1
|
Topriceanu CC, Chaturvedi N, Mathur R, Garfield V. Validity of European-centric cardiometabolic polygenic scores in multi-ancestry populations. Eur J Hum Genet 2024; 32:697-707. [PMID: 38182743 PMCID: PMC11153583 DOI: 10.1038/s41431-023-01517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/29/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024] Open
Abstract
Polygenic scores (PGSs) provide an individual level estimate of genetic risk for any given disease. Since most PGSs have been derived from genome wide association studies (GWASs) conducted in populations of White European ancestry, their validity in other ancestry groups remains unconfirmed. This is especially relevant for cardiometabolic diseases which are known to disproportionately affect people of non-European ancestry. Thus, we aimed to evaluate the performance of PGSs for glycaemic traits (glycated haemoglobin, and type 1 and type 2 diabetes mellitus), cardiometabolic risk factors (body mass index, hypertension, high- and low-density lipoproteins, and total cholesterol and triglycerides) and cardiovascular diseases (including stroke and coronary artery disease) in people of White European, South Asian, and African Caribbean ethnicity in the UK Biobank. Whilst PGSs incorporated some GWAS data from multi-ethnic populations, the vast majority originated from White Europeans. For most outcomes, PGSs derived mostly from European populations had an overall better performance in White Europeans compared to South Asians and African Caribbeans. Thus, multi-ancestry GWAS data are needed to derive ancestry stratified PGSs to tackle health inequalities.
Collapse
Affiliation(s)
- Constantin-Cristian Topriceanu
- Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK.
- MRC Unit for Lifelong Health and Ageing, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK.
| | - Nish Chaturvedi
- Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
- MRC Unit for Lifelong Health and Ageing, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK
| | - Rohini Mathur
- Centre for Primary Care, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Victoria Garfield
- Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
- MRC Unit for Lifelong Health and Ageing, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK
| |
Collapse
|
2
|
Smith JL, Tcheandjieu C, Dikilitas O, Iyer K, Miyazawa K, Hilliard A, Lynch J, Rotter JI, Chen YDI, Sheu WHH, Chang KM, Kanoni S, Tsao PS, Ito K, Kosel M, Clarke SL, Schaid DJ, Assimes TL, Kullo IJ. Multi-Ancestry Polygenic Risk Score for Coronary Heart Disease Based on an Ancestrally Diverse Genome-Wide Association Study and Population-Specific Optimization. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004272. [PMID: 38380516 PMCID: PMC11372723 DOI: 10.1161/circgen.123.004272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Predictive performance of polygenic risk scores (PRS) varies across populations. To facilitate equitable clinical use, we developed PRS for coronary heart disease (CHD; PRSCHD) for 5 genetic ancestry groups. METHODS We derived ancestry-specific and multi-ancestry PRSCHD based on pruning and thresholding (PRSPT) and ancestry-based continuous shrinkage priors (PRSCSx) applied to summary statistics from the largest multi-ancestry genome-wide association study meta-analysis for CHD to date, including 1.1 million participants from 5 major genetic ancestry groups. Following training and optimization in the Million Veteran Program, we evaluated the best-performing PRSCHD in 176,988 individuals across 9 diverse cohorts. RESULTS Multi-ancestry PRSPT and PRSCSx outperformed ancestry-specific PRSPT and PRSCSx across a range of tuning values. Two best-performing multi-ancestry PRSCHD (ie, PRSPTmult and PRSCSxmult) and 1 ancestry-specific (PRSCSxEUR) were taken forward for validation. PRSPTmult demonstrated the strongest association with CHD in individuals of South Asian ancestry and European ancestry (odds ratio per 1 SD [95% CI, 2.75 [2.41-3.14], 1.65 [1.59-1.72]), followed by East Asian ancestry (1.56 [1.50-1.61]), Hispanic/Latino ancestry (1.38 [1.24-1.54]), and African ancestry (1.16 [1.11-1.21]). PRSCSxmult showed the strongest associations in South Asian ancestry (2.67 [2.38-3.00]) and European ancestry (1.65 [1.59-1.71]), lower in East Asian ancestry (1.59 [1.54-1.64]), Hispanic/Latino ancestry (1.51 [1.35-1.69]), and the lowest in African ancestry (1.20 [1.15-1.26]). CONCLUSIONS The use of summary statistics from a large multi-ancestry genome-wide meta-analysis improved the performance of PRSCHD in most ancestry groups compared with single-ancestry methods. Despite the use of one of the largest and most diverse sets of training and validation cohorts to date, improvement of predictive performance was limited in African ancestry. This highlights the need for larger genome-wide association study datasets of underrepresented populations to enhance the performance of PRSCHD.
