1
|
Merc MD, Kotnik U, Peterlin B, Lovrecic L. Further exploration of cardiac channelopathy and cardiomyopathy genes in stillbirth. Prenat Diagn 2024; 44:1062-1072. [PMID: 38813989 DOI: 10.1002/pd.6616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
OBJECTIVE To explore genetic variation including whole genome copy number variation and sequence analysis of 98 genes associated with pediatric or adult cardiomyopathies, cardiac channelopathies, and sudden death in an unexplained intrauterine fetal death cohort. METHODS The study population included 55 stillbirth cases that remained unexplained after thorough postmortem examination, excluding maternal, fetal, and placental causes of stillbirth. Molecular karyotyping was performed in 55 cases and the trio exome sequencing approach was applied in 19 cases. RESULTS The analysis revealed six rare variants with predicted effects on protein function in six genes (CASQ2, DSC2, KCNE1, LDB3, MYH6, and SCN5A) previously reported in cases of stillbirth or severe early onset pediatric cardiac related phenotypes. When applying strict American College of Genetics and Genomics classification guidelines, these are still variants of uncertain significance. CONCLUSIONS Several potentially stillbirth-related genetic variants were detected in our cohort, adding to the growing literature on cardiac phenotype gene variation in stillbirth. However, the mechanisms of action, gene-gene interaction, and contribution of the uterine environment are still to be deciphered. In order to advance our knowledge of the genetics of unexplained fetal death, there is an evident need for international collaboration and field standardization.
Collapse
Affiliation(s)
- Maja Dolanc Merc
- Division of Gynecology and Obstetrics, Department of Perinatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Urška Kotnik
- Clinical Institute for Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute for Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Luca Lovrecic
- Clinical Institute for Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Tadros HJ, Miyake CY, Kearney DL, Kim JJ, Denfield SW. The Many Faces of Arrhythmogenic Cardiomyopathy: An Overview. Appl Clin Genet 2023; 16:181-203. [PMID: 37933265 PMCID: PMC10625769 DOI: 10.2147/tacg.s383446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (AC) is a disease that involves electromechanical uncoupling of cardiomyocytes. This leads to characteristic histologic changes that ultimately lead to the arrhythmogenic clinical features of the disease. Initially thought to affect the right ventricle predominantly, more recent data show that it can affect both the ventricles or the left ventricle alone. Throughout the recent era, diagnostic modalities and criteria for AC have continued to evolve and our understanding of its clinical features in different age groups as well as the genotype to the phenotype correlations have improved. In this review, we set out to detail the epidemiology, etiologies, presentations, evaluation, and management of AC across the age continuum.
Collapse
Affiliation(s)
- Hanna J Tadros
- Department of Pediatrics, Section of Pediatric Cardiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Christina Y Miyake
- Department of Pediatrics, Section of Pediatric Cardiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Debra L Kearney
- Department of Pathology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey J Kim
- Department of Pediatrics, Section of Pediatric Cardiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Susan W Denfield
- Department of Pediatrics, Division of Pediatric Cardiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
3
|
Pohl GM, Göz M, Gaertner A, Brodehl A, Cimen T, Saguner AM, Schulze-Bahr E, Walhorn V, Anselmetti D, Milting H. Cardiomyopathy related desmocollin-2 prodomain variants affect the intracellular cadherin transport and processing. Front Cardiovasc Med 2023; 10:1127261. [PMID: 37273868 PMCID: PMC10235514 DOI: 10.3389/fcvm.2023.1127261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Background Arrhythmogenic cardiomyopathy can be caused by genetic variants in desmosomal cadherins. Since cardiac desmosomal cadherins are crucial for cell-cell-adhesion, their correct localization at the plasma membrane is essential. Methods Nine desmocollin-2 variants at five positions from various public genetic databases (p.D30N, p.V52A/I, p.G77V/D/S, p.V79G, p.I96V/T) and three additional conserved positions (p.C32, p.C57, p.F71) within the prodomain were investigated in vitro using confocal microscopy. Model variants (p.C32A/S, p.V52G/L, p.C57A/S, p.F71Y/A/S, p.V79A/I/L, p.I96l/A) were generated to investigate the impact of specific amino acids. Results We revealed that all analyzed positions in the prodomain are critical for the intracellular transport. However, the variants p.D30N, p.V52A/I and p.I96V listed in genetic databases do not disturb the intracellular transport revealing that the loss of these canonical sequences may be compensated. Conclusion As disease-related homozygous truncating desmocollin-2 variants lacking the transmembrane domain are not localized at the plasma membrane, we predict that some of the investigated prodomain variants may be relevant in the context of arrhythmogenic cardiomyopathy due to disturbed intracellular transport.
Collapse
Affiliation(s)
- Greta Marie Pohl
- Erich & Hanna Klessmann-Institute for Cardiovascular Research and Development & Clinic for Thoracic and Cardiovascular Surgery, Heart- and Diabetes Center NRW, D-32545 Bad Oeynhausen, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Manuel Göz
- Experimental Biophysics and Applied Nanoscience, Faculty of Physics, University of Bielefeld, NRW, Bielefeld, Germany
| | - Anna Gaertner
- Erich & Hanna Klessmann-Institute for Cardiovascular Research and Development & Clinic for Thoracic and Cardiovascular Surgery, Heart- and Diabetes Center NRW, D-32545 Bad Oeynhausen, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Andreas Brodehl
- Erich & Hanna Klessmann-Institute for Cardiovascular Research and Development & Clinic for Thoracic and Cardiovascular Surgery, Heart- and Diabetes Center NRW, D-32545 Bad Oeynhausen, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Tolga Cimen
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, Zürich, Switzerland
| | - Ardan M. Saguner
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, Zürich, Switzerland
| | - Eric Schulze-Bahr
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Münster, Germany
| | - Volker Walhorn
- Experimental Biophysics and Applied Nanoscience, Faculty of Physics, University of Bielefeld, NRW, Bielefeld, Germany
| | - Dario Anselmetti
- Experimental Biophysics and Applied Nanoscience, Faculty of Physics, University of Bielefeld, NRW, Bielefeld, Germany
| | - Hendrik Milting
- Erich & Hanna Klessmann-Institute for Cardiovascular Research and Development & Clinic for Thoracic and Cardiovascular Surgery, Heart- and Diabetes Center NRW, D-32545 Bad Oeynhausen, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany
| |
Collapse
|
4
|
Revealing the Changes in Saliva and Serum Proteins of Pigs with Meningitis Caused by Streptococcus Suis: A Proteomic Approach. Int J Mol Sci 2022; 23:ijms232213700. [PMID: 36430174 PMCID: PMC9698074 DOI: 10.3390/ijms232213700] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Meningitis due to Streptococcus suis causes high mortality and morbidity on pig farms and has increasing zoonotic potential worldwide. Saliva proteome analysis would potentially be useful in elucidating pathophysiological changes and mining for new biomarkers to diagnose and monitor S. suis infection. The objective of this study was to investigate the changes in the salivary and serum proteome profile of piglets with meningitis. The LC-MS/MS TMT proteomic approach was used to analyze saliva and serum samples from 20 male piglets: 10 with meningitis and 10 healthy. In saliva, 11 proteins had higher and 10 had lower relative abundance in piglets with meningitis. The proteins with the highest relative abundance were metavinculin (VCL) and desmocollin-2 (DSC2). Adenosine deaminase (ADA) was selected for validation using a spectrophotometric assay and demonstrated excellent performance in the differentiation between healthy and pigs with meningitis due to S. suis. In serum, the most protruding changes occurred for one SERPIN and haptoglobin (HP). In saliva and serum, the highest number of proteins with altered abundance were linked, via the enrichment analysis, with platelet and neutrophil pathways. Overall, meningitis caused by S. suis resulted in specific proteome changes in saliva and serum, reflecting different pathophysiological mechanisms, and marking new potential biomarkers for this infection.
Collapse
|
5
|
Egu DT, Schmitt T, Waschke J. Mechanisms Causing Acantholysis in Pemphigus-Lessons from Human Skin. Front Immunol 2022; 13:884067. [PMID: 35720332 PMCID: PMC9205406 DOI: 10.3389/fimmu.2022.884067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Pemphigus vulgaris (PV) is an autoimmune bullous skin disease caused primarily by autoantibodies (PV-IgG) against the desmosomal adhesion proteins desmoglein (Dsg)1 and Dsg3. PV patient lesions are characterized by flaccid blisters and ultrastructurally by defined hallmarks including a reduction in desmosome number and size, formation of split desmosomes, as well as uncoupling of keratin filaments from desmosomes. The pathophysiology underlying the disease is known to involve several intracellular signaling pathways downstream of PV-IgG binding. Here, we summarize our studies in which we used transmission electron microscopy to characterize the roles of signaling pathways in the pathogenic effects of PV-IgG on desmosome ultrastructure in a human ex vivo skin model. Blister scores revealed inhibition of p38MAPK, ERK and PLC/Ca2+ to be protective in human epidermis. In contrast, inhibition of Src and PKC, which were shown to be protective in cell cultures and murine models, was not effective for human skin explants. The ultrastructural analysis revealed that for preventing skin blistering at least desmosome number (as modulated by ERK) or keratin filament insertion (as modulated by PLC/Ca2+) need to be ameliorated. Other pathways such as p38MAPK regulate desmosome number, size, and keratin insertion indicating that they control desmosome assembly and disassembly on different levels. Taken together, studies in human skin delineate target mechanisms for the treatment of pemphigus patients. In addition, ultrastructural analysis supports defining the specific role of a given signaling molecule in desmosome turnover at ultrastructural level.
Collapse
|
6
|
Myocardial inflammation and sudden death in the inherited cardiomyopathies. Can J Cardiol 2022; 38:427-438. [DOI: 10.1016/j.cjca.2022.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 12/20/2022] Open
|
7
|
Arrhythmogenic Cardiomyopathy: Mechanisms, Genetics, and Their Clinical Implications. CURRENT CARDIOVASCULAR RISK REPORTS 2021. [DOI: 10.1007/s12170-021-00669-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Arrhythmogenic Cardiomyopathy: Molecular Insights for Improved Therapeutic Design. J Cardiovasc Dev Dis 2020; 7:jcdd7020021. [PMID: 32466575 PMCID: PMC7345706 DOI: 10.3390/jcdd7020021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited disorder characterized by structural and electrical cardiac abnormalities, including myocardial fibro-fatty replacement. Its pathological ventricular substrate predisposes subjects to an increased risk of sudden cardiac death (SCD). ACM is a notorious cause of SCD in young athletes, and exercise has been documented to accelerate its progression. Although the genetic culprits are not exclusively limited to the intercalated disc, the majority of ACM-linked variants reside within desmosomal genes and are transmitted via Mendelian inheritance patterns; however, penetrance is highly variable. Its natural history features an initial “concealed phase” that results in patients being vulnerable to malignant arrhythmias prior to the onset of structural changes. Lack of effective therapies that target its pathophysiology renders management of patients challenging due to its progressive nature, and has highlighted a critical need to improve our understanding of its underlying mechanistic basis. In vitro and in vivo studies have begun to unravel the molecular consequences associated with disease causing variants, including altered Wnt/β-catenin signaling. Characterization of ACM mouse models has facilitated the evaluation of new therapeutic approaches. Improved molecular insight into the condition promises to usher in novel forms of therapy that will lead to improved care at the clinical bedside.
