1
|
Barton NE, Ref JE, Cook KE, Baldwin AL, Daugherty SL, Moukabary T, Grijalva A, Kazui S, Mostafizi P, Davis-Gorman GF, Lancaster JJ, Koevary JW, Goldman S. COVID-19 Pandemic Effects on the Activity Levels of Yucatan Mini-Swine ( Sus scrofa domesticus). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2024; 63:1-7. [PMID: 39191492 PMCID: PMC11645881 DOI: 10.30802/aalas-jaalas-24-000017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/27/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
During the COVID-19 pandemic, unexpected activity patterns emerged among Yucatan mini-swine models for heart failure and atrial fibrillation. As part of our laboratory research, we tracked activity data by FitBark™ collars that the Yucatan mini-swine wore. Previously, staff engaged with the swine daily, such as applying lotion and conducting 6-min treadmill runs. However, pandemic restrictions reduced interaction to 1 or 2 times a week, often for less than 10 min each session. Contrary to expectations, there was a significant increase in the swine's activity levels during these minimal interaction periods. After cleaning, moisturizing, weighing, and FitBark data collection, staff engaged with the swine through feeding and play. Three time frames were analyzed: prepandemic, pandemic, and reentry. Prepandemic and reentry periods involved daily 15-min interactions with 2 staff members per swine to maintain cleanliness and health. During the pandemic, interaction was reduced to 1 or 2 times weekly. The hours between 1000 and 1400 were designated as 'passive activity', representing the swines' isolated behavior, unaffected by staff interaction. The chronic heart failure swine (n = 3) had an average passive activity area under the curve prepandemic value of 47.23 ± 2.52 compared with pandemic 57.09 ± 2.90, pandemic 57.09 ± 2.90 compared with reentry 50.44 ± 1.61, and prepandemic compared with reentry. The atrial fibrillation swine (n = 3) had an average passive activity area under the curve minimal interaction (mimicking pandemic) value of 59.27 ± 6.67 compared with interaction (mimicking prepandemic or reentry) 37.63 ± 1.74. The heightened activity levels during minimal interaction suggest physiologic and psychologic changes in the animals due to reduced socialization. This highlights the importance of enrichment and interaction in research animals and underscores the broader impact of the COVID-19 pandemic on research outcomes. These findings could also shed light on the effects of the pandemic on human behavior.
Collapse
Affiliation(s)
- Natasha E Barton
- Undergraduate College of Medicine, University of Arizona, Tucson, Arizona
| | - Jacob E Ref
- College of Medicine, University of Arizona, Tucson, Arizona
| | - Kyle E Cook
- Undergraduate College of Medicine, University of Arizona, Tucson, Arizona
| | - Ann L Baldwin
- Undergraduate College of Medicine, University of Arizona, Tucson, Arizona
| | | | - Talal Moukabary
- Sarver Heart Center, University of Arizona, Tucson, Arizona; and
| | | | - Saki Kazui
- Undergraduate College of Medicine, University of Arizona, Tucson, Arizona
| | - Pouria Mostafizi
- Undergraduate College of Medicine, University of Arizona, Tucson, Arizona
| | | | | | - Jen W Koevary
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona
| | - Steven Goldman
- Sarver Heart Center, University of Arizona, Tucson, Arizona; and
| |
Collapse
|
2
|
Moiroux-Sahraoui A, Manicone F, Herpain A. How preclinical models help to improve outcome in cardiogenic shock. Curr Opin Crit Care 2024; 30:333-339. [PMID: 38841979 DOI: 10.1097/mcc.0000000000001170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
PURPOSE OF REVIEW Preclinical experimentation of cardiogenic shock resuscitation on large animal models represents a powerful tool to decipher its complexity and improve its poor outcome, when small animal models are lacking external validation, and clinical investigation are limited due to technical and ethical constraints. This review illustrates the currently available preclinical models addressing reliably the physiopathology and hemodynamic phenotype of cardiogenic shock, highlighting on the opposite questionable translation based on low severity acute myocardial infarction (AMI) models. RECENT FINDINGS Three types of preclinical models replicate reliably AMI-related cardiogenic shock, either with coronary microembolization, coronary deoxygenated blood perfusion or double critical coronary sub-occlusion. These models overcame the pitfall of frequent periprocedural cardiac arrest and offer, to different extents, robust opportunities to investigate pharmacological and/or mechanical circulatory support therapeutic strategies, cardioprotective approaches improving heart recovery and mitigation of the systemic inflammatory reaction. They all came with their respective strengths and weaknesses, allowing the researcher to select the right preclinical model for the right clinical question. SUMMARY AMI-related cardiogenic shock preclinical models are now well established and should replace low severity AMI models. Technical and ethical constraints are not trivial, but this translational research is a key asset to build up meaningful future clinical investigations.
Collapse
Affiliation(s)
- Alexander Moiroux-Sahraoui
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium
- Department of Cardiac Surgery, Institut de Cardiologie, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Francesca Manicone
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium
| | - Antoine Herpain
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium
- Department of Intensive Care, Saint-Pierre University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
3
|
Alkhatib B, Ciarelli J, Ghnenis A, Pallas B, Olivier N, Padmanabhan V, Vyas AK. Early- to mid-gestational testosterone excess leads to adverse cardiac outcomes in postpartum sheep. Am J Physiol Heart Circ Physiol 2024; 327:H315-H330. [PMID: 38819385 DOI: 10.1152/ajpheart.00763.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
Cardiovascular dysfunctions complicate 10-20% of pregnancies, increasing the risk for postpartum mortality. Various gestational insults, including preeclampsia are reported to be associated with adverse maternal cardiovascular outcomes. One such insult, gestational hyperandrogenism increases the risk for preeclampsia and other gestational morbidities but its impact on postpartum maternal health is not well known. We hypothesize that gestational hyperandrogenism such as testosterone (T) excess will adversely impact the maternal heart in the postpartum period. Pregnant ewes were injected with T propionate from day 30 to day 90 of gestation (term 147 days). Three months postpartum, echocardiograms, plasma cytokine profiles, cardiac morphometric, and molecular analysis were conducted [control (C) n = 6, T-treated (T) n = 7 number of animals]. Data were analyzed by two-tailed Student's t test and Cohen's effect size (d) analysis. There was a nonsignificant large magnitude decrease in cardiac output (7.64 ± 1.27 L/min vs. 10.19 ± 1.40, P = 0.22, d = 0.81) and fractional shortening in the T ewes compared with C (35.83 ± 2.33% vs. 41.50 ± 2.84, P = 0.15, d = 0.89). T treatment significantly increased 1) left ventricle (LV) weight-to-body weight ratio (2.82 ± 0.14 g/kg vs. 2.46 ± 0.08) and LV thickness (14.56 ± 0.52 mm vs. 12.50 ± 0.75), 2) proinflammatory marker [tumor necrosis factor-alpha (TNF-α)] in LV (1.66 ± 0.35 vs. 1.06 ± 0.18), 3) LV collagen (Masson's Trichrome stain: 3.38 ± 0.35 vs. 1.49 ± 0.15 and Picrosirius red stain: 5.50 ± 0.32 vs. 3.01 ± 0.23), 4) markers of LV apoptosis, including TUNEL (8.3 ± 1.1 vs. 0.9 ± 0.18), bcl-2-associated X protein (Bax)+-to-b-cell lymphoma 2 (Bcl2)+ ratio (0.68 ± 0.30 vs. 0.13 ± 0.02), and cleaved caspase 3 (15.4 ± 1.7 vs. 4.4 ± 0.38). These findings suggest that gestational testosterone excess adversely programs the maternal LV, leading to adverse structural and functional consequences in the postpartum period.NEW & NOTEWORTHY Using a sheep model of human translational relevance, this study provides evidence that excess gestational testosterone exposure such as that seen in hyperandrogenic disorders adversely impacts postpartum maternal hearts.