Collapse
Affiliation(s)
- Johanna L Smith
- Department of Cardiovascular Medicine (J.L.S., O.D., I.J.K.), Mayo Clinic, Rochester, MN
| | - Catherine Tcheandjieu
- Department of Epidemiology and Biostatistics, University of California San Francisco (C.T.)
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institute, San Francisco, CA (C.T.)
- VA Palo Alto Health Care System (C.T., A.H., P.S.T., S.L.C.)
| | - Ozan Dikilitas
- Department of Cardiovascular Medicine (J.L.S., O.D., I.J.K.), Mayo Clinic, Rochester, MN
| | - Kruthika Iyer
- Stanford University School of Medicine, Palo Alto, CA (K. Iyer, A.H.)
| | - Kazuo Miyazawa
- Riken Center for Integrative Medical Sciences, Yokohama City, Japan (K.M., K. Ito)
| | - Austin Hilliard
- VA Palo Alto Health Care System (C.T., A.H., P.S.T., S.L.C.)
- Stanford University School of Medicine, Palo Alto, CA (K. Iyer, A.H.)
| | | | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA (J.I.R., Y.-D.I.C.)
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA (J.I.R., Y.-D.I.C.)
| | - Wayne Huey-Herng Sheu
- Institute of Molecular and Genomic Medicine, National Health Research Institute (W.H.-H.S.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei Veterans General Hospital (W.H.-H.S.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taiwan (W.H.-H.S.)
| | - Kyong-Mi Chang
- Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA (K.-M.C.)
| | - Stavroula Kanoni
- Queen Mary University of London, Cambridge, United Kingdom (S.K.)
| | - Philip S Tsao
- VA Palo Alto Health Care System (C.T., A.H., P.S.T., S.L.C.)
- Stanford University, Stanford, CA (P.S.T., S.L.C., T.L.A.)
| | - Kaoru Ito
- Riken Center for Integrative Medical Sciences, Yokohama City, Japan (K.M., K. Ito)
| | - Matthew Kosel
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN (M.K., D.J.S.)
| | - Shoa L Clarke
- VA Palo Alto Health Care System (C.T., A.H., P.S.T., S.L.C.)
- Stanford University, Stanford, CA (P.S.T., S.L.C., T.L.A.)
| | - Daniel J Schaid
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN (M.K., D.J.S.)
| | | | - Iftikhar J Kullo
- Department of Cardiovascular Medicine (J.L.S., O.D., I.J.K.), Mayo Clinic, Rochester, MN
| |
Collapse
|
3
|
Zhang T, Zhou G, Klei L, Liu P, Chouldechova A, Zhao H, Roeder K, G'Sell M, Devlin B. Evaluating and improving health equity and fairness of polygenic scores. HGG ADVANCES 2024; 5:100280. [PMID: 38402414 PMCID: PMC10937319 DOI: 10.1016/j.xhgg.2024.100280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024] Open
Abstract
Polygenic scores (PGSs) are quantitative metrics for predicting phenotypic values, such as human height or disease status. Some PGS methods require only summary statistics of a relevant genome-wide association study (GWAS) for their score. One such method is Lassosum, which inherits the model selection advantages of Lasso to select a meaningful subset of the GWAS single-nucleotide polymorphisms as predictors from their association statistics. However, even efficient scores like Lassosum, when derived from European-based GWASs, are poor predictors of phenotype for subjects of non-European ancestry; that is, they have limited portability to other ancestries. To increase the portability of Lassosum, when GWAS information and estimates of linkage disequilibrium are available for both ancestries, we propose Joint-Lassosum (JLS). In the simulation settings we explore, JLS provides more accurate PGSs compared to other methods, especially when measured in terms of fairness. In analyses of UK Biobank data, JLS was computationally more efficient but slightly less accurate than a Bayesian comparator, SDPRX. Like all PGS methods, JLS requires selection of predictors, which are determined by data-driven tuning parameters. We describe a new approach to selecting tuning parameters and note its relevance for model selection for any PGS. We also draw connections to the literature on algorithmic fairness and discuss how JLS can help mitigate fairness-related harms that might result from the use of PGSs in clinical settings. While no PGS method is likely to be universally portable, due to the diversity of human populations and unequal information content of GWASs for different ancestries, JLS is an effective approach for enhancing portability and reducing predictive bias.
