia syndromes.
Collapse
Affiliation(s)
- Maria d’Apolito
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.d.); (A.R.); (S.C.); (R.S.); (G.D.)
| | - Francesco Santoro
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (F.S.); (I.R.); (N.D.B.)
- Cardiology Unit, University Polyclinic Hospital of Foggia, 71122 Foggia, Italy;
| | - Alessandra Ranaldi
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.d.); (A.R.); (S.C.); (R.S.); (G.D.)
| | - Sara Cannito
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.d.); (A.R.); (S.C.); (R.S.); (G.D.)
| | - Rosa Santacroce
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.d.); (A.R.); (S.C.); (R.S.); (G.D.)
| | - Ilaria Ragnatela
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (F.S.); (I.R.); (N.D.B.)
| | | | - Giovanna D’Andrea
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.d.); (A.R.); (S.C.); (R.S.); (G.D.)
| | - Natale Daniele Brunetti
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (F.S.); (I.R.); (N.D.B.)
- Cardiology Unit, University Polyclinic Hospital of Foggia, 71122 Foggia, Italy;
| | - Maurizio Margaglione
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.d.); (A.R.); (S.C.); (R.S.); (G.D.)
| |
Collapse
|
3
|
Ye D, Garmany R, Martinez-Barrios E, Gao X, Neves RAL, Tester DJ, Bains S, Zhou W, Giudicessi JR, Ackerman MJ. Clinical Utility of Protein Language Models in Resolution of Variants of Uncertain Significance in KCNQ1, KCNH2, and SCN5A Compared With Patch-Clamp Functional Characterization. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004584. [PMID: 39119706 DOI: 10.1161/circgen.124.004584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Genetic testing for cardiac channelopathies is the standard of care. However, many rare genetic variants remain classified as variants of uncertain significance (VUS) due to lack of epidemiological and functional data. Whether deep protein language models may aid in VUS resolution remains unknown. Here, we set out to compare how 2 deep protein language models perform at VUS resolution in the 3 most common long-QT syndrome-causative genes compared with the gold-standard patch clamp. METHODS A total of 72 rare nonsynonymous VUS (9 KCNQ1, 19 KCNH2, and 50 SCN5A) were engineered by site-directed mutagenesis and expressed in either HEK293 cells or TSA201 cells. Whole-cell patch-clamp technique was used to functionally characterize these variants. The protein language models, evolutionary scale modeling, version 1b and AlphaMissense, were used to predict the variant effect of missense variants and compared with patch clamp. RESULTS Considering variants in all 3 genes, the evolutionary scale modeling, version 1b model had a receiver operating characteristic curve-area under the curve of 0.75 (P=0.0003). It had a sensitivity of 88% and a specificity of 50%. AlphaMissense performed well compared with patch-clamp with an receiver operating characteristic curve-area under the curve of 0.85 (P<0.0001), sensitivity of 80%, and specificity of 76%. CONCLUSIONS Deep protein language models aid in VUS resolution with high sensitivity but lower specificity. Thus, these tools cannot fully replace functional characterization but can aid in reducing the number of variants that may require functional analysis.
Collapse
Affiliation(s)
- Dan Ye
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory). Department of Cardiovascular Medicine, Division of Heart Rhythm Services (Windland Smith Rice Genetic Heart Rhythm Clinic). Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic
| | - Ramin Garmany
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory). Department of Cardiovascular Medicine, Division of Heart Rhythm Services (Windland Smith Rice Genetic Heart Rhythm Clinic). Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic
| | - Estefania Martinez-Barrios
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory). Department of Cardiovascular Medicine, Division of Heart Rhythm Services (Windland Smith Rice Genetic Heart Rhythm Clinic). Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic
| | - Xiaozhi Gao
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory). Department of Cardiovascular Medicine, Division of Heart Rhythm Services (Windland Smith Rice Genetic Heart Rhythm Clinic). Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic
| | - Raquel Almeida Lopes Neves
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory). Department of Cardiovascular Medicine, Division of Heart Rhythm Services (Windland Smith Rice Genetic Heart Rhythm Clinic). Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic
| | - David J Tester
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory). Department of Cardiovascular Medicine, Division of Heart Rhythm Services (Windland Smith Rice Genetic Heart Rhythm Clinic). Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic
| | - Sahej Bains
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory). Department of Cardiovascular Medicine, Division of Heart Rhythm Services (Windland Smith Rice Genetic Heart Rhythm Clinic). Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic
| | - Wei Zhou
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory). Department of Cardiovascular Medicine, Division of Heart Rhythm Services (Windland Smith Rice Genetic Heart Rhythm Clinic). Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic
| | - John R Giudicessi
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory). Department of Cardiovascular Medicine, Division of Heart Rhythm Services (Windland Smith Rice Genetic Heart Rhythm Clinic). Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic
| | - Michael J Ackerman
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory). Department of Cardiovascular Medicine, Division of Heart Rhythm Services (Windland Smith Rice Genetic Heart Rhythm Clinic). Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic
| |
Collapse
|
4
|
Ma JG, O’Neill MJ, Richardson E, Thomson KL, Ingles J, Muhammad A, Solus JF, Davogustto G, Anderson KC, Benjamin Shoemaker M, Stergachis AB, Floyd BJ, Dunn K, Parikh VN, Chubb H, Perrin MJ, Roden DM, Vandenberg JI, Ng CA, Glazer AM. Multisite Validation of a Functional Assay to Adjudicate SCN5A Brugada Syndrome-Associated Variants. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004569. [PMID: 38953211 PMCID: PMC11335442 DOI: 10.1161/circgen.124.004569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/17/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Brugada syndrome is an inheritable arrhythmia condition that is associated with rare, loss-of-function variants in SCN5A. Interpreting the pathogenicity of SCN5A missense variants is challenging, and ≈79% of SCN5A missense variants in ClinVar are currently classified as variants of uncertain significance. Automated patch clamp technology enables high-throughput functional studies of ion channel variants and can provide evidence for variant reclassification. METHODS An in vitro SCN5A-Brugada syndrome automated patch clamp assay was independently performed at Vanderbilt University Medical Center and Victor Chang Cardiac Research Institute. The assay was calibrated according to ClinGen Sequence Variant Interpretation recommendations using high-confidence variant controls (n=49). Normal and abnormal ranges of function were established based on the distribution of benign variant assay results. Odds of pathogenicity values were derived from the experimental results according to ClinGen Sequence Variant Interpretation recommendations. The calibrated assay was then used to study SCN5A variants of uncertain significance observed in 4 families with Brugada syndrome and other arrhythmia phenotypes associated with SCN5A loss-of-function. RESULTS Variant channel parameters generated independently at the 2 research sites showed strong correlations, including peak INa density (R2=0.86). The assay accurately distinguished benign controls (24/25 concordant variants) from pathogenic controls (23/24 concordant variants). Odds of pathogenicity values were 0.042 for normal function and 24.0 for abnormal function, corresponding to strong evidence for both American College of Medical Genetics and Genomics/Association for Molecular Pathology benign and pathogenic functional criteria (BS3 and PS3, respectively). Application of the assay to 4 clinical SCN5A variants of uncertain significance revealed loss-of-function for 3/4 variants, enabling reclassification to likely pathogenic. CONCLUSIONS This validated high-throughput assay provides clinical-grade functional evidence to aid the classification of current and future SCN5A-Brugada syndrome variants of uncertain significance.
Collapse
Affiliation(s)
- Joanne G. Ma
- Mark Cowley Lidwill Research Program in Cardiac Electrophysiology, Victor Chang Cardiac Research Inst
- School of Clinical Medicine, UNSW Sydney, Darlinghurst, NSW, Australia
| | | | - Ebony Richardson
- Clinical Genomics Laboratory, Ctr for Population Genomics, Garvan Inst of Medical Rsrch, Darlinghurst, NSW & Australia & Murdoch Children’s Research Inst, Melbourne, Australia
| | - Kate L. Thomson
- Oxford Genetics Laboratories, Churchill Hospital, Oxford, UK
| | - Jodie Ingles
- Clinical Genomics Laboratory, Ctr for Population Genomics, Garvan Inst of Medical Rsrch, Darlinghurst, NSW & Australia & Murdoch Children’s Research Inst, Melbourne, Australia
| | | | - Joseph F. Solus
- Vanderbilt Ctr for Arrhythmia Research & Therapeutics (VanCART), Division of Clinical Pharmacology, Dept of Medicine, Nashville, TN
| | | | | | | | | | - Brendan J. Floyd
- Stanford Ctr for Inherited Cardiovascular Disease, Stanford Univ School of Medicine, Stanford, CA
| | - Kyla Dunn
- Stanford Ctr for Inherited Cardiovascular Disease, Stanford Univ School of Medicine, Stanford, CA
| | - Victoria N. Parikh
- Stanford Ctr for Inherited Cardiovascular Disease, Stanford Univ School of Medicine, Stanford, CA
| | - Henry Chubb
- Stanford Ctr for Inherited Cardiovascular Disease, Stanford Univ School of Medicine, Stanford, CA
| | - Mark J. Perrin
- Dept of Genomic Medicine, Royal Melbourne Hospital, Victoria, Australia
| | - Dan M. Roden
- Depts of Pharmacology, and Biomedical Informatics, Vanderbilt Univ Medical Ctr, Nashville, TN
| | - Jamie I. Vandenberg
- Mark Cowley Lidwill Research Program in Cardiac Electrophysiology, Victor Chang Cardiac Research Inst
- School of Clinical Medicine, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Chai-Ann Ng
- Mark Cowley Lidwill Research Program in Cardiac Electrophysiology, Victor Chang Cardiac Research Inst
- School of Clinical Medicine, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Andrew M. Glazer
- Vanderbilt Ctr for Arrhythmia Research & Therapeutics (VanCART), Division of Clinical Pharmacology, Dept of Medicine, Nashville, TN
| |
Collapse
|
5
|
Misra K, Ślęczkowska M, Santoro S, Gerrits MM, Mascia E, Marchi M, Salvi E, Smeets HJM, Hoeijmakers JGJ, Martinelli Boneschi FG, Filippi M, Lauria Pinter G, Faber CG, Esposito F. Broadening the Genetic Spectrum of Painful Small-Fiber Neuropathy through Whole-Exome Study in Early-Onset Cases. Int J Mol Sci 2024; 25:7248. [PMID: 39000354 PMCID: PMC11242789 DOI: 10.3390/ijms25137248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Small-Fiber Neuropathy (SFN) is a disorder of the peripheral nervous system, characterised by neuropathic pain; approximately 11% of cases are linked to variants in Voltage-Gated Sodium Channels (VGSCs). This study aims to broaden the genetic knowledge on painful SFN by applying Whole-Exome Sequencing (WES) in Early-Onset (EO) cases. A total of 88 patients from Italy (n = 52) and the Netherlands (n = 36), with a disease onset at age ≤ 45 years old and a Pain Numerical Rating Score ≥ 4, were recruited. After variant filtering and classification, WES analysis identified 142 potentially causative variants in 93 genes; 8 are Pathogenic, 15 are Likely Pathogenic, and 119 are Variants of Uncertain Significance. Notably, an enrichment of variants in transient receptor potential genes was observed, suggesting their role in pain modulation alongside VGSCs. A pathway analysis performed by comparing EO cases with 40 Italian healthy controls found enriched mutated genes in the "Nicotinic acetylcholine receptor signaling pathway". Targeting this pathway with non-opioid drugs could offer novel therapeutic avenues for painful SFN. Additionally, with this study we demonstrated that employing a gene panel of reported mutated genes could serve as an initial screening tool for SFN in genetic studies, enhancing clinical diagnostics.
Collapse
Affiliation(s)
- Kaalindi Misra
- Laboratory of Human Genetics of Neurological Disorders, IRCCS San Raffaele Scientific Institute, Institute of Experimental Neurology, 20132 Milan, Italy
| | - Milena Ślęczkowska
- Department of Toxicogenomics, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Neurology, Mental Health and Neuroscience Research Intsitute, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | - Silvia Santoro
- Laboratory of Human Genetics of Neurological Disorders, IRCCS San Raffaele Scientific Institute, Institute of Experimental Neurology, 20132 Milan, Italy
| | - Monique M. Gerrits
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
| | - Elisabetta Mascia
- Laboratory of Human Genetics of Neurological Disorders, IRCCS San Raffaele Scientific Institute, Institute of Experimental Neurology, 20132 Milan, Italy
| | - Margherita Marchi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Erika Salvi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Hubert J. M. Smeets
- Department of Toxicogenomics, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Janneke G. J. Hoeijmakers
- Department of Neurology, Mental Health and Neuroscience Research Intsitute, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | - Filippo Giovanni Martinelli Boneschi
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
- Clinical Neurology Unit, Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo and Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Massimo Filippi
- Neurology and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giuseppe Lauria Pinter
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20157 Milan, Italy
| | - Catharina G. Faber
- Department of Neurology, Mental Health and Neuroscience Research Intsitute, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | - Federica Esposito
- Laboratory of Human Genetics of Neurological Disorders, IRCCS San Raffaele Scientific Institute, Institute of Experimental Neurology, 20132 Milan, Italy
- Neurology and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
6
|
Vanoye CG, Abramova TV, DeKeyser JM, Ghabra NF, Oudin MJ, Burge CB, Helbig I, Thompson CH, George AL. Molecular and cellular context influences SCN8A variant function. JCI Insight 2024; 9:e177530. [PMID: 38771640 PMCID: PMC11383174 DOI: 10.1172/jci.insight.177530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
Pathogenic variants in SCN8A, which encodes the voltage-gated sodium (NaV) channel NaV1.6, associate with neurodevelopmental disorders, including developmental and epileptic encephalopathy. Previous approaches to determine SCN8A variant function may be confounded by use of a neonatally expressed, alternatively spliced isoform of NaV1.6 (NaV1.6N) and engineered mutations rendering the channel tetrodotoxin (TTX) resistant. We investigated the impact of SCN8A alternative splicing on variant function by comparing the functional attributes of 15 variants expressed in 2 developmentally regulated splice isoforms (NaV1.6N, NaV1.6A). We employed automated patch clamp recording to enhance throughput, and developed a neuronal cell line (ND7/LoNav) with low levels of endogenous NaV current to obviate the need for TTX-resistance mutations. Expression of NaV1.6N or NaV1.6A in ND7/LoNav cells generated NaV currents with small, but significant, differences in voltage dependence of activation and inactivation. TTX-resistant versions of both isoforms exhibited significant functional differences compared with the corresponding WT channels. We demonstrated that many of the 15 disease-associated variants studied exhibited isoform-dependent functional effects, and that many of the studied SCN8A variants exhibited functional properties that were not easily classified as either gain- or loss-of-function. Our work illustrates the value of considering molecular and cellular context when investigating SCN8A variants.