Collapse
Affiliation(s)
- Bashar Alkhatib
- Department of Pediatrics, Washington University, St Louis, Missouri, United States
| | - Joseph Ciarelli
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, United States
| | - Adel Ghnenis
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, United States
| | - Brooke Pallas
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Nicholas Olivier
- Department of Veterinary Medicine, Michigan State University, Lansing, Michigan, United States
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, United States
| | - Arpita Kalla Vyas
- Department of Pediatrics, Washington University, St Louis, Missouri, United States
| |
Collapse
|
4
|
Sabe SA, Harris DD, Broadwin M, Sellke FW. Cardioprotection in cardiovascular surgery. Basic Res Cardiol 2024; 119:545-568. [PMID: 38856733 DOI: 10.1007/s00395-024-01062-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
Since the invention of cardiopulmonary bypass, cardioprotective strategies have been investigated to mitigate ischemic injury to the heart during aortic cross-clamping and reperfusion injury with cross-clamp release. With advances in cardiac surgical and percutaneous techniques and post-operative management strategies including mechanical circulatory support, cardiac surgeons are able to operate on more complex patients. Therefore, there is a growing need for improved cardioprotective strategies to optimize outcomes in these patients. This review provides an overview of the basic principles of cardioprotection in the setting of cardiac surgery, including mechanisms of cardiac injury in the context of cardiopulmonary bypass, followed by a discussion of the specific approaches to optimizing cardioprotection in cardiac surgery, including refinements in cardiopulmonary bypass and cardioplegia, ischemic conditioning, use of specific anesthetic and pharmaceutical agents, and novel mechanical circulatory support technologies. Finally, translational strategies that investigate cardioprotection in the setting of cardiac surgery will be reviewed, with a focus on promising research in the areas of cell-based and gene therapy. Advances in this area will help cardiologists and cardiac surgeons mitigate myocardial ischemic injury, improve functional post-operative recovery, and optimize clinical outcomes in patients undergoing cardiac surgery.
Collapse
Affiliation(s)
- Sharif A Sabe
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Rhode Island Hospital, Alpert Medical School of Brown University, 2 Dudley Street, MOC 360, Providence, RI, 02905, USA
| | - Dwight D Harris
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Rhode Island Hospital, Alpert Medical School of Brown University, 2 Dudley Street, MOC 360, Providence, RI, 02905, USA
| | - Mark Broadwin
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Rhode Island Hospital, Alpert Medical School of Brown University, 2 Dudley Street, MOC 360, Providence, RI, 02905, USA
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Rhode Island Hospital, Alpert Medical School of Brown University, 2 Dudley Street, MOC 360, Providence, RI, 02905, USA.
| |
Collapse
|
5
|
Falcão-Pires I, Ferreira AF, Trindade F, Bertrand L, Ciccarelli M, Visco V, Dawson D, Hamdani N, Van Laake LW, Lezoualc'h F, Linke WA, Lunde IG, Rainer PP, Abdellatif M, Van der Velden J, Cosentino N, Paldino A, Pompilio G, Zacchigna S, Heymans S, Thum T, Tocchetti CG. Mechanisms of myocardial reverse remodelling and its clinical significance: A scientific statement of the ESC Working Group on Myocardial Function. Eur J Heart Fail 2024; 26:1454-1479. [PMID: 38837573 DOI: 10.1002/ejhf.3264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/22/2024] [Accepted: 04/18/2024] [Indexed: 06/07/2024] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbimortality in Europe and worldwide. CVD imposes a heterogeneous spectrum of cardiac remodelling, depending on the insult nature, that is, pressure or volume overload, ischaemia, arrhythmias, infection, pathogenic gene variant, or cardiotoxicity. Moreover, the progression of CVD-induced remodelling is influenced by sex, age, genetic background and comorbidities, impacting patients' outcomes and prognosis. Cardiac reverse remodelling (RR) is defined as any normative improvement in cardiac geometry and function, driven by therapeutic interventions and rarely occurring spontaneously. While RR is the outcome desired for most CVD treatments, they often only slow/halt its progression or modify risk factors, calling for novel and more timely RR approaches. Interventions triggering RR depend on the myocardial insult and include drugs (renin-angiotensin-aldosterone system inhibitors, beta-blockers, diuretics and sodium-glucose cotransporter 2 inhibitors), devices (cardiac resynchronization therapy, ventricular assist devices), surgeries (valve replacement, coronary artery bypass graft), or physiological responses (deconditioning, postpartum). Subsequently, cardiac RR is inferred from the degree of normalization of left ventricular mass, ejection fraction and end-diastolic/end-systolic volumes, whose extent often correlates with patients' prognosis. However, strategies aimed at achieving sustained cardiac improvement, predictive models assessing the extent of RR, or even clinical endpoints that allow for distinguishing complete from incomplete RR or adverse remodelling objectively, remain limited and controversial. This scientific statement aims to define RR, clarify its underlying (patho)physiologic mechanisms and address (non)pharmacological options and promising strategies to promote RR, focusing on the left heart. We highlight the predictors of the extent of RR and review the prognostic significance/impact of incomplete RR/adverse remodelling. Lastly, we present an overview of RR animal models and potential future strategies under pre-clinical evaluation.