Collapse
Affiliation(s)
- Tianyu Zhang
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Geyu Zhou
- Department of Biostatistics, Yale University, New Haven, CT 06511, USA
| | - Lambertus Klei
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Peng Liu
- Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Alexandra Chouldechova
- Microsoft Research NYC, New York, NY 10012, USA; Heinz College of Information Systems and Public Policy, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale University, New Haven, CT 06511, USA
| | - Kathryn Roeder
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Max G'Sell
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
4
|
Beattie JM, Castiello T, Jaarsma T. The Importance of Cultural Awareness in the Management of Heart Failure: A Narrative Review. Vasc Health Risk Manag 2024; 20:109-123. [PMID: 38495057 PMCID: PMC10944309 DOI: 10.2147/vhrm.s392636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
Heart failure is a commonly encountered clinical syndrome arising from a range of etiologic cardiovascular diseases and manifests in a phenotypic spectrum of varying degrees of systolic and diastolic ventricular dysfunction. Those affected by this life-limiting illness are subject to an array of burdensome symptoms, poor quality of life, prognostic uncertainty, and a relatively onerous and increasingly complex treatment regimen. This condition occurs in epidemic proportions worldwide, and given the demographic trend in societal ageing, the prevalence of heart failure is only likely to increase. The marked upturn in international migration has generated other demographic changes in recent years, and it is evident that we are living and working in ever more ethnically and culturally diverse communities. Professionals treating those with heart failure are now dealing with a much more culturally disparate clinical cohort. Given that the heart failure disease trajectory is unique to each individual, these clinicians need to ensure that their proposed treatment options and responses to the inevitable crises intrinsic to this condition are in keeping with the culturally determined values, preferences, and worldviews of these patients and their families. In this narrative review, we describe the importance of cultural awareness across a range of themes relevant to heart failure management and emphasize the centrality of cultural competence as the basis of appropriate care provision.
Collapse
Affiliation(s)
- James M Beattie
- School of Cardiovascular Medicine and Sciences, King’s College London, London, UK
- Department of Palliative Care and Rehabilitation, Cicely Saunders Institute, King’s College London, London, UK
| | - Teresa Castiello
- Department of Cardiology, Croydon University Hospital, London, UK
- Department of Cardiovascular Imaging, King’s College London, London, UK
| | - Tiny Jaarsma
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Department of Nursing Science, Julius Center, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
5
|
Palmisano BT, Knowles JW. Another Use for Polygenic Risk Scores: Improving Risk Prediction for Heterozygous Familial Hypercholesterolemia. JACC. ADVANCES 2023; 2:100663. [PMID: 38938727 PMCID: PMC11198439 DOI: 10.1016/j.jacadv.2023.100663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Affiliation(s)
- Brian T. Palmisano
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Joshua W. Knowles
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
- Diabetes Research Center, Stanford University School of Medicine, Stanford, California, USA
- Prevention Research Center, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
6
|
Jordan E, Kinnamon DD, Haas GJ, Hofmeyer M, Kransdorf E, Ewald GA, Morris AA, Owens A, Lowes B, Stoller D, Tang WHW, Garg S, Trachtenberg BH, Shah P, Pamboukian SV, Sweitzer NK, Wheeler MT, Wilcox JE, Katz S, Pan S, Jimenez J, Fishbein DP, Smart F, Wang J, Gottlieb SS, Judge DP, Moore CK, Mead JO, Hurst N, Cao J, Huggins GS, Cowan J, Ni H, Rehm HL, Jarvik GP, Vatta M, Burke W, Hershberger RE. Genetic Architecture of Dilated Cardiomyopathy in Individuals of African and European Ancestry. JAMA 2023; 330:432-441. [PMID: 37526719 PMCID: PMC10394581 DOI: 10.1001/jama.2023.11970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/13/2023] [Indexed: 08/02/2023]
Abstract
Importance Black patients with dilated cardiomyopathy (DCM) have increased familial risk and worse outcomes than White patients, but most DCM genetic data are from White patients. Objective To compare the rare variant genetic architecture of DCM by genomic ancestry within a diverse population of patients with DCM. Design Cross-sectional study enrolling patients with DCM who self-identified as non-Hispanic Black, Hispanic, or non-Hispanic White from June 7, 2016, to March 15, 2020, at 25 US advanced heart failure programs. Variants in 36 DCM genes were adjudicated as pathogenic, likely pathogenic, or of uncertain significance. Exposure Presence of DCM. Main Outcomes and Measures Variants in DCM genes classified as pathogenic/likely pathogenic/uncertain significance