Collapse
|
9
|
Hamada Y, Yamamoto T, Nakamura Y, Sufu-Shimizu Y, Nanno T, Fukuda M, Ono M, Oda T, Okuda S, Ueyama T, Kobayashi S, Yano M. G790del mutation in DSC2 alone is insufficient to develop the pathogenesis of ARVC in a mouse model. Biochem Biophys Rep 2020; 21:100711. [PMID: 31872082 PMCID: PMC6909225 DOI: 10.1016/j.bbrep.2019.100711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart disease that causes heart failure and/or sudden cardiac death. Several desmosomal genes (DSC2, PKG, PKP2, DSP, and RyR2) are thought to be the causative gene involved in ARVC. Out of them, DSC2 mutations account for 2% of ARVC genetic abnormalities. This study aimed to clarify the effect of G790del mutation in DSC2 on the arrhythmogenic mechanism and cardiac function in a mouse model. RESULT Neither the heterozygous +/G790del nor homozygous G790del/G790del mice showed structural and functional defects in the right ventricle (RV) or lethal arrhythmia. The homozygous G790del/G790del 6-month-old mice slightly showed left ventricular (LV) dysfunction. Cell shortening decreased with prolongation of intracellular Ca2+ transient in cardiomyocytes isolated from the homozygous G790del/G790del mice, and spontaneous Ca2+ transients were frequently observed in response to isoproterenol. CONCLUSIONS G790del mutation in DSC2 was not relevant to the pathogenesis of ARVC, but showed a slight contractile dysfunction and Ca2+ dysregulation in the LV.
Collapse
Affiliation(s)
- Yoriomi Hamada
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Japan
| | - Takeshi Yamamoto
- Faculty of Health Sciences, Yamaguchi University Graduate School of Medicine, Japan
| | - Yoshihide Nakamura
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Japan
| | - Yoko Sufu-Shimizu
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Japan
| | - Takuma Nanno
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Japan
| | - Masakazu Fukuda
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Japan
| | - Makoto Ono
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Japan
| | - Tesuro Oda
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Japan
| | - Shinichi Okuda
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Japan
| | - Takeshi Ueyama
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Japan
| | - Shigeki Kobayashi
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Japan
| | - Masafumi Yano
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Japan
| |
Collapse
|
10
|
Distal myopathy induced arrhythmogenic right ventricular cardiomyopathy in a pedigree carrying novel DSG2 null variant. Int J Cardiol 2020; 298:25-31. [DOI: 10.1016/j.ijcard.2019.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/14/2019] [Accepted: 10/02/2019] [Indexed: 01/15/2023]
|
11
|
van Lint FHM, Murray B, Tichnell C, Zwart R, Amat N, Lekanne Deprez RH, Dittmann S, Stallmeyer B, Calkins H, van der Smagt JJ, van den Wijngaard A, Dooijes D, van der Zwaag PA, Schulze-Bahr E, Judge DP, Jongbloed JDH, van Tintelen JP, James CA. Arrhythmogenic Right Ventricular Cardiomyopathy-Associated Desmosomal Variants Are Rarely De Novo. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 12:e002467. [PMID: 31386562 DOI: 10.1161/circgen.119.002467] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Arrhythmogenic right ventricular cardiomyopathy (ARVC) is associated with pathogenic/likely pathogenic (P/LP) variants in genes encoding the cardiac desmosomal proteins. Origin of these variants, including de novo mutation rate and extent of founder versus recurrent variants has implications for variant adjudication and clinical care, yet this has never been systematically investigated. METHODS We identified arrhythmogenic right ventricular cardiomyopathy probands who met 2010 Task Force Criteria and had undergone genotyping that included sequencing of the desmosomal genes (PKP2, DSP, DSG2, DSC2, and JUP) from 3 arrhythmogenic right ventricular cardiomyopathy registries in America and Europe. We classified the desmosomal variants, defined the contribution of unique versus nonunique (ie, not family-specific) P/LP variants, and identified the frequency and characteristics of de novo variants. Next, we haplotyped nonunique variants to determine how often they likely represent a single mutation event in a common ancestor (implied by shared haplotypes) versus multiple mutation events at the same genetic location. RESULTS Of 501 arrhythmogenic right ventricular cardiomyopathy probands, 322 (64.3%) carried 327 desmosomal P/LP variants. Most variants (n=247, 75.6%, in 245 patients) were identified in more than one proband and, therefore, considered nonunique. For 212/327 variants (64.8%) genetic cascade screening was performed extensively enough to identify the parental origin of the P/LP variant. Only 3 variants were de novo, 2 of which were whole gene deletions. For 24 nonunique P/LP PKP2 variants, haplotyping was conducted in 183 available families. For all 24 variants, multiple seemingly unrelated families sharing identical haplotypes were identified, suggesting that these variants originate from common founders. CONCLUSIONS Most desmosomal P/LP variants are inherited, nonunique, and originate from ancient founders. Two of 3 de novo variants were large deletions. These observations inform genetic testing, cascade screening, and variant adjudication.
Collapse
Affiliation(s)
- Freyja H M van Lint
- Department of Genetics, University Medical Center Utrecht, Utrecht University (F.H.M.v.L., J.J.v.d.S., D.D., J.P.v.T.).,Amsterdam UMC, University of Amsterdam, Department of Clinical Genetics, the Netherlands (F.H.M.v.L., R.Z., R.H.L.D., J.P.v.T., C.A.J.)
| | - Brittney Murray
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD (B.M., C.T., N.A., H.C., D.P.J., C.A.J.)
| | - Crystal Tichnell
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD (B.M., C.T., N.A., H.C., D.P.J., C.A.J.)
| | - Rob Zwart
- Amsterdam UMC, University of Amsterdam, Department of Clinical Genetics, the Netherlands (F.H.M.v.L., R.Z., R.H.L.D., J.P.v.T., C.A.J.)
| | - Nuria Amat
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD (B.M., C.T., N.A., H.C., D.P.J., C.A.J.)
| | - Ronald H Lekanne Deprez
- Amsterdam UMC, University of Amsterdam, Department of Clinical Genetics, the Netherlands (F.H.M.v.L., R.Z., R.H.L.D., J.P.v.T., C.A.J.)
| | - Sven Dittmann
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany (S.D., B.S., E.S.-B.)
| | - Birgit Stallmeyer
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany (S.D., B.S., E.S.-B.)
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD (B.M., C.T., N.A., H.C., D.P.J., C.A.J.)
| | - Jasper J van der Smagt
- Department of Genetics, University Medical Center Utrecht, Utrecht University (F.H.M.v.L., J.J.v.d.S., D.D., J.P.v.T.)
| | - Arthur van den Wijngaard
- Department of Clinical Genetics, Maastricht University Medical Centre, the Netherlands (A.v.d.W.)
| | - Dennis Dooijes
- Department of Genetics, University Medical Center Utrecht, Utrecht University (F.H.M.v.L., J.J.v.d.S., D.D., J.P.v.T.)
| | - Paul A van der Zwaag
- University of Groningen, Department of Genetics, University Medical Center Groningen (P.A.v.d.Z., J.D.H.J.)
| | - Eric Schulze-Bahr
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany (S.D., B.S., E.S.-B.)
| | - Daniel P Judge
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD (B.M., C.T., N.A., H.C., D.P.J., C.A.J.)
| | - Jan D H Jongbloed
- University of Groningen, Department of Genetics, University Medical Center Groningen (P.A.v.d.Z., J.D.H.J.)
| | - J Peter van Tintelen
- Department of Genetics, University Medical Center Utrecht, Utrecht University (F.H.M.v.L., J.J.v.d.S., D.D., J.P.v.T.).,Amsterdam UMC, University of Amsterdam, Department of Clinical Genetics, the Netherlands (F.H.M.v.L., R.Z., R.H.L.D., J.P.v.T., C.A.J.)
| | - Cynthia A James
- Amsterdam UMC, University of Amsterdam, Department of Clinical Genetics, the Netherlands (F.H.M.v.L., R.Z., R.H.L.D., J.P.v.T., C.A.J.).,Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD (B.M., C.T., N.A., H.C., D.P.J., C.A.J.)
| |
Collapse
|
12
|
Chen K, Rao M, Guo G, Duru F, Chen L, Chen X, Song J, Hu S. Recessive variants in plakophilin-2 contributes to early-onset arrhythmogenic cardiomyopathy with severe heart failure. Europace 2019; 21:970-977. [PMID: 30830208 DOI: 10.1093/europace/euz026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/11/2019] [Indexed: 11/12/2022] Open
Abstract
AIMS Plakophilin-2 (PKP2) is the most prevalent mutant gene causing arrhythmogenic cardiomyopathy (ACM) and PKP2 carriers are prone to develop ventricular arrhythmic events. The objective of this study is to use integrated analysis of whole genome sequencing (WGS) and transcriptome sequencing (RNAseq) to identify deep intronic and/or coding variants that cause aberrant splicing events in ACM patients, and hence, to test the hypothesis that recessive variants in PKP2 may lead to early-onset ACM with severe heart failure. METHODS AND RESULTS We performed WGS and RNAseq in 27 heart transplanted ACM patients. By integrated analysis of WGS/RNAseq, we discovered that two patients with PKP2 variants were affected in recessive pattern. One patient had aberrant splicing arising from two intronic variants that led to exon skipping and exon retention. We screened three additional recessive PKP2 variants in 47 non-heart transplanted ACM patients. We compared the clinical characteristics of recessive PKP2 (n = 5) and heterozygous PKP2 carriers (n = 18), and found that recessive PKP2 variant carriers all had early-onset ACM with left ventricular dysfunction. We examined truncating PKP2 variants in explanted hearts and confirmed that truncated PKP2 was not translated. Moreover, the morphology of intercalated disc in recessive PKP2 variants carriers was similar to normal heart suggesting little intercalated disc remodelling. CONCLUSION By using combined implementation of WGS RNAseq, we were able to demonstrate that recessive variants in PKP2 may contribute to early-onset ACM with severe heart failure. These findings may play a role in risk stratification of ACM based on genetic testing in clinical practice.
Collapse
Affiliation(s)
- Kai Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, 167 Beilishi Road, Xicheng District, Beijing, China
| | - Man Rao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, 167 Beilishi Road, Xicheng District, Beijing, China
| | - Guangran Guo
- Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan, China
| | - Firat Duru
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, 167 Beilishi Road, Xicheng District, Beijing, China.,Department of Cardiology, University Heart Center Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Liang Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, 167 Beilishi Road, Xicheng District, Beijing, China
| | - Xiao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, 167 Beilishi Road, Xicheng District, Beijing, China
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, 167 Beilishi Road, Xicheng District, Beijing, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, 167 Beilishi Road, Xicheng District, Beijing, China
| |
Collapse
|
13
|
James CA, Calkins H. Arrhythmogenic Right Ventricular Cardiomyopathy: Progress Toward Personalized Management. Annu Rev Med 2019; 70:1-18. [DOI: 10.1146/annurev-med-041217-010932] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart disease characterized by fibrofatty replacement of the ventricular myocardium, a high risk of ventricular arrhythmias, and progressive ventricular dysfunction. The clinical course is highly variable, and optimal approaches to management remain undefined. ARVC is associated with pathogenic variants in genes encoding the cardiac desmosome. Genetic testing facilitates identification of at-risk family members, but penetrance of ARVC in pathogenic variant carriers is difficult to predict. Participation in endurance exercise is a known key risk factor. However, there remains significant uncertainty about which family member will develop disease and how best to approach longitudinal screening. Our clinically focused review describes how new insights gained from natural history studies, improved understanding of pathogenic mechanisms, and appreciation of genetic and environmental modifiers have set the stage for developing personalized approaches to managing both ARVC patients and their at-risk family members.