Collapse
Affiliation(s)
- Carlos G. Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tatiana V. Abramova
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jean-Marc DeKeyser
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nora F. Ghabra
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Madeleine J. Oudin
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Christopher B. Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ingo Helbig
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher H. Thompson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alfred L. George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
7
|
Rogers M, Obergrussberger A, Kondratskyi A, Fertig N. Using automated patch clamp electrophysiology platforms in ion channel drug discovery: an industry perspective. Expert Opin Drug Discov 2024; 19:523-535. [PMID: 38481119 DOI: 10.1080/17460441.2024.2329104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Automated patch clamp (APC) is now well established as a mature technology for ion channel drug discovery in academia, biotech and pharma companies, and in contract research organizations (CRO), for a variety of applications including channelopathy research, compound screening, target validation and cardiac safety testing. AREAS COVERED Ion channels are an important class of drugged and approved drug targets. The authors present a review of the current state of ion channel drug discovery along with new and exciting developments in ion channel research involving APC. This includes topics such as native and iPSC-derived cells in ion channel drug discovery, channelopathy research, organellar and biologics in ion channel drug discovery. EXPERT OPINION It is our belief that APC will continue to play a critical role in ion channel drug discovery, not only in 'classical' hit screening, target validation and cardiac safety testing, but extending these applications to include high throughput organellar recordings and optogenetics. In this way, with advancements in APC capabilities and applications, together with high resolution cryo-EM structures, ion channel drug discovery will be re-invigorated, leading to a growing list of ion channel ligands in clinical development.
Collapse
Affiliation(s)
- Marc Rogers
- Albion Drug Discovery Services Ltd, Cambridge, UK
| | | | | | | |
Collapse
|
8
|
Clatot J, Goldberg EM. No Pain, No Gain of Function: Epilepsy-Associated Variants in SCN2A Defy Classification. Epilepsy Curr 2024; 24:126-128. [PMID: 39280051 PMCID: PMC11394415 DOI: 10.1177/15357597231225565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
[Box: see text]
Collapse
Affiliation(s)
- Jérôme Clatot
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia Epilepsy NeuroGenetics Initiative, The Children's Hospital of Philadelphia
| | - Ethan M Goldberg
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia Epilepsy NeuroGenetics Initiative, The Children's Hospital of Philadelphia Department of Neurology, The Perelman School of Medicine at The University of Pennsylvania Department of Neuroscience, The Perelman School of Medicine at The University of Pennsylvania
| |
Collapse
|
9
|
Ma JG, Vandenberg JI, Ng CA. Development of automated patch clamp assays to overcome the burden of variants of uncertain significance in inheritable arrhythmia syndromes. Front Physiol 2023; 14:1294741. [PMID: 38089476 PMCID: PMC10712320 DOI: 10.3389/fphys.2023.1294741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 10/16/2024] Open
Abstract
Advances in next-generation sequencing have been exceptionally valuable for identifying variants in medically actionable genes. However, for most missense variants there is insufficient evidence to permit definitive classification of variants as benign or pathogenic. To overcome the deluge of Variants of Uncertain Significance, there is an urgent need for high throughput functional assays to assist with the classification of variants. Advances in parallel planar patch clamp technologies has enabled the development of automated high throughput platforms capable of increasing throughput 10- to 100-fold compared to manual patch clamp methods. Automated patch clamp electrophysiology is poised to revolutionize the field of functional genomics for inheritable cardiac ion channelopathies. In this review, we outline i) the evolution of patch clamping, ii) the development of high-throughput automated patch clamp assays to assess cardiac ion channel variants, iii) clinical application of these assays and iv) where the field is heading.
Collapse
Affiliation(s)
- Joanne G. Ma
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Jamie I. Vandenberg
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Chai-Ann Ng
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
10
|
Vanoye CG, Abramova TV, DeKeyser JM, Ghabra NF, Oudin MJ, Burge CB, Helbig I, Thompson CH, George AL. Molecular and Cellular Context Influences SCN8A Variant Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.11.566702. [PMID: 38014225 PMCID: PMC10680676 DOI: 10.1101/2023.11.11.566702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Pathogenic variants in SCN8A , which encodes the voltage-gated sodium (Na V ) channel Na V 1.6, are associated with neurodevelopmental disorders including epileptic encephalopathy. Previous approaches to determine SCN8A variant function may be confounded by the use of a neonatal-expressed alternatively spliced isoform of Na V 1.6 (Na V 1.6N), and engineered mutations to render the channel tetrodotoxin (TTX) resistant. In this study, we investigated the impact of SCN8A alternative splicing on variant function by comparing the functional attributes of 15 variants expressed in two developmentally regulated splice isoforms (Na V 1.6N, Na V 1.6A). We employed automated patch clamp recording to enhance throughput, and developed a novel neuronal cell line (ND7/LoNav) with low levels of endogenous Na V current to obviate the need for TTX-resistance mutations. Expression of Na V 1.6N or Na V 1.6A in ND7/LoNav cells generated Na V currents that differed significantly in voltage-dependence of activation and inactivation. TTX-resistant versions of both isoforms exhibited significant functional differences compared to the corresponding wild-type (WT) channels. We demonstrated that many of the 15 disease-associated variants studied exhibited isoform-dependent functional effects, and that many of the studied SCN8A variants exhibited functional properties that were not easily classified as either gain- or loss-of-function. Our work illustrates the value of considering molecular and cellular context when investigating SCN8A variants.
Collapse
|
11
|
Kaizer AM, Winbo A, Clur SAB, Etheridge SP, Ackerman MJ, Horigome H, Herberg U, Dagradi F, Spazzolini C, Killen SAS, Wacker-Gussmann A, Wilde AAM, Sinkovskaya E, Abuhamad A, Torchio M, Ng CA, Rydberg A, Schwartz PJ, Cuneo BF. Effects of cohort, genotype, variant, and maternal β-blocker treatment on foetal heart rate predictors of inherited long QT syndrome. Europace 2023; 25:euad319. [PMID: 37975542 PMCID: PMC10655062 DOI: 10.1093/europace/euad319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023] Open
Abstract
AIMS In long QT syndrome (LQTS), primary prevention improves outcome; thus, early identification is key. The most common LQTS phenotype is a foetal heart rate (FHR) < 3rd percentile for gestational age (GA) but the effects of cohort, genotype, variant, and maternal β-blocker therapy on FHR are unknown. We assessed the influence of these factors on FHR in pregnancies with familial LQTS and developed a FHR/GA threshold for LQTS. METHODS AND RESULTS In an international cohort of pregnancies in which one parent had LQTS, LQTS genotype, familial variant, and maternal β-blocker effects on FHR were assessed. We developed a testing algorithm for LQTS using FHR and GA as continuous predictors. Data included 1966 FHRs at 7-42 weeks' GA from 267 pregnancies/164 LQTS families [220 LQTS type 1 (LQT1), 35 LQTS type 2 (LQT2), and 12 LQTS type 3 (LQT3)]. The FHRs were significantly lower in LQT1 and LQT2 but not LQT3 or LQTS negative. The LQT1 variants with non-nonsense and severe function loss (current density or β-adrenergic response) had lower FHR. Maternal β-blockers potentiated bradycardia in LQT1 and LQT2 but did not affect FHR in LQTS negative. A FHR/GA threshold predicted LQT1 and LQT2 with 74.9% accuracy, 71% sensitivity, and 81% specificity. CONCLUSION Genotype, LQT1 variant, and maternal β-blocker therapy affect FHR. A predictive threshold of FHR/GA significantly improves the accuracy, sensitivity, and specificity for LQT1 and LQT2, above the infant's a priori 50% probability. We speculate this model may be useful in screening for LQTS in perinatal subjects without a known LQTS family history.
Collapse
Affiliation(s)
- Alexander M Kaizer
- Biostatistics and Informatics, Colorado School of Public Health, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Annika Winbo
- Department of Clinical Sciences, Pediatrics, Umeå University, Umea, Sweden
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Sally-Ann B Clur
- Department of Pediatric Cardiology, Emma Children’s Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Cardiology, University Medical Center, Amsterdam, The Netherlands
| | - Susan P Etheridge
- Department of Pediatrics, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Michael J Ackerman
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Mayo Clinic, Rochester, MN, USA
- Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Windland Smith Rice Genetic Heart Rhythm Clinic and Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Hitoshi Horigome
- Department of Pediatrics, Section of Cardiology, Tsukuba University, Tsukuba, Japan
| | - Ulrike Herberg
- Department of Pediatric Cardiology, RWTH University Hospital Aachen, Aachen, Germany
- Department of Pediatric Cardiology, University Hospital Bonn, Bonn, Germany
| | - Federica Dagradi
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, IRCCS Istituto Auxologico Italiano, Via Pier Lombardo 22, 2015 Milan, Italy
| | - Carla Spazzolini
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, IRCCS Istituto Auxologico Italiano, Via Pier Lombardo 22, 2015 Milan, Italy
| | - Stacy A S Killen
- Department of Pediatrics, Division of Cardiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Annette Wacker-Gussmann
- Department of Congenital Heart Disease and Paediatric Cardiology, German Heart Center, Munich, Germany
| | - Arthur A M Wilde
- Department of Cardiology, University Medical Center, Amsterdam, The Netherlands
- Department of Cardiology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Department of Cardiology, Amseterdam University Medical Center, Amsterdam, The Netherlands
| | - Elena Sinkovskaya
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Alfred Abuhamad
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Margherita Torchio
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, IRCCS Istituto Auxologico Italiano, Via Pier Lombardo 22, 2015 Milan, Italy
| | - Chai-Ann Ng
- Mark Cowley Lidwill Research Program in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
- The School of Clinical Medicine, UNSW Sydney, Darlinghurst, New South Wales, Australia
| | - Annika Rydberg
- Department of Clinical Sciences, Pediatrics, Umeå University, Umea, Sweden
- Department of Cardiology, University Medical Center, Amsterdam, The Netherlands
| | - Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, IRCCS Istituto Auxologico Italiano, Via Pier Lombardo 22, 2015 Milan, Italy
| | - Bettina F Cuneo
- Department of Pediatrics, Section of Cardiology, University of Denver School of Medicine, 13123 16th Ave, Box 100, Aurora, CO 80045, USA
| |
Collapse
|
12
|
Thompson CH, Potet F, Abramova TV, DeKeyser JM, Ghabra NF, Vanoye CG, Millichap JJ, George AL. Epilepsy-associated SCN2A (NaV1.2) variants exhibit diverse and complex functional properties. J Gen Physiol 2023; 155:e202313375. [PMID: 37578743 PMCID: PMC10424433 DOI: 10.1085/jgp.202313375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/29/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023] Open
Abstract
Pathogenic variants in voltage-gated sodium (NaV) channel genes including SCN2A, encoding NaV1.2, are discovered frequently in neurodevelopmental disorders with or without epilepsy. SCN2A is also a high-confidence risk gene for autism spectrum disorder (ASD) and nonsyndromic intellectual disability (ID). Previous work to determine the functional consequences of SCN2A variants yielded a paradigm in which predominantly gain-of-function variants cause neonatal-onset epilepsy, whereas loss-of-function variants are associated with ASD and ID. However, this framework was derived from a limited number of studies conducted under heterogeneous experimental conditions, whereas most disease-associated SCN2A variants have not been functionally annotated. We determined the functional properties of SCN2A variants using automated patch-clamp recording to demonstrate the validity of this method and to examine whether a binary classification of variant dysfunction is evident in a larger cohort studied under uniform conditions. We studied 28 disease-associated variants and 4 common variants using two alternatively spliced isoforms of NaV1.2 expressed in HEK293T cells. Automated patch-clamp recording provided a valid high throughput method to ascertain detailed functional properties of NaV1.2 variants with concordant findings for variants that were previously studied using manual patch clamp. Many epilepsy-associated variants in our study exhibited complex patterns of gain- and loss-of-functions that are difficult to classify by a simple binary scheme. The higher throughput achievable with automated patch clamp enables study of variants with greater standardization of recording conditions, freedom from operator bias, and enhanced experimental rigor. This approach offers an enhanced ability to discern relationships between channel dysfunction and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Christopher H. Thompson
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Franck Potet
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Tatiana V. Abramova
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jean-Marc DeKeyser
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nora F. Ghabra
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Carlos G. Vanoye
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - John J. Millichap
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alfred L. George
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
13
|
Verkerk AO, Wilders R. The Action Potential Clamp Technique as a Tool for Risk Stratification of Sinus Bradycardia Due to Loss-of-Function Mutations in HCN4: An In Silico Exploration Based on In Vitro and In Vivo Data. Biomedicines 2023; 11:2447. [PMID: 37760888 PMCID: PMC10525944 DOI: 10.3390/biomedicines11092447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
These days, in vitro functional analysis of gene variants is becoming increasingly important for risk stratification of cardiac ion channelopathies. So far, such risk stratification has been applied to SCN5A, KCNQ1, and KCNH2 gene variants associated with Brugada syndrome and long QT syndrome types 1 and 2, respectively, but risk stratification of HCN4 gene variants related to sick sinus syndrome has not yet been performed. HCN4 is the gene responsible for the hyperpolarization-activated 'funny' current If, which is an important modulator of the spontaneous diastolic depolarization underlying the sinus node pacemaker activity. In the present study, we carried out a risk classification assay on those loss-of-function mutations in HCN4 for which in vivo as well as in vitro data have been published. We used the in vitro data to compute the charge carried by If (Qf) during the diastolic depolarization phase of a prerecorded human sinus node action potential waveform and assessed the extent to which this Qf predicts (1) the beating rate of the comprehensive Fabbri-Severi model of a human sinus node cell with mutation-induced changes in If and (2) the heart rate observed in patients carrying the associated mutation in HCN4. The beating rate of the model cell showed a very strong correlation with Qf from the simulated action potential clamp experiments (R2 = 0.95 under vagal tone). The clinically observed minimum or resting heart rates showed a strong correlation with Qf (R2 = 0.73 and R2 = 0.71, respectively). While a translational perspective remains to be seen, we conclude that action potential clamp on transfected cells, without the need for further voltage clamp experiments and data analysis to determine individual biophysical parameters of If, is a promising tool for risk stratification of sinus bradycardia due to loss-of-function mutations in HCN4. In combination with an If blocker, this tool may also prove useful when applied to human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) obtained from mutation carriers and non-carriers.