and clinically actionable (pathogenic/likely pathogenic). Results A total of 505, 667, and 26 patients with DCM of predominantly African, European, or Native American genomic ancestry, respectively, were included. Compared with patients of European ancestry, a lower percentage of patients of African ancestry had clinically actionable variants (8.2% [95% CI, 5.2%-11.1%] vs 25.5% [95% CI, 21.3%-29.6%]), reflecting the lower odds of a clinically actionable variant for those with any pathogenic variant/likely pathogenic variant/variant of uncertain significance (odds ratio, 0.25 [95% CI, 0.17-0.37]). On average, patients of African ancestry had fewer clinically actionable variants in TTN (difference, -0.09 [95% CI, -0.14 to -0.05]) and other genes with predicted loss of function as a disease-causing mechanism (difference, -0.06 [95% CI, -0.11 to -0.02]). However, the number of pathogenic variants/likely pathogenic variants/variants of uncertain significance was more comparable between ancestry groups (difference, -0.07 [95% CI, -0.22 to 0.09]) due to a larger number of non-TTN non-predicted loss of function variants of uncertain significance, mostly missense, in patients of African ancestry (difference, 0.15 [95% CI, 0.00-0.30]). Published clinical case-based evidence supporting pathogenicity was less available for variants found only in patients of African ancestry (P < .001). Conclusion and Relevance Patients of African ancestry with DCM were less likely to have clinically actionable variants in DCM genes than those of European ancestry due to differences in genetic architecture and a lack of representation of African ancestry in clinical data sets.
Collapse
Affiliation(s)
- Elizabeth Jordan
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus
| | - Daniel D. Kinnamon
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus
| | - Garrie J. Haas
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus
| | - Mark Hofmeyer
- MedStar Health Research Institute, MedStar Washington Hospital Center, Washington, DC
| | - Evan Kransdorf
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | | | | | - Anjali Owens
- Center for Inherited Cardiovascular Disease, Division of Cardiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Brian Lowes
- University of Nebraska Medical Center, Omaha
| | | | | | - Sonia Garg
- University of Texas Southwestern Medical Center, Dallas
| | - Barry H. Trachtenberg
- Houston Methodist DeBakey Heart and Vascular Center, J. C. Walter Jr Transplant Center, Houston, Texas
| | - Palak Shah
- Inova Heart and Vascular Institute, Falls Church, Virginia
| | | | - Nancy K. Sweitzer
- Sarver Heart Center, University of Arizona, Tucson
- Now with Washington University, St Louis, Missouri
| | - Matthew T. Wheeler
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California
| | - Jane E. Wilcox
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Stuart Katz
- New York University Langone Medical Center, New York, New York
| | - Stephen Pan
- Department of Cardiology, Westchester Medical Center and New York Medical College, Valhalla
| | - Javier Jimenez
- Miami Cardiac and Vascular Institute, Baptist Health South, Miami, Florida
| | | | - Frank Smart
- Louisiana State University Health Sciences Center, New Orleans
| | - Jessica Wang
- University of California Los Angeles Medical Center, Los Angeles
| | | | | | | | - Jonathan O. Mead
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus
| | - Natalie Hurst
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus
| | - Jinwen Cao
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus
| | - Gordon S. Huggins
- Cardiology Division, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts
| | - Jason Cowan
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus
| | - Hanyu Ni
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus
| | - Heidi L. Rehm
- Center for Genomic Medicine, Massachusetts General Hospital, Boston
| | - Gail P. Jarvik
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle
- Department of Genome Sciences, University of Washington, Seattle
| | - Matteo Vatta
- Departments of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis
| | - Wylie Burke
- Department of Bioethics and Humanities, University of Washington, Seattle
| | - Ray E. Hershberger
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus
| |
Collapse
|
7
|