Collapse
Affiliation(s)
- Cynthia A. James
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, USA;,
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, USA;,
| |
Collapse
|
14
|
A founder homozygous DSG2 variant in East Asia results in ARVC with full penetrance and heart failure phenotype. Int J Cardiol 2018; 274:263-270. [PMID: 30454721 DOI: 10.1016/j.ijcard.2018.06.105] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/17/2018] [Accepted: 06/27/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Variants in the desmoglein-2 (DSG2) gene account for a significant proportion of patients with Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC). The aim of this study was to evaluate the genetic epidemiology of DSG2 and the impact of a frequent homozygous DSG2 variant in East Asia. METHODS Genetic screening of 14 ARVC related genes was performed in 118 unrelated index patients using next-generation sequencing. Following that, family screening, clinical evaluation and haplotype analysis were performed among eight probands who carry the same homozygous DSG2 variant. We also examined the histopathology and protein expression using immunofluorescence staining on the myocardial tissue of two probands undergoing heart transplant. RESULTS Eighteen (15.2%) patients bear rare putatively deleterious variants in DSG2, among which 8 patients shared the homozygous DSG2 p.Phe531Cys variant. Family screening demonstrated that only homozygous variant carriers exhibited definite ARVC phenotype with 100% penetrance, while heterozygous variant carriers were either unaffected or only presented mild ARVC related symptoms in 25% relatives. Left ventricular involvement and bi-ventricular failure were common among homozygous p. Phe531Cys variant patients even at early age. Haplotype analysis demonstrated p. Phe531Cys was a founder variant in East Asia population with an allele frequency of 0.12%. CONCLUSIONS We identified, for the first time, a homozygous founder variant of DSG2 in East Asia, which was at surprisingly high frequency of 8.47% among Chinese ARVC patients with a full penetrance. This result suggested an urgent demand of genetic counseling for the probands and their relatives with heterozygous variant.
Collapse
|
15
|
Brodehl A, Gaertner-Rommel A, Milting H. Molecular insights into cardiomyopathies associated with desmin (DES) mutations. Biophys Rev 2018; 10:983-1006. [PMID: 29926427 DOI: 10.1007/s12551-018-0429-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/22/2018] [Indexed: 12/15/2022] Open
Abstract
Increasing usage of next-generation sequencing techniques pushed during the last decade cardiogenetic diagnostics leading to the identification of a huge number of genetic variants in about 170 genes associated with cardiomyopathies, channelopathies, or syndromes with cardiac involvement. Because of the biochemical and cellular complexity, it is challenging to understand the clinical meaning or even the relevant pathomechanisms of the majority of genetic sequence variants. However, detailed knowledge about the associated molecular pathomechanism is essential for the development of efficient therapeutic strategies in future and genetic counseling. Mutations in DES, encoding the muscle-specific intermediate filament protein desmin, have been identified in different kinds of cardiac and skeletal myopathies. Here, we review the functions of desmin in health and disease with a focus on cardiomyopathies. In addition, we will summarize the genetic and clinical literature about DES mutations and will explain relevant cell and animal models. Moreover, we discuss upcoming perspectives and consequences of novel experimental approaches like genome editing technology, which might open a novel research field contributing to the development of efficient and mutation-specific treatment options.
Collapse
Affiliation(s)
- Andreas Brodehl
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany.
| | - Anna Gaertner-Rommel
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany.
| |
Collapse
|
16
|
Chai S, Wan X, Ramirez-Navarro A, Tesar PJ, Kaufman ES, Ficker E, George AL, Deschênes I. Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity. J Clin Invest 2018; 128:1043-1056. [PMID: 29431731 DOI: 10.1172/jci94996] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 01/02/2018] [Indexed: 12/11/2022] Open
Abstract
Congenital long QT syndrome (LQTS) is an inherited channelopathy associated with life-threatening arrhythmias. LQTS type 2 (LQT2) is caused by mutations in KCNH2, which encodes the potassium channel hERG. We hypothesized that modifier genes are partly responsible for the variable phenotype severity observed in some LQT2 families. Here, we identified contributors to variable expressivity in an LQT2 family by using induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and whole exome sequencing in a synergistic manner. We found that iPSC-CMs recapitulated the clinical genotype-phenotype discordance in vitro. Importantly, iPSC-CMs derived from the severely affected LQT2 patients displayed prolonged action potentials compared with cells from mildly affected first-degree relatives. The iPSC-CMs derived from all patients with hERG R752W mutation displayed lower IKr amplitude. Interestingly, iPSC-CMs from severely affected mutation-positive individuals exhibited greater L-type Ca2+ current. Whole exome sequencing identified variants of KCNK17 and the GTP-binding protein REM2, providing biologically plausible explanations for this variable expressivity. Genome editing to correct a REM2 variant reversed the enhanced L-type Ca2+ current and prolonged action potential observed in iPSC-CMs from severely affected individuals. Thus, our findings showcase the power of combining complementary physiological and genomic analyses to identify genetic modifiers and potential therapeutic targets of a monogenic disorder. Furthermore, we propose that this strategy can be deployed to unravel myriad confounding pathologies displaying variable expressivity.
Collapse
Affiliation(s)
- Sam Chai
- Department of Physiology and Biophysics.,Heart and Vascular Research Center, Department of Medicine, and
| | - Xiaoping Wan
- Heart and Vascular Research Center, Department of Medicine, and
| | | | - Paul J Tesar
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Eckhard Ficker
- Heart and Vascular Research Center, Department of Medicine, and
| | - Alfred L George
- Department of Pharmacology, Northwestern University, Chicago, Illinois, USA
| | - Isabelle Deschênes
- Department of Physiology and Biophysics.,Heart and Vascular Research Center, Department of Medicine, and
| |
Collapse
|
17
|
Broendberg AK, Christiansen MK, Nielsen JC, Pedersen LN, Jensen HK. Targeted next generation sequencing in a young population with suspected inherited malignant cardiac arrhythmias. Eur J Hum Genet 2018; 26:303-313. [PMID: 29343803 PMCID: PMC5838968 DOI: 10.1038/s41431-017-0060-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/19/2017] [Accepted: 11/18/2017] [Indexed: 12/19/2022] Open
Abstract
Aborted sudden cardiac death in the young often is due to inherited heart disease. However, the clinical phenotype in these patients is not always evident. The aim of this study was to identify pathogenic molecular genetic variants in a population with suspected inherited cardiac arrhythmias. Eligible patients were admitted to Aarhus University Hospital, Denmark during the period 1999–2013 with arrhythmias assumed caused by a hereditary heart disease, and in whom no genotype had been established. We used the Danish national pacemaker and ICD registry to identify this cohort. One third (24/80) of the study population had first-line genetic testing with a targeted next-generation sequencing (NGS) panel, and two-third (56/80) of the study population had second-line genetic testing with NGS where prior Sanger sequencing did not reveal a causative variant. Variants were assessed according to the American College of Medical Genetics and Genomics (ACMG) guidelines. We included 80 patients. Median age (IQR) was 38 (28–43) years, 54 (68%) were males. First-line genetic testing identified a genetic variant in 33% (8/24) of the cases and second-line genetic testing revealed a variant in 20% (11/56) of the cases. Eleven variants were considered pathogenic, three likely pathogenic and 10 were variants of unknown significance (VUS). Seventeen variants were very rare with a minor allele frequency (MAF) ≤0.02% in all population databases used in the study. Molecular genetic testing of patients with suspected inherited cardiac arrhythmias with NGS identifies a molecular-genetic cause in a significant proportion of patients.
Collapse
Affiliation(s)
- Anders Krogh Broendberg
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark. .,Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark.
| | - Morten Krogh Christiansen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - Jens Cosedis Nielsen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | | | - Henrik Kjaerulf Jensen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
18
|
Abstract
Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. © 2017 American Physiological Society. Compr Physiol 7:891-944, 2017.
Collapse
Affiliation(s)
- Christine A Henderson
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Christopher G Gomez
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Stefanie M Novak
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Lei Mi-Mi
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
19
|
Soveizi M, Rabbani B, Rezaei Y, Saedi S, Najafi N, Maleki M, Mahdieh N. Autosomal Recessive Nonsyndromic Arrhythmogenic Right Ventricular Cardiomyopathy without Cutaneous Involvements: A Novel Mutation. Ann Hum Genet 2017; 81:135-140. [PMID: 28523642 DOI: 10.1111/ahg.12193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 11/26/2022]
Abstract
The arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is a genetic disease frequently associated with desmosomal mutations, mainly attributed to dominant mutations in the Plakophilin-2 (PKP2) gene. Naxos and Carvajal are the syndromic forms of ARVD/C due to recessive mutations. Herein, we report an autosomal recessive form of nonsyndromic ARVD/C caused by a mutation in the PKP2 gene. After examination and implementation of diagnostic modalities, the definite diagnosis of ARVD/C was confirmed by detection of ventricular tachycardia with a left bundle branch configuration and a superior axis, T-wave inversion in right precordial leads (i.e., V1-V3) in a 12-lead electrocardiogram, and a right ventricle outflow tract dilatation. Neither cutaneous involvement nor other abnormalities were observed. Genetic testing was performed during which an intronic mutation of c.2577+1G>T in the PKP2 gene was observed homozygously. The c.2577+1G>T disrupts PKP2 mRNA splicing and causes a nonsyndromic form of ARVD/C.
Collapse
Affiliation(s)
- Mahdieh Soveizi
- Cardiogenetic Research Laboratory, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Bahareh Rabbani
- Cardiogenetic Research Laboratory, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Yousef Rezaei
- Cardiogenetic Research Laboratory, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.,Heart Valve Disease Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Saedi
- Cardiogenetic Research Laboratory, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nasim Najafi
- Cardiogenetic Research Laboratory, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Laboratory, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nejat Mahdieh
- Cardiogenetic Research Laboratory, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Liu JS, Fan LL, Li JJ, Xiang R. Whole-Exome Sequencing Identifies a Novel Mutation of Desmocollin 2 in a Chinese Family With Arrhythmogenic Right Ventricular Cardiomyopathy. Am J Cardiol 2017; 119:1485-1489. [PMID: 28256248 DOI: 10.1016/j.amjcard.2017.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 11/15/2022]
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a rare heart disorder characterized by myocyte loss and fibro-fatty tissue replacement. With the progress of ARVC, patient can present serious ventricular arrhythmias, heart failure, and even sudden cardiac death. Previous studies have revealed that the generation and development of ARVC are related to structural changes of desmosomes. To date, at least 5 genes associated with desmosomes have been identified in patients with ARVC, including Desmoplakin, Plakophilin 2, Desmoglein 2, Desmocollin 2, and Junction plakoglobin. In this study, we applied whole-exome sequencing to explore the potential causative gene in a Chinese family with suspicious ARVC. A novel missense mutation (c.1090 G > A/p.V364 M) of DSC2 was identified and co-segregated with the affected family members. This mutation leads to a substitution of valine by methionine and is predicted to be damaging by bioinformatics tools. In conclusion, our study not only expands the spectrum of DSC2 mutations and contributes to genetic counseling of families with ARVC but also improves the awareness of pathogenesis in Chinese patients with ARVC.