Collapse
Affiliation(s)
- Inês Falcão-Pires
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Ana Filipa Ferreira
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Fábio Trindade
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Luc Bertrand
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle of Cardiovascular Research, Brussels, Belgium
- WELBIO, Department, WEL Research Institute, Wavre, Belgium
| | - Michele Ciccarelli
- Cardiovascular Research Unit, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Valeria Visco
- Cardiovascular Research Unit, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Dana Dawson
- Aberdeen Cardiovascular and Diabetes Centre, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Nazha Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-SU Cardiovascular Comorbidities Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Department of Physiology, Cardiovascular Research Institute Maastricht University Maastricht, Maastricht, the Netherlands
| | - Linda W Van Laake
- Division Heart and Lungs, Department of Cardiology and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank Lezoualc'h
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1297-I2MC, Toulouse, France
| | - Wolfgang A Linke
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| | - Ida G Lunde
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway
- KG Jebsen Center for Cardiac Biomarkers, Campus Ahus, University of Oslo, Oslo, Norway
| | - Peter P Rainer
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- St. Johann in Tirol General Hospital, St. Johann in Tirol, Austria
| | - Mahmoud Abdellatif
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | | | - Nicola Cosentino
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Cardiovascular Section, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Alessia Paldino
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Giulio Pompilio
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Stephane Heymans
- Department of Cardiology, CARIM Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
- Centre of Cardiovascular Research, University of Leuven, Leuven, Belgium
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences (DISMET), Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| |
Collapse
|
6
|
Yang Q, Murata K, Ikeda T, Minatoya K, Masumoto H. miR-124-3p downregulates EGR1 to suppress ischemia-hypoxia reperfusion injury in human iPS cell-derived cardiomyocytes. Sci Rep 2024; 14:14811. [PMID: 38926457 PMCID: PMC11208498 DOI: 10.1038/s41598-024-65373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
Ischemic heart diseases are a major global cause of death, and despite timely revascularization, heart failure due to ischemia-hypoxia reperfusion (IH/R) injury remains a concern. The study focused on the role of Early Growth Response 1 (EGR1) in IH/R-induced apoptosis in human cardiomyocytes (CMs). Human induced pluripotent stem cell (hiPSC)-derived CMs were cultured under IH/R conditions, revealing higher EGR1 expression in the IH/R group through quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting (WB). Immunofluorescence analysis (IFA) showed an increased ratio of cleaved Caspase-3-positive apoptotic cells in the IH/R group. Using siRNA for EGR1 successfully downregulated EGR1, suppressing cleaved Caspase-3-positive apoptotic cell ratio. Bioinformatic analysis indicated that EGR1 is a plausible target of miR-124-3p under IH/R conditions. The miR-124-3p mimic, predicted to antagonize EGR1 mRNA, downregulated EGR1 under IH/R conditions in qRT-PCR and WB, as confirmed by IFA. The suppression of EGR1 by the miR-124-3p mimic subsequently reduced CM apoptosis. The study suggests that treatment with miR-124-3p targeting EGR1 could be a potential novel therapeutic approach for cardioprotection in ischemic heart diseases in the future.
Collapse
Affiliation(s)
- Qiaoke Yang
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kozue Murata
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Clinical Translational Research Program, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Tadashi Ikeda
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kenji Minatoya
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hidetoshi Masumoto
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
- Clinical Translational Research Program, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
7
|
Zheng J, Fang J, Xu D, Liu H, Wei X, Qin C, Xue J, Gao Z, Hu N. Micronano Synergetic Three-Dimensional Bioelectronics: A Revolutionary Breakthrough Platform for Cardiac Electrophysiology. ACS NANO 2024; 18:15332-15357. [PMID: 38837178 DOI: 10.1021/acsnano.4c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality and therefore pose a significant threat to human health. Cardiac electrophysiology plays a crucial role in the investigation and treatment of CVDs, including arrhythmia. The long-term and accurate detection of electrophysiological activity in cardiomyocytes is essential for advancing cardiology and pharmacology. Regarding the electrophysiological study of cardiac cells, many micronano bioelectric devices and systems have been developed. Such bioelectronic devices possess unique geometric structures of electrodes that enhance quality of electrophysiological signal recording. Though planar multielectrode/multitransistors are widely used for simultaneous multichannel measurement of cell electrophysiological signals, their use for extracellular electrophysiological recording exhibits low signal strength and quality. However, the integration of three-dimensional (3D) multielectrode/multitransistor arrays that use advanced penetration strategies can achieve high-quality intracellular signal recording. This review provides an overview of the manufacturing, geometric structure, and penetration paradigms of 3D micronano devices, as well as their applications for precise drug screening and biomimetic disease modeling. Furthermore, this review also summarizes the current challenges and outlines future directions for the preparation and application of micronano bioelectronic devices, with an aim to promote the development of intracellular electrophysiological platforms and thereby meet the demands of emerging clinical applications.
Collapse
Affiliation(s)
- Jilin Zheng
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
| | - Jiaru Fang
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Dongxin Xu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Haitao Liu
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| | - Xinwei Wei
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunlian Qin
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| | - Jiajin Xue
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| | - Zhigang Gao
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| | - Ning Hu
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| |
Collapse
|
8
|
von Bibra C, Hinkel R. Non-human primate studies for cardiomyocyte transplantation-ready for translation? Front Pharmacol 2024; 15:1408679. [PMID: 38962314 PMCID: PMC11221829 DOI: 10.3389/fphar.2024.1408679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Non-human primates (NHP) are valuable models for late translational pre-clinical studies, often seen as a last step before clinical application. The unique similarity between NHPs and humans is often the subject of ethical concerns. However, it is precisely this analogy in anatomy, physiology, and the immune system that narrows the translational gap to other animal models in the cardiovascular field. Cell and gene therapy approaches are two dominant strategies investigated in the research field of cardiac regeneration. Focusing on the cell therapy approach, several xeno- and allogeneic cell transplantation studies with a translational motivation have been realized in macaque species. This is based on the pressing need for novel therapeutic options for heart failure patients. Stem cell-based remuscularization of the injured heart can be achieved via direct injection of cardiomyocytes (CMs) or patch application. Both CM delivery approaches are in the late preclinical stage, and the first clinical trials have started. However, are we already ready for the clinical area? The present review concentrates on CM transplantation studies conducted in NHPs, discusses the main sources and discoveries, and provides a perspective about human translation.
Collapse
Affiliation(s)
- Constantin von Bibra
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, Stiftung Tieraerztliche Hochschule Hannover, University of Veterinary Medicine, Hanover, Germany
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
- DZHK (German Centre of Cardiovascular Research), Partner Site Lower Saxony, Goettingen, Germany
| | - Rabea Hinkel
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, Stiftung Tieraerztliche Hochschule Hannover, University of Veterinary Medicine, Hanover, Germany
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
- DZHK (German Centre of Cardiovascular Research), Partner Site Lower Saxony, Goettingen, Germany
| |
Collapse
|
9
|
Kollmann A, Lohr D, Ankenbrand MJ, Bille M, Terekhov M, Hock M, Elabyad I, Baltes S, Reiter T, Schnitter F, Bauer WR, Hofmann U, Schreiber LM. Cardiac function in a large animal model of myocardial infarction at 7 T: deep learning based automatic segmentation increases reproducibility. Sci Rep 2024; 14:11009. [PMID: 38744988 PMCID: PMC11094053 DOI: 10.1038/s41598-024-61417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Cardiac magnetic resonance (CMR) imaging allows precise non-invasive quantification of cardiac function. It requires reliable image segmentation for myocardial tissue. Clinically used software usually offers automatic approaches for this step. These are, however, designed for segmentation of human images obtained at clinical field strengths. They reach their limits when applied to preclinical data and ultrahigh field strength (such as CMR of pigs at 7 T). In our study, eleven animals (seven with myocardial infarction) underwent four CMR scans each. Short-axis cine stacks were acquired and used for functional cardiac analysis. End-systolic and end-diastolic images were labelled manually by two observers and inter- and intra-observer variability were assessed. Aiming to make the functional analysis faster and more reproducible, an established deep learning (DL) model for myocardial segmentation in humans was re-trained using our preclinical 7 T data (n = 772 images and labels). We then tested the model on n = 288 images. Excellent agreement in parameters of cardiac function was found between manual and DL segmentation: For ejection fraction (EF) we achieved a Pearson's r of 0.95, an Intraclass correlation coefficient (ICC) of 0.97, and a Coefficient of variability (CoV) of 6.6%. Dice scores were 0.88 for the left ventricle and 0.84 for the myocardium.
