1
|
Yang Y, Sheng YH, Carreira P, Wang T, Zhao H, Wang R. Genome-wide assessment of shared genetic landscape of idiopathic pulmonary fibrosis and its comorbidities. Hum Genet 2024; 143:1223-1239. [PMID: 39103522 PMCID: PMC11485074 DOI: 10.1007/s00439-024-02696-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 07/27/2024] [Indexed: 08/07/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease accompanied by both local and systemic comorbidities. Genetic factors play a role in the development of IPF and certain associated comorbidities. Nevertheless, it is uncertain whether there are shared genetic factors underlying IPF and these comorbidities. To bridge this knowledge gap, we conducted a systematic investigation into the shared genetic architecture between IPF and ten prevalent heritable comorbidities (i.e., body mass index [BMI], coronary artery disease [CAD], chronic obstructive pulmonary disease [COPD], gastroesophageal reflux disease, lung cancer, major depressive disorder [MDD], obstructive sleep apnoea, pulmonary hypertension [PH], stroke, and type 2 diabetes), by utilizing large-scale summary data from their respective genome-wide association studies and multi-omics studies. We revealed significant (false discovery rate [FDR] < 0.05) and moderate genetic correlations between IPF and seven comorbidities, excluding lung cancer, MDD and PH. Evidence suggested a partially putative causal effect of IPF on CAD. Notably, we observed FDR-significant genetic enrichments in lung for the cross-trait between IPF and CAD and in liver for the cross-trait between IPF and COPD. Additionally, we identified 65 FDR-significant genes over-represented in 20 biological pathways related to the etiology of IPF, BMI, and COPD, including inflammation-related mucin gene clusters. Several of these genes were associated with clinically relevant drugs for the treatment of IPF, CAD, and/or COPD. Our results underscore the pervasive shared genetic basis between IPF and its common comorbidities and hold future implications for early diagnosis of IPF-related comorbidities, drug repurposing, and the development of novel therapies for IPF.
Collapse
Affiliation(s)
- Yuanhao Yang
- Mater Research Institute, The University of Queensland, Woolloongabba, QLD, Australia.
| | - Yong H Sheng
- Mater Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
- Cancer Program, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Patricia Carreira
- Immunology and Infectious Disease Division, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia
| | - Tong Wang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huiying Zhao
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ran Wang
- Mater Research Institute, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
2
|
Diez Benavente E, Hartman RJG, Sakkers TR, Wesseling M, Sloots Y, Slenders L, Boltjes A, Mol BM, de Borst GJ, de Kleijn DPV, Prange KHM, de Winther MPJ, Kuiper J, Civelek M, van der Laan SW, Horvath S, Onland-Moret NC, Mokry M, Pasterkamp G, den Ruijter HM. Atherosclerotic Plaque Epigenetic Age Acceleration Predicts a Poor Prognosis and Is Associated With Endothelial-to-Mesenchymal Transition in Humans. Arterioscler Thromb Vasc Biol 2024; 44:1419-1431. [PMID: 38634280 DOI: 10.1161/atvbaha.123.320692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Epigenetic age estimators (clocks) are predictive of human mortality risk. However, it is not yet known whether the epigenetic age of atherosclerotic plaques is predictive for the risk of cardiovascular events. METHODS Whole-genome DNA methylation of human carotid atherosclerotic plaques (n=485) and of blood (n=93) from the Athero-Express endarterectomy cohort was used to calculate epigenetic age acceleration (EAA). EAA was linked to clinical characteristics, plaque histology, and future cardiovascular events (n=136). We studied whole-genome DNA methylation and bulk and single-cell transcriptomics to uncover molecular mechanisms of plaque EAA. We experimentally confirmed our in silico findings using in vitro experiments in primary human coronary endothelial cells. RESULTS Male and female patients with severe atherosclerosis had a median chronological age of 69 years. The median epigenetic age was 65 years in females (median EAA, -2.2 [interquartile range, -4.3 to 2.2] years) and 68 years in males (median EAA, -0.3 [interquartile range, -2.9 to 3.8] years). Patients with diabetes and a high body mass index had higher plaque EAA. Increased EAA of plaque predicted future events in a 3-year follow-up in a Cox regression model (univariate hazard ratio, 1.7; P=0.0034) and adjusted multivariate model (hazard ratio, 1.56; P=0.02). Plaque EAA predicted outcome independent of blood EAA (hazard ratio, 1.3; P=0.018) and of plaque hemorrhage (hazard ratio, 1.7; P=0.02). Single-cell RNA sequencing in plaque samples from 46 patients in the same cohort revealed smooth muscle and endothelial cells as important cell types in plaque EAA. Endothelial-to-mesenchymal transition was associated with EAA, which was experimentally confirmed by TGFβ-triggered endothelial-to-mesenchymal transition inducing rapid epigenetic aging in coronary endothelial cells. CONCLUSIONS Plaque EAA is a strong and independent marker of poor outcome in patients with severe atherosclerosis. Plaque EAA was linked to mesenchymal endothelial and smooth muscle cells. Endothelial-to-mesenchymal transition was associated with EAA, which was experimentally validated. Epigenetic aging mechanisms may provide new targets for treatments that reduce atherosclerosis complications.