Collapse
Affiliation(s)
- Ji-Shi Liu
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cell Biology, The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Liang-Liang Fan
- Department of Cell Biology, The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Jing-Jing Li
- Department of Cell Biology, The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Rong Xiang
- Department of Cell Biology, The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.
| |
Collapse
|
21
|
Lorenzon A, Calore M, Poloni G, De Windt LJ, Braghetta P, Rampazzo A. Wnt/β-catenin pathway in arrhythmogenic cardiomyopathy. Oncotarget 2017; 8:60640-60655. [PMID: 28948000 PMCID: PMC5601168 DOI: 10.18632/oncotarget.17457] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/14/2017] [Indexed: 12/19/2022] Open
Abstract
Wnt/β-catenin signaling pathway plays essential roles in heart development as well as cardiac tissue homoeostasis in adults. Abnormal regulation of this signaling pathway is linked to a variety of cardiac disease conditions, including hypertrophy, fibrosis, arrhythmias, and infarction. Recent studies on genetically modified cellular and animal models document a crucial role of Wnt/β-catenin signaling in the molecular pathogenesis of arrhythmogenic cardiomyopathy (AC), an inherited disease of intercalated discs, typically characterized by ventricular arrhythmias and progressive substitution of the myocardium with fibrofatty tissue. In this review, we summarize the conflicting published data regarding the Wnt/β-catenin signaling contribution to AC pathogenesis and we report the identification of a new potential therapeutic molecule that prevents myocyte injury and cardiac dysfunction due to desmosome mutations in vitro and in vivo by interfering in this signaling pathway. Finally, we underline the potential function of microRNAs, epigenetic regulatory RNA factors reported to participate in several pathological responses in heart tissue and in the Wnt signaling network, as important modulators of Wnt/β-catenin signaling transduction in AC. Elucidation of the precise regulatory mechanism of Wnt/β-catenin signaling in AC molecular pathogenesis could provide fundamental insights for new mechanism-based therapeutic strategy to delay the onset or progression of this cardiac disease.
Collapse
Affiliation(s)
| | - Martina Calore
- Maastricht University, Department of Cardiology, Maastricht, The Netherlands
| | - Giulia Poloni
- University of Padua, Department of Biology, Padua, Italy
| | - Leon J De Windt
- Maastricht University, Department of Cardiology, Maastricht, The Netherlands
| | - Paola Braghetta
- University of Padua, Department of Molecular Medicine, Padua, Italy
| | | |
Collapse
|
22
|
Xu Z, Zhu W, Wang C, Huang L, Zhou Q, Hu J, Cheng X, Hong K. Genotype-phenotype relationship in patients with arrhythmogenic right ventricular cardiomyopathy caused by desmosomal gene mutations: A systematic review and meta-analysis. Sci Rep 2017; 7:41387. [PMID: 28120905 PMCID: PMC5264593 DOI: 10.1038/srep41387] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/20/2016] [Indexed: 12/23/2022] Open
Abstract
The relationship between clinical phenotypes and desmosomal gene mutations in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) is poorly characterized. Therefore, we performed a meta-analysis to explore the genotype-phenotype relationship in patients with ARVC. Any studies reporting this genotype-phenotype relationship were included. In total, 11 studies involving 1,113 patients were included. The presence of desmosomal gene mutations was associated with a younger onset age of ARVC (32.7 ± 15.2 versus 43.2 ± 13.3 years; P = 0.001), a higher incidence of T wave inversion in V1–3 leads (78.5% versus 51.6%; P = 0.0002) or a family history of ARVC (39.5% versus 27.1%; P = 0.03). There was no difference in the proportion of males between desmosomal-positive and desmosomal-negative patients (68.3% versus 68.9%; P = 0.60). The presence of desmosomal gene mutations was not associated with global or regional structural and functional alterations (63.5% versus 60.5%; P = 0.37), epsilon wave (29.4% versus 26.2%; P = 0.51) or ventricular tachycardia of left bundle-branch morphology (62.6% versus 57.2%; P = 0.30). Overall, patients with desmosomal gene mutations are characterized by an earlier onset age, a higher incidence of T wave inversion in V1–3 leads and a strong family history of ARVC.
Collapse
Affiliation(s)
- Zhenyan Xu
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi, 330006, China.,Jiangxi Key Laboratory of Molecular Medicine, Nanchang of Jiangxi, 330006, China
| | - Wengen Zhu
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi, 330006, China.,Jiangxi Key Laboratory of Molecular Medicine, Nanchang of Jiangxi, 330006, China
| | - Cen Wang
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi, 330006, China.,Jiangxi Key Laboratory of Molecular Medicine, Nanchang of Jiangxi, 330006, China
| | - Lin Huang
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi, 330006, China.,Jiangxi Key Laboratory of Molecular Medicine, Nanchang of Jiangxi, 330006, China
| | - Qiongqiong Zhou
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi, 330006, China.,Jiangxi Key Laboratory of Molecular Medicine, Nanchang of Jiangxi, 330006, China
| | - Jinzhu Hu
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi, 330006, China.,Jiangxi Key Laboratory of Molecular Medicine, Nanchang of Jiangxi, 330006, China
| | - Xiaoshu Cheng
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi, 330006, China.,Jiangxi Key Laboratory of Molecular Medicine, Nanchang of Jiangxi, 330006, China
| | - Kui Hong
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi, 330006, China.,Jiangxi Key Laboratory of Molecular Medicine, Nanchang of Jiangxi, 330006, China
| |
Collapse
|
23
|
Plakophilin-2 c.419C>T and risk of heart failure and arrhythmias in the general population. Eur J Hum Genet 2015; 24:732-8. [PMID: 26264440 DOI: 10.1038/ejhg.2015.171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/24/2015] [Accepted: 06/30/2015] [Indexed: 12/11/2022] Open
Abstract
A rare genetic variant in the desmosomal gene plakophilin-2 (PKP2) c.419C>T(p.(S140F)) has repeatedly been identified in patients with dilated cardiomyopathy (DCM) and arrhythmogenic right ventricular cardiomyopathy (ARVC). Whether this is a disease-causing variant remains highly controversial. We tested this hypothesis using three approaches. Initially, in a prospective study of 10 407 individuals from the general population, including 2688 who developed heart failure or arrhythmias during >14 years of follow-up, PKP2 c.419C>T was identified in 98 individuals (0.94%). PKP2 genotype was not associated with electrocardiographic or echocardiographic changes, or with plasma levels of probrain natriuretic peptide (all P≥0.05). In c.419C>T carriers versus non-carriers, multifactorially adjusted hazard ratios were 1.26 (95% confidence interval: 0.77-2.07) for heart failure, 1.40 (0.90-2.17) for arrhythmias, 1.15 (0.78-1.71) for end points combined, and 1.33 (0.98-1.80) for all-cause mortality. The cumulative survival as a function of age and PKP2 genotype was similar among carriers and non-carriers (P=0.14). Second, comparing 517 patients referred for genetic testing with 1918 matched controls, odds ratios as a function of c.419C>T genotype were 2.11 (0.50-8.99) for ARVC, 0.72 (0.16-3.28) for hypertrophic cardiomyopathy (HCM)/DCM, and 1.28 (0.46-3.54) for end points combined. Third, in in vitro studies cellular localization of plakophilin-2, plakoglobin, connexin-43, or N-cadherin were similar in cells transfected with wild-type or mutant plakophilin-2. In conclusion, combining epidemiological data, with data on patients referred for genetic testing for ARVC or HCM/DCM, and data from in vitro studies, PKP2 c.419C>T did not associate with heart failure, arrhythmias, or premature death, with ARVC or HCM/DCM, or with effects in vitro, suggesting that this is not a disease-causing variant.
Collapse
|
24
|
Tariq H, Bella J, Jowitt TA, Holmes DF, Rouhi M, Nie Z, Baldock C, Garrod D, Tabernero L. Cadherin flexibility provides a key difference between desmosomes and adherens junctions. Proc Natl Acad Sci U S A 2015; 112:5395-400. [PMID: 25855637 PMCID: PMC4418904 DOI: 10.1073/pnas.1420508112] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Desmosomes and adherens junctions are intercellular adhesive structures essential for the development and integrity of vertebrate tissue, including the epidermis and heart. Their cell adhesion molecules are cadherins: type 1 cadherins in adherens junctions and desmosomal cadherins in desmosomes. A fundamental difference is that desmosomes have a highly ordered structure in their extracellular region and exhibit calcium-independent hyperadhesion, whereas adherens junctions appear to lack such ordered arrays, and their adhesion is always calcium-dependent. We present here the structure of the entire ectodomain of desmosomal cadherin desmoglein 2 (Dsg2), using a combination of small-angle X-ray scattering, electron microscopy, and solution-based biophysical techniques. This structure reveals that the ectodomain of Dsg2 is flexible even in the calcium-bound state and, on average, is shorter than the type 1 cadherin crystal structures. The Dsg2 structure has an excellent fit with the electron tomography reconstructions of human desmosomes. This fit suggests an arrangement in which desmosomal cadherins form trans interactions but are too far apart to interact in cis, in agreement with previously reported observations. Cadherin flexibility may be key to explaining the plasticity of desmosomes that maintain tissue integrity in their hyperadhesive form, but can adopt a weaker, calcium-dependent adhesion during wound healing and early development.
Collapse
Affiliation(s)
- Humera Tariq
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Jordi Bella
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Thomas A Jowitt
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - David F Holmes
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Mansour Rouhi
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Zhuxiang Nie
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Clair Baldock
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - David Garrod
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Lydia Tabernero
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
25
|
Comprehensive analysis of desmosomal gene mutations in Han Chinese patients with arrhythmogenic right ventricular cardiomyopathy. Eur J Med Genet 2015; 58:258-65. [PMID: 25765472 DOI: 10.1016/j.ejmg.2015.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/18/2015] [Indexed: 11/23/2022]
|
26
|
Plakoglobin: A diagnostic marker of arrhythmogenic right ventricular cardiomyopathy in forensic pathology? Forensic Sci Med Pathol 2015; 11:47-52. [DOI: 10.1007/s12024-014-9644-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
|
27
|
Wong JA, Duff HJ, Yuen T, Kolman L, Exner DV, Weeks SG, Gerull B. Phenotypic analysis of arrhythmogenic cardiomyopathy in the Hutterite population: role of electrocardiogram in identifying high-risk desmocollin-2 carriers. J Am Heart Assoc 2014; 3:e001407. [PMID: 25497880 PMCID: PMC4338736 DOI: 10.1161/jaha.114.001407] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background The p.Gln554X mutation in desmocollin‐2 (DSC2) is prevalent in ≈10% of the
Hutterite population. While the homozygous mutation causes severe biventricular arrhythmogenic right
ventricular cardiomyopathy, the phenotypic features and prognosis of heterozygotes remain
incompletely understood. Methods and Results Eleven homozygotes (mean age 32±8 years, 45% female), 28 heterozygotes (mean age
40±15 years, 50% female), and 22 mutation‐negatives (mean age 43±17
years, 41% female) were examined. Diagnostic testing was performed as per the arrhythmogenic
right ventricular cardiomyopathy modified Task Force Criteria. Inverted T waves in the right
precordial leads on ECG were seen in all homozygotes but not in their counterparts
(P<0.001). Homozygotes had higher median daily premature ventricular complex
burden than did heterozygotes or mutation‐negatives (1407 [IQR 1080 to 2936] versus 2 [IQR 0
to 6] versus 6 [IQR 0 to 214], P=0.0002). Ventricular tachycardia was
observed in 60% of homozygotes but in none of the remaining individuals
(P<0.001). On cardiac magnetic resonance imaging, homozygotes had
significantly larger indexed end‐diastolic volumes (right ventricular: 122±24 versus
83±17 versus 83±12 mL/m2, P<0.0001; left
ventricular: 93±18 versus 76±13 versus 80±11 mL/m2,
P=0.0124) and lower ejection fraction values compared with heterozygotes and
mutation‐negatives (right ventricular ejection fraction: 41±9% versus
59±9% versus 61±6%, P<0.0001; left ventricular
ejection fraction: 53±8% versus 65±5% versus 64±5%,
P<0.0001). Most affected individuals lacked right ventricular wall motion
abnormalities. Thus, few met cardiac magnetic resonance imaging task force criteria. Conclusions The ECG reliably identifies homozygous p.Gln554X carriers and may be useful as an initial step in
the screening of high‐risk Hutterites. The cardiac phenotype of heterozygotes appears benign,
but further prospective follow‐up of their arrhythmic risk is needed.