Collapse
Affiliation(s)
- Arie O. Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Department of Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| |
Collapse
|
14
|
Immadisetty K, Fang X, Ramon GS, Hartle CM, McCoy TP, Center RG, Mirshahi T, Delisle BP, Kekenes-Huskey PM. Prediction of Kv11.1 potassium channel PAS-domain variants trafficking via machine learning. J Mol Cell Cardiol 2023; 180:69-83. [PMID: 37187232 DOI: 10.1016/j.yjmcc.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Congenital long QT syndrome (LQTS) is characterized by a prolonged QT-interval on an electrocardiogram (ECG). An abnormal prolongation in the QT-interval increases the risk for fatal arrhythmias. Genetic variants in several different cardiac ion channel genes, including KCNH2, are known to cause LQTS. Here, we evaluated whether structure-based molecular dynamics (MD) simulations and machine learning (ML) could improve the identification of missense variants in LQTS-linked genes. To do this, we investigated KCNH2 missense variants in the Kv11.1 channel protein shown to have wild type (WT) like or class II (trafficking-deficient) phenotypes in vitro. We focused on KCNH2 missense variants that disrupt normal Kv11.1 channel protein trafficking, as it is the most common phenotype for LQTS-associated variants. Specifically, we used computational techniques to correlate structural and dynamic changes in the Kv11.1 channel protein PAS domain (PASD) with Kv11.1 channel protein trafficking phenotypes. These simulations unveiled several molecular features, including the numbers of hydrating waters and hydrogen bonding pairs, as well as folding free energy scores, that are predictive of trafficking. We then used statistical and machine learning (ML) (Decision tree (DT), Random forest (RF), and Support vector machine (SVM)) techniques to classify variants using these simulation-derived features. Together with bioinformatics data, such as sequence conservation and folding energies, we were able to predict with reasonable accuracy (≈75%) which KCNH2 variants do not traffic normally. We conclude that structure-based simulations of KCNH2 variants localized to the Kv11.1 channel PASD led to an improvement in classification accuracy. Therefore, this approach should be considered to complement the classification of variant of unknown significance (VUS) in the Kv11.1 channel PASD.
Collapse
Affiliation(s)
| | - Xuan Fang
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Pablo JLB, Cornett SL, Wang LA, Jo S, Brünger T, Budnik N, Hegde M, DeKeyser JM, Thompson CH, Doench JG, Lal D, George AL, Pan JQ. Scanning mutagenesis of the voltage-gated sodium channel Na V1.2 using base editing. Cell Rep 2023; 42:112563. [PMID: 37267104 PMCID: PMC10592450 DOI: 10.1016/j.celrep.2023.112563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/24/2023] [Accepted: 05/08/2023] [Indexed: 06/04/2023] Open
Abstract
It is challenging to apply traditional mutational scanning to voltage-gated sodium channels (NaVs) and functionally annotate the large number of coding variants in these genes. Using a cytosine base editor and a pooled viability assay, we screen a library of 368 guide RNAs (gRNAs) tiling NaV1.2 to identify more than 100 gRNAs that change NaV1.2 function. We sequence base edits made by a subset of these gRNAs to confirm specific variants that drive changes in channel function. Electrophysiological characterization of these channel variants validates the screen results and provides functional mechanisms of channel perturbation. Most of the changes caused by these gRNAs are classifiable as loss of function along with two missense mutations that lead to gain of function in NaV1.2 channels. This two-tiered strategy to functionally characterize ion channel protein variants at scale identifies a large set of loss-of-function mutations in NaV1.2.
Collapse
Affiliation(s)
- Juan Lorenzo B Pablo
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Savannah L Cornett
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lei A Wang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sooyeon Jo
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tobias Brünger
- Cologne Center for Genomics, University of Cologne, 51149 Cologne, Germany; Genomic Medicine Institute, Lerner Research Institute, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Nikita Budnik
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mudra Hegde
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jean-Marc DeKeyser
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Christopher H Thompson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dennis Lal
- Cologne Center for Genomics, University of Cologne, 51149 Cologne, Germany; Genomic Medicine Institute, Lerner Research Institute, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Neurology, McGovern Medical School, UTHealth, Houston, TX 77030, USA
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jen Q Pan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
16
|
Yan Z, Zhong L, Zhu W, Chung SK, Hou P. Chinese herbal medicine for the treatment of cardiovascular diseases ─ targeting cardiac ion channels. Pharmacol Res 2023; 192:106765. [PMID: 37075871 DOI: 10.1016/j.phrs.2023.106765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality, imposing an increasing global health burden. Cardiac ion channels (voltage-gated NaV, CaV, KVs, and others) synergistically shape the cardiac action potential (AP) and control the heartbeat. Dysfunction of these channels, due to genetic mutations, transcriptional or post-translational modifications, may disturb the AP and lead to arrhythmia, a major risk for CVD patients. Although there are five classes of anti-arrhythmic drugs available, they can have varying levels of efficacies and side effects on patients, possibly due to the complex pathogenesis of arrhythmias. As an alternative treatment option, Chinese herbal remedies have shown promise in regulating cardiac ion channels and providing anti-arrhythmic effects. In this review, we first discuss the role of cardiac ion channels in maintaining normal heart function and the pathogenesis of CVD, then summarize the classification of Chinese herbal compounds, and elaborate detailed mechanisms of their efficacy in regulating cardiac ion channels and in alleviating arrhythmia and CVD. We also address current limitations and opportunities for developing new anti-CVD drugs based on Chinese herbal medicines.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ling Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Wandi Zhu
- Cardiovascular Medicine Division and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Faculty of Medicine & Faculty of Innovation Engineering at Macau University of Science and Technology, Taipa, Macao SAR, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Panpan Hou
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China.
| |
Collapse
|
17
|
Melgari D, Calamaio S, Frosio A, Prevostini R, Anastasia L, Pappone C, Rivolta I. Automated Patch-Clamp and Induced Pluripotent Stem Cell-Derived Cardiomyocytes: A Synergistic Approach in the Study of Brugada Syndrome. Int J Mol Sci 2023; 24:ijms24076687. [PMID: 37047659 PMCID: PMC10095337 DOI: 10.3390/ijms24076687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
The development of high-throughput automated patch-clamp technology is a recent breakthrough in the field of Brugada syndrome research. Brugada syndrome is a heart disorder marked by abnormal electrocardiographic readings and an elevated risk of sudden cardiac death due to arrhythmias. Various experimental models, developed either in animals, cell lines, human tissue or computational simulation, play a crucial role in advancing our understanding of this condition, and developing effective treatments. In the perspective of the pathophysiological role of ion channels and their pharmacology, automated patch-clamp involves a robotic system that enables the simultaneous recording of electrical activity from multiple single cells at once, greatly improving the speed and efficiency of data collection. By combining this approach with the use of patient-derived cardiomyocytes, researchers are gaining a more comprehensive view of the underlying mechanisms of heart disease. This has led to the development of more effective treatments for those affected by cardiovascular conditions.
Collapse
Affiliation(s)
- Dario Melgari
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Serena Calamaio
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Anthony Frosio
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Rachele Prevostini
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Luigi Anastasia
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Carlo Pappone
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Ilaria Rivolta
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore, 48, 20900 Monza, Italy
| |
Collapse
|
18
|
Thompson CH, Potet F, Abramova TV, DeKeyser JM, Ghabra NF, Vanoye CG, Millichap J, George AL. Epilepsy-associated SCN2A (Na V 1.2) Variants Exhibit Diverse and Complex Functional Properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529757. [PMID: 36865317 PMCID: PMC9980081 DOI: 10.1101/2023.02.23.529757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Pathogenic variants in neuronal voltage-gated sodium (Na V ) channel genes including SCN2A , which encodes Na V 1.2, are frequently discovered in neurodevelopmental disorders with and without epilepsy. SCN2A is also a high confidence risk gene for autism spectrum disorder (ASD) and nonsyndromic intellectual disability (ID). Previous work to determine the functional consequences of SCN2A variants yielded a paradigm in which predominantly gain-of-function (GoF) variants cause epilepsy whereas loss-of-function (LoF) variants are associated with ASD and ID. However, this framework is based on a limited number of functional studies conducted under heterogenous experimental conditions whereas most disease-associated SCN2A variants have not been functionally annotated. We determined the functional properties of more than 30 SCN2A variants using automated patch clamp recording to assess the analytical validity of this approach and to examine whether a binary classification of variant dysfunction is evident in a larger cohort studied under uniform conditions. We studied 28 disease-associated variants and 4 common population variants using two distinct alternatively spliced forms of Na V 1.2 that were heterologously expressed in HEK293T cells. Multiple biophysical parameters were assessed on 5,858 individual cells. We found that automated patch clamp recording provided a valid high throughput method to ascertain detailed functional properties of Na V 1.2 variants with concordant findings for a subset of variants that were previously studied using manual patch clamp. Additionally, many epilepsy-associated variants in our study exhibited complex patterns of gain- and loss-of-function properties that are difficult to classify overall by a simple binary scheme. The higher throughput achievable with automated patch clamp enables study of a larger number of variants, greater standardization of recording conditions, freedom from operator bias, and enhanced experimental rigor valuable for accurate assessment of Na V channel variant dysfunction. Together, this approach will enhance our ability to discern relationships between variant channel dysfunction and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Christopher H Thompson
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA
| | - Franck Potet
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA
| | - Tatiana V Abramova
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA
| | - Jean-Marc DeKeyser
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA
| | - Nora F Ghabra
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA
| | - Carlos G Vanoye
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA
| | - John Millichap
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA
| | - Alfred L George
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA
| |
Collapse
|
19
|
Alameh M, Oliveira-Mendes BR, Kyndt F, Rivron J, Denjoy I, Lesage F, Schott JJ, De Waard M, Loussouarn G. A need for exhaustive and standardized characterization of ion channels activity. The case of K V11.1. Front Physiol 2023; 14:1132533. [PMID: 36860515 PMCID: PMC9968853 DOI: 10.3389/fphys.2023.1132533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
hERG, the pore-forming subunit of the rapid component of the delayed rectifier K+ current, plays a key role in ventricular repolarization. Mutations in the KCNH2 gene encoding hERG are associated with several cardiac rhythmic disorders, mainly the Long QT syndrome (LQTS) characterized by prolonged ventricular repolarization, leading to ventricular tachyarrhythmias, sometimes progressing to ventricular fibrillation and sudden death. Over the past few years, the emergence of next-generation sequencing has revealed an increasing number of genetic variants including KCNH2 variants. However, the potential pathogenicity of the majority of the variants remains unknown, thus classifying them as variants of uncertain significance or VUS. With diseases such as LQTS being associated with sudden death, identifying patients at risk by determining the variant pathogenicity, is crucial. The purpose of this review is to describe, on the basis of an exhaustive examination of the 1322 missense variants, the nature of the functional assays undertaken so far and their limitations. A detailed analysis of 38 hERG missense variants identified in Long QT French patients and studied in electrophysiology also underlies the incomplete characterization of the biophysical properties for each variant. These analyses lead to two conclusions: first, the function of many hERG variants has never been looked at and, second, the functional studies done so far are excessively heterogeneous regarding the stimulation protocols, cellular models, experimental temperatures, homozygous and/or the heterozygous condition under study, a context that may lead to conflicting conclusions. The state of the literature emphasizes how necessary and important it is to perform an exhaustive functional characterization of hERG variants and to standardize this effort for meaningful comparison among variants. The review ends with suggestions to create a unique homogeneous protocol that could be shared and adopted among scientists and that would facilitate cardiologists and geneticists in patient counseling and management.