Collapse
Affiliation(s)
- Ernest Diez Benavente
- Laboratory of Experimental Cardiology (E.D.B., R.J.G.H., T.R.S., Y.S., M.M., H.M.d.R.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Robin J G Hartman
- Laboratory of Experimental Cardiology (E.D.B., R.J.G.H., T.R.S., Y.S., M.M., H.M.d.R.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Tim R Sakkers
- Laboratory of Experimental Cardiology (E.D.B., R.J.G.H., T.R.S., Y.S., M.M., H.M.d.R.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Marian Wesseling
- Central Diagnostic Laboratory (M.W., L.S., A.B., S.W.v.d.L., M.M., G.P.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Yannicke Sloots
- Laboratory of Experimental Cardiology (E.D.B., R.J.G.H., T.R.S., Y.S., M.M., H.M.d.R.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Lotte Slenders
- Central Diagnostic Laboratory (M.W., L.S., A.B., S.W.v.d.L., M.M., G.P.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Arjan Boltjes
- Central Diagnostic Laboratory (M.W., L.S., A.B., S.W.v.d.L., M.M., G.P.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Barend M Mol
- Department of Vascular Surgery (B.M.M., G.J.d.B., D.P.V.d.K.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Gert J de Borst
- Department of Vascular Surgery (B.M.M., G.J.d.B., D.P.V.d.K.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Dominique P V de Kleijn
- Department of Vascular Surgery (B.M.M., G.J.d.B., D.P.V.d.K.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Koen H M Prange
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands (K.H.M.P., M.P.J.d.W., J.K.)
| | - Menno P J de Winther
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands (K.H.M.P., M.P.J.d.W., J.K.)
| | - Johan Kuiper
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands (K.H.M.P., M.P.J.d.W., J.K.)
| | - Mete Civelek
- Center for Public Health Genomics (M.C.), University of Virginia, Charlottesville
- Department of Biomedical Engineering (M.C.), University of Virginia, Charlottesville
| | - Sander W van der Laan
- Central Diagnostic Laboratory (M.W., L.S., A.B., S.W.v.d.L., M.M., G.P.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine (S.H.), University of California, Los Angeles
- Department of Biostatistics, Fielding School of Public Health (S.H.), University of California, Los Angeles
- Altos Labs, Cambridge Institute of Science, United Kingdom (S.H.)
| | - N Charlotte Onland-Moret
- Julius Center for Health Sciences and Primary Care (N.C.O.-M.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Michal Mokry
- Laboratory of Experimental Cardiology (E.D.B., R.J.G.H., T.R.S., Y.S., M.M., H.M.d.R.), University Medical Center Utrecht, Utrecht University, the Netherlands
- Central Diagnostic Laboratory (M.W., L.S., A.B., S.W.v.d.L., M.M., G.P.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Gerard Pasterkamp
- Central Diagnostic Laboratory (M.W., L.S., A.B., S.W.v.d.L., M.M., G.P.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology (E.D.B., R.J.G.H., T.R.S., Y.S., M.M., H.M.d.R.), University Medical Center Utrecht, Utrecht University, the Netherlands
| |
Collapse
|
3
|
Khan SU, Saeed S, Alsuhaibani AM, Fatima S, Ur Rehman K, Zaman U, Ullah M, Refati MS, Lu K. Advances and Challenges for GWAS Analysis in Cardiac Diseases: A Focus on Coronary Artery Disease (CAD). Curr Probl Cardiol 2023:101821. [PMID: 37211304 DOI: 10.1016/j.cpcardiol.2023.101821] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
The achievement of genome-wide association studies (GWAS) has rapidly progressed our understanding of the etiology of coronary artery disease (CAD). It unlocks new strategies to strengthen the stalling of CAD drug development. In this review, we highlighted the recent drawbacks, mainly pointing out those involved in identifying causal genes and interpreting the connections between disease pathology and risk variants. We also benchmark the novel insights into the biological mechanism behind the disease primarily based on outcomes of GWAS. Furthermore, we also shed light on the successful discovery of novel treatment targets by introducing various layers of "omics" data and applying systems genetics strategies. Lastly, we discuss in-depth the significance of precision medicine that is helpful to improve through GWAS analysis in cardiovascular research.