Collapse
Affiliation(s)
- Jorge A Wong
- Libin Cardiovascular Institute of Alberta & Department of Cardiac Sciences, University of Calgary, Alberta, Canada (J.A.W., H.J.D., T.Y., L.K., D.V.E., S.G.W., B.G.)
| | - Henry J Duff
- Libin Cardiovascular Institute of Alberta & Department of Cardiac Sciences, University of Calgary, Alberta, Canada (J.A.W., H.J.D., T.Y., L.K., D.V.E., S.G.W., B.G.)
| | - Tiffany Yuen
- Libin Cardiovascular Institute of Alberta & Department of Cardiac Sciences, University of Calgary, Alberta, Canada (J.A.W., H.J.D., T.Y., L.K., D.V.E., S.G.W., B.G.)
| | - Louis Kolman
- Libin Cardiovascular Institute of Alberta & Department of Cardiac Sciences, University of Calgary, Alberta, Canada (J.A.W., H.J.D., T.Y., L.K., D.V.E., S.G.W., B.G.)
| | - Derek V Exner
- Libin Cardiovascular Institute of Alberta & Department of Cardiac Sciences, University of Calgary, Alberta, Canada (J.A.W., H.J.D., T.Y., L.K., D.V.E., S.G.W., B.G.)
| | - Sarah G Weeks
- Libin Cardiovascular Institute of Alberta & Department of Cardiac Sciences, University of Calgary, Alberta, Canada (J.A.W., H.J.D., T.Y., L.K., D.V.E., S.G.W., B.G.)
| | - Brenda Gerull
- Libin Cardiovascular Institute of Alberta & Department of Cardiac Sciences, University of Calgary, Alberta, Canada (J.A.W., H.J.D., T.Y., L.K., D.V.E., S.G.W., B.G.)
| |
Collapse
|
28
|
Hertz CL, Ferrero-Miliani L, Frank-Hansen R, Morling N, Bundgaard H. A comparison of genetic findings in sudden cardiac death victims and cardiac patients: the importance of phenotypic classification. Europace 2014; 17:350-7. [PMID: 25345827 DOI: 10.1093/europace/euu210] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sudden cardiac death (SCD) is responsible for a large proportion of non-traumatic, sudden and unexpected deaths in young individuals. Sudden cardiac death is a known manifestation of several inherited cardiac diseases. In post-mortem examinations, about two-thirds of the SCD cases show structural abnormalities at autopsy. The remaining cases stay unexplained after thorough investigations and are referred to as sudden unexplained deaths. A routine forensic investigation of the SCD victims in combination with genetic testing makes it possible to establish a likely diagnosis in some of the deaths previously characterized as unexplained. Additionally, a genetic diagnose in a SCD victim with a structural disease may not only add to the differential diagnosis, but also be of importance for pre-symptomatic family screening. In the case of SCD, the optimal establishment of the cause of death and management of the family call for standardized post-mortem procedures, genetic screening, and family screening. Studies of genetic testing in patients with primary arrhythmia disorders or cardiomyopathies and of victims of SCD presumed to be due to primary arrhythmia disorders or cardiomyopathies, were systematically identified and reviewed. The frequencies of disease-causing mutation were on average between 16 and 48% in the cardiac patient studies, compared with ∼10% in the post-mortem studies. The frequency of pathogenic mutations in heart genes in cardiac patients is up to four-fold higher than that in SCD victims in a forensic setting. Still, genetic investigation of SCD victims is important for the diagnosis and the possible investigation of relatives at risk.
Collapse
Affiliation(s)
- Christin L Hertz
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 11 Frederik V's Vej, 2100 Copenhagen, Denmark
| | - Laura Ferrero-Miliani
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 11 Frederik V's Vej, 2100 Copenhagen, Denmark
| | - Rune Frank-Hansen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 11 Frederik V's Vej, 2100 Copenhagen, Denmark
| | - Niels Morling
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 11 Frederik V's Vej, 2100 Copenhagen, Denmark
| | - Henning Bundgaard
- Rigshospitalets Unit for Inherited Heart Diseases, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Denmark
| |
Collapse
|
29
|
Vanderschuren KLA, Sieverink T, Wilders R. Arrhythmogenic right ventricular dysplasia/cardiomyopathy type 1: a light on molecular mechanisms. GENETICS RESEARCH INTERNATIONAL 2013; 2013:460805. [PMID: 24416594 PMCID: PMC3876595 DOI: 10.1155/2013/460805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/09/2013] [Accepted: 11/10/2013] [Indexed: 11/30/2022]
Abstract
Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is an inherited cardiomyopathy associated with cardiac arrhythmias originating in the right ventricle, heart failure, and sudden cardiac death. Development of ARVD/C type 1 has been attributed to differential expression of transforming growth factor beta 3 (TGF β 3). Several mechanisms underlying the molecular basis of ARVD/C type 1 have been proposed. Evaluating previously described mechanisms might elucidate how TGF β 3 contributes to disease progression in ARVD/C type 1. Here we review how TGF β 3 can induce fibrogenesis through Smad and/or β -catenin signaling. Moreover, the role of apoptosis is addressed. Finally the extent to which the immune system has been demonstrated to be a modulating and amplifying agent in the onset and progression of ARVD/C in general is discussed.
Collapse
Affiliation(s)
- Koen L. A. Vanderschuren
- Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Meibergdreef 15, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| | - Tom Sieverink
- Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Meibergdreef 15, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| | - Ronald Wilders
- Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Meibergdreef 15, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| |
Collapse
|
30
|
He H, Han D, Feng H, Qu H, Song S, Bai B, Zhang Z. Involvement of and interaction between WNT10A and EDA mutations in tooth agenesis cases in the Chinese population. PLoS One 2013; 8:e80393. [PMID: 24312213 PMCID: PMC3842385 DOI: 10.1371/journal.pone.0080393] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 10/02/2013] [Indexed: 11/18/2022] Open
Abstract
Background Dental agenesis is the most common, often heritable, developmental anomaly in humans. Although WNT10A gene mutations are known to cause rare syndromes associated with tooth agenesis, including onycho-odontodermal dysplasia (OODD), Schöpf-Schulz-Passarge syndrome (SSPS), hypohidrotic ectodermal dysplasia (HED), and more than half of the cases of isolated oligodontia recently, the genotype-phenotype correlations and the mode of inheritance of WNT10A mutations remain unclear. The phenotypic expression with WNT10A mutations shows a high degree of variability, suggesting that other genes might function with WNT10A in regulating ectodermal organ development. Moreover, the involvement of mutations in other genes, such as EDA, which is also associated with HED and isolated tooth agenesis, is not clear. Therefore, we hypothesized that EDA mutations interact with WNT10A mutations to play a role in tooth agenesis. Additionally, EDA, EDAR, and EDARADD encode signaling molecules in the Eda/Edar/NF-κB signaling pathways, we also checked EDAR and EDARADD in this study. Methods WNT10A, EDA, EDAR and EDARADD were sequenced in 88 patients with isolated oligodontia and 26 patients with syndromic tooth agenesis. The structure of two mutated WNT10A and two mutated EDA proteins was analyzed. Results Digenic mutations of both WNT10A and EDA were identified in 2 of 88 (2.27%) isolated oligodontia cases and 4 of 26 (15.38%) syndromic tooth agenesis cases. No mutation in EDAR or EDARADD gene was found. Conclusions WNT10A and EDA digenic mutations could result in oligodontia and syndromic tooth agenesis in the Chinese population. Moreover, our results will greatly expand the genotypic spectrum of tooth agenesis.
Collapse
Affiliation(s)
- Huiying He
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Dong Han
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Hailan Feng
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- * E-mail:
| | - Hong Qu
- College of Life Sciences, Peking University, Beijing, China
| | - Shujuan Song
- Department of Genetics, Peking University Health Science Center, Beijing, China
| | - Baojing Bai
- Department of Prosthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhenting Zhang
- Department of Prosthodontics, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
31
|
Groeneweg JA, van der Zwaag PA, Olde Nordkamp LRA, Bikker H, Jongbloed JDH, Jongbloed R, Wiesfeld ACP, Cox MGPJ, van der Heijden JF, Atsma DE, de Boer K, Doevendans PA, Vink A, van Veen TAB, Dooijes D, van den Berg MP, Wilde AAM, van Tintelen JP, Hauer RN. Arrhythmogenic right ventricular dysplasia/cardiomyopathy according to revised 2010 task force criteria with inclusion of non-desmosomal phospholamban mutation carriers. Am J Cardiol 2013; 112:1197-206. [PMID: 23871674 DOI: 10.1016/j.amjcard.2013.06.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 01/15/2023]
Abstract
Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is frequently associated with desmosomal mutations. However, nondesmosomal mutations may be involved. The aim of this study was to assess the contribution of a phospholamban (PLN) gene mutation to ARVD/C diagnosis according to the revised 2010 task force criteria (TFC). In 142 Dutch patients (106 men, mean age 51 ± 13 years) with proven ARVD/C (fulfillment of 2010 TFC for diagnosis), 5 known desmosomal genes (PKP2, DSP, DSC2, DSG2, and JUP) and the nondesmosomal PLN gene were screened. After genetic analysis, phenotypic characteristics of desmosomal versus PLN mutation carriers were compared. In 59 of 142 patients with ARVD/C (42%), no desmosomal mutation was found. In 19 of 142 patients (13%), the PLN founder mutation c.40_42delAGA (p.Arg14del) was identified. PLN mutation carriers more often had low-voltage electrocardiograms (p = 0.004), inverted T waves in leads V4 to V6 (p <0.001), and additional structural (p = 0.007) or functional (p = 0.017) left ventricular impairment, whereas desmosomal mutation carriers had more solitary right ventricular abnormalities. The revised TFC included 21 of 142 patients with proven ARVD/C who did not meet the 1994 TFC, including 7 PLN mutation carriers. In conclusion, there is a substantial contribution of PLN mutation to ARVD/C diagnosis by the 2010 TFC. In 32% of patients (19 of 59) with genetically unexplained proven ARVD/C, this nondesmosomal mutation was found. PLN mutation carriers have ARVD/C characteristics, including important right ventricular involvement, and additionally more often low-voltage electrocardiograms, inverted T waves in the left precordial leads, and left ventricular involvement.
Collapse
Affiliation(s)
- Judith A Groeneweg
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands; Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Cooper DN, Krawczak M, Polychronakos C, Tyler-Smith C, Kehrer-Sawatzki H. Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease. Hum Genet 2013; 132:1077-130. [PMID: 23820649 PMCID: PMC3778950 DOI: 10.1007/s00439-013-1331-2] [Citation(s) in RCA: 423] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/15/2013] [Indexed: 02/06/2023]
Abstract
Some individuals with a particular disease-causing mutation or genotype fail to express most if not all features of the disease in question, a phenomenon that is known as 'reduced (or incomplete) penetrance'. Reduced penetrance is not uncommon; indeed, there are many known examples of 'disease-causing mutations' that fail to cause disease in at least a proportion of the individuals who carry them. Reduced penetrance may therefore explain not only why genetic diseases are occasionally transmitted through unaffected parents, but also why healthy individuals can harbour quite large numbers of potentially disadvantageous variants in their genomes without suffering any obvious ill effects. Reduced penetrance can be a function of the specific mutation(s) involved or of allele dosage. It may also result from differential allelic expression, copy number variation or the modulating influence of additional genetic variants in cis or in trans. The penetrance of some pathogenic genotypes is known to be age- and/or sex-dependent. Variable penetrance may also reflect the action of unlinked modifier genes, epigenetic changes or environmental factors. At least in some cases, complete penetrance appears to require the presence of one or more genetic variants at other loci. In this review, we summarize the evidence for reduced penetrance being a widespread phenomenon in human genetics and explore some of the molecular mechanisms that may help to explain this enigmatic characteristic of human inherited disease.