Smith JL, Tcheandjieu C, Dikilitas O, Lyer K, Miyazawa K, Hilliard A, Lynch J, Rotter JI, Chen YDI, Sheu WHH, Chang KM, Kanoni S, Tsao P, Ito K, Kosel M, Clarke SL, Schaid DJ, Assimes TL, Kullo IJ. A Multi-Ancestry Polygenic Risk Score for Coronary Heart Disease Based on an Ancestrally Diverse Genome-Wide Association Study and Population-Specific Optimization. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.02.23290896. [PMID: 37609230 PMCID: PMC10441485 DOI: 10.1101/2023.06.02.23290896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Background Predictive performance of polygenic risk scores (PRS) varies across populations. To facilitate equitable clinical use, we developed PRS for coronary heart disease (PRSCHD) for 5 genetic ancestry groups. Methods We derived ancestry-specific and multi-ancestry PRSCHD based on pruning and thresholding (PRSP+T) and continuous shrinkage priors (PRSCSx) applied on summary statistics from the largest multi-ancestry genome-wide meta-analysis for CHD to date, including 1.1 million participants from 5 continental populations. Following training and optimization of PRSCHD in the Million Veteran Program, we evaluated predictive performance of the best performing PRSCHD in 176,988 individuals across 9 cohorts of diverse genetic ancestry. Results Multi-ancestry PRSP+T outperformed ancestry specific PRSP+T across a range of tuning values. In training stage, for all ancestry groups, PRSCSx performed better than PRSP+T and multi-ancestry PRS outperformed ancestry-specific PRS. In independent validation cohorts, the selected multi-ancestry PRSP+T demonstrated the strongest association with CHD in individuals of South Asian (SAS) and European (EUR) ancestry (OR per 1SD[95% CI]; 2.75[2.41-3.14], 1.65[1.59-1.72]), followed by East Asian (EAS) (1.56[1.50-1.61]), Hispanic/Latino (HIS) (1.38[1.24-1.54]), and weakest in African (AFR) ancestry (1.16[1.11-1.21]). The selected multi-ancestry PRSCSx showed stronger associacion with CHD in comparison within each ancestry group where the association was strongest in SAS (2.67[2.38-3.00]) and EUR (1.65[1.59-1.71]), progressively decreasing in EAS (1.59[1.54-1.64]), HIS (1.51[1.35-1.69]), and lowest in AFR (1.20[1.15-1.26]). Conclusions Utilizing diverse summary statistics from a large multi-ancestry genome-wide meta-analysis led to improved performance of PRSCHD in most ancestry groups compared to single-ancestry methods. Improvement of predictive performance was limited, specifically in AFR and HIS, despite use of one of the largest and most diverse set of training and validation cohorts to date. This highlights the need for larger GWAS datasets of AFR and HIS individuals to enhance performance of PRSCHD.
Collapse
Affiliation(s)
- Johanna L Smith
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Catherine Tcheandjieu
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ozan Dikilitas
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kruthika Lyer
- Stanford University School of Medicine, Palo Alto, CA, USA
| | - Kazuo Miyazawa
- Riken Ctr. for Integrative Medical Sciences, Yokohama City, Japan
| | - Austin Hilliard
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Stanford University School of Medicine, Palo Alto, CA, USA
| | - Julie Lynch
- Salt Lake City VA Met CTR., Salt Lake City, UT, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Wayne Huey-Herng Sheu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Kyong-Mi Chang
- Corporal Michael J Crescenz VA Medical Ctr. Philadelphia, PA, USA
| | | | - Phil Tsao
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Stanford University, Stanford, CA, USA
| | - Kaoru Ito
- Riken Ctr. for Integrative Medical Sciences, Yokohama City, Japan
| | - Matthew Kosel
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Shoa L Clarke
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Stanford University, Stanford, CA, USA
| | - Daniel J Schaid
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - Iftikhar J Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
8
|
Dikilitas O, Schaid DJ, Tcheandjieu C, Clarke SL, Assimes TL, Kullo IJ. Use of Polygenic Risk Scores for Coronary Heart Disease in Ancestrally Diverse Populations. Curr Cardiol Rep 2022; 24:1169-1177. [PMID: 35796859 PMCID: PMC9645134 DOI: 10.1007/s11886-022-01734-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW A polygenic risk score (PRS) is a measure of genetic liability to a disease and is typically normally distributed in a population. Individuals in the upper tail of this distribution often have relative risk equivalent to that of monogenic form of the disease. The majority of currently available PRSs for coronary heart disease (CHD) have been generated from cohorts of European ancestry (EUR) and vary in their applicability to other ancestry groups. In this report, we review the performance of PRSs for CHD across different ancestries and efforts to reduce variability in performance including novel population and statistical genetics approaches. RECENT FINDINGS PRSs for CHD perform robustly in EUR populations but lag in performance in non-EUR groups, particularly individuals of African ancestry. Several large consortia have been established to enable genomic studies in diverse ancestry groups and develop methods to improve PRS performance in multi-ancestry contexts as well as admixed individuals. These include fine-mapping to ascertain causal variants, trans ancestry meta-analyses, and ancestry deconvolution in admixed individuals. PRSs are being used in the clinical setting but enthusiasm has been tempered by the variable performance in non-EUR ancestry groups. Increasing diversity in genomic association studies and continued innovation in methodological approaches are needed to improve PRS performance in non-EUR individuals for equitable implementation of genomic medicine.