Collapse
Affiliation(s)
- Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China; Women Medical and Dental College, Khyber Medical University, Peshawar, KPK, Pakistan
| | - Sumbul Saeed
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia
| | - Amnah Mohammed Alsuhaibani
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Sumaya Fatima
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Khalil Ur Rehman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Umber Zaman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Muneeb Ullah
- Department of Pharmacy, Kohat University of Science and Technology, 26000, KPK, Pakistan
| | - Moamen S Refati
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China.
| |
Collapse
|
4
|
Boltsis I, Grosveld F, Giraud G, Kolovos P. Chromatin Conformation in Development and Disease. Front Cell Dev Biol 2021; 9:723859. [PMID: 34422840 PMCID: PMC8371409 DOI: 10.3389/fcell.2021.723859] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/16/2021] [Indexed: 01/23/2023] Open
Abstract
Chromatin domains and loops are important elements of chromatin structure and dynamics, but much remains to be learned about their exact biological role and nature. Topological associated domains and functional loops are key to gene expression and hold the answer to many questions regarding developmental decisions and diseases. Here, we discuss new findings, which have linked chromatin conformation with development, differentiation and diseases and hypothesized on various models while integrating all recent findings on how chromatin architecture affects gene expression during development, evolution and disease.
Collapse
Affiliation(s)
- Ilias Boltsis
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Frank Grosveld
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Guillaume Giraud
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, Netherlands
- Cancer Research Center of Lyon – INSERM U1052, Lyon, France
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
5
|
Khomtchouk BB, Tran DT, Vand KA, Might M, Gozani O, Assimes TL. Cardioinformatics: the nexus of bioinformatics and precision cardiology. Brief Bioinform 2020; 21:2031-2051. [PMID: 31802103 PMCID: PMC7947182 DOI: 10.1093/bib/bbz119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, causing over 17 million deaths per year, which outpaces global cancer mortality rates. Despite these sobering statistics, most bioinformatics and computational biology research and funding to date has been concentrated predominantly on cancer research, with a relatively modest footprint in CVD. In this paper, we review the existing literary landscape and critically assess the unmet need to further develop an emerging field at the multidisciplinary interface of bioinformatics and precision cardiovascular medicine, which we refer to as 'cardioinformatics'.