Collapse
Affiliation(s)
- David N. Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN UK
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Christian-Albrechts University, 24105 Kiel, Germany
| | | | - Chris Tyler-Smith
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | | |
Collapse
|
33
|
Abstract
Despite the striking advances in medical and surgical therapy, the morbidity, mortality, and economic burden of heart failure (HF) remain unacceptably high. There is increasing evidence that the risk and course of HF depend on genetic predisposition; however, the genetic contribution to HF is heterogeneous and complex. At one end of the spectrum are the familial monogenic HF syndromes in which causative mutations are rare but highly penetrant. At the other, HF susceptibility and course may be influenced by more common, less penetrant genetic variants. As detailed in this review, efforts to unravel the basis of the familial cardiomyopathies at the mendelian end of the spectrum already have begun to deliver on the promise of informative mechanisms, novel gene-based diagnostics, and therapies for distinct subtypes of HF. However, continued progress requires the differentiation of pathogenic mutations, disease modifiers, and rare, benign variants in the deluge of data emerging from increasingly accessible novel sequencing technologies. This represents a significant challenge and demands a sustained effort in analysis of extended family pedigrees, diligent clinical phenotyping, and systematic annotation of human genetic variation.
Collapse
Affiliation(s)
- Thomas J. Cahill
- From the Department of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - Houman Ashrafian
- From the Department of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - Hugh Watkins
- From the Department of Cardiovascular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
34
|
Al-Jassar C, Bikker H, Overduin M, Chidgey M. Mechanistic basis of desmosome-targeted diseases. J Mol Biol 2013; 425:4006-22. [PMID: 23911551 PMCID: PMC3807649 DOI: 10.1016/j.jmb.2013.07.035] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 11/21/2022]
Abstract
Desmosomes are dynamic junctions between cells that maintain the structural integrity of skin and heart tissues by withstanding shear forces. Mutations in component genes cause life-threatening conditions including arrhythmogenic right ventricular cardiomyopathy, and desmosomal proteins are targeted by pathogenic autoantibodies in skin blistering diseases such as pemphigus. Here, we review a set of newly discovered pathogenic alterations and discuss the structural repercussions of debilitating mutations on desmosomal proteins. The architectures of native desmosomal assemblies have been visualized by cryo-electron microscopy and cryo-electron tomography, and the network of protein domain interactions is becoming apparent. Plakophilin and desmoplakin mutations have been discovered to alter binding interfaces, structures, and stabilities of folded domains that have been resolved by X-ray crystallography and NMR spectroscopy. The flexibility within desmoplakin has been revealed by small-angle X-ray scattering and fluorescence assays, explaining how mechanical stresses are accommodated. These studies have shown that the structural and functional consequences of desmosomal mutations can now begin to be understood at multiple levels of spatial and temporal resolution. This review discusses the recent structural insights and raises the possibility of using modeling for mechanism-based diagnosis of how deleterious mutations alter the integrity of solid tissues.
Collapse
Affiliation(s)
- Caezar Al-Jassar
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
35
|
Gerull B, Kirchner F, Chong JX, Tagoe J, Chandrasekharan K, Strohm O, Waggoner D, Ober C, Duff HJ. Homozygous Founder Mutation in Desmocollin-2 (
DSC2
) Causes Arrhythmogenic Cardiomyopathy in the Hutterite Population. ACTA ACUST UNITED AC 2013; 6:327-36. [DOI: 10.1161/circgenetics.113.000097] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Dominant mutations in cellular junction proteins are the major cause of arrhythmogenic cardiomyopathy, whereas recessive mutations in those proteins cause cardiocutaneous syndromes such as Naxos and Carvajal syndrome. The Hutterites are distinct genetic isolates who settled in North America in 1874. Descended from <100 founders, they trace their origins to 16th-century Europe.
Methods and Results—
We clinically and genetically evaluated 2 large families of the Alberta Hutterite population with a history of sudden death and found several individuals with severe forms of biventricular cardiomyopathy characterized by mainly left-sided localized aneurysms, regions of wall thinning with segmental akinesis, in addition to typical electric and histological features known for arrhythmogenic right ventricular cardiomyopathy. We identified a homozygous truncation mutation, c.1660C>T (p.Q554X) in desmocollin-2 (
DSC2
), in affected individuals and determined a carrier frequency of this mutation of 9.4% (1 in 10.6) among 1535 Schmiedeleut Hutterites, suggesting a common founder in that subgroup. Immunohistochemistry of endomyocardial biopsy samples revealed altered expression of the truncated DSC2 protein at the intercalated discs but only minor changes in immunoreactivity of other desmosomal proteins. Recombinant expressed mutant DSC2 protein in cells confirmed a stable, partially processed truncated protein with cytoplasmic and membrane localization.
Conclusions—
A homozygous truncation mutation in
DSC2
leads to a cardiac-restricted phenotype of an early onset biventricular arrhythmogenic cardiomyopathy. The truncated protein remains partially stable and localized at the intercalated discs. These data suggest that the processed DSC2 protein plays a role in maintaining desmosome integrity and function.
Collapse
Affiliation(s)
- Brenda Gerull
- From the Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta (B.G., K.C., O.S., H.J.D.), and Department of Medical Genetics (B.G., J.T.), University of Calgary, Calgary, AB, Canada; Max Delbrück Center for Molecular Medicine, Berlin, Germany (F.K.); Department of Human Genetics, The University of Chicago, Chicago, IL (J.X.C., D.W., C.O.); and Centre for Cardiology, Baden-Baden, Germany (O.S.)
| | - Florian Kirchner
- From the Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta (B.G., K.C., O.S., H.J.D.), and Department of Medical Genetics (B.G., J.T.), University of Calgary, Calgary, AB, Canada; Max Delbrück Center for Molecular Medicine, Berlin, Germany (F.K.); Department of Human Genetics, The University of Chicago, Chicago, IL (J.X.C., D.W., C.O.); and Centre for Cardiology, Baden-Baden, Germany (O.S.)
| | - Jessica X. Chong
- From the Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta (B.G., K.C., O.S., H.J.D.), and Department of Medical Genetics (B.G., J.T.), University of Calgary, Calgary, AB, Canada; Max Delbrück Center for Molecular Medicine, Berlin, Germany (F.K.); Department of Human Genetics, The University of Chicago, Chicago, IL (J.X.C., D.W., C.O.); and Centre for Cardiology, Baden-Baden, Germany (O.S.)
| | - Julia Tagoe
- From the Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta (B.G., K.C., O.S., H.J.D.), and Department of Medical Genetics (B.G., J.T.), University of Calgary, Calgary, AB, Canada; Max Delbrück Center for Molecular Medicine, Berlin, Germany (F.K.); Department of Human Genetics, The University of Chicago, Chicago, IL (J.X.C., D.W., C.O.); and Centre for Cardiology, Baden-Baden, Germany (O.S.)
| | - Kumaran Chandrasekharan
- From the Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta (B.G., K.C., O.S., H.J.D.), and Department of Medical Genetics (B.G., J.T.), University of Calgary, Calgary, AB, Canada; Max Delbrück Center for Molecular Medicine, Berlin, Germany (F.K.); Department of Human Genetics, The University of Chicago, Chicago, IL (J.X.C., D.W., C.O.); and Centre for Cardiology, Baden-Baden, Germany (O.S.)
| | - Oliver Strohm
- From the Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta (B.G., K.C., O.S., H.J.D.), and Department of Medical Genetics (B.G., J.T.), University of Calgary, Calgary, AB, Canada; Max Delbrück Center for Molecular Medicine, Berlin, Germany (F.K.); Department of Human Genetics, The University of Chicago, Chicago, IL (J.X.C., D.W., C.O.); and Centre for Cardiology, Baden-Baden, Germany (O.S.)
| | - Darrel Waggoner
- From the Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta (B.G., K.C., O.S., H.J.D.), and Department of Medical Genetics (B.G., J.T.), University of Calgary, Calgary, AB, Canada; Max Delbrück Center for Molecular Medicine, Berlin, Germany (F.K.); Department of Human Genetics, The University of Chicago, Chicago, IL (J.X.C., D.W., C.O.); and Centre for Cardiology, Baden-Baden, Germany (O.S.)
| | - Carole Ober
- From the Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta (B.G., K.C., O.S., H.J.D.), and Department of Medical Genetics (B.G., J.T.), University of Calgary, Calgary, AB, Canada; Max Delbrück Center for Molecular Medicine, Berlin, Germany (F.K.); Department of Human Genetics, The University of Chicago, Chicago, IL (J.X.C., D.W., C.O.); and Centre for Cardiology, Baden-Baden, Germany (O.S.)
| | - Henry J. Duff
- From the Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta (B.G., K.C., O.S., H.J.D.), and Department of Medical Genetics (B.G., J.T.), University of Calgary, Calgary, AB, Canada; Max Delbrück Center for Molecular Medicine, Berlin, Germany (F.K.); Department of Human Genetics, The University of Chicago, Chicago, IL (J.X.C., D.W., C.O.); and Centre for Cardiology, Baden-Baden, Germany (O.S.)
| |
Collapse
|
36
|
Elmaghawry M, Migliore F, Mohammed N, Sanoudou D, Alhashemi M. Science and practice of arrhythmogenic cardiomyopathy: A paradigm shift. Glob Cardiol Sci Pract 2013; 2013:63-79. [PMID: 24689002 PMCID: PMC3963726 DOI: 10.5339/gcsp.2013.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 03/06/2013] [Indexed: 11/18/2022] Open
Affiliation(s)
| | - Federico Migliore
- Division of Cardiology, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Nazar Mohammed
- The Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Despina Sanoudou
- Department of Pharmacology, Medical School, University of Athens, Greece
| | | |
Collapse
|
37
|
Refsgaard L, Olesen MS, Møller DV, Christiansen M, Haunsø S, Svendsen JH, Christensen AH. Mutation analysis of the candidate genes SCN1B- 4B, FHL1, and LMNA in patients with arrhythmogenic right ventricular cardiomyopathy. Appl Transl Genom 2012; 1:44-46. [PMID: 27896052 PMCID: PMC5121199 DOI: 10.1016/j.atg.2012.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
INTRODUCTION Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetically determined heart disease characterized by fibrofatty infiltrations in the myocardium, right and/or left ventricular involvement, and ventricular tachyarrhythmias. Although ten genes have been associated with ARVC, only about 40% of the patients have an identifiable disease-causing mutation. In the present study we aimed at investigating the involvement of the genes SCN1B-SCN4B, FHL1, and LMNA in the pathogenesis of ARVC. METHODS Sixty-five unrelated patients (55 fulfilling ARVC criteria and 10 borderline cases) were screened for variants in SCN1B-4B, FHL1, and LMNA by direct sequencing and LightScanner melting curve analysis. RESULTS A total of 28 sequence variants were identified: seven in SCN1B, three in SCN2B, two in SCN3B, two in SCN4B, four in FHL1, and ten in LMNA. Three of the variants were novel. One of the variants was non-synonymous. No disease-causing mutations were identified. CONCLUSIONS In our limited sized cohort the six studied candidate genes were not associated with ARVC.