Collapse
Affiliation(s)
- Alena Kollmann
- Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany
| | - David Lohr
- Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany.
| | - Markus J Ankenbrand
- Faculty of Biology, Center for Computational and Theoretical Biology (CCTB), University of Würzburg, Würzburg, Germany
| | - Maya Bille
- Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany
| | - Maxim Terekhov
- Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany
| | - Michael Hock
- Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany
| | - Ibrahim Elabyad
- Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany
| | - Steffen Baltes
- Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany
| | - Theresa Reiter
- Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Florian Schnitter
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Wolfgang R Bauer
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Ulrich Hofmann
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Laura M Schreiber
- Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
Beslika E, Leite-Moreira A, De Windt LJ, da Costa Martins PA. Large animal models of pressure overload-induced cardiac left ventricular hypertrophy to study remodelling of the human heart with aortic stenosis. Cardiovasc Res 2024; 120:461-475. [PMID: 38428029 PMCID: PMC11060489 DOI: 10.1093/cvr/cvae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/22/2023] [Accepted: 12/07/2023] [Indexed: 03/03/2024] Open
Abstract
Pathologic cardiac hypertrophy is a common consequence of many cardiovascular diseases, including aortic stenosis (AS). AS is known to increase the pressure load of the left ventricle, causing a compensative response of the cardiac muscle, which progressively will lead to dilation and heart failure. At a cellular level, this corresponds to a considerable increase in the size of cardiomyocytes, known as cardiomyocyte hypertrophy, while their proliferation capacity is attenuated upon the first developmental stages. Cardiomyocytes, in order to cope with the increased workload (overload), suffer alterations in their morphology, nuclear content, energy metabolism, intracellular homeostatic mechanisms, contractile activity, and cell death mechanisms. Moreover, modifications in the cardiomyocyte niche, involving inflammation, immune infiltration, fibrosis, and angiogenesis, contribute to the subsequent events of a pathologic hypertrophic response. Considering the emerging need for a better understanding of the condition and treatment improvement, as the only available treatment option of AS consists of surgical interventions at a late stage of the disease, when the cardiac muscle state is irreversible, large animal models have been developed to mimic the human condition, to the greatest extend. Smaller animal models lack physiological, cellular and molecular mechanisms that sufficiently resemblance humans and in vitro techniques yet fail to provide adequate complexity. Animals, such as the ferret (Mustello purtorius furo), lapine (rabbit, Oryctolagus cunigulus), feline (cat, Felis catus), canine (dog, Canis lupus familiaris), ovine (sheep, Ovis aries), and porcine (pig, Sus scrofa), have contributed to research by elucidating implicated cellular and molecular mechanisms of the condition. Essential discoveries of each model are reported and discussed briefly in this review. Results of large animal experimentation could further be interpreted aiming at prevention of the disease progress or, alternatively, at regression of the implicated pathologic mechanisms to a physiologic state. This review summarizes the important aspects of the pathophysiology of LV hypertrophy and the applied surgical large animal models that currently better mimic the condition.
Collapse
Affiliation(s)
- Evangelia Beslika
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Adelino Leite-Moreira
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Leon J De Windt
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, Netherlands
| | - Paula A da Costa Martins
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, Netherlands
| |
Collapse
|
11
|
Selvakumar D, Barry MA, Pouliopoulos J, Lu J, Tran V, Kovoor P. Intra-cardiac motion detection catheter for the early identification of acute pericardial tamponade during invasive cardiac procedures. Front Cardiovasc Med 2024; 11:1341202. [PMID: 38283830 PMCID: PMC10810984 DOI: 10.3389/fcvm.2024.1341202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024] Open
Abstract
Objectives To develop and test an intra-cardiac catheter fitted with accelerometers to detect acute pericardial effusion prior to the onset of hemodynamic compromise. Background Early detection of an evolving pericardial effusion is critical in ensuring timely treatment. We hypothesized that the reduction in movement of the lateral heart border present in developing pericardial effusions could be quantified by positioning an accelerometer in a lateral cardiac structure. Methods A "motion detection" catheter was created by implanting a 3-axis accelerometer at the distal tip of a cardiac catheter. The pericardial space of 5 adult sheep was percutaneously accessed, and pericardial tamponade was created by infusion of normal saline. The motion detection catheter was positioned in the coronary sinus. Intracardiac echocardiography was used to confirm successful creation of pericardial effusion and hemodynamic parameters were collected. Results Statistically significant reduction in acceleration from baseline was detected after infusion of only 40 ml of normal saline (p < 0.05, ANOVA). In comparison, clinically significant change in systolic blood pressure (defined as >10% drop in baseline systolic blood pressure) occurred after infusion of 80 ml of normal saline (107 ± 22 mmHg vs. 90 ± 12 mmHg p = 0.97, ANOVA), and statistically significant change was recorded only after infusion of 200 ml (107 ± 22 mmHg vs. 64 ± 5 mmHg, p < 0.05, ANOVA). Conclusions An intra-cardiac motion detection catheter is highly sensitive in identifying acute cardiac tamponade prior to clinically and statistically significant changes in systolic blood pressure, allowing for early detection and treatment of this potentially life-threatening complication of all modern percutaneous cardiac interventions.