Collapse
Affiliation(s)
- Ozan Dikilitas
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
- Mayo Clinician-Investigator Training Program, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel J. Schaid
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Catherine Tcheandjieu
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shoa L. Clarke
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Themistocles L. Assimes
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Iftikhar J. Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
- Gonda Vascular Center, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
9
|
Identification of genetic correlates of coronary artery disease in diverse ancestral populations. Nat Med 2022; 28:1548-1549. [PMID: 35948628 PMCID: PMC9364856 DOI: 10.1038/s41591-022-01915-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Tcheandjieu C, Zhu X, Hilliard AT, Clarke SL, Napolioni V, Ma S, Lee KM, Fang H, Chen F, Lu Y, Tsao NL, Raghavan S, Koyama S, Gorman BR, Vujkovic M, Klarin D, Levin MG, Sinnott-Armstrong N, Wojcik GL, Plomondon ME, Maddox TM, Waldo SW, Bick AG, Pyarajan S, Huang J, Song R, Ho YL, Buyske S, Kooperberg C, Haessler J, Loos RJF, Do R, Verbanck M, Chaudhary K, North KE, Avery CL, Graff M, Haiman CA, Le Marchand L, Wilkens LR, Bis JC, Leonard H, Shen B, Lange LA, Giri A, Dikilitas O, Kullo IJ, Stanaway IB, Jarvik GP, Gordon AS, Hebbring S, Namjou B, Kaufman KM, Ito K, Ishigaki K, Kamatani Y, Verma SS, Ritchie MD, Kember RL, Baras A, Lotta LA, Kathiresan S, Hauser ER, Miller DR, Lee JS, Saleheen D, Reaven PD, Cho K, Gaziano JM, Natarajan P, Huffman JE, Voight BF, Rader DJ, Chang KM, Lynch JA, Damrauer SM, Wilson PWF, Tang H, Sun YV, Tsao PS, O'Donnell CJ, Assimes TL. Large-scale genome-wide association study of coronary artery disease in genetically diverse populations. Nat Med 2022; 28:1679-1692. [PMID: 35915156 PMCID: PMC9419655 DOI: 10.1038/s41591-022-01891-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/08/2022] [Indexed: 02/03/2023]
Abstract
We report a genome-wide association study (GWAS) of coronary artery disease (CAD) incorporating nearly a quarter of a million cases, in which existing studies are integrated with data from cohorts of white, Black and Hispanic individuals from the Million Veteran Program. We document near equivalent heritability of CAD across multiple ancestral groups, identify 95 novel loci, including nine on the X chromosome, detect eight loci of genome-wide significance in Black and Hispanic individuals, and demonstrate that two common haplotypes at the 9p21 locus are responsible for risk stratification in all populations except those of African origin, in which these haplotypes are virtually absent. Moreover, in the largest GWAS for angiographically derived coronary atherosclerosis performed to date, we find 15 loci of genome-wide significance that robustly overlap with established loci for clinical CAD. Phenome-wide association analyses of novel loci and polygenic risk scores (PRSs) augment signals related to insulin resistance, extend pleiotropic associations of these loci to include smoking and family history, and precisely document the markedly reduced transferability of existing PRSs to Black individuals. Downstream integrative analyses reinforce the critical roles of vascular endothelial, fibroblast, and smooth muscle cells in CAD susceptibility, but also point to a shared biology between atherosclerosis and oncogenesis. This study highlights the value of diverse populations in further characterizing the genetic architecture of CAD.
Collapse
Affiliation(s)
- Catherine Tcheandjieu
- VA Palo Alto Health Care System, Palo Alto, CA, USA.
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA.