Collapse
Affiliation(s)
- Lena Refsgaard
- Danish National Research Foundation Centre for Cardiac Arrhythmia (DARC), Blegdamsvej 3, 2200 Copenhagen N, Denmark
- Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Juliane Maries Vej 20, 2100 Copenhagen O, Denmark
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen O, Denmark
| | - Morten Salling Olesen
- Danish National Research Foundation Centre for Cardiac Arrhythmia (DARC), Blegdamsvej 3, 2200 Copenhagen N, Denmark
- Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Juliane Maries Vej 20, 2100 Copenhagen O, Denmark
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen O, Denmark
- Corresponding author at: Laboratory for Molecular Cardiology, Section 9312, Department of Cardiology, Rigshospitalet, Juliane Maries vej 20, 2100 Copenhagen O, Denmark. Tel.: + 45 35456506; fax: + 45 35456500.
| | - Daniel Vega Møller
- Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Ørestads Boulevard 5, 2300 Copenhagen S, Denmark
| | - Michael Christiansen
- Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Ørestads Boulevard 5, 2300 Copenhagen S, Denmark
| | - Stig Haunsø
- Danish National Research Foundation Centre for Cardiac Arrhythmia (DARC), Blegdamsvej 3, 2200 Copenhagen N, Denmark
- Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Juliane Maries Vej 20, 2100 Copenhagen O, Denmark
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen O, Denmark
- Department of Medicine and Surgery, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Jesper Hastrup Svendsen
- Danish National Research Foundation Centre for Cardiac Arrhythmia (DARC), Blegdamsvej 3, 2200 Copenhagen N, Denmark
- Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Juliane Maries Vej 20, 2100 Copenhagen O, Denmark
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen O, Denmark
- Department of Medicine and Surgery, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Alex Hørby Christensen
- Danish National Research Foundation Centre for Cardiac Arrhythmia (DARC), Blegdamsvej 3, 2200 Copenhagen N, Denmark
- Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Juliane Maries Vej 20, 2100 Copenhagen O, Denmark
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen O, Denmark
| |
Collapse
|
38
|
Arrhythmogenic right ventricular cardiomyopathy: Reassessing the link with the desmosome. Pathology 2012; 44:596-604. [DOI: 10.1097/pat.0b013e32835a0163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Chen J, Nekrasova OE, Patel DM, Klessner JL, Godsel LM, Koetsier JL, Amargo EV, Desai BV, Green KJ. The C-terminal unique region of desmoglein 2 inhibits its internalization via tail-tail interactions. ACTA ACUST UNITED AC 2012; 199:699-711. [PMID: 23128240 PMCID: PMC3494854 DOI: 10.1083/jcb.201202105] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tail–tail interactions of desmoglein 2, promoted by its C-terminal unique region, inhibit its internalization, stabilizing it at the cell surface and promoting intercellular adhesion. Desmosomal cadherins, desmogleins (Dsgs) and desmocollins, make up the adhesive core of intercellular junctions called desmosomes. A critical determinant of epithelial adhesive strength is the level and organization of desmosomal cadherins on the cell surface. The Dsg subclass of desmosomal cadherins contains a C-terminal unique region (Dsg unique region [DUR]) with unknown function. In this paper, we show that the DUR of Dsg2 stabilized Dsg2 at the cell surface by inhibiting its internalization and promoted strong intercellular adhesion. DUR also facilitated Dsg tail–tail interactions. Forced dimerization of a Dsg2 tail lacking the DUR led to decreased internalization, supporting the conclusion that these two functions of the DUR are mechanistically linked. We also show that a Dsg2 mutant, V977fsX1006, identified in arrhythmogenic right ventricular cardiomyopathy patients, led to a loss of Dsg2 tail self-association and underwent rapid endocytosis in cardiac muscle cells. Our observations illustrate a new mechanism desmosomal cadherins use to control their surface levels, a key factor in determining their adhesion and signaling roles.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Jacob KA, Noorman M, Cox MGPJ, Groeneweg JA, Hauer RNW, van der Heyden MAG. Geographical distribution of plakophilin-2 mutation prevalence in patients with arrhythmogenic cardiomyopathy. Neth Heart J 2012; 20:234-9. [PMID: 22527912 DOI: 10.1007/s12471-012-0274-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (AC) is characterised by myocardial fibrofatty tissue infiltration and presents with palpitations, ventricular arrhythmias, syncope and sudden cardiac death. AC is associated with mutations in genes encoding the desmosomal proteins plakophilin-2 (PKP2), desmoplakin (DSP), desmoglein-2 (DSG2), desmocollin-2 (DSC2) and junctional plakoglobin (JUP). In the present study we compared 28 studies (2004-2011) on the prevalence of mutations in desmosomal protein encoding genes in relation to geographic distribution of the study population. In most populations, mutations in PKP2 showed the highest prevalence. Mutation prevalence in DSP, DSG2 and DSC2 varied among the different geographic regions. Mutations in JUP were rarely found, except in Denmark and the Greece/Cyprus region.
Collapse
Affiliation(s)
- K A Jacob
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584, CM, Utrecht, the Netherlands
| | | | | | | | | | | |
Collapse
|
41
|
Wilders R. Arrhythmogenic right ventricular cardiomyopathy: considerations from in silico experiments. Front Physiol 2012; 3:168. [PMID: 22754532 PMCID: PMC3385583 DOI: 10.3389/fphys.2012.00168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/09/2012] [Indexed: 11/22/2022] Open
Abstract
Objective: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is associated with remodeling of gap junctions and also, although less well-defined, down-regulation of the fast sodium current. The gap junction remodeling and down-regulation of sodium current have been proposed as contributors to arrhythmogenesis in ARVC by slowing conduction. The objective of the present study was to assess the amount of conduction slowing due to the observed gap junction remodeling and down-regulation of sodium current. Methods: The effects of (changes in) gap junctional conductance, cell dimensions, and sodium current on both longitudinal and transversal conduction velocity were tested by simulating action potential propagation in linear strands of human ventricular cells that were either arranged end-to-end or side-by-side. Results: A 50% reduction in gap junction content, as commonly observed in ARVC, gives rise to an 11% decrease in longitudinal conduction velocity and a 29% decrease in transverse conduction velocity. A down-regulation of the sodium current through a 50% decrease in peak current density as well as a −15 mV shift in steady-state inactivation, as observed in an experimental model of ARVC, decreases conduction velocity in either direction by 32%. In combination, the gap junction remodeling and down-regulation of sodium current result in a 40% decrease in longitudinal conduction velocity and a 52% decrease in transverse conduction velocity. Conclusion: The gap junction remodeling and down-regulation of sodium current do result in conduction slowing, but heterogeneity of gap junction remodeling, in combination with down-regulation of sodium current, rather than gap junction remodeling per se may be a critical factor in arrhythmogenesis in ARVC.
Collapse
Affiliation(s)
- Ronald Wilders
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
42
|
Rickelt S. Plakophilin-2: a cell-cell adhesion plaque molecule of selective and fundamental importance in cardiac functions and tumor cell growth. Cell Tissue Res 2012; 348:281-94. [PMID: 22281687 PMCID: PMC3349858 DOI: 10.1007/s00441-011-1314-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 12/16/2011] [Indexed: 01/23/2023]
Abstract
Within the characteristic ensemble of desmosomal plaque proteins, the armadillo protein plakophilin-2 (Pkp2) is known as a particularly important regulatory component in the cytoplasmic plaques of various other cell-cell junctions, such as the composite junctions (areae compositae) of the myocardiac intercalated disks and in the variously-sized and -shaped complex junctions of permanent cell culture lines derived therefrom. In addition, Pkp2 has been detected in certain protein complexes in the nucleoplasm of diverse kinds of cells. Using a novel set of highly sensitive and specific antibodies, both kinds of Pkp2, the junctional plaque-bound and the nuclear ones, can also be localized to the cytoplasmic plaques of diverse non-desmosomal cell-cell junction structures. These are not only the puncta adhaerentia and the fasciae adhaerentes connecting various types of highly proliferative non-epithelial cells growing in culture but also some very proliferative states of cardiac interstitial cells and cardiac myxomata, including tumors growing in situ as well as fetal stages of heart development and cultures of valvular interstitial cells. Possible functions and assembly mechanisms of such Pkp2-positive cell-cell junctions as well as medical consequences are discussed.
Collapse
Affiliation(s)
- Steffen Rickelt
- Helmholtz Group for Cell Biology, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
43
|
Rickelt S, Pieperhoff S. Mutations with pathogenic potential in proteins located in or at the composite junctions of the intercalated disk connecting mammalian cardiomyocytes: a reference thesaurus for arrhythmogenic cardiomyopathies and for Naxos and Carvajal diseases. Cell Tissue Res 2012; 348:325-33. [PMID: 22450909 PMCID: PMC3349860 DOI: 10.1007/s00441-012-1365-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 02/03/2012] [Indexed: 01/30/2023]
Abstract
In the past decade, an avalanche of findings and reports has correlated arrhythmogenic ventricular cardiomyopathies (ARVC) and Naxos and Carvajal diseases with certain mutations in protein constituents of the special junctions connecting the polar regions (intercalated disks) of mature mammalian cardiomyocytes. These molecules, apparently together with some specific cytoskeletal proteins, are components of (or interact with) composite junctions. Composite junctions contain the amalgamated fusion products of the molecules that, in other cell types and tissues, occur in distinct separate junctions, i.e. desmosomes and adherens junctions. As the pertinent literature is still in an expanding phase and is obviously becoming important for various groups of researchers in basic cell and molecular biology, developmental biology, histology, physiology, cardiology, pathology and genetics, the relevant references so far recognized have been collected and are presented here in the following order: desmocollin-2 (Dsc2, DSC2), desmoglein-2 (Dsg2, DSG2), desmoplakin (DP, DSP), plakoglobin (PG, JUP), plakophilin-2 (Pkp2, PKP2) and some non-desmosomal proteins such as transmembrane protein 43 (TMEM43), ryanodine receptor 2 (RYR2), desmin, lamins A and C, striatin, titin and transforming growth factor-β3 (TGFβ3), followed by a collection of animal models and of reviews, commentaries, collections and comparative studies.
Collapse
Affiliation(s)
- Steffen Rickelt
- Helmholtz Group for Cell Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Building TP4, 69120 Heidelberg, Germany
- Progen Biotechnik, Heidelberg, Germany
| | - Sebastian Pieperhoff
- BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, EH164TJ Edinburgh, Scotland UK
| |
Collapse
|
44
|
Functional effects of the TMEM43 Ser358Leu mutation in the pathogenesis of arrhythmogenic right ventricular cardiomyopathy. BMC MEDICAL GENETICS 2012; 13:21. [PMID: 22458570 PMCID: PMC3352248 DOI: 10.1186/1471-2350-13-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 03/29/2012] [Indexed: 12/31/2022]
Abstract
Background The Ser358Leu mutation in TMEM43, encoding an inner nuclear membrane protein, has been implicated in arrhythmogenic right ventricular cardiomyopathy (ARVC). The pathogenetic mechanisms of this mutation are poorly understood. Methods To determine the frequency of TMEM43 mutations as a cause of ARVC, we screened 11 ARVC families for mutations in TMEM43 and five desmosomal genes previously implicated in the disease. Functional studies were performed in COS-7 cells transfected with wildtype, mutant, and 1:2 wildtype:mutant TMEM43 to determine the effect of the Ser358Leu mutation on the stability and cellular localization of TMEM43 and other nuclear envelope and desmosomal proteins, assessed by solubility assays and immunofluorescence imaging. mRNA expression was assessed of genes potentially affected by dysfunction of the nuclear lamina. Results Three novel mutations in previously documented desmosomal genes, but no mutations in TMEM43, were identified. COS-7 cells transfected with mutant TMEM43 exhibited no change in desmosomal stability. Stability and nuclear membrane localization of mutant TMEM43 and of lamin B and emerin were normal. Mutant TMEM43 did not alter the expression of genes located on chromosome 13, previously implicated in nuclear envelope protein mutations leading to skeletal muscular dystrophies. Conclusions Mutant TMEM43 exhibits normal cellular localization and does not disrupt integrity and localization of other nuclear envelope and desmosomal proteins. The pathogenetic role of TMEM43 mutations in ARVC remains uncertain.