Collapse
Affiliation(s)
- Malak Alameh
- CNRS, INSERM, l’institut du thorax, Nantes Université, CHU Nantes, Nantes, France,Labex ICST, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| | - Barbara Ribeiro Oliveira-Mendes
- CNRS, INSERM, l’institut du thorax, Nantes Université, CHU Nantes, Nantes, France,*Correspondence: Barbara Ribeiro Oliveira-Mendes,
| | - Florence Kyndt
- CNRS, INSERM, l’institut du thorax, Nantes Université, CHU Nantes, Nantes, France
| | - Jordan Rivron
- CNRS, INSERM, l’institut du thorax, Nantes Université, CHU Nantes, Nantes, France
| | - Isabelle Denjoy
- Service de Cardiologie et CNMR Maladies Cardiaques Héréditaires Rares, Hôpital Bichat, Paris, France
| | - Florian Lesage
- Labex ICST, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| | - Jean-Jacques Schott
- CNRS, INSERM, l’institut du thorax, Nantes Université, CHU Nantes, Nantes, France
| | - Michel De Waard
- CNRS, INSERM, l’institut du thorax, Nantes Université, CHU Nantes, Nantes, France,Labex ICST, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| | - Gildas Loussouarn
- CNRS, INSERM, l’institut du thorax, Nantes Université, CHU Nantes, Nantes, France
| |
Collapse
|
20
|
Cai D, Zheng Z, Jin X, Fu Y, Cen L, Ye J, Song Y, Lian J. The Advantages, Challenges, and Future of Human-Induced Pluripotent Stem Cell Lines in Type 2 Long QT Syndrome. J Cardiovasc Transl Res 2023; 16:209-220. [PMID: 35976484 DOI: 10.1007/s12265-022-10298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/23/2022] [Indexed: 02/05/2023]
Abstract
Type 2 long QT syndrome (LQT2) is the second most common subtype of long QT syndrome and is caused by mutations in KCHN2 encoding the rapidly activating delayed rectifier potassium channel vital for ventricular repolarization. Sudden cardiac death is a sentinel event of LQT2. Preclinical diagnosis by genetic testing is potentially life-saving.Traditional LQT2 models cannot wholly recapitulate genetic and phenotypic features; therefore, there is a demand for a reliable experimental model. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) meet this challenge. This review introduces the advantages of the hiPSC-CM model over the traditional model and discusses how hiPSC-CM and gene editing are used to decipher mechanisms of LQT2, screen for cardiotoxicity, and identify therapeutic strategies, thus promoting the realization of precision medicine for LQT2 patients.
Collapse
Affiliation(s)
- Dihui Cai
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China
| | - Zequn Zheng
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China
- Department of Cardiovascular, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xiaojun Jin
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China
| | - Yin Fu
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China
| | - Lichao Cen
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China
| | - Jiachun Ye
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China
| | - Yongfei Song
- Department of Cardiovascular, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Jiangfang Lian
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China.
- Department of Cardiovascular, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China.
| |
Collapse
|
21
|
Sieliwonczyk E, Alaerts M, Simons E, Snyders D, Nijak A, Vandendriessche B, Schepers D, Akdeniz D, Van Craenenbroeck E, Knaepen K, Rabaut L, Heidbuchel H, Van Laer L, Saenen J, Labro AJ, Loeys B. Clinical and functional characterisation of a recurrent KCNQ1 variant in the Belgian population. Orphanet J Rare Dis 2023; 18:23. [PMID: 36721196 PMCID: PMC9887867 DOI: 10.1186/s13023-023-02618-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/15/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The c.1124_1127delTTCA p.(Ile375Argfs*43) pathogenic variant is the most frequently identified molecular defect in the KCNQ1 gene in the cardiogenetics clinic of the Antwerp University Hospital. This variant was observed in nine families presenting with either Jervell-Lange-Nielsen syndrome or long QT syndrome (LQTS). Here, we report on the molecular, clinical and functional characterization of the KCNQ1 c.1124_1127delTTCA variant. RESULTS Forty-one heterozygous variant harboring individuals demonstrated a predominantly mild clinical and electrophysiological phenotype, compared to individuals harboring other KCNQ1 pathogenic variants (5% symptomatic before 40 years of age, compared to 24% and 29% in p.(Tyr111Cys) and p.(Ala341Val) variant carriers, respectively, 33% with QTc ≤ 440 ms compared to 10% in p.(Tyr111Cys) and p.(Ala341Val) variant carriers). The LQTS phenotype was most comparable to that observed for the Swedish p.(Arg518*) founder mutation (7% symptomatic at any age, compared to 17% in p.(Arg518*) variant carriers, 33% with QTc ≤ 440 ms compared to 16% in p.(Arg518*) variant carriers). Surprisingly, short tandem repeat analysis did not reveal a common haplotype for all families. One KCNQ1 c.1124_1127delTTCA harboring patient was diagnosed with Brugada syndrome (BrS). The hypothesis of a LQTS/BrS overlap syndrome was supported by electrophysiological evidence for both loss-of-function and gain-of-function (acceleration of channel kinetics) in a heterologous expression system. However, BrS phenotypes were not identified in other affected individuals and allelic KCNQ1 expression testing in patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) showed nonsense mediated decay of the c.1124_1127delTTCA allele. CONCLUSIONS The c.1124_1127delTTCA frameshift variant shows a high prevalence in our region, despite not being confirmed as a founder mutation. This variant leads to a mild LQTS phenotype in the heterozygous state. Despite initial evidence for a gain-of-function effect based on in vitro electrophysiological assessment in CHO cells and expression of the KCNQ1 c.1124_1127delTTCA allele in patient blood cells, additional testing in iPSC-CMs showed lack of expression of the mutant allele. This suggests haploinsufficiency as the pathogenic mechanism. Nonetheless, as inter-individual differences in allele expression in (iPSC-) cardiomyocytes have not been assessed, a modifying effect on the BrS phenotype through potassium current modulation cannot be excluded.
Collapse
Affiliation(s)
- Ewa Sieliwonczyk
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium. .,Medical Genetics (MEDGEN), GENCOR, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
| | - Maaike Alaerts
- grid.5284.b0000 0001 0790 3681Center of Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681Medical Genetics (MEDGEN), GENCOR, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Eline Simons
- grid.5284.b0000 0001 0790 3681Center of Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Dirk Snyders
- grid.5284.b0000 0001 0790 3681Experimental Neurobiology Unit, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Aleksandra Nijak
- grid.5284.b0000 0001 0790 3681Center of Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Bert Vandendriessche
- grid.5284.b0000 0001 0790 3681Center of Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Dorien Schepers
- grid.5284.b0000 0001 0790 3681Center of Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681Medical Genetics (MEDGEN), GENCOR, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681Experimental Neurobiology Unit, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Dogan Akdeniz
- grid.5284.b0000 0001 0790 3681Center of Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Emeline Van Craenenbroeck
- grid.5284.b0000 0001 0790 3681Department of Cardiology, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681Cardiovascular Research, GENCOR, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Katleen Knaepen
- grid.5284.b0000 0001 0790 3681Center of Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Laura Rabaut
- grid.5284.b0000 0001 0790 3681Center of Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Hein Heidbuchel
- grid.5284.b0000 0001 0790 3681Department of Cardiology, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681Cardiovascular Research, GENCOR, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Lut Van Laer
- grid.5284.b0000 0001 0790 3681Center of Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681Medical Genetics (MEDGEN), GENCOR, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Johan Saenen
- grid.5284.b0000 0001 0790 3681Department of Cardiology, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681Cardiovascular Research, GENCOR, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Alain J. Labro
- grid.5284.b0000 0001 0790 3681Experimental Neurobiology Unit, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium ,grid.5342.00000 0001 2069 7798Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Bart Loeys
- grid.5284.b0000 0001 0790 3681Center of Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681Medical Genetics (MEDGEN), GENCOR, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
22
|
Seo ME, Min BJ, Heo N, Lee KH, Kim JH. Comprehensive in vitro and in silico assessments of metabolic capabilities of 24 genomic variants of CYP2C19 using two different substrates. Front Pharmacol 2023; 14:1055991. [PMID: 36713839 PMCID: PMC9877350 DOI: 10.3389/fphar.2023.1055991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Introduction: Most hepatically cleared drugs are metabolized by cytochromes P450 (CYPs), and Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines provide curated clinical references for CYPs to apply individual genome data for optimized drug therapy. However, incorporating novel pharmacogenetic variants into guidelines takes considerable time. Methods: We comprehensively assessed the drug metabolizing capabilities of CYP2C19 variants discovered through population sequencing of two substrates, S-mephenytoin and omeprazole. Results: Based on established functional assays, 75% (18/24) of the variants not yet described in Pharmacogene Variation (PharmVar) had significantly altered drug metabolizing capabilities. Of them, seven variants with inappreciable protein expression were evaluated as protein damaging by all three in silico prediction algorithms, Sorting intolerant from tolerant (SIFT), Polymorphism Phenotyping v2 (PolyPhen-2), and Combined annotation dependent depletion (CADD). The five variants with decreased metabolic capability (<50%) of wild type for either substrates were evaluated as protein damaging by all three in silico prediction algorithms, except CADD exact score of NM_000769.4:c.593T>C that was 19.68 (<20.0). In the crystal structure of the five polymorphic proteins, each altered residue of all those proteins was observed to affect the key structures of drug binding specificity. We also identified polymorphic proteins indicating different tendencies of metabolic capability between the two substrates (5/24). Discussion: Therefore, we propose a methodology that combines in silico prediction algorithms and functional assays on polymorphic CYPs with multiple substrates to evaluate the changes in the metabolism of all possible genomic variants in CYP genes. The approach would reinforce existing guidelines and provide information for prescribing appropriate medicines for individual patients.
Collapse
Affiliation(s)
- Myung-Eui Seo
- Seoul National University Biomedical Informatics (SNUBI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Byung-Joo Min
- National Forensic Service Seoul Institute, Seoul, South Korea
| | - Nayoon Heo
- Department of Mathematics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kye Hwa Lee
- Department of Information Medicine, Asan Medical Center and University of Ulsan College of Medicine, Seoul, South Korea,*Correspondence: Kye Hwa Lee, ; Ju Han Kim,
| | - Ju Han Kim
- Seoul National University Biomedical Informatics (SNUBI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea,Seoul National University Biomedical Informatics (SNUBI), Division of Biomedical Informatics, Seoul National University College of Medicine, Seoul, South Korea,*Correspondence: Kye Hwa Lee, ; Ju Han Kim,
| |
Collapse
|
23
|
Glazer AM. Genetics of congenital arrhythmia syndromes: the challenge of variant interpretation. Curr Opin Genet Dev 2022; 77:102004. [PMID: 36368182 PMCID: PMC9743411 DOI: 10.1016/j.gde.2022.102004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
Abstract
Congenital arrhythmia syndromes are rare genetic disorders that can cause a high risk of sudden cardiac death. Expert panels have affirmed 15 genes that are linked to congenital arrhythmias. These genes mostly encode cardiac ion channel proteins or associated regulatory proteins that generate the cardiac action potential. Common genetic variation modulates the risk of rare variants and partially explains the incomplete penetrance of these disorders. As genetic testing becomes more prevalent, a major challenge is that most detected variants are annotated as variants of uncertain significance. This review will highlight emerging methods that are refining our understanding of arrhythmia genetics, including phenotype risk scores, large cohorts, in vitro functional assays, structural models, and computational predictions.
Collapse
Affiliation(s)
- Andrew M Glazer
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
24
|
Hopkins CE, Brock T, Caulfield TR, Bainbridge M. Phenotypic screening models for rapid diagnosis of genetic variants and discovery of personalized therapeutics. Mol Aspects Med 2022; 91:101153. [PMID: 36411139 PMCID: PMC10073243 DOI: 10.1016/j.mam.2022.101153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 11/19/2022]
Abstract
Precision medicine strives for highly individualized treatments for disease under the notion that each individual's unique genetic makeup and environmental exposures imprints upon them not only a disposition to illness, but also an optimal therapeutic approach. In the realm of rare disorders, genetic predisposition is often the predominant mechanism driving disease presentation. For such, mostly, monogenic disorders, a causal gene to phenotype association is likely. As a result, it becomes important to query the patient's genome for the presence of pathogenic variations that are likely to cause the disease. Determining whether a variant is pathogenic or not is critical to these analyses and can be challenging, as many disease-causing variants are novel and, ergo, have no available functional data to help categorize them. This problem is exacerbated by the need for rapid evaluation of pathogenicity, since many genetic diseases present in young children who will experience increased morbidity and mortality without rapid diagnosis and therapeutics. Here, we discuss the utility of animal models, with a focus mainly on C. elegans, as a contrast to tissue culture and in silico approaches, with emphasis on how these systems are used in determining pathogenicity of variants with uncertain significance and then used to screen for novel therapeutics.
Collapse
Affiliation(s)
| | | | - Thomas R Caulfield
- Mayo Clinic, Department of Neuroscience, Department of Computational Biology, Department of Clinical Genomics, Jacksonville, FL, 32224, Rochester, MN, 55905, USA
| | | |
Collapse
|
25
|
Zhang Y, Grimwood AL, Hancox JC, Harmer SC, Dempsey CE. Evolutionary coupling analysis guides identification of mistrafficking-sensitive variants in cardiac K + channels: Validation with hERG. Front Pharmacol 2022; 13:1010119. [PMID: 36339618 PMCID: PMC9632996 DOI: 10.3389/fphar.2022.1010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/30/2022] [Indexed: 09/27/2023] Open
Abstract
Loss of function (LOF) mutations of voltage sensitive K+ channel proteins hERG (Kv11.1) and KCNQ1 (Kv7.1) account for the majority of instances of congenital Long QT Syndrome (cLQTS) with the dominant molecular phenotype being a mistrafficking one resulting from protein misfolding. We explored the use of Evolutionary Coupling (EC) analysis, which identifies evolutionarily conserved pairwise amino acid interactions that may contribute to protein structural stability, to identify regions of the channels susceptible to misfolding mutations. Comparison with published experimental trafficking data for hERG and KCNQ1 showed that the method strongly predicts "scaffolding" regions of the channel membrane domains and has useful predictive power for trafficking phenotypes of individual variants. We identified a region in and around the cytoplasmic S2-S3 loop of the hERG Voltage Sensor Domain (VSD) as susceptible to destabilising mutation, and this was confirmed using a quantitative LI-COR ® based trafficking assay that showed severely attenuated trafficking in eight out of 10 natural hERG VSD variants selected using EC analysis. Our analysis highlights an equivalence in the scaffolding structures of the hERG and KCNQ1 membrane domains. Pathogenic variants of ion channels with an underlying mistrafficking phenotype are likely to be located within similar scaffolding structures that are identifiable by EC analysis.