Collapse
Affiliation(s)
- Bohdan B Khomtchouk
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Section of Computational Biomedicine and Biomedical Data Science, University of Chicago, Chicago, IL, USA
| | - Diem-Trang Tran
- School of Computing, University of Utah, Salt Lake City, UT, USA
| | | | - Matthew Might
- Hugh Kaul Personalized Medicine Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Themistocles L Assimes
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
6
|
Timmerman N, de Kleijn DPV, de Borst GJ, den Ruijter HM, Asselbergs FW, Pasterkamp G, Haitjema S, van der Laan SW. Family history and polygenic risk of cardiovascular disease: Independent factors associated with secondary cardiovascular events in patients undergoing carotid endarterectomy. Atherosclerosis 2020; 307:121-129. [PMID: 32624175 DOI: 10.1016/j.atherosclerosis.2020.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/03/2020] [Accepted: 04/22/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS Family history (FHx) of cardiovascular disease (CVD) is a risk factor for CVD and a proxy for cardiovascular heritability. Polygenic risk scores (PRS) summarizing >1 million variants for coronary artery disease (CAD) are associated with incident and recurrent CAD events. However, little is known about the influence of FHx or PRS on secondary cardiovascular events (sCVE) in patients undergoing carotid endarterectomy (CEA). METHODS We included 1788 CEA patients from the Athero-Express Biobank. A weighted PRS for CAD including 1.7 million variants was calculated (MetaGRS). The composite endpoint of sCVE during three years of follow-up included coronary, cerebrovascular and peripheral events and cardiovascular death. We assessed the impact of FHx and MetaGRS on sCVE and carotid plaque composition. RESULTS Positive FHx was associated with a higher 3-year risk of sCVE independent of cardiovascular risk factors and MetaGRS (adjusted HR 1.40, 95%CI 1.07-1.82, p = 0.013). Patients in the highest MetaGRS quintile had a higher 3-year risk of sCVE compared to the rest of the cohort independent of cardiovascular risk factors including FHx (adjusted HR 1.35, 95%CI 1.01-1.79, p = 0.043), and their atherosclerotic plaques contained more fat (adjusted OR 1.59, 95%CI, 1.11-2.29, p = 0.013) and more macrophages (OR 1.49, 95%CI 1.12-1.99, p = 0.006). CONCLUSIONS In CEA patients, both positive FHx and higher MetaGRS were independently associated with increased risk of sCVE. Moreover, higher MetaGRS was associated with vulnerable plaque characteristics. Future studies should unravel underlying mechanisms and focus on the added value of PRS and FHx in individual risk prediction for sCVE.
Collapse
Affiliation(s)
- Nathalie Timmerman
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Dominique P V de Kleijn
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Gert J de Borst
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, Division Heart & Lungs, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart & Lungs, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands; Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, the Netherlands; Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
| | - Gerard Pasterkamp
- Laboratory of Clinical Chemistry and Hematology, Division Laboratories and Pharmacy, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Saskia Haitjema
- Laboratory of Clinical Chemistry and Hematology, Division Laboratories and Pharmacy, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sander W van der Laan
- Laboratory of Clinical Chemistry and Hematology, Division Laboratories and Pharmacy, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
7
|
QTL mapping of rat blood pressure loci on RNO1 within a homologous region linked to human hypertension on HSA15. PLoS One 2019; 14:e0221658. [PMID: 31442284 PMCID: PMC6707578 DOI: 10.1371/journal.pone.0221658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/12/2019] [Indexed: 11/21/2022] Open
Abstract
Fine-mapping of regions linked to the inheritance of hypertension is accomplished by genetic dissection of blood pressure quantitative trait loci (BP QTLs) in rats. The goal of the current study was to further fine-map two genomic regions on rat chromosome 1 with opposing blood pressure effects (BP QTL1b1 and BP QTL1b1a), the homologous region of which on human chromosome 15 harbors BP QTLs. Two new substrains were constructed and studied from the previously reported BP QTL1b1, one having significantly lower systolic BP by 17 mmHg than that of the salt-sensitive (S) rat (P = 0.007). The new limits of BP QTL1b1 were between 134.09 Mb and 135.40 Mb with a 43% improvement from the previous 2.31 Mb to the current 1.31 Mb interval containing 4 protein-coding genes (Rgma, Chd2, Fam174b, and St8sia2), 2 predicted miRNAs, and 4 lncRNAs. One new substrain was constructed and studied from the previously reported BPQTL1b1a having a significantly higher systolic BP by 22 mmHg (P = 0.006) than that of the S rat. The new limits of BPQTL1b1a were between 133.53 Mb and 134.52 Mb with a 32% improvement from the previous1.45 Mb to the current 990.21 Kb interval containing 1 protein-coding gene, Mctp2, and a lncRNA. The congenic segments of these two BP QTLs overlapped between 134.09 Mb and 134.52 Mb. No exonic variants were detected in any of the genes. These findings reiterate complexity of genetic regulation of BP within QTL regions, where elements beyond protein-coding sequences could be factors in controlling BP.