Collapse
Affiliation(s)
- Dinesh Selvakumar
- Department of Cardiology, Westmead Hospital, Westmead, NSW, Australia
- Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Michael A. Barry
- Department of Cardiology, Westmead Hospital, Westmead, NSW, Australia
- Faculty of Engineering and IT, University of Sydney, Sydney, NSW, Australia
| | - Jim Pouliopoulos
- Innovation Centre & Clinical Imaging Facility, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW, Sydney, NSW, Australia
| | - Juntang Lu
- Department of Cardiology, Westmead Hospital, Westmead, NSW, Australia
| | - Vu Tran
- Department of Cardiology, Westmead Hospital, Westmead, NSW, Australia
| | - Pramesh Kovoor
- Department of Cardiology, Westmead Hospital, Westmead, NSW, Australia
- Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
12
|
Martinez EC, Li J, Ataam JA, Tokarski K, Thakur H, Karakikes I, Dodge-Kafka K, Kapiloff MS. Targeting mAKAPβ expression as a therapeutic approach for ischemic cardiomyopathy. Gene Ther 2023; 30:543-551. [PMID: 35102273 PMCID: PMC9339585 DOI: 10.1038/s41434-022-00321-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/02/2023]
Abstract
Ischemic cardiomyopathy is a leading cause of death and an unmet clinical need. Adeno-associated virus (AAV) gene-based therapies hold great promise for treating and preventing heart failure. Previously we showed that muscle A-kinase Anchoring Protein β (mAKAPβ, AKAP6β), a scaffold protein that organizes perinuclear signalosomes in the cardiomyocyte, is a critical regulator of pathological cardiac hypertrophy. Here, we show that inhibition of mAKAPβ expression in stressed adult cardiomyocytes in vitro was cardioprotective, while conditional cardiomyocyte-specific mAKAP gene deletion in mice prevented pathological cardiac remodeling due to myocardial infarction. We developed a new self-complementary serotype 9 AAV gene therapy vector expressing a short hairpin RNA for mAKAPβ under the control of a cardiomyocyte-specific promoter (AAV9sc.shmAKAP). This vector efficiently downregulated mAKAPβ expression in the mouse heart in vivo. Expression of the shRNA also inhibited mAKAPβ expression in human induced cardiomyocytes in vitro. Following myocardial infarction, systemic administration of AAV9sc.shmAKAP prevented the development of pathological cardiac remodeling and heart failure, providing long-term restoration of left ventricular ejection fraction. Our findings provide proof-of-concept for mAKAPβ as a therapeutic target for ischemic cardiomyopathy and support the development of a translational pipeline for AAV9sc.shmAKAP for the treatment of heart failure.
Collapse
Affiliation(s)
- Eliana C Martinez
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33101, USA
| | - Jinliang Li
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33101, USA
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, 94304, USA
| | - Jennifer Arthur Ataam
- Department of Cardiothoracic Surgery and Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
| | - Kristin Tokarski
- Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Hrishikesh Thakur
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33101, USA
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, 94304, USA
| | - Ioannis Karakikes
- Department of Cardiothoracic Surgery and Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
| | - Kimberly Dodge-Kafka
- Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Michael S Kapiloff
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33101, USA.
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, 94304, USA.
| |
Collapse
|
13
|
Khan MS, Smego D, Ishidoya Y, Hirahara AM, Offei E, Ruiz Castillo MS, Gharbia O, Li H, Palatinus JA, Krueger L, Hong T, Hoareau GL, Ranjan R, Selzman CH, Shaw RM, Dosdall DJ. A canine model of chronic ischemic heart failure. Am J Physiol Heart Circ Physiol 2023; 324:H751-H761. [PMID: 36961487 PMCID: PMC10151054 DOI: 10.1152/ajpheart.00647.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023]
Abstract
Preclinical large animal models of chronic heart failure (HF) are crucial to both understanding pathological remodeling and translating fundamental discoveries into novel therapeutics for HF. Canine models of ischemic cardiomyopathy are historically limited by either high early mortality or failure to develop chronic heart failure. Twenty-nine healthy adult dogs (30 ± 4 kg, 15/29 male) underwent thoracotomy followed by one of three types of left anterior descending (LAD) coronary artery ligation procedures: group 1 (n = 4) (simple LAD: proximal and distal LAD ligation); group 2 (n = 14) (simple LAD plus lateral wall including ligation of the distal first diagonal and proximal first obtuse marginal); and group 3 (n = 11) (total LAD devascularization or TLD: simple LAD plus ligation of proximal LAD branches to both the right and left ventricles). Dogs were followed until chronic severe HF developed defined as left ventricular ejection fraction (LVEF) < 40% and NH2-terminal-prohormone B-type natriuretic peptide (NT-proBNP) > 900 pmol/L. Overall early survival (48-h postligation) in 29 dogs was 83% and the survival rate at postligation 5 wk was 69%. Groups 1 and 2 had 100% and 71% early survival, respectively, yet only a 50% success rate of developing chronic HF. Group 3 had excellent survival at postligation 48 h (91%) and a 100% success in the development of chronic ischemic HF. The TLD approach, which limits full LAD and collateral flow to its perfusion bed, provides excellent early survival and reliable development of chronic ischemic HF in canine hearts.NEW & NOTEWORTHY The novel total left anterior descending devascularization (TLD) approach in a canine ischemic heart failure model limits collateral flow in the ischemic zone and provides excellent early survival and repeatable development of chronic ischemic heart failure in the canine heart. This work provides a consistent large animal model for investigating heart failure mechanisms and testing novel therapeutics.
Collapse
Affiliation(s)
- Muhammad S Khan
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, Utah, United States
| | - Douglas Smego
- Division of Cardiothoracic Surgery, Department of Surgery, The University of Utah, Salt Lake City, Utah, United States
| | - Yuki Ishidoya
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Utah, Salt Lake City, Utah, United States
| | - Annie M Hirahara
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, Utah, United States
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, Utah, United States
| | - Emmanuel Offei
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, Utah, United States
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, Utah, United States
| | - Martha S Ruiz Castillo
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, Utah, United States
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, Utah, United States
| | - Omar Gharbia
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, Utah, United States
| | - Hui Li
- Division of Cardiothoracic Surgery, Department of Surgery, The University of Utah, Salt Lake City, Utah, United States
| | - Joseph A Palatinus
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Utah, Salt Lake City, Utah, United States
| | - Lauren Krueger
- Office of Comparative Medicine, The University of Utah, Salt Lake City, Utah, United States
| | - TingTing Hong
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, Utah, United States
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Utah, Salt Lake City, Utah, United States
| | - Guillaume L Hoareau
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, Utah, United States
- Department of Emergency Medicine, The University of Utah, Salt Lake City, Utah, United States
| | - Ravi Ranjan
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Utah, Salt Lake City, Utah, United States
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, Utah, United States
| | - Craig H Selzman
- Division of Cardiothoracic Surgery, Department of Surgery, The University of Utah, Salt Lake City, Utah, United States
| | - Robin M Shaw
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Utah, Salt Lake City, Utah, United States
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, Utah, United States
| | - Derek J Dosdall
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, Utah, United States
- Division of Cardiothoracic Surgery, Department of Surgery, The University of Utah, Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Utah, Salt Lake City, Utah, United States
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
14
|
Pauly V, Vlcek J, Zhang Z, Hesse N, Xia R, Bauer J, Loy S, Schneider S, Renner S, Wolf E, Kääb S, Schüttler D, Tomsits P, Clauss S. Effects of Sex on the Susceptibility for Atrial Fibrillation in Pigs with Ischemic Heart Failure. Cells 2023; 12:973. [PMID: 37048048 PMCID: PMC10093477 DOI: 10.3390/cells12070973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Atrial fibrillation (AF) is the most prevalent arrhythmia, often caused by myocardial ischemia/infarction (MI). Men have a 1.5× higher prevalence of AF, whereas women show a higher risk for new onset AF after MI. However, the underlying mechanisms of how sex affects AF pathophysiology are largely unknown. In 72 pigs with/without ischemic heart failure (IHF) we investigated the impact of sex on ischemia-induced proarrhythmic atrial remodeling and the susceptibility for AF. Electrocardiogram (ECG) and electrophysiological studies were conducted to assess electrical remodeling; histological analyses were performed to assess atrial fibrosis in male and female pigs. IHF pigs of both sexes showed a significantly increased vulnerability for AF, but in male pigs more and longer episodes were observed. Unchanged conduction properties but enhanced left atrial fibrosis indicated structural rather than electrical remodeling underlying AF susceptibility. Sex differences were only observed in controls with female pigs showing an increased intrinsic heart rate, a prolonged QRS interval and a prolonged sinus node recovery time. In sum, susceptibility for AF is significantly increased both in male and female pigs with ischemic heart failure. Differences between males and females are moderate, including more and longer AF episodes in male pigs and sinus node dysfunction in female pigs.