Collapse
|
45
|
Munkholm J, Christensen AH, Svendsen JH, Andersen CB. Usefulness of immunostaining for plakoglobin as a diagnostic marker of arrhythmogenic right ventricular cardiomyopathy. Am J Cardiol 2012; 109:272-5. [PMID: 22036107 DOI: 10.1016/j.amjcard.2011.08.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/30/2011] [Accepted: 08/30/2011] [Indexed: 02/07/2023]
Abstract
The clinical diagnosis of arrhythmogenic right ventricular cardiomyopathy (ARVC) is often challenging due to phenotypic variation, reduced/age-related penetrance, and lack of a diagnostic test. A single report has suggested quantitative myocardial immunoanalysis for the desmosomal protein plakoglobin as a diagnostic test with high sensitivity and specificity. We performed immunohistochemistry for plakoglobin and a control protein on myocardial biopsies with fibrofatty replacements from 50 consecutive, unrelated patients. The clinical, genetic, and immunohistochemical data were evaluated by independent observers in a blinded manner. The immunohistochemical and clinical diagnoses were compared and the sensitivity, specificity, and predictive values calculated. Our analysis showed 37 samples (74%) with a reduced immunosignal for plakoglobin. Of the 34 patients with a clinical diagnosis of ARVC, 29 displayed a reduced plakoglobin signal. Of the 14 patients with a clinical diagnosis other than ARVC, 6 displayed a reduced signal. Two patients were excluded from further analysis. A sensitivity of 85%, a specificity of 57%, a positive predictive value of 83%, and a negative predictive value of 62% were found. In conclusion, immunohistochemical analysis for plakoglobin, applied as a diagnostic test for ARVC, seems associated with a relatively high sensitivity, but limited specificity, and although additional validation is required, we advocate caution in basing clinical decision-making on the proposed diagnostic test.
Collapse
|
46
|
James CA, Tichnell C, Murray B, Daly A, Sears SF, Calkins H. General and disease-specific psychosocial adjustment in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy with implantable cardioverter defibrillators: a large cohort study. ACTA ACUST UNITED AC 2012; 5:18-24. [PMID: 22238189 DOI: 10.1161/circgenetics.111.960898] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is characterized by frequent life-threatening ventricular arrhythmias, diagnosed on average in the teens to mid-50s and commonly treated by implantable cardioverter defibrillators (ICDs). As younger age and high frequency of ICD discharges are risk factors for difficulties in psychosocial adjustment, we developed a study to assess psychosocial adjustment among patients with ARVD/C and to determine risk factors for poor adjustment in this high-risk population. METHODS AND RESULTS Eighty-six adults enrolled in the Johns Hopkins ARVD Registry (38 male; mean age, 45.4±12.9 years), with an ICD in place for a median 3.2 years (range, 0.2 to 20.1 years), completed a set of questionnaires measuring ICD-specific anxiety (Florida Shock Anxiety Scale), device acceptance (Florida Patient Acceptance Survey), anxiety and depression (Hospital Anxiety and Depression Scale), and functional capacity (Duke Activity Status Index). Although overall device acceptance (Florida Patient Acceptance Survey mean, 76.7±15.3) was normative, patients with ARVD/C had substantially elevated body image concerns (Florida Patient Acceptance Survey subscale mean, 17.9±23.5) and device-related distress (subscale mean, 26.5±19.2), particularly among younger patients (P<0.01). Patients with ARVD/C had elevated ICD-specific (Florida Shock Anxiety Scale mean, 22.9±7.8) and general clinical anxiety (Hospital Anxiety and Depression Scale anxiety subscale mean, 6.2±3.9). Device-specific anxiety (Florida Shock Anxiety Scale) was predicted by younger age (P<0.0001), poorer functional capacity (P=0.016), having an ICD shock (P=0.003), and shorter time since ICD implant (P=0.007). Participants with poor device adjustment had an increased likelihood of clinically significant anxiety (P=0.006) and depression (P=0.008). CONCLUSIONS Patients with ARVD/C are at elevated risk for anxiety, and young patients face challenges with device acceptance. Risk factors for poor device adjustment may be used clinically to identify patients at high-risk of psychological distress.
Collapse
Affiliation(s)
- Cynthia A James
- Division of Cardiology, Department of Medicine, Johns Hopkins University, 600 N Wolfe St., Baltimore, MD 21287, USA.
| | | | | | | | | | | |
Collapse
|
47
|
van Rijsingen IA, Arbustini E, Elliott PM, Mogensen J, Hermans-van Ast JF, van der Kooi AJ, van Tintelen JP, van den Berg MP, Pilotto A, Pasotti M, Jenkins S, Rowland C, Aslam U, Wilde AA, Perrot A, Pankuweit S, Zwinderman AH, Charron P, Pinto YM. Risk Factors for Malignant Ventricular Arrhythmias in Lamin A/C Mutation Carriers. J Am Coll Cardiol 2012; 59:493-500. [DOI: 10.1016/j.jacc.2011.08.078] [Citation(s) in RCA: 383] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/10/2011] [Accepted: 08/26/2011] [Indexed: 11/25/2022]
|
48
|
van der Smagt JJ, van der Zwaag PA, van Tintelen JP, Cox MG, Wilde AA, van Langen IM, Ummels A, Hennekam F, Dooijes D, Gerbens F, Bikker H, Hauer RN, Doevendans PA. Clinical and Genetic Characterization of Patients with Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy Caused by a Plakophilin-2 Splice Mutation. Cardiology 2012; 123:181-9. [DOI: 10.1159/000342717] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 07/18/2012] [Indexed: 11/19/2022]
|
49
|
Nakajima T, Kaneko Y, Irie T, Takahashi R, Kato T, Iijima T, Iso T, Kurabayashi M. Compound and digenic heterozygosity in desmosome genes as a cause of arrhythmogenic right ventricular cardiomyopathy in Japanese patients. Circ J 2011; 76:737-43. [PMID: 22214898 DOI: 10.1253/circj.cj-11-0927] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a hereditary disorder mostly caused by desmosome gene mutations. Recent comprehensive desmosome mutation analyses of Caucasian ARVC patients have revealed the presence of not only a single heterozygous mutation, but also compound and digenic heterozygosity. However, the genetic basis of Japanese ARVC remains poorly elucidated. METHODS AND RESULTS The subjects were 7 definite and 1 possible ARVC probands (6 males, 16-76 years of age), and their family members. Genetic screening for major ARVC-causing genes (junction plakoglobin, desmoplakin, plakophilin-2 (PKP2), desmoglein-2 (DSG2), and desmocollin-2) was performed. We identified 3 cases of compound heterozygosities (Case 1: DSG2 S194L and DSG2 R292C; Case 2: PKP2 2489+1G>A and PKP2 D812N; Case 3: PKP2 M565R and PKP2 D812N) and 1 of digenic heterozygosity (Case 4: PKP2 1728_1729insGATG and DSG2 R292C) among the definite ARVC patients. All family members we investigated have remained asymptomatic. They carried, if any, only a single variant, indicating that the probands carry in trans compound heterozygosity. These results suggest that each of these variants alone may not be sufficient and second variants may be required to manifest overt ARVC in Japanese patients. CONCLUSIONS Our comprehensive genetic analysis of desmosome genes identified 3 cases of compound heterozygosities in trans and 1 of digenic heterozygosity among 7 definite Japanese ARVC patients, providing novel insights into the genetic basis of Japanese ARVC.
Collapse
Affiliation(s)
- Tadashi Nakajima
- Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, Maebachi, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Bauce B, Rampazzo A, Basso C, Mazzotti E, Rigato I, Steriotis A, Beffagna G, Lorenzon A, De Bortoli M, Pilichou K, Marra MP, Corbetti F, Daliento L, Iliceto S, Corrado D, Thiene G, Nava A. Clinical phenotype and diagnosis of arrhythmogenic right ventricular cardiomyopathy in pediatric patients carrying desmosomal gene mutations. Heart Rhythm 2011; 8:1686-95. [PMID: 21723241 PMCID: PMC3205183 DOI: 10.1016/j.hrthm.2011.06.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 06/24/2011] [Indexed: 11/21/2022]
Abstract
BACKGROUND Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disease carrying a risk of sudden death. Information about the clinical features during childhood and the age at disease onset is scanty. OBJECTIVE The aim of the study was to describe the ARVC phenotype as its initial clinical manifestation in a pediatric population (<18 years) with desmosomal gene mutations. METHODS Fifty-three ARVC desmosomal gene mutation carriers (mean age 12.3 ± 3.9 years) were investigated by electrocardiogram (ECG), signal-averaged ECG, 24-hour Holter, echocardiogram, and contrast-enhanced cardiac magnetic resonance (CMR). RESULTS None of the children ≤10 years old fulfilled the 1994 criteria, as opposed to six (33%) aged 11-14 years and eight aged >14 years (42%). At the end of follow-up (9 ± 7 years), 21 (40%) fulfilled the 1994 diagnostic criteria (mean age 16 ± 4 years). By using the 2010 criteria in subjects aged ≤18 years, 53% were unaffected, versus 62% by using the traditional criteria. More than two-thirds of affected subjects had moderate-severe forms of the disease. Contrast-enhanced CMR was performed in 21 (40%); of 13 unaffected gene mutation carriers, six showed ARVC morphological and/or tissue abnormalities. CONCLUSION In pediatric ARVC mutation carriers, a diagnosis was achieved in 40% of cases, confirming that the disease usually develops during adolescence and young adulthood. The 2010 modified criteria seem to be more sensitive than the 1994 ones in identifying familial pediatric cases. Contrast-enhanced CMR can provide diagnostic information on gene mutation carriers not fulfilling either traditional or modified criteria. Management of asymptomatic gene mutation carriers remains the main clinical challenge.
Collapse
Key Words
- arvc, arrhythmogenic right ventricular cardiomyopathy
- bsa, body surface area
- cmr, cardiac magnetic resonance
- ecg, electrocardiogram
- le, late enhancement
- lv, left ventricular, ventricle
- lvef, left ventricular ejection fraction
- lvedv, left ventricular end diastolic volume
- mm, multiple mutations
- plax, parasternal long axis
- psax, parasternal short axis
- pvc, premature ventricular complex
- rv, right ventricular
- rveda, right ventricular end-diastolic area
- rvedv, right ventricular end-diastolic volume
- rvfs, right ventricular fraction shortening
- rvot, right ventricular outflow tract
- saecg, signal-averaged electrocardiogram
- vf, ventricular fibrillation
- vt, ventricular tachycardia
Collapse
Affiliation(s)
- Barbara Bauce
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|