Collapse
|
8
|
Erdmann J, Kessler T, Munoz Venegas L, Schunkert H. A decade of genome-wide association studies for coronary artery disease: the challenges ahead. Cardiovasc Res 2019; 114:1241-1257. [PMID: 29617720 DOI: 10.1093/cvr/cvy084] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022] Open
Abstract
In this review, we summarize current knowledge on the genetics of coronary artery disease, based on 10 years of genome-wide association studies. The discoveries began with individual studies using 200K single nucleotide polymorphism arrays and progressed to large-scale collaborative efforts, involving more than a 100 000 people and up to 40 Mio genetic variants. We discuss the challenges ahead, including those involved in identifying causal genes and deciphering the links between risk variants and disease pathology. We also describe novel insights into disease biology based on the findings of genome-wide association studies. Moreover, we discuss the potential for discovery of novel treatment targets through the integration of different layers of 'omics' data and the application of systems genetics approaches. Finally, we provide a brief outlook on the potential for precision medicine to be enhanced by genome-wide association study findings in the cardiovascular field.
Collapse
Affiliation(s)
- Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Maria-Geoppert-Str. 1, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany.,University Heart Center Lübeck, Ratzeburger Allee 160, Lübeck, Germany
| | - Thorsten Kessler
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Lazarettstraβe 36, Munich, Germany.,DZHK (German Center for Cardiovascular Research) e.V., Partner Site Munich Heart Alliance, Munich, Germany
| | - Loreto Munoz Venegas
- Institute for Cardiogenetics, University of Lübeck, Maria-Geoppert-Str. 1, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany.,University Heart Center Lübeck, Ratzeburger Allee 160, Lübeck, Germany
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Lazarettstraβe 36, Munich, Germany.,DZHK (German Center for Cardiovascular Research) e.V., Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
9
|
Malik R, Dichgans M. Challenges and opportunities in stroke genetics. Cardiovasc Res 2019; 114:1226-1240. [PMID: 29554300 DOI: 10.1093/cvr/cvy068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/14/2018] [Indexed: 12/13/2022] Open
Abstract
Stroke, ischaemic stroke and subtypes of ischaemic stroke display substantial heritability. When compared with related vascular conditions, the number of established risk loci reaching genome-wide significance for association with stroke is still in the lower range, particularly for aetiological stroke subtypes such as large artery atherosclerotic stroke or small vessel stroke. Nevertheless, for individual loci substantial progress has been made in determining the specific mechanisms mediating stroke risk. In this review, we present a roadmap for functional follow-up of common risk variants associated with stroke. First, we discuss in silico strategies for characterizing signals in non-coding regions and highlight databases providing information on quantitative trait loci for mRNA and protein expression, as well as methylation, focussing on those with presumed relevance for stroke. Next, we discuss experimental strategies for following up on non-coding risk variants and regions such as massively parallel reporter assays, proteome-wide association studies, and chromatin conformation capture (3C) assays. These and other approaches are relevant for gaining insight into the specific variants and mechanisms mediating genetic stroke risk. Finally, we discuss how genetic findings could influence clinical practice by adding to diagnostic algorithms and eventually improve treatment options for stroke.
Collapse
Affiliation(s)
- Rainer Malik
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Straße 17, Munich, Germany
| |
Collapse
|
10
|
Leon-Mimila P, Wang J, Huertas-Vazquez A. Relevance of Multi-Omics Studies in Cardiovascular Diseases. Front Cardiovasc Med 2019; 6:91. [PMID: 31380393 PMCID: PMC6656333 DOI: 10.3389/fcvm.2019.00091] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death around the world. Despite the larger number of genes and loci identified, the precise mechanisms by which these genes influence risk of cardiovascular disease is not well understood. Recent advances in the development and optimization of high-throughput technologies for the generation of "omics data" have provided a deeper understanding of the processes and dynamic interactions involved in human diseases. However, the integrative analysis of "omics" data is not straightforward and represents several logistic and computational challenges. In spite of these difficulties, several studies have successfully applied integrative genomics approaches for the investigation of novel mechanisms and plasma biomarkers involved in cardiovascular diseases. In this review, we summarized recent studies aimed to understand the molecular framework of these diseases using multi-omics data from mice and humans. We discuss examples of omics studies for cardiovascular diseases focused on the integration of genomics, epigenomics, transcriptomics, and proteomics. This review also describes current gaps in the study of complex diseases using systems genetics approaches as well as potential limitations and future directions of this emerging field.