Collapse
Affiliation(s)
- Valerie Pauly
- Grosshadern Campus, Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University (LMU), Marchioninistrasse 15, D-81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, D-81377 Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, LMU Munich, Marchioninistrasse 68, D-81377 Munich, Germany
| | - Julia Vlcek
- Grosshadern Campus, Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University (LMU), Marchioninistrasse 15, D-81377 Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, LMU Munich, Marchioninistrasse 68, D-81377 Munich, Germany
| | - Zhihao Zhang
- Grosshadern Campus, Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University (LMU), Marchioninistrasse 15, D-81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, D-81377 Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, LMU Munich, Marchioninistrasse 68, D-81377 Munich, Germany
| | - Nora Hesse
- Grosshadern Campus, Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University (LMU), Marchioninistrasse 15, D-81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, D-81377 Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, LMU Munich, Marchioninistrasse 68, D-81377 Munich, Germany
| | - Ruibing Xia
- Grosshadern Campus, Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University (LMU), Marchioninistrasse 15, D-81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, D-81377 Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, LMU Munich, Marchioninistrasse 68, D-81377 Munich, Germany
| | - Julia Bauer
- Grosshadern Campus, Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University (LMU), Marchioninistrasse 15, D-81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, D-81377 Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, LMU Munich, Marchioninistrasse 68, D-81377 Munich, Germany
| | - Simone Loy
- Grosshadern Campus, Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University (LMU), Marchioninistrasse 15, D-81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, D-81377 Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, LMU Munich, Marchioninistrasse 68, D-81377 Munich, Germany
| | - Sarah Schneider
- Grosshadern Campus, Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University (LMU), Marchioninistrasse 15, D-81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, D-81377 Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, LMU Munich, Marchioninistrasse 68, D-81377 Munich, Germany
| | - Simone Renner
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Feodor-Lynen-Strasse 19, D-81377 Munich, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, Hackerstrasse 27, D-85764 Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Eckhard Wolf
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Feodor-Lynen-Strasse 19, D-81377 Munich, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, Hackerstrasse 27, D-85764 Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Grosshadern Campus, LMU Munich, Feodor-Lynen-Stasse 25, D-81377 Munich, Germany
| | - Stefan Kääb
- Grosshadern Campus, Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University (LMU), Marchioninistrasse 15, D-81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, D-81377 Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Feodor-Lynen-Strasse 19, D-81377 Munich, Germany
| | - Dominik Schüttler
- Grosshadern Campus, Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University (LMU), Marchioninistrasse 15, D-81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, D-81377 Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, LMU Munich, Marchioninistrasse 68, D-81377 Munich, Germany
| | - Philipp Tomsits
- Grosshadern Campus, Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University (LMU), Marchioninistrasse 15, D-81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, D-81377 Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, LMU Munich, Marchioninistrasse 68, D-81377 Munich, Germany
| | - Sebastian Clauss
- Grosshadern Campus, Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University (LMU), Marchioninistrasse 15, D-81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, D-81377 Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, LMU Munich, Marchioninistrasse 68, D-81377 Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Feodor-Lynen-Strasse 19, D-81377 Munich, Germany
| |
Collapse
|
15
|
Gunata M, Parlakpinar H. Experimental heart failure models in small animals. Heart Fail Rev 2023; 28:533-554. [PMID: 36504404 DOI: 10.1007/s10741-022-10286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/14/2022]
Abstract
Heart failure (HF) is one of the most critical health and economic burdens worldwide, and its prevalence is continuously increasing. HF is a disease that occurs due to a pathological change arising from the function or structure of the heart tissue and usually progresses. Numerous experimental HF models have been created to elucidate the pathophysiological mechanisms that cause HF. An understanding of the pathophysiology of HF is essential for the development of novel efficient therapies. During the past few decades, animal models have provided new insights into the complex pathogenesis of HF. Success in the pathophysiology and treatment of HF has been achieved by using animal models of HF. The development of new in vivo models is critical for evaluating treatments such as gene therapy, mechanical devices, and new surgical approaches. However, each animal model has advantages and limitations, and none of these models is suitable for studying all aspects of HF. Therefore, the researchers have to choose an appropriate experimental model that will fully reflect HF. Despite some limitations, these animal models provided a significant advance in the etiology and pathogenesis of HF. Also, experimental HF models have led to the development of new treatments. In this review, we discussed widely used experimental HF models that continue to provide critical information for HF patients and facilitate the development of new treatment strategies.
Collapse
Affiliation(s)
- Mehmet Gunata
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, 44280, Türkiye
| | - Hakan Parlakpinar
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, 44280, Türkiye.
| |
Collapse
|
16
|
Carta-Bergaz A, Ríos-Muñoz GR, Crisóstomo V, Sánchez-Margallo FM, Ledesma-Carbayo MJ, Bermejo-Thomas J, Fernández-Avilés F, Arenal-Maíz Á. Intrapericardial cardiosphere-derived cells hinder epicardial dense scar expansion and promote electrical homogeneity in a porcine post-infarction model. Front Physiol 2022; 13:1041348. [PMID: 36457311 PMCID: PMC9705343 DOI: 10.3389/fphys.2022.1041348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/11/2022] [Indexed: 11/14/2023] Open
Abstract
The arrhythmic substrate of ventricular tachycardias in many structural heart diseases is located in the epicardium, often resulting in poor outcomes with currently available therapies. Cardiosphere-derived cells (CDCs) have been shown to modify myocardial scarring. A total of 19 Large White pigs were infarcted by occlusion of the mid-left anterior descending coronary artery for 150 min. Baseline cardiac magnetic resonance (CMR) imaging with late gadolinium enhancement sequences was obtained 4 weeks post-infarction and pigs were randomized to a treatment group (intrapericardial administration of 300,000 allogeneic CDCs/kg), (n = 10) and to a control group (n = 9). A second CMR and high-density endocardial electroanatomical mapping were performed at 16 weeks post-infarction. After the electrophysiological study, pigs were sacrificed and epicardial optical mapping and histological studies of the heterogeneous tissue of the endocardial and epicardial scars were performed. In comparison with control conditions, intrapericardial CDCs reduced the growth of epicardial dense scar and epicardial electrical heterogeneity. The relative differences in conduction velocity and action potential duration between healthy myocardium and heterogeneous tissue were significantly smaller in the CDC-treated group than in the control group. The lower electrical heterogeneity coincides with heterogeneous tissue with less fibrosis, better cardiomyocyte viability, and a greater quantity and better polarity of connexin 43. At the endocardial level, no differences were detected between groups. Intrapericardial CDCs produce anatomical and functional changes in the epicardial arrhythmic substrate, which could have an anti-arrhythmic effect.