Collapse
Affiliation(s)
- Yihong Zhang
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - Amy L. Grimwood
- School of Biological Sciences, Life Sciences Building, Bristol, United Kingdom
| | - Jules C. Hancox
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - Stephen C. Harmer
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - Christopher E. Dempsey
- School of Biochemistry, Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| |
Collapse
|
26
|
Zheng H, Yan X, Li G, Lin H, Deng S, Zhuang W, Yao F, Lu Y, Xia X, Yuan H, Jin L, Yan Z. Proactive functional classification of all possible missense single-nucleotide variants in KCNQ4. Genome Res 2022; 32:1573-1584. [PMID: 35760561 PMCID: PMC9435748 DOI: 10.1101/gr.276562.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023]
Abstract
Clinical exome sequencing has yielded extensive disease-related missense single-nucleotide variants (SNVs) of uncertain significance, leading to diagnostic uncertainty. KCNQ4 is one of the most commonly responsible genes for autosomal dominant nonsyndromic hearing loss. According to the gnomAD cohort, approximately one in 100 people harbors missense variants in KCNQ4 (missense variants with minor allele frequency > 0.1% were excluded), but most are of unknown consequence. To prospectively characterize the function of all 4085 possible missense SNVs of human KCNQ4, we recorded the whole-cell currents using the patch-clamp technique and categorized 1068 missense SNVs as loss of function, as well as 728 loss-of-function SNVs located in the transmembrane domains. Further, to mimic the heterozygous condition in Deafness nonsyndromic autosomal dominant 2 (DFNA2) patients caused by KCNQ4 variants, we coexpressed loss-of-function variants with wild-type KCNQ4 and found 516 variants showed impaired or only partially rescued heterogeneous channel function. Overall, our functional classification is highly concordant with the auditory phenotypes in Kcnq4 mutant mice and the assessments of pathogenicity in clinical variant interpretations. Taken together, our results provide strong functional evidence to support the pathogenicity classification of newly discovered KCNQ4 missense variants in clinical genetic testing.
Collapse
Affiliation(s)
- Honglan Zheng
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200438, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xinhao Yan
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200438, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Guanluan Li
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200438, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Hengwei Lin
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200438, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Siqi Deng
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Wenhui Zhuang
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200438, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Fuqiang Yao
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200438, China
| | - Yu Lu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xin Xia
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200438, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Huijun Yuan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Li Jin
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhiqiang Yan
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200438, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
27
|
Jiang C, Richardson E, Farr J, Hill AP, Ullah R, Kroncke BM, Harrison SM, Thomson KL, Ingles J, Vandenberg JI, Ng CA. A calibrated functional patch-clamp assay to enhance clinical variant interpretation in KCNH2-related long QT syndrome. Am J Hum Genet 2022; 109:1199-1207. [PMID: 35688147 PMCID: PMC9300752 DOI: 10.1016/j.ajhg.2022.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/03/2022] [Indexed: 01/09/2023] Open
Abstract
Modern sequencing technologies have revolutionized our detection of gene variants. However, in most genes, including KCNH2, the majority of missense variants are currently classified as variants of uncertain significance (VUSs). The aim of this study was to investigate the utility of an automated patch-clamp assay for aiding clinical variant classification in KCNH2. The assay was designed according to recommendations proposed by the Clinical Genome Sequence Variant Interpretation Working Group. Thirty-one variants (17 pathogenic/likely pathogenic, 14 benign/likely benign) were classified internally as variant controls. They were heterozygously expressed in Flp-In HEK293 cells for assessing the effects of variants on current density and channel gating in order to determine the sensitivity and specificity of the assay. All 17 pathogenic variant controls had reduced current density, and 13 of 14 benign variant controls had normal current density, which enabled determination of normal and abnormal ranges for applying evidence of moderate or supporting strength for VUS reclassification. Inclusion of functional assay evidence enabled us to reclassify 6 out of 44 KCNH2 VUSs as likely pathogenic. The high-throughput patch-clamp assay can provide moderate-strength evidence for clinical interpretation of clinical KCNH2 variants and demonstrates the value of developing automated patch-clamp assays for functional characterization of ion channel gene variants.
Collapse
Affiliation(s)
- Connie Jiang
- Mark Cowley Lidwill Research Program in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Ebony Richardson
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, Australia; Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Australia
| | - Jessica Farr
- Mark Cowley Lidwill Research Program in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; School of Computer Science and Engineering, UNSW Sydney, Kensington, NSW, Australia
| | - Adam P Hill
- Mark Cowley Lidwill Research Program in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Rizwan Ullah
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brett M Kroncke
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Kate L Thomson
- Oxford Medical Genetics Laboratories, Churchill Hospital, Oxford, UK
| | - Jodie Ingles
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, Australia; Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Australia
| | - Jamie I Vandenberg
- Mark Cowley Lidwill Research Program in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Darlinghurst, NSW, Australia.
| | - Chai-Ann Ng
- Mark Cowley Lidwill Research Program in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Darlinghurst, NSW, Australia.
| |
Collapse
|
28
|
Ng CA, Ullah R, Farr J, Hill AP, Kozek KA, Vanags LR, Mitchell DW, Kroncke BM, Vandenberg JI. A massively parallel assay accurately discriminates between functionally normal and abnormal variants in a hotspot domain of KCNH2. Am J Hum Genet 2022; 109:1208-1216. [PMID: 35688148 PMCID: PMC9300756 DOI: 10.1016/j.ajhg.2022.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/03/2022] [Indexed: 01/09/2023] Open
Abstract
Many genes, including KCNH2, contain "hotspot" domains associated with a high density of variants associated with disease. This has led to the suggestion that variant location can be used as evidence supporting classification of clinical variants. However, it is not known what proportion of all potential variants in hotspot domains cause loss of function. Here, we have used a massively parallel trafficking assay to characterize all single-nucleotide variants in exon 2 of KCNH2, a known hotspot for variants that cause long QT syndrome type 2 and an increased risk of sudden cardiac death. Forty-two percent of KCNH2 exon 2 variants caused at least 50% reduction in protein trafficking, and 65% of these trafficking-defective variants exerted a dominant-negative effect when co-expressed with a WT KCNH2 allele as assessed using a calibrated patch-clamp electrophysiology assay. The massively parallel trafficking assay was more accurate (AUC of 0.94) than bioinformatic prediction tools (REVEL and CardioBoost, AUC of 0.81) in discriminating between functionally normal and abnormal variants. Interestingly, over half of variants in exon 2 were found to be functionally normal, suggesting a nuanced interpretation of variants in this "hotspot" domain is necessary. Our massively parallel trafficking assay can provide this information prospectively.
Collapse
Affiliation(s)
- Chai-Ann Ng
- Mark Cowley Lidwill Research Program in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Rizwan Ullah
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jessica Farr
- Mark Cowley Lidwill Research Program in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; School of Computer Science and Engineering, UNSW Sydney, Kensington, NSW, Australia
| | - Adam P Hill
- Mark Cowley Lidwill Research Program in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Krystian A Kozek
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Loren R Vanags
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Devyn W Mitchell
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Brett M Kroncke
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Jamie I Vandenberg
- Mark Cowley Lidwill Research Program in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Darlinghurst, NSW, Australia.
| |
Collapse
|
29
|
Anderson CL, Munawar S, Reilly L, Kamp TJ, January CT, Delisle BP, Eckhardt LL. How Functional Genomics Can Keep Pace With VUS Identification. Front Cardiovasc Med 2022; 9:900431. [PMID: 35859585 PMCID: PMC9291992 DOI: 10.3389/fcvm.2022.900431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/09/2022] [Indexed: 01/03/2023] Open
Abstract
Over the last two decades, an exponentially expanding number of genetic variants have been identified associated with inherited cardiac conditions. These tremendous gains also present challenges in deciphering the clinical relevance of unclassified variants or variants of uncertain significance (VUS). This review provides an overview of the advancements (and challenges) in functional and computational approaches to characterize variants and help keep pace with VUS identification related to inherited heart diseases.
Collapse
Affiliation(s)
- Corey L. Anderson
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Saba Munawar
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Louise Reilly
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Timothy J. Kamp
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Craig T. January
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Brian P. Delisle
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Lee L. Eckhardt
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
30
|
Boßelmann CM, Hedrich UBS, Müller P, Sonnenberg L, Parthasarathy S, Helbig I, Lerche H, Pfeifer N. Predicting the functional effects of voltage-gated potassium channel missense variants with multi-task learning. EBioMedicine 2022; 81:104115. [PMID: 35759918 PMCID: PMC9250003 DOI: 10.1016/j.ebiom.2022.104115] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Variants in genes encoding voltage-gated potassium channels are associated with a broad spectrum of neurological diseases including epilepsy, ataxia, and intellectual disability. Knowledge of the resulting functional changes, characterized as overall ion channel gain- or loss-of-function, is essential to guide clinical management including precision medicine therapies. However, for an increasing number of variants, little to no experimental data is available. New tools are needed to evaluate variant functional effects. METHODS We catalogued a comprehensive dataset of 959 functional experiments across 19 voltage-gated potassium channels, leveraging data from 782 unique disease-associated and synthetic variants. We used these data to train a taxonomy-based multi-task learning support vector machine (MTL-SVM), and compared performance to several baseline methods. FINDINGS MTL-SVM maintains channel family structure during model training, improving overall predictive performance (mean balanced accuracy 0·718 ± 0·041, AU-ROC 0·761 ± 0·063) over baseline (mean balanced accuracy 0·620 ± 0·045, AU-ROC 0·711 ± 0·022). We can obtain meaningful predictions even for channels with few known variants (KCNC1, KCNQ5). INTERPRETATION Our model enables functional variant prediction for voltage-gated potassium channels. It may assist in tailoring current and future precision therapies for the increasing number of patients with ion channel disorders. FUNDING This work was supported by intramural funding of the Medical Faculty, University of Tuebingen (PATE F.1315137.1), the Federal Ministry for Education and Research (Treat-ION, 01GM1907A/B/G/H) and the German Research Foundation (FOR-2715, Le1030/16-2, He8155/1-2).
Collapse
Affiliation(s)
- Christian Malte Boßelmann
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Hoppe-Seyler-Str. 3, D-72076 Tuebingen, Germany; Methods in Medical Informatics, Department of Computer Science, University of Tuebingen, Sand 14, D-72076 Tuebingen, Germany
| | - Ulrike B S Hedrich
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Hoppe-Seyler-Str. 3, D-72076 Tuebingen, Germany
| | - Peter Müller
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Hoppe-Seyler-Str. 3, D-72076 Tuebingen, Germany
| | - Lukas Sonnenberg
- Institute for Neurobiology, University of Tuebingen, Tuebingen, Germany
| | - Shridhar Parthasarathy
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ingo Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Hoppe-Seyler-Str. 3, D-72076 Tuebingen, Germany.
| | - Nico Pfeifer
- Methods in Medical Informatics, Department of Computer Science, University of Tuebingen, Sand 14, D-72076 Tuebingen, Germany; Interfaculty Institute for Biomedical Informatics (IBMI), University of Tuebingen, Tuebingen, Germany; Faculty of Medicine, University of Tuebingen, Tuebingen, Germany; German Center for Infection Research, Partner Site Tuebingen, Tuebingen, Germany.
| |
Collapse
|
31
|
O'Neill MJ, Muhammad A, Li B, Wada Y, Hall L, Solus JF, Short L, Roden DM, Glazer AM. Dominant negative effects of SCN5A missense variants. Genet Med 2022; 24:1238-1248. [PMID: 35305865 PMCID: PMC9262418 DOI: 10.1016/j.gim.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE Up to 30% of patients with Brugada syndrome (BrS) carry loss-of-function (LoF) variants in the cardiac sodium channel gene SCN5A encoding for the protein NaV1.5. Recent studies suggested that NaV1.5 can dimerize, and some variants exert dominant negative effects. In this study, we sought to explore the generality of missense variant NaV1.5 dominant negative effects and their clinical severity. METHODS We identified 35 LoF variants (<10% of wild type [WT] peak current) and 15 partial LoF variants (10%-50% of WT peak current) that we assessed for dominant negative effects. SCN5A variants were studied in HEK293T cells, alone or in heterozygous coexpression with WT SCN5A using automated patch clamp. To assess the clinical risk, we compared the prevalence of dominant negative vs putative haploinsufficient (frameshift, splice, or nonsense) variants in a BrS consortium and the Genome Aggregation Database population database. RESULTS In heterozygous expression with WT, 32 of 35 LoF and 6 of 15 partial LoF variants showed reduction to <75% of WT-alone peak current, showing a dominant negative effect. Individuals with dominant negative LoF variants had an elevated disease burden compared with the individuals with putative haploinsufficient variants (2.7-fold enrichment in BrS cases, P = .019). CONCLUSION Most SCN5A missense LoF variants exert a dominant negative effect. This class of variant confers an especially high burden of BrS.