Collapse
Affiliation(s)
| | | | - Adriana Huertas-Vazquez
- Division of Cardiology, David Geffen School of Medicine, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
11
|
Krumm A, Duan Z. Understanding the 3D genome: Emerging impacts on human disease. Semin Cell Dev Biol 2019; 90:62-77. [PMID: 29990539 PMCID: PMC6329682 DOI: 10.1016/j.semcdb.2018.07.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/03/2018] [Indexed: 12/13/2022]
Abstract
Recent burst of new technologies that allow for quantitatively delineating chromatin structure has greatly expanded our understanding of how the genome is organized in the three-dimensional (3D) space of the nucleus. It is now clear that the hierarchical organization of the eukaryotic genome critically impacts nuclear activities such as transcription, replication, as well as cellular and developmental events such as cell cycle, cell fate decision and embryonic development. In this review, we discuss new insights into how the structural features of the 3D genome hierarchy are established and maintained, how this hierarchy undergoes dynamic rearrangement during normal development and how its perturbation will lead to human disease, highlighting the accumulating evidence that links the diverse 3D genome architecture components to a multitude of human diseases and the emerging mechanisms by which 3D genome derangement causes disease phenotypes.
Collapse
Affiliation(s)
- Anton Krumm
- Department of Microbiology, University of Washington, USA.
| | - Zhijun Duan
- Institute for Stem Cell and Regenerative Medicine, University of Washington, USA; Division of Hematology, Department of Medicine, University of Washington, USA.
| |
Collapse
|
12
|
Meddens CA, van der List ACJ, Nieuwenhuis EES, Mokry M. Non-coding DNA in IBD: from sequence variation in DNA regulatory elements to novel therapeutic potential. Gut 2019; 68:928-941. [PMID: 30692146 DOI: 10.1136/gutjnl-2018-317516] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 12/13/2022]
Abstract
Genome-wide association studies have identified over 200 loci associated with IBD. We and others have recently shown that, in addition to variants in protein-coding genes, the majority of the associated loci are related to DNA regulatory elements (DREs). These findings add a dimension to the already complex genetic background of IBD. In this review we summarise the existing evidence on the role of DREs in IBD. We discuss how epigenetic research can be used in candidate gene approaches that take non-coding variants into account and can help to pinpoint the essential pathways and cell types in the pathogenesis of IBD. Despite the increased level of genetic complexity, these findings can contribute to novel therapeutic options that target transcription factor binding and enhancer activity. Finally, we summarise the future directions and challenges of this emerging field.
Collapse
Affiliation(s)
- Claartje Aleid Meddens
- Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Michal Mokry
- Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
13
|
van der Laan SW, Harshfield EL, Hemerich D, Stacey D, Wood AM, Asselbergs FW. From lipid locus to drug target through human genomics. Cardiovasc Res 2018; 114:1258-1270. [PMID: 29800275 DOI: 10.1093/cvr/cvy120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/16/2018] [Indexed: 12/14/2022] Open
Abstract
In the last decade, over 175 genetic loci have robustly been associated to levels of major circulating blood lipids. Most loci are specific to one or two lipids, whereas some (SUGP1, ZPR1, TRIB1, HERPUD1, and FADS1) are associated to all. While exposing the polygenic architecture of circulating lipids and the underpinnings of dyslipidaemia, these genome-wide association studies (GWAS) have provided further evidence of the critical role that lipids play in coronary heart disease (CHD) risk, as indicated by the 2.7-fold enrichment for macrophage gene expression in atherosclerotic plaques and the association of 25 loci (such as PCSK9, APOB, ABCG5-G8, KCNK5, LPL, HMGCR, NPC1L1, CETP, TRIB1, ABO, PMAIP1-MC4R, and LDLR) with CHD. These GWAS also confirmed known and commonly used therapeutic targets, including HMGCR (statins), PCSK9 (antibodies), and NPC1L1 (ezetimibe). As we head into the post-GWAS era, we offer suggestions for how to move forward beyond genetic risk loci, towards refining the biology behind the associations and identifying causal genes and therapeutic targets. Deep phenotyping through lipidomics and metabolomics will refine and increase the resolution to find causal and druggable targets, and studies aimed at demonstrating gene transcriptional and regulatory effects of lipid associated loci will further aid in identifying these targets. Thus, we argue the need for deeply phenotyped, large genetic association studies to reduce costs and failures and increase the efficiency of the drug discovery pipeline. We conjecture that in the next decade a paradigm shift will tip the balance towards a data-driven approach to therapeutic target development and the application of precision medicine where human genomics takes centre stage.