Collapse
Affiliation(s)
- Alejandro Carta-Bergaz
- Gregorio Marañón Health Research Institute (IiSGM), Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Centre for Biomedical Research in Cardiovascular Disease Network (CIBERCV), Madrid, Spain
| | - Gonzalo R. Ríos-Muñoz
- Gregorio Marañón Health Research Institute (IiSGM), Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Centre for Biomedical Research in Cardiovascular Disease Network (CIBERCV), Madrid, Spain
- Department of Bioengineering and Space Engineering, Universidad Carlos III de Madrid, Madrid, Spain
| | - Verónica Crisóstomo
- Centre for Biomedical Research in Cardiovascular Disease Network (CIBERCV), Madrid, Spain
- Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Francisco M. Sánchez-Margallo
- Centre for Biomedical Research in Cardiovascular Disease Network (CIBERCV), Madrid, Spain
- Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - María J. Ledesma-Carbayo
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
- CIBER-BBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Bermejo-Thomas
- Gregorio Marañón Health Research Institute (IiSGM), Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Centre for Biomedical Research in Cardiovascular Disease Network (CIBERCV), Madrid, Spain
- Medical School, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Fernández-Avilés
- Gregorio Marañón Health Research Institute (IiSGM), Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Centre for Biomedical Research in Cardiovascular Disease Network (CIBERCV), Madrid, Spain
- Medical School, Universidad Complutense de Madrid, Madrid, Spain
| | - Ángel Arenal-Maíz
- Gregorio Marañón Health Research Institute (IiSGM), Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Centre for Biomedical Research in Cardiovascular Disease Network (CIBERCV), Madrid, Spain
| |
Collapse
|
17
|
Jimenez-Vazquez EN, Jain A, Jones DK. Enhancing iPSC-CM Maturation Using a Matrigel-Coated Micropatterned PDMS Substrate. Curr Protoc 2022; 2:e601. [PMID: 36383047 PMCID: PMC9710304 DOI: 10.1002/cpz1.601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cardiac myocytes isolated from adult heart tissue have a rod-like shape with highly organized intracellular structures. Cardiomyocytes derived from human pluripotent stem cells (iPSC-CMs), on the other hand, exhibit disorganized structure and contractile mechanics, reflecting their pronounced immaturity. These characteristics hamper research using iPSC-CMs. The protocol described here enhances iPSC-CM maturity and function by controlling the cellular shape and environment of the cultured cells. Microstructured silicone membranes function as a cell culture substrate that promotes cellular alignment. iPSC-CMs cultured on micropatterned membranes display an in-vivo-like rod-shaped morphology. This physiological cellular morphology along with the soft biocompatible silicone substrate, which has similar stiffness to the native cardiac matrix, promotes maturation of contractile function, calcium handling, and electrophysiology. Incorporating this technique for enhanced iPSC-CM maturation will help bridge the gap between animal models and clinical care, and ultimately improve personalized medicine for cardiovascular diseases. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Cardiomyocyte differentiation of iPSCs Basic Protocol 2: Purification of differentiated iPSC-CMs using MACS negative selection Basic Protocol 3: Micropatterning on PDMS.
Collapse
Affiliation(s)
| | - Abhilasha Jain
- Department of Pharmacology, University of Michigan Medical School
| | - David K. Jones
- Department of Pharmacology, University of Michigan Medical School
- Department of Internal Medicine, University of Michigan Medical School
| |
Collapse
|
18
|
Tune JD, Goodwill AG, Baker HE, Dick GM, Warne CM, Tucker SM, Essajee SI, Bailey CA, Klasing JA, Russell JJ, McCallinhart PE, Trask AJ, Bender SB. Chronic high-rate pacing induces heart failure with preserved ejection fraction-like phenotype in Ossabaw swine. Basic Res Cardiol 2022; 117:50. [PMID: 36222894 DOI: 10.1007/s00395-022-00958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 09/12/2022] [Accepted: 09/28/2022] [Indexed: 01/31/2023]
Abstract
The lack of pre-clinical large animal models of heart failure with preserved ejection fraction (HFpEF) remains a growing, yet unmet obstacle to improving understanding of this complex condition. We examined whether chronic cardiometabolic stress in Ossabaw swine, which possess a genetic propensity for obesity and cardiovascular complications, produces an HFpEF-like phenotype. Swine were fed standard chow (lean; n = 13) or an excess calorie, high-fat, high-fructose diet (obese; n = 16) for ~ 18 weeks with lean (n = 5) and obese (n = 8) swine subjected to right ventricular pacing (180 beats/min for ~ 4 weeks) to induce heart failure (HF). Baseline blood pressure, heart rate, LV end-diastolic volume, and ejection fraction were similar between groups. High-rate pacing increased LV end-diastolic pressure from ~ 11 ± 1 mmHg in lean and obese swine to ~ 26 ± 2 mmHg in lean HF and obese HF swine. Regression analyses revealed an upward shift in LV diastolic pressure vs. diastolic volume in paced swine that was associated with an ~ twofold increase in myocardial fibrosis and an ~ 50% reduction in myocardial capillary density. Hemodynamic responses to graded hemorrhage revealed an ~ 40% decrease in the chronotropic response to reductions in blood pressure in lean HF and obese HF swine without appreciable changes in myocardial oxygen delivery or transmural perfusion. These findings support that high-rate ventricular pacing of lean and obese Ossabaw swine initiates underlying cardiac remodeling accompanied by elevated LV filling pressures with normal ejection fraction. This distinct pre-clinical tool provides a unique platform for further mechanistic and therapeutic studies of this highly complex syndrome.