Collapse
Affiliation(s)
- Matthew J O'Neill
- Vanderbilt University School of Medicine, Medical Scientist Training Program, Vanderbilt University, Nashville, TN
| | - Ayesha Muhammad
- Vanderbilt University School of Medicine, Medical Scientist Training Program, Vanderbilt University, Nashville, TN
| | - Bian Li
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Vanderbilt University Medical Center, Nashville, TN
| | - Yuko Wada
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Vanderbilt University Medical Center, Nashville, TN
| | - Lynn Hall
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Vanderbilt University Medical Center, Nashville, TN
| | - Joseph F Solus
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Vanderbilt University Medical Center, Nashville, TN
| | - Laura Short
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Vanderbilt University Medical Center, Nashville, TN
| | - Dan M Roden
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Vanderbilt University Medical Center, Nashville, TN; Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN
| | - Andrew M Glazer
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Vanderbilt University Medical Center, Nashville, TN; Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN.
| |
Collapse
|
32
|
Barbera N, Granados ST, Vanoye CG, Abramova TV, Kulbak D, Ahn SJ, George AL, Akpa BS, Levitan I. Cholesterol-induced suppression of Kir2 channels is mediated by decoupling at the inter-subunit interfaces. iScience 2022; 25:104329. [PMID: 35602957 PMCID: PMC9120057 DOI: 10.1016/j.isci.2022.104329] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 12/29/2022] Open
Abstract
Cholesterol is a major regulator of multiple types of ion channels. Although there is increasing information about cholesterol binding sites, the molecular mechanisms through which cholesterol binding alters channel function are virtually unknown. In this study, we used a combination of Martini coarse-grained simulations, a network theory-based analysis, and electrophysiology to determine the effect of cholesterol on the dynamic structure of the Kir2.2 channel. We found that increasing membrane cholesterol reduced the likelihood of contact between specific regions of the cytoplasmic and transmembrane domains of the channel, most prominently at the subunit-subunit interfaces of the cytosolic domains. This decrease in contact was mediated by pairwise interactions of specific residues and correlated to the stoichiometry of cholesterol binding events. The predictions of the model were tested by site-directed mutagenesis of two identified residues-V265 and H222-and high throughput electrophysiology.
Collapse
Affiliation(s)
- Nicolas Barbera
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60611, USA
| | - Sara T. Granados
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60611, USA
| | - Carlos Guillermo Vanoye
- Department of Pharmacology; Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tatiana V. Abramova
- Department of Pharmacology; Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Danielle Kulbak
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60611, USA
| | - Sang Joon Ahn
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60611, USA
| | - Alfred L. George
- Department of Pharmacology; Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Belinda S. Akpa
- Division of Biosciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
- Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Irena Levitan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60611, USA
| |
Collapse
|
33
|
Yun J, Jeong D, Xie Z, Lee S, Kim J, Surmeier DJ, Silverman RB, Kang S. Palladium-Catalyzed α-Arylation of Cyclic β-Dicarbonyl Compounds for the Synthesis of Ca V1.3 Inhibitors. ACS OMEGA 2022; 7:14252-14263. [PMID: 35559207 PMCID: PMC9089348 DOI: 10.1021/acsomega.2c00889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
Cyclic α-aryl β-dicarbonyl derivatives are important scaffolds in medicinal chemistry. Palladium-catalyzed coupling reactions of haloarenes were conducted with diverse five- to seven-membered cyclic β-dicarbonyl derivatives including barbiturate, pyrazolidine-3,5-dione, and 1,4-diazepane-5,7-dione. The coupling reactions of various para- or meta-substituted aryl halides occurred efficiently when Pd(t-Bu3P)2, Xphos, and Cs2CO3 were used under 1,4-dioxane reflux conditions. Although the couplings of ortho-substituted aryl halides with pyrazolidine-3,5-dione and 1,4-diazepane-5,7-dione were moderate, the coupling with barbiturate was limited. Using the optimized reaction conditions, we synthesized several 5-aryl barbiturates as new scaffolds of CaV1.3 Ca2+ channel inhibitors. Among the synthesized molecules, 14e was the most potent CaV1.3 inhibitor with an IC50 of 1.42 μM.
Collapse
Affiliation(s)
- Jisu Yun
- College
of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic
of Korea
| | - Dayeon Jeong
- College
of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic
of Korea
| | - Zhong Xie
- Department
of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Sol Lee
- College
of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic
of Korea
| | - Jiho Kim
- College
of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic
of Korea
| | - D. James Surmeier
- Department
of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Richard B. Silverman
- Department
of Chemistry, Chemistry of Life Processes Institute, Center for Developmental
Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
| | - Soosung Kang
- College
of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic
of Korea
| |
Collapse
|
34
|
Cócera-Ortega L, Wilders R, Kamps SC, Fabrizi B, Huber I, van der Made I, van den Bout A, de Vries DK, Gepstein L, Verkerk AO, Pinto YM, Tijsen AJ. shRNAs Targeting a Common KCNQ1 Variant Could Alleviate Long-QT1 Disease Severity by Inhibiting a Mutant Allele. Int J Mol Sci 2022; 23:ijms23074053. [PMID: 35409410 PMCID: PMC9000197 DOI: 10.3390/ijms23074053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 12/02/2022] Open
Abstract
Long-QT syndrome type 1 (LQT1) is caused by mutations in KCNQ1. Patients heterozygous for such a mutation co-assemble both mutant and wild-type KCNQ1-encoded subunits into tetrameric Kv7.1 potassium channels. Here, we investigated whether allele-specific inhibition of mutant KCNQ1 by targeting a common variant can shift the balance towards increased incorporation of the wild-type allele to alleviate the disease in human-induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs). We identified the single nucleotide polymorphisms (SNP) rs1057128 (G/A) in KCNQ1, with a heterozygosity of 27% in the European population. Next, we determined allele-specificity of short-hairpin RNAs (shRNAs) targeting either allele of this SNP in hiPSC-CMs that carry an LQT1 mutation. Our shRNAs downregulated 60% of the A allele and 40% of the G allele without affecting the non-targeted allele. Suppression of the mutant KCNQ1 allele by 60% decreased the occurrence of arrhythmic events in hiPSC-CMs measured by a voltage-sensitive reporter, while suppression of the wild-type allele increased the occurrence of arrhythmic events. Furthermore, computer simulations based on another LQT1 mutation revealed that 60% suppression of the mutant KCNQ1 allele shortens the prolonged action potential in an adult cardiomyocyte model. We conclude that allele-specific inhibition of a mutant KCNQ1 allele by targeting a common variant may alleviate the disease. This novel approach avoids the need to design shRNAs to target every single mutation and opens up the exciting possibility of treating multiple LQT1-causing mutations with only two shRNAs.
Collapse
Affiliation(s)
- Lucía Cócera-Ortega
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.C.-O.); (S.C.K.); (B.F.); (I.v.d.M.); (A.v.d.B.); (D.K.d.V.); (A.O.V.); (Y.M.P.)
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Selina C. Kamps
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.C.-O.); (S.C.K.); (B.F.); (I.v.d.M.); (A.v.d.B.); (D.K.d.V.); (A.O.V.); (Y.M.P.)
| | - Benedetta Fabrizi
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.C.-O.); (S.C.K.); (B.F.); (I.v.d.M.); (A.v.d.B.); (D.K.d.V.); (A.O.V.); (Y.M.P.)
| | - Irit Huber
- The Sohnis Family Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa 3109601, Israel; (I.H.); (L.G.)
| | - Ingeborg van der Made
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.C.-O.); (S.C.K.); (B.F.); (I.v.d.M.); (A.v.d.B.); (D.K.d.V.); (A.O.V.); (Y.M.P.)
| | - Anouk van den Bout
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.C.-O.); (S.C.K.); (B.F.); (I.v.d.M.); (A.v.d.B.); (D.K.d.V.); (A.O.V.); (Y.M.P.)
| | - Dylan K. de Vries
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.C.-O.); (S.C.K.); (B.F.); (I.v.d.M.); (A.v.d.B.); (D.K.d.V.); (A.O.V.); (Y.M.P.)
| | - Lior Gepstein
- The Sohnis Family Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa 3109601, Israel; (I.H.); (L.G.)
| | - Arie O. Verkerk
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.C.-O.); (S.C.K.); (B.F.); (I.v.d.M.); (A.v.d.B.); (D.K.d.V.); (A.O.V.); (Y.M.P.)
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Yigal M. Pinto
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.C.-O.); (S.C.K.); (B.F.); (I.v.d.M.); (A.v.d.B.); (D.K.d.V.); (A.O.V.); (Y.M.P.)
| | - Anke J. Tijsen
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.C.-O.); (S.C.K.); (B.F.); (I.v.d.M.); (A.v.d.B.); (D.K.d.V.); (A.O.V.); (Y.M.P.)
- Correspondence: ; Tel.: +31-205668544
| |
Collapse
|
35
|
Glazer AM, Davogustto G, Shaffer CM, Vanoye CG, Desai RR, Farber-Eger EH, Dikilitas O, Shang N, Pacheco JA, Yang T, Muhammad A, Mosley JD, Van Driest SL, Wells QS, Shaffer LL, Kalash OR, Wada Y, Bland S, Yoneda ZT, Mitchell DW, Kroncke BM, Kullo IJ, Jarvik GP, Gordon AS, Larson EB, Manolio TA, Mirshahi T, Luo JZ, Schaid D, Namjou B, Alsaied T, Singh R, Singhal A, Liu C, Weng C, Hripcsak G, Ralston JD, McNally EM, Chung WK, Carrell DS, Leppig KA, Hakonarson H, Sleiman P, Sohn S, Glessner J, Denny J, Wei WQ, George AL, Shoemaker MB, Roden DM. Arrhythmia Variant Associations and Reclassifications in the eMERGE-III Sequencing Study. Circulation 2022; 145:877-891. [PMID: 34930020 PMCID: PMC8940719 DOI: 10.1161/circulationaha.121.055562] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/09/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Sequencing Mendelian arrhythmia genes in individuals without an indication for arrhythmia genetic testing can identify carriers of pathogenic or likely pathogenic (P/LP) variants. However, the extent to which these variants are associated with clinically meaningful phenotypes before or after return of variant results is unclear. In addition, the majority of discovered variants are currently classified as variants of uncertain significance, limiting clinical actionability. METHODS The eMERGE-III study (Electronic Medical Records and Genomics Phase III) is a multicenter prospective cohort that included 21 846 participants without previous indication for cardiac genetic testing. Participants were sequenced for 109 Mendelian disease genes, including 10 linked to arrhythmia syndromes. Variant carriers were assessed with electronic health record-derived phenotypes and follow-up clinical examination. Selected variants of uncertain significance (n=50) were characterized in vitro with automated electrophysiology experiments in HEK293 cells. RESULTS As previously reported, 3.0% of participants had P/LP variants in the 109 genes. Herein, we report 120 participants (0.6%) with P/LP arrhythmia variants. Compared with noncarriers, arrhythmia P/LP carriers had a significantly higher burden of arrhythmia phenotypes in their electronic health records. Fifty-four participants had variant results returned. Nineteen of these 54 participants had inherited arrhythmia syndrome diagnoses (primarily long-QT syndrome), and 12 of these 19 diagnoses were made only after variant results were returned (0.05%). After in vitro functional evaluation of 50 variants of uncertain significance, we reclassified 11 variants: 3 to likely benign and 8 to P/LP. CONCLUSIONS Genome sequencing in a large population without indication for arrhythmia genetic testing identified phenotype-positive carriers of variants in congenital arrhythmia syndrome disease genes. As the genomes of large numbers of people are sequenced, the disease risk from rare variants in arrhythmia genes can be assessed by integrating genomic screening, electronic health record phenotypes, and in vitro functional studies. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier; NCT03394859.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ning Shang
- Columbia University Irving Medical Center, New York NY
| | | | - Tao Yang
- Vanderbilt University Medical Center, Nashville TN
| | | | | | | | | | | | | | - Yuko Wada
- Vanderbilt University Medical Center, Nashville TN
| | - Sarah Bland
- Vanderbilt University Medical Center, Nashville TN
| | | | | | | | | | - Gail P. Jarvik
- Departments of Medicine (Medical Genetics) and Genome Sciences, University of Washington School of Medicine, Seattle, WA
| | | | | | | | | | | | | | - Bahram Namjou
- Cincinnati Children’s Hospital Medical Center, Cincinnati OH
| | - Tarek Alsaied
- Cincinnati Children’s Hospital Medical Center, Cincinnati OH
| | | | | | - Cong Liu
- Columbia University Irving Medical Center, New York NY
| | - Chunhua Weng
- Columbia University Irving Medical Center, New York NY
| | | | - James D. Ralston
- Departments of Medicine (Medical Genetics) and Genome Sciences, University of Washington School of Medicine, Seattle, WA
| | | | | | | | | | | | | | | | | | | | | | - Wei-Qi Wei
- Vanderbilt University Medical Center, Nashville TN
| | | | | | - Dan M. Roden
- Vanderbilt University Medical Center, Nashville TN
| |
Collapse
|
36
|
Vanoye CG, Desai RR, Ji Z, Adusumilli S, Jairam N, Ghabra N, Joshi N, Fitch E, Helbig KL, McKnight D, Lindy AS, Zou F, Helbig I, Cooper EC, George AL. High-throughput evaluation of epilepsy-associated KCNQ2 variants reveals functional and pharmacological heterogeneity. JCI Insight 2022; 7:156314. [PMID: 35104249 PMCID: PMC8983144 DOI: 10.1172/jci.insight.156314] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hundreds of genetic variants in KCNQ2 encoding the voltage-gated potassium channel KV7.2 are associated with early onset epilepsy and/or developmental disability, but the functional consequences of most variants are unknown. Absent functional annotation for KCNQ2 variants hinders identification of individuals who may benefit from emerging precision therapies. We employed automated patch clamp recordings to assess at, to our knowledge, an unprecedented scale the functional and pharmacological properties of 79 missense and 2 inframe deletion KCNQ2 variants. Among the variants we studied were 18 known pathogenic variants, 24 mostly rare population variants, and 39 disease-associated variants with unclear functional effects. We analyzed electrophysiological data recorded from 9,480 cells. The functional properties of 18 known pathogenic variants largely matched previously published results and validated automated patch clamp for this purpose. Unlike rare population variants, most disease-associated KCNQ2 variants exhibited prominent loss-of-function with dominant-negative effects, providing strong evidence in support of pathogenicity. All variants responded to retigabine, although there were substantial differences in maximal responses. Our study demonstrated that dominant-negative loss-of-function is a common mechanism associated with missense KCNQ2 variants. Importantly, we observed genotype-dependent differences in the response of KCNQ2 variants to retigabine, a proposed precision therapy for KCNQ2 developmental and epileptic encephalopathy.