Collapse
Affiliation(s)
- Sander W van der Laan
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Eric L Harshfield
- Department of Public Health and Primary Care, University of Cambridge, 2 Worts Causeway, Cambridge CB1 8RN, UK
- Department of Clinical Neurosciences, University of Cambridge, R3, Box 83, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Daiane Hemerich
- Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
- CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - David Stacey
- Department of Public Health and Primary Care, University of Cambridge, 2 Worts Causeway, Cambridge CB1 8RN, UK
| | - Angela M Wood
- Department of Public Health and Primary Care, University of Cambridge, 2 Worts Causeway, Cambridge CB1 8RN, UK
| | - Folkert W Asselbergs
- Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
- Durrer Center for Cardiovascular Research, Netherlands Heart Institute, Utrecht, the Netherlands
- Faculty of Population Health Sciences, Institute of Cardiovascular Science, University College London, London, UK
- Farr Institute of Health Informatics Research, Institute of Health Informatics, University College London, London, UK
| |
Collapse
|
14
|
Shu L, Blencowe M, Yang X. Translating GWAS Findings to Novel Therapeutic Targets for Coronary Artery Disease. Front Cardiovasc Med 2018; 5:56. [PMID: 29900175 PMCID: PMC5989327 DOI: 10.3389/fcvm.2018.00056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/11/2018] [Indexed: 12/21/2022] Open
Abstract
The success of genome-wide association studies (GWAS) has significantly advanced our understanding of the etiology of coronary artery disease (CAD) and opens new opportunities to reinvigorate the stalling CAD drug development. However, there exists remarkable disconnection between the CAD GWAS findings and commercialized drugs. While this could implicate major untapped translational and therapeutic potentials in CAD GWAS, it also brings forward extensive technical challenges. In this review we summarize the motivation to leverage GWAS for drug discovery, outline the critical bottlenecks in the field, and highlight several promising strategies such as functional genomics and network-based approaches to enhance the translational value of CAD GWAS findings in driving novel therapeutics
Collapse
Affiliation(s)
- Le Shu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, United States.,Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, United States.,Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
15
|
Harakalova M, Asselbergs FW. Systems analysis of dilated cardiomyopathy in the next generation sequencing era. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2018; 10:e1419. [PMID: 29485202 DOI: 10.1002/wsbm.1419] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/31/2017] [Accepted: 01/17/2018] [Indexed: 12/17/2022]
Abstract
Dilated cardiomyopathy (DCM) is a form of severe failure of cardiac muscle caused by a long list of etiologies ranging from myocardial infarction, DNA mutations in cardiac genes, to toxics. Systems analysis integrating next-generation sequencing (NGS)-based omics approaches, such as the sequencing of DNA, RNA, and chromatin, provide valuable insights into DCM mechanisms. The outcome and interpretation of NGS methods can be affected by the localization of cardiac biopsy, level of tissue degradation, and variable ratios of different cell populations, especially in the presence of fibrosis. Heart tissue composition may even differ between sexes, or siblings carrying the same disease causing mutation. Therefore, before planning any experiments, it is important to fully appreciate the complexities of DCM, and the selection of samples suitable for given research question should be an interdisciplinary effort involving clinicians and biologists. The list of NGS omics datasets in DCM to date is short. More studies have to be performed to contribute to public data repositories and facilitate systems analysis. In addition, proper data integration is a difficult task requiring complex computational approaches. Despite these complications, there are multiple promising implications of systems analysis in DCM. By combining various types of datasets, for example, RNA-seq, ChIP-seq, or 4C, deep insights into cardiac biology, and possible biomarkers and treatment targets, can be gained. Systems analysis can also facilitate the annotation of noncoding mutations in cardiac-specific DNA regulatory regions that play a substantial role in maintaining the tissue- and cell-specific transcriptional programs in the heart. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Laboratory Methods and Technologies > Genetic/Genomic Methods Laboratory Methods and Technologies > RNA Methods.
Collapse
Affiliation(s)
- Magdalena Harakalova
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Durrer Center for Cardiovascular Research, Netherlands Heart Institute, Utrecht, Netherlands.,Institute of Cardiovascular Science, University College London, London, UK
| |
Collapse
|