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA.
| | - Xiang Zhu
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Statistics, Stanford University, Stanford, CA, USA
- Department of Statistics, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | | | - Shoa L Clarke
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Valerio Napolioni
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Shining Ma
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - Kyung Min Lee
- VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, UT, USA
| | - Huaying Fang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Fei Chen
- Department of Preventive Medicine, Center for Genetic Epidemiology, University of Southern California, Los Angeles, CA, USA
| | - Yingchang Lu
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Noah L Tsao
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sridharan Raghavan
- Medicine Service, VA Eastern Colorado Health Care System, Aurora, CO, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Satoshi Koyama
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Bryan R Gorman
- VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Marijana Vujkovic
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Derek Klarin
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Vascular Surgery and Endovascular Therapy, University of Florida School of Medicine, Gainesville, FL, USA
- Stanford University School of Medicine, Stanford, CA, USA
| | - Michael G Levin
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nasa Sinnott-Armstrong
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Genevieve L Wojcik
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Mary E Plomondon
- Department of Medicine, Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- CART Program, VHA Office of Quality and Patient Safety, Washington, DC, USA
| | - Thomas M Maddox
- Healthcare Innovation Lab, JC HealthCare/Washington University School of Medicine, St Louis, MO, USA
- Division of Cardiology, Washington University School of Medicine, St Louis, MO, USA
| | - Stephen W Waldo
- Department of Medicine, Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- CART Program, VHA Office of Quality and Patient Safety, Washington, DC, USA
- Division of Cardiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Alexander G Bick
- Department of Biomedical Informatics, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Saiju Pyarajan
- VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jie Huang
- VA Boston Healthcare System, Boston, MA, USA
- Department of Global Health, Peking University School of Public Health, Beijing, China
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| | | | - Yuk-Lam Ho
- VA Boston Healthcare System, Boston, MA, USA
| | - Steven Buyske
- Department of Statistics, Rutgers University, Piscataway, NJ, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jeffrey Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ruth J F Loos
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ron Do
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marie Verbanck
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- EA 7537 BioSTM, Université de Paris, Paris, France
| | - Kumardeep Chaudhary
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Christy L Avery
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Christopher A Haiman
- Department of Preventive Medicine, Center for Genetic Epidemiology, University of Southern California, Los Angeles, CA, USA
| | - Loïc Le Marchand
- Cancer Epidemiology Program, University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| | - Lynne R Wilkens
- Cancer Epidemiology Program, University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| | - Joshua C Bis
- Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Hampton Leonard
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Data Tecnica Int'l, LLC, Glen Echo, MD, USA
| | - Botong Shen
- Health Disparities Research Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Leslie A Lange
- Department of Medicine, Division of Biomedical Informatics and Personalized Medicine, Aurora, CO, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ayush Giri
- Department of Medicine, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Obstetrics and Gynecology, Division of Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ozan Dikilitas
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Iftikhar J Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ian B Stanaway
- Department of Medicine, Division of Nephrology, University of Washington, Seattle, WA, USA
| | - Gail P Jarvik
- Department of Medicine, Medical Genetics, University of Washington School of Medicine, Seattle, WA, USA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Adam S Gordon
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Scott Hebbring
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - Bahram Namjou
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kenneth M Kaufman
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kaoru Ito
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Kazuyoshi Ishigaki
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences - The University of Tokyo, Tokyo, Japan
| | - Shefali S Verma
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Marylyn D Ritchie
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rachel L Kember
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | - Sekar Kathiresan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
- Verve Therapeutics, Cambridge, MA, USA
| | - Elizabeth R Hauser
- Cooperative Studies Program Epidemiology Center-Durham, Durham VA Health Care System, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Donald R Miller
- Center for Healthcare Organization and Implementation Research, Bedford VA Healthcare System, Bedford, MA, USA
- Center for Population Health, Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA
| | - Jennifer S Lee
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Danish Saleheen
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, Division of Cardiology, Columbia University, New York, NY, USA
| | - Peter D Reaven
- Phoenix VA Health Care System, Phoenix, AZ, USA
- College of Medicine, University of Arizona, Phoenix, AZ, USA
| | - Kelly Cho
- VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - J Michael Gaziano
- VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pradeep Natarajan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | | | - Benjamin F Voight
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel J Rader
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kyong-Mi Chang
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Julie A Lynch
- VA Salt Lake City Health Care System, Salt Lake City, UT, USA
- College of Nursing and Health Sciences, University of Massachusetts, Boston, MA, USA
| | - Scott M Damrauer
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Peter W F Wilson
- Atlanta VA Medical Center, Atlanta, GA, USA
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Hua Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Yan V Sun
- Atlanta VA Health Care System, Atlanta, GA, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Philip S Tsao
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher J O'Donnell
- VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Themistocles L Assimes
- VA Palo Alto Health Care System, Palo Alto, CA, USA.