Collapse
Affiliation(s)
- Carlos G. Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Reshma R. Desai
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Zhigang Ji
- Departments of Neurology, Neuroscience, Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Sneha Adusumilli
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nirvani Jairam
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nora Ghabra
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nishtha Joshi
- Departments of Neurology, Neuroscience, Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Eryn Fitch
- The Epilepsy NeuroGenetics Initiative (ENGIN), and,Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Katherine L. Helbig
- The Epilepsy NeuroGenetics Initiative (ENGIN), and,Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | - Ingo Helbig
- The Epilepsy NeuroGenetics Initiative (ENGIN), and,Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Edward C. Cooper
- Departments of Neurology, Neuroscience, Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Alfred L. George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
37
|
Lei CL, Fabbri A, Whittaker DG, Clerx M, Windley MJ, Hill AP, Mirams GR, de Boer TP. A nonlinear and time-dependent leak current in the presence of calcium fluoride patch-clamp seal enhancer. Wellcome Open Res 2021; 5:152. [PMID: 34805549 PMCID: PMC8591515 DOI: 10.12688/wellcomeopenres.15968.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 11/20/2022] Open
Abstract
Automated patch-clamp platforms are widely used and vital tools in both academia and industry to enable high-throughput studies such as drug screening. A leak current to ground occurs whenever the seal between a pipette and cell (or internal solution and cell in high-throughput machines) is not perfectly insulated from the bath (extracellular) solution. Over 1 GΩ seal resistance between pipette and bath solutions is commonly used as a quality standard for manual patch work. With automated platforms it can be difficult to obtain such a high seal resistance between the intra- and extra-cellular solutions. One suggested method to alleviate this problem is using an F
− containing internal solution together with a Ca
2+ containing external solution — so that a CaF
2 crystal forms when the two solutions meet which ‘plugs the holes’ to enhance the seal resistance. However, we observed an unexpected nonlinear-in-voltage and time-dependent current using these solutions on an automated patch-clamp platform. We performed manual patch-clamp experiments with the automated patch-clamp solutions, but no biological cell, and observed the same nonlinear time-dependent leak current. The current could be completely removed by washing out F
− ions to leave a conventional leak current that was linear and not time-dependent. We therefore conclude fluoride ions interacting with the CaF
2 crystal are the origin of the nonlinear time-dependent leak current. The consequences of such a nonlinear and time-dependent leak current polluting measurements should be considered carefully if it cannot be isolated and subtracted.
Collapse
Affiliation(s)
- Chon Lok Lei
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China.,Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau, China.,Department of Computer Science, University of Oxford, Oxford, Oxfordshire, OX1 3QD, UK
| | - Alan Fabbri
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Centre Utrecht, Utrecht, 3584 CX, The Netherlands
| | - Dominic G Whittaker
- Centre for Mathematical Medicine & Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, Nottinghamshire, NG7 2RD, UK
| | - Michael Clerx
- Department of Computer Science, University of Oxford, Oxford, Oxfordshire, OX1 3QD, UK
| | - Monique J Windley
- Molecular Cardiology & Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, Darlinghurst, New South Wales, 2010, Australia
| | - Adam P Hill
- Molecular Cardiology & Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, Darlinghurst, New South Wales, 2010, Australia
| | - Gary R Mirams
- Centre for Mathematical Medicine & Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, Nottinghamshire, NG7 2RD, UK
| | - Teun P de Boer
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Centre Utrecht, Utrecht, 3584 CX, The Netherlands
| |
Collapse
|
38
|
Ion channel-related hereditary hearing loss: a narrative review. JOURNAL OF BIO-X RESEARCH 2021. [DOI: 10.1097/jbr.0000000000000108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
39
|
Bains S, Dotzler SM, Krijger C, Giudicessi JR, Ye D, Bikker H, Rohatgi RK, Tester DJ, Bos JM, Wilde AAM, Ackerman MJ. A phenotype-enhanced variant classification framework to decrease the burden of missense variants of uncertain significance in type 1 long QT syndrome. Heart Rhythm 2021; 19:435-442. [PMID: 34798354 DOI: 10.1016/j.hrthm.2021.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Pathogenic/likely pathogenic (P/LP) variants in the KCNQ1-encoded Kv7.1 potassium channel cause type 1 long QT syndrome (LQT1). Despite the revamped 2015 American College of Medical Genetics (ACMG) variant interpretation guidelines, the burden of KCNQ1 variants of uncertain significance (VUS) in patients with LQTS remains ∼30%. OBJECTIVE The purpose of this study was to determine whether a phenotype-enhanced (PE) variant classification approach could reduce the VUS burden in LQTS genetic testing. METHODS Retrospective analysis was performed on 79 KCNQ1 missense variants in 356 patients from Mayo Clinic and an independent cohort of 42 variants in 225 patients from Amsterdam University Medical Center (UMC). Each variant was classified initially using the ACMG guidelines and then readjudicated using a PE-ACMG framework that incorporated the LQTS clinical diagnostic Schwartz score plus 4 "LQT1-defining features": broad-based/slow upstroke T waves, syncope/seizure during exertion, swimming-associated events, and a maladaptive LQT1 treadmill stress test. RESULTS According to the ACMG guidelines, Mayo Clinic variants were classified as follows: 17 of 79 P variants (22%), 34 of 79 LP variants (43%), and 28 of 79 VUS (35%). Similarly, for Amsterdam UMC, the variant distribution was 9 of 42 P variants (22%), 14 of 42 LP variants (33%), and 19 of 42 variants VUS (45%). After PE-ACMG readjudication, the total VUS burden decreased significantly from 28 (35%) to 13 (16%) (P = .0007) for Mayo Clinic and from 19 (45%) to 12 (29%) (P = .02) for Amsterdam UMC. CONCLUSION Phenotype-guided variant adjudication decreased significantly the VUS burden of LQT1 case-derived KCNQ1 missense variants in 2 independent cohorts. This study demonstrates the value of incorporating LQT1-specific phenotype/clinical data to aid in the interpretation of KCNQ1 missense variants identified during genetic testing for LQTS.
Collapse
Affiliation(s)
- Sahej Bains
- Medical Scientist Training Program, Mayo Clinic, Rochester, Minnesota; Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Steven M Dotzler
- Medical Scientist Training Program, Mayo Clinic, Rochester, Minnesota; Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Christian Krijger
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - John R Giudicessi
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, Minnesota
| | - Dan Ye
- Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Hennie Bikker
- Department of Human Genetics, University of Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Ram K Rohatgi
- Department of Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), Mayo Clinic, Rochester, Minnesota
| | - David J Tester
- Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota; Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, Minnesota; Department of Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), Mayo Clinic, Rochester, Minnesota
| | - J Martijn Bos
- Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota; Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, Minnesota; Department of Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), Mayo Clinic, Rochester, Minnesota
| | - Arthur A M Wilde
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cardiology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael J Ackerman
- Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota; Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, Minnesota; Department of Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
40
|
Kacher YG, Karlova MG, Glukhov GS, Zhang H, Zaklyazminskaya EV, Loussouarn G, Sokolova OS. The Integrative Approach to Study of the Structure and Functions of Cardiac Voltage-Dependent Ion Channels. CRYSTALLOGR REP+ 2021. [DOI: 10.1134/s1063774521050072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Obergrussberger A, Rinke-Weiß I, Goetze TA, Rapedius M, Brinkwirth N, Becker N, Rotordam MG, Hutchison L, Madau P, Pau D, Dalrymple D, Braun N, Friis S, Pless SA, Fertig N. The suitability of high throughput automated patch clamp for physiological applications. J Physiol 2021; 600:277-297. [PMID: 34555195 DOI: 10.1113/jp282107] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/16/2021] [Indexed: 01/18/2023] Open
Abstract
Although automated patch clamp (APC) devices have been around for many years and have become an integral part of many aspects of drug discovery, high throughput instruments with gigaohm seal data quality are relatively new. Experiments where a large number of compounds are screened against ion channels are ideally suited to high throughput APC, particularly when the amount of compound available is low. Here we evaluate different APC approaches using a variety of ion channels and screening settings. We have performed a screen of 1920 compounds on GluN1/GluN2A NMDA receptors for negative allosteric modulation using both the SyncroPatch 384 and FLIPR. Additionally, we tested the effect of 36 arthropod venoms on NaV 1.9 using a single 384-well plate on the SyncroPatch 384. As an example for mutant screening, a range of acid-sensing ion channel variants were tested and the success rate increased through fluorescence-activated cell sorting (FACS) prior to APC experiments. Gigaohm seal data quality makes the 384-format accessible to recording of primary and stem cell-derived cells on the SyncroPatch 384. We show recordings in voltage and current clamp modes of stem cell-derived cardiomyocytes. In addition, the option of intracellular solution exchange enabled investigations into the effects of intracellular Ca2+ and cAMP on TRPC5 and HCN2 currents, respectively. Together, these data highlight the broad applicability and versatility of APC platforms and also outlines some limitations of the approach. KEY POINTS: High throughput automated patch clamp (APC) can be used for a variety of applications involving ion channels. Lower false positive rates were achieved using automated patch clamp versus a fluorometric imaging plate reader (FLIPR) in a high throughput compound screen against NMDA receptors. Genetic variants and mutations can be screened on a single 384-well plate to reduce variability of experimental parameters. Intracellular solution can be perfused to investigate effects of ions and second messenger systems without the need for excised patches. Primary cells and stem cell-derived cells can be used on high throughput APC with reasonable success rates for cell capture, voltage clamp measurements and action potential recordings in current clamp mode.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Nina Braun
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | | | - Stephan A Pless
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | | |
Collapse
|
42
|
Dittmann S, Kayser A, Schulze-Bahr E. Long, longer, long QT syndrome: what makes the difference? Cardiovasc Res 2021; 117:637-639. [PMID: 33616670 DOI: 10.1093/cvr/cvab025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sven Dittmann
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| | - Anne Kayser
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
43
|
Webster G, Puckelwartz MJ, Pesce LL, Dellefave-Castillo LM, Vanoye CG, Potet F, Page P, Kearns SD, Pottinger T, White S, Arunkumar P, Olson R, Kofman A, Ibrahim N, Ing A, Brew C, Yap KL, Kadri S, George AL, McNally EM. Genomic Autopsy of Sudden Deaths in Young Individuals. JAMA Cardiol 2021; 6:1247-1256. [PMID: 34379075 DOI: 10.1001/jamacardio.2021.2789] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Postmortem genetic testing of young individuals with sudden death has previously identified pathogenic gene variants. However, prior studies primarily considered highly penetrant monogenic variants, often without detailed decedent and family clinical information. Objective To assess genotype and phenotype risk in a diverse cohort of young decedents with sudden death and their families. Design, Setting, and Participants Pathological and whole-genome sequence analysis was conducted in a cohort referred from a national network of medical examiners. Cases were accrued prospectively from May 2015 to March 2019 across 24 US states. Analysis began September 2016 and ended November 2020. Exposures Evaluation of autopsy and clinical data integrated with whole-genome sequence data and family member evaluation. Results A total of 103 decedents (mean [SD] age at death, 23.7 [11.9] years; age range, 1-44 years), their surviving family members, and 140 sex- and genetic ancestry-matched controls were analyzed. Among 103 decedents, autopsy and clinical data review categorized 36 decedents with postmortem diagnoses, 23 decedents with findings of uncertain significance, and 44 with sudden unexplained death. Pathogenic/likely pathogenic (P/LP) genetic variants in arrhythmia or cardiomyopathy genes were identified in 13 decedents (12.6%). A multivariable analysis including decedent phenotype, ancestry, and sex demonstrated that younger decedents had a higher burden of P/LP variants and select variants of uncertain significance (effect size, -1.64; P = .001). These select, curated variants of uncertain significance in cardiac genes were more common in decedents than controls (83 of 103 decedents [86%] vs 100 of 140 controls [71%]; P = .005), and decedents harbored more rare cardiac variants than controls (2.3 variants per individual vs 1.8 in controls; P = .006). Genetic testing of 31 parent-decedent trios and 14 parent-decedent dyads revealed 8 transmitted P/LP variants and 1 de novo P/LP variant. Incomplete penetrance was present in 6 of 8 parents who transmitted a P/LP variant. Conclusions and Relevance Whole-genome sequencing effectively identified P/LP variants in cases of sudden death in young individuals, implicating both arrhythmia and cardiomyopathy genes. Genomic analyses and familial phenotype association suggest potentially additive, oligogenic risk mechanisms for sudden death in this cohort.