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
11
|
Clarke SL, Huang RDL, Hilliard AT, Tcheandjieu C, Lynch J, Damrauer SM, Chang KM, Tsao PS, Assimes TL. Race and Ethnicity Stratification for Polygenic Risk Score Analyses May Mask Disparities in Hispanics. Circulation 2022; 146:265-267. [PMID: 35861770 PMCID: PMC10063323 DOI: 10.1161/circulationaha.122.059162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Shoa L Clarke
- VA Palo Alto Health Care System, CA (S.L.C., R.D.L.H., A.T.H., C.T., P.S.T., T.L.A.)
- Department of Medicine, Division of Cardiovascular Medicine (S.L.C., A.T.H., C.T., P.S.T., T.L.A.), Stanford University School of Medicine, CA
| | - Rose D L Huang
- VA Palo Alto Health Care System, CA (S.L.C., R.D.L.H., A.T.H., C.T., P.S.T., T.L.A.)
- Center for Population Genomics, Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System (R.D.L.H.)
| | - Austin T Hilliard
- VA Palo Alto Health Care System, CA (S.L.C., R.D.L.H., A.T.H., C.T., P.S.T., T.L.A.)
- Department of Medicine, Division of Cardiovascular Medicine (S.L.C., A.T.H., C.T., P.S.T., T.L.A.), Stanford University School of Medicine, CA
| | - Catherine Tcheandjieu
- VA Palo Alto Health Care System, CA (S.L.C., R.D.L.H., A.T.H., C.T., P.S.T., T.L.A.)
- Department of Medicine, Division of Cardiovascular Medicine (S.L.C., A.T.H., C.T., P.S.T., T.L.A.), Stanford University School of Medicine, CA
| | - Julie Lynch
- VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, UT (J.L.)
| | - Scott M Damrauer
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA (S.M.D., K.-M.C.)
- Departments of Surgery (S.M.D.), University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Kyong-Mi Chang
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA (S.M.D., K.-M.C.)
- Medicine (K.-M.C.), University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Philip S Tsao
- VA Palo Alto Health Care System, CA (S.L.C., R.D.L.H., A.T.H., C.T., P.S.T., T.L.A.)
- Department of Medicine, Division of Cardiovascular Medicine (S.L.C., A.T.H., C.T., P.S.T., T.L.A.), Stanford University School of Medicine, CA
- Cardiovascular Institute (P.S.T., T.L.A.), Stanford University School of Medicine, CA
| | - Themistocles L Assimes
- VA Palo Alto Health Care System, CA (S.L.C., R.D.L.H., A.T.H., C.T., P.S.T., T.L.A.)
- Department of Medicine, Division of Cardiovascular Medicine (S.L.C., A.T.H., C.T., P.S.T., T.L.A.), Stanford University School of Medicine, CA
- Cardiovascular Institute (P.S.T., T.L.A.), Stanford University School of Medicine, CA
| |
Collapse
|
12
|
Vera CD, Mullen M, Minhas N, Wu JC. Intersectionality and genetic ancestry: New methods to solve old problems. EBioMedicine 2022; 80:104049. [PMID: 35561454 PMCID: PMC9108864 DOI: 10.1016/j.ebiom.2022.104049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/12/2022] [Accepted: 04/24/2022] [Indexed: 12/26/2022] Open
Affiliation(s)
- Carlos D Vera
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - McKay Mullen
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | | | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA; Department of Radiology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
13
|
Genotype imputation and polygenic score estimation in northwestern Russian population. PLoS One 2022; 17:e0269434. [PMID: 35763490 PMCID: PMC9239469 DOI: 10.1371/journal.pone.0269434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/21/2022] [Indexed: 11/19/2022] Open
Abstract
Numerous studies demonstrated the lack of transferability of polygenic score (PGS) models across populations and the problem arising from unequal presentation of ancestries across genetic studies. However, even within European ancestry there are ethnic groups that are rarely presented in genetic studies. For instance, Russians, being one of the largest, diverse, and yet understudied group in Europe. In this study, we evaluated the reliability of genotype imputation for the Russian cohort by testing several commonly used imputation reference panels (e.g. HRC, 1000G, HGDP). HRC, in comparison with two other panels, showed the most accurate results based on both imputation accuracy and allele frequency concordance between masked and imputed genotypes. We built polygenic score models based on GWAS results from the UK biobank, measured the explained phenotypic variance in the Russian cohort attributed to polygenic scores for 11 phenotypes, collected in the clinic for each participant, and finally explored the role of allele frequency discordance between the UK biobank and the study cohort in the resulting PGS performance.
Collapse
|
14
|
Major cholesterol study reveals benefits of examining diverse populations. Nature 2021:10.1038/d41586-021-02998-2. [PMID: 34887580 DOI: 10.1038/d41586-021-02998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|