Collapse
Affiliation(s)
- Gregory Webster
- Division of Cardiology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Megan J Puckelwartz
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Center for Genetic Medicine, Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lorenzo L Pesce
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Center for Genetic Medicine, Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lisa M Dellefave-Castillo
- Center for Genetic Medicine, Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Carlos G Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Franck Potet
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Patrick Page
- Center for Genetic Medicine, Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Samuel D Kearns
- Center for Genetic Medicine, Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Tess Pottinger
- Center for Genetic Medicine, Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Steven White
- Cook County Medical Examiner's Office, Chicago, Illinois
| | | | - Rachael Olson
- Division of Cardiology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Amber Kofman
- Division of Cardiology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Nora Ibrahim
- Center for Genetic Medicine, Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Alexander Ing
- Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Casey Brew
- Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Kai Lee Yap
- Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Sabah Kadri
- Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Elizabeth M McNally
- Center for Genetic Medicine, Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Section Editor, JAMA Cardiology
| |
Collapse
|
44
|
Montnach J, Baró I, Charpentier F, De Waard M, Loussouarn G. Modelling sudden cardiac death risks factors in patients with coronavirus disease of 2019: the hydroxychloroquine and azithromycin case. Europace 2021; 23:1124-1133. [PMID: 34009333 PMCID: PMC8135857 DOI: 10.1093/europace/euab043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/16/2021] [Indexed: 12/23/2022] Open
Abstract
AIMS Coronavirus disease of 2019 (COVID-19) has rapidly become a worldwide pandemic. Many clinical trials have been initiated to fight the disease. Among those, hydroxychloroquine and azithromycin had initially been suggested to improve clinical outcomes. Despite any demonstrated beneficial effects, they are still in use in some countries but have been reported to prolong the QT interval and induce life-threatening arrhythmia. Since a significant proportion of the world population may be treated with such COVID-19 therapies, evaluation of the arrhythmogenic risk of any candidate drug is needed. METHODS AND RESULTS Using the O'Hara-Rudy computer model of human ventricular wedge, we evaluate the arrhythmogenic potential of clinical factors that can further alter repolarization in COVID-19 patients in addition to hydroxychloroquine (HCQ) and azithromycin (AZM) such as tachycardia, hypokalaemia, and subclinical to mild long QT syndrome. Hydroxychloroquine and AZM drugs have little impact on QT duration and do not induce any substrate prone to arrhythmia in COVID-19 patients with normal cardiac repolarization reserve. Nevertheless, in every tested condition in which this reserve is reduced, the model predicts larger electrocardiogram impairments, as with dofetilide. In subclinical conditions, the model suggests that mexiletine limits the deleterious effects of AZM and HCQ. CONCLUSION By studying the HCQ and AZM co-administration case, we show that the easy-to-use O'Hara-Rudy model can be applied to assess the QT-prolongation potential of off-label drugs, beyond HCQ and AZM, in different conditions representative of COVID-19 patients and to evaluate the potential impact of additional drug used to limit the arrhythmogenic risk.
Collapse
Affiliation(s)
- Jérôme Montnach
- Université de Nantes, CNRS, INSERM, l’institut du thorax, Nantes F-44000, France
| | - Isabelle Baró
- Université de Nantes, CNRS, INSERM, l’institut du thorax, Nantes F-44000, France
| | - Flavien Charpentier
- Université de Nantes, CNRS, INSERM, l’institut du thorax, Nantes F-44000, France
| | - Michel De Waard
- Université de Nantes, CNRS, INSERM, l’institut du thorax, Nantes F-44000, France
- Laboratory of Excellence, Ion Channels, Science & Therapeutics, Valbonne F-06560, France
| | - Gildas Loussouarn
- Université de Nantes, CNRS, INSERM, l’institut du thorax, Nantes F-44000, France
| |
Collapse
|
45
|
Gnecchi M, Sala L, Schwartz PJ. Precision Medicine and cardiac channelopathies: when dreams meet reality. Eur Heart J 2021; 42:1661-1675. [PMID: 33686390 PMCID: PMC8088342 DOI: 10.1093/eurheartj/ehab007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/10/2020] [Accepted: 01/12/2021] [Indexed: 12/17/2022] Open
Abstract
Precision Medicine (PM) is an innovative approach that, by relying on large populations’ datasets, patients’ genetics and characteristics, and advanced technologies, aims at improving risk stratification and at identifying patient-specific management through targeted diagnostic and therapeutic strategies. Cardiac channelopathies are being progressively involved in the evolution brought by PM and some of them are benefiting from these novel approaches, especially the long QT syndrome. Here, we have explored the main layers that should be considered when developing a PM approach for cardiac channelopathies, with a focus on modern in vitro strategies based on patient-specific human-induced pluripotent stem cells and on in silico models. PM is where scientists and clinicians must meet and integrate their expertise to improve medical care in an innovative way but without losing common sense. We have indeed tried to provide the cardiologist’s point of view by comparing state-of-the-art techniques and approaches, including revolutionary discoveries, to current practice. This point matters because the new approaches may, or may not, exceed the efficacy and safety of established therapies. Thus, our own eagerness to implement the most recent translational strategies for cardiac channelopathies must be tempered by an objective assessment to verify whether the PM approaches are indeed making a difference for the patients. We believe that PM may shape the diagnosis and treatment of cardiac channelopathies for years to come. Nonetheless, its potential superiority over standard therapies should be constantly monitored and assessed before translating intellectually rewarding new discoveries into clinical practice.
Collapse
Affiliation(s)
- Massimiliano Gnecchi
- Department of Cardiothoracic and Vascular Sciences-Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy.,Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy.,Department of Medicine, University of Cape Town, J-Floor, Old Main Building, Groote Schuur Hospital, Observatory, 7925 Cape Town, South Africa
| | - Luca Sala
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Via Pier Lombardo 22 - 20135 Milan, Italy
| | - Peter J Schwartz
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Via Pier Lombardo 22 - 20135 Milan, Italy
| |
Collapse
|
46
|
Janin A, Januel L, Cazeneuve C, Delinière A, Chevalier P, Millat G. Molecular Diagnosis of Inherited Cardiac Diseases in the Era of Next-Generation Sequencing: A Single Center's Experience Over 5 Years. Mol Diagn Ther 2021; 25:373-385. [PMID: 33954932 DOI: 10.1007/s40291-021-00530-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Molecular diagnosis in inherited cardiac diseases is challenging because of the significant genetic and clinical heterogeneity. We present a detailed molecular investigation of a cohort of 4185 patients with referrals for inherited cardiac diseases. METHODS Patients suffering from cardiomyopathies (3235 probands), arrhythmia syndromes (760 probands), or unexplained sudden cardiac arrest (190 cases) were analyzed using a next-generation sequencing (NGS) workflow based on a panel of 105 genes involved in sudden cardiac death. RESULTS (Likely) pathogenic variations were identified for approximately 30% of the cohort. Pathogenic copy number variations (CNVs) were detected in approximately 3.1% of patients for whom a (likely) pathogenic variation were identified. A (likely) pathogenic variation was also detected for 21.1% of patients who died from sudden cardiac death. Unexpected variants, including incidental findings, were present for 28 cases. Pathogenic variations were mainly observed in genes with definitive evidence of disease causation. CONCLUSIONS Our study, which comprises over than 4000 probands, is one of most important cohorts reported in inherited cardiac diseases. The global mutation detection rate would be significantly increased by determining the putative pathogenicity of the large number of variants of uncertain significance. Identification of "unexpected" variants also showed the clinical utility of genetic testing in inherited cardiac diseases as they can redirect clinical management and medical resources toward a meaningful precision medicine. In cases with negative result, a WGS approach could be considered, but would probably have a limited impact on mutation detection rate as (likely) pathogenic variations were essentially clustered in genes with strong evidence of disease causation.
Collapse
Affiliation(s)
- Alexandre Janin
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron Cedex, 69677, Lyon, France.,Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France.,Université de Lyon, 69003, Lyon, France
| | - Louis Januel
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron Cedex, 69677, Lyon, France
| | - Cécile Cazeneuve
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron Cedex, 69677, Lyon, France
| | - Antoine Delinière
- Université de Lyon, 69003, Lyon, France.,Hôpital Cardiologique Louis Pradel, Service de Rythmologie, Lyon, France
| | - Philippe Chevalier
- Université de Lyon, 69003, Lyon, France.,Hôpital Cardiologique Louis Pradel, Service de Rythmologie, Lyon, France
| | - Gilles Millat
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron Cedex, 69677, Lyon, France. .,Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France. .,Université de Lyon, 69003, Lyon, France.
| |
Collapse
|
47
|
Functional evaluation of human ion channel variants using automated electrophysiology. Methods Enzymol 2021; 654:383-405. [PMID: 34120723 DOI: 10.1016/bs.mie.2021.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Patch clamp recording enabled a revolution in cellular electrophysiology, and is useful for evaluating the functional consequences of ion channel gene mutations or variants associated with human disorders called channelopathies. However, due to massive growth of genetic testing in medical practice and research, the number of known ion channel variants has exploded into the thousands. Fortunately, automated methods for performing patch clamp recording have emerged as important tools to address the explosion in ion channel variants. In this chapter, we present our approach to harnessing automated electrophysiology to study a human voltage-gated potassium channel gene (KCNQ1), which harbors hundreds of mutations associated with genetic disorders of heart rhythm including the congenital long-QT syndrome. We include protocols for performing high efficiency electroporation of heterologous cells with recombinant KCNQ1 plasmid DNA and for automated planar patch recording including data analysis. These methods can be adapted for studying other voltage-gated ion channels.
Collapse
|
48
|
Ng CA, Farr J, Young P, Windley MJ, Perry MD, Hill AP, Vandenberg JI. Heterozygous KCNH2 variant phenotyping using Flp-In HEK293 and high-throughput automated patch clamp electrophysiology. Biol Methods Protoc 2021; 6:bpab003. [PMID: 33884304 PMCID: PMC8046900 DOI: 10.1093/biomethods/bpab003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 11/13/2022] Open
Abstract
KCNH2 is one of the 59 medically actionable genes recommended by the American College of Medical Genetics for reporting of incidental findings from clinical genomic sequencing. However, half of the reported KCNH2 variants in the ClinVar database are classified as variants of uncertain significance. In the absence of strong clinical phenotypes, there is a need for functional phenotyping to help decipher the significance of variants identified incidentally. Here, we report detailed methods for assessing the molecular phenotype of any KCNH2 missense variant. The key components of the assay include quick and cost-effective generation of a bi-cistronic vector to co-express Wild-type (WT) and any KCNH2 variant allele, generation of stable Flp-In HEK293 cell lines and high-throughput automated patch clamp electrophysiology analysis of channel function. Stable cell lines take 3-4 weeks to produce and can be generated in bulk, which will then allow up to 30 variants to be phenotyped per week after 48 h of channel expression. This high-throughput functional genomics assay will enable a much more rapid assessment of the extent of loss of function of any KCNH2 variant.
Collapse
Affiliation(s)
- Chai-Ann Ng
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia
- St Vincent’s Clinical School, UNSW Sydney, Darlinghurst, New South Wales 2010, Australia
| | - Jessica Farr
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia
- School of Computer Science and Engineering, UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - Paul Young
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia
| | - Monique J Windley
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia
| | - Matthew D Perry
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia
- St Vincent’s Clinical School, UNSW Sydney, Darlinghurst, New South Wales 2010, Australia
| | - Adam P Hill
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia
- St Vincent’s Clinical School, UNSW Sydney, Darlinghurst, New South Wales 2010, Australia
| | - Jamie I Vandenberg
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia
- St Vincent’s Clinical School, UNSW Sydney, Darlinghurst, New South Wales 2010, Australia
| |
Collapse
|
49
|
Abstract
The voltage-gated sodium channel α-subunit genes comprise a highly conserved gene family. Mutations of three of these genes, SCN1A, SCN2A and SCN8A, are responsible for a significant burden of neurological disease. Recent progress in identification and functional characterization of patient variants is generating new insights and novel approaches to therapy for these devastating disorders. Here we review the basic elements of sodium channel function that are used to characterize patient variants. We summarize a large body of work using global and conditional mouse mutants to characterize the in vivo roles of these channels. We provide an overview of the neurological disorders associated with mutations of the human genes and examples of the effects of patient mutations on channel function. Finally, we highlight therapeutic interventions that are emerging from new insights into mechanisms of sodium channelopathies.
Collapse
|
50
|
Huang H, Chamness LM, Vanoye CG, Kuenze G, Meiler J, George AL, Schlebach JP, Sanders CR. Disease-linked supertrafficking of a potassium channel. J Biol Chem 2021; 296:100423. [PMID: 33600800 PMCID: PMC7988323 DOI: 10.1016/j.jbc.2021.100423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/21/2022] Open
Abstract
Gain-of-function (GOF) mutations in the voltage-gated potassium channel subfamily Q member 1 (KCNQ1) can induce cardiac arrhythmia. In this study, it was tested whether any of the known human GOF disease mutations in KCNQ1 act by increasing the amount of KCNQ1 that reaches the cell surface-"supertrafficking." Seven of the 15 GOF mutants tested were seen to surface traffic more efficiently than the WT channel. Among these, we found that the levels of R231C KCNQ1 in the plasma membrane were fivefold higher than the WT channel. This was shown to arise from the combined effects of enhanced efficiency of translocon-mediated membrane integration of the S4 voltage-sensor helix and from enhanced post-translational folding/trafficking related to the energetic linkage of C231 with the V129 and F166 side chains. Whole-cell electrophysiology recordings confirmed that R231C KCNQ1 in complex with the voltage-gated potassium channel-regulatory subfamily E member 1 not only exhibited constitutive conductance but also revealed that the single-channel activity of this mutant is only 20% that of WT. The GOF phenotype associated with R231C therefore reflects the effects of supertrafficking and constitutive channel activation, which together offset reduced channel activity. These investigations show that membrane protein supertrafficking can contribute to human disease.
Collapse
Affiliation(s)
- Hui Huang
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Laura M Chamness
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Carlos G Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Georg Kuenze
- Departments of Chemistry and Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Department of Bioinformatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Departments of Chemistry and Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Department of Bioinformatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|