Collapse
Affiliation(s)
- Johnathan D Tune
- Department of Physiology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA.
| | - Adam G Goodwill
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Hana E Baker
- Diabetes and Complications Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Gregory M Dick
- Department of Physiology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Cooper M Warne
- Department of Physiology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Selina M Tucker
- Department of Physiology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Salman I Essajee
- Department of Physiology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Chastidy A Bailey
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Jessica A Klasing
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Jacob J Russell
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Patricia E McCallinhart
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Aaron J Trask
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Shawn B Bender
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
19
|
Yeh KC, Lee CJ, Song JS, Wu CH, Yeh TK, Wu SH, Hsieh TC, Chen YT, Tseng HY, Huang CL, Chen CT, Jan JJ, Chou MC, Shia KS, Chiang KH. Protective Effect of CXCR4 Antagonist DBPR807 against Ischemia-Reperfusion Injury in a Rat and Porcine Model of Myocardial Infarction: Potential Adjunctive Therapy for Percutaneous Coronary Intervention. Int J Mol Sci 2022; 23:ijms231911730. [PMID: 36233031 PMCID: PMC9570210 DOI: 10.3390/ijms231911730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
CXCR4 antagonists have been claimed to reduce mortality after myocardial infarction in myocardial infarction (MI) animals, presumably due to suppressing inflammatory responses caused by myocardial ischemia-reperfusion injury, thus, subsequently facilitating tissue repair and cardiac function recovery. This study aims to determine whether a newly designed CXCR4 antagonist DBPR807 could exert better vascular-protective effects than other clinical counterparts (e.g., AMD3100) to alleviate cardiac damage further exacerbated by reperfusion. Consequently, we find that instead of traditional continuous treatment or multiple-dose treatment at different intervals of time, a single-dose treatment of DBPR807 before reperfusion in MI animals could attenuate inflammation via protecting oxidative stress damage and preserve vascular/capillary density and integrity via mobilizing endothelial progenitor cells, leading to a desirable fibrosis reduction and recovery of cardiac function, as evaluated with the LVEF (left ventricular ejection fraction) in infarcted hearts in rats and mini-pigs, respectively. Thus, it is highly suggested that CXCR4 antagonists should be given at a single high dose prior to reperfusion to provide the maximal cardiac functional improvement. Based on its favorable efficacy and safety profiles indicated in tested animals, DBPR807 has a great potential to serve as an adjunctive medicine for percutaneous coronary intervention (PCI) therapies in acute MI patients.
Collapse
Affiliation(s)
- Kai-Chia Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chia-Jui Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chien-Huang Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Szu-Huei Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Tsung-Chin Hsieh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Yen-Ting Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Huan-Yi Tseng
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chen-Lung Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Jiing-Jyh Jan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Ming-Chen Chou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Kak-Shan Shia
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
- Correspondence: (K.-S.S.); (K.-H.C.)
| | - Kuang-Hsing Chiang
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Department of Cardiology, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106319, Taiwan
- Correspondence: (K.-S.S.); (K.-H.C.)
| |
Collapse
|
20
|
Mansfield C, Zhao MT, Basu M. Translational potential of hiPSCs in predictive modeling of heart development and disease. Birth Defects Res 2022; 114:926-947. [PMID: 35261209 PMCID: PMC9458775 DOI: 10.1002/bdr2.1999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 11/11/2022]
Abstract
Congenital heart disease (CHD) represents a major class of birth defects worldwide and is associated with cardiac malformations that often require surgical intervention immediately after birth. Despite the intense efforts from multicentric genome/exome sequencing studies that have identified several genetic variants, the etiology of CHD remains diverse and often unknown. Genetically modified animal models with candidate gene deficiencies continue to provide novel molecular insights that are responsible for fetal cardiac development. However, the past decade has seen remarkable advances in the field of human induced pluripotent stem cell (hiPSC)-based disease modeling approaches to better understand the development of CHD and discover novel preventative therapies. The iPSCs are derived from reprogramming of differentiated somatic cells to an embryonic-like pluripotent state via overexpression of key transcription factors. In this review, we describe how differentiation of hiPSCs to specialized cardiac cellular identities facilitates our understanding of the development and pathogenesis of CHD subtypes. We summarize the molecular and functional characterization of hiPSC-derived differentiated cells in support of normal cardiogenesis, those that go awry in CHD and other heart diseases. We illustrate how stem cell-based disease modeling enables scientists to dissect the molecular mechanisms of cell-cell interactions underlying CHD. We highlight the current state of hiPSC-based studies that are in the verge of translating into clinical trials. We also address limitations including hiPSC-model reproducibility and scalability and differentiation methods leading to cellular heterogeneity. Last, we provide future perspective on exploiting the potential of hiPSC technology as a predictive model for patient-specific CHD, screening pharmaceuticals, and provide a source for cell-based personalized medicine. In combination with existing clinical and animal model studies, data obtained from hiPSCs will yield further understanding of oligogenic, gene-environment interaction, pathophysiology, and management for CHD and other genetic cardiac disorders.
Collapse
Affiliation(s)
- Corrin Mansfield
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Ming-Tao Zhao
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Madhumita Basu
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| |
Collapse
|
21
|
Haftbaradaran Esfahani P, Westergren J, Lindfors L, Knöll R. Frequency-dependent signaling in cardiac myocytes. Front Physiol 2022; 13:926422. [PMID: 36117711 PMCID: PMC9478484 DOI: 10.3389/fphys.2022.926422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Recent experimental data support the view that signaling activity at the membrane depends on its geometric parameters such as surface area and curvature. However, a mathematical, biophysical concept linking shape to receptor signaling is missing. The membranes of cardiomyocytes are constantly reshaped due to cycles of contraction and relaxation. According to constant-volume behavior of cardiomyocyte contraction, the length shortening is compensated by Z-disc myofilament lattice expansion and dynamic deformation of membrane between two adjacent Z-discs. Both morphological changes are strongly dependent on the frequency of contraction. Here, we developed the hypothesis that dynamic geometry of cardiomyocytes could be important for their plasticity and signaling. This effect may depend on the frequency of the beating heart and may represent a novel concept to explain how changes in frequency affect cardiac signaling. Methods: This hypothesis is almost impossible to answer with experiments, as the in-vitro cardiomyocytes are almost two-dimensional and flattened rather than being in their real in-vivo shape. Therefore, we designed a COMSOL multiphysics program to mathematically model the dynamic geometry of a human cardiomyocyte and explore whether the beating frequency can modulate membrane signal transduction. Src kinase is an important component of cardiac mechanotransduction. We first presented that Src mainly localizes at costameres. Then, the frequency-dependent signaling effect was studied mathematically by numerical simulation of Src-mediated PDGFR signaling pathway. The reaction-convection-diffusion partial differential equation was formulated to simulate PDGFR pathway in a contracting sarcomeric disc for a range of frequencies from 1 to 4 Hz. Results: Simulations exhibits higher concentration of phospho-Src when a cardiomyocyte beats with higher rates. The calculated phospho-Src concentration at 4, 2, and 1 Hz beat rates, comparing to 0 Hz, was 21.5%, 9.4%, and 4.7% higher, respectively. Conclusion: Here we provide mathematical evidence for a novel concept in biology. Cell shape directly translates into signaling, an effect of importance particularly for the myocardium, where cells continuously reshape their membranes. The concept of locality of surface-to-volume ratios is demonstrated to lead to changes in membrane-mediated signaling and may help to explain the remarkable plasticity of the myocardium in response to biomechanical stress.
Collapse
Affiliation(s)
| | | | - Lennart Lindfors
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Ralph Knöll
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Heart and Vascular Theme, Karolinska Institute, Stockholm, Sweden
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
- *Correspondence: Ralph Knöll,
| |
Collapse
|
22
|
Saura M, Zamorano JL, Zaragoza C. Preclinical models of congestive heart failure, advantages, and limitations for application in clinical practice. Front Physiol 2022; 13:850301. [PMID: 35991184 PMCID: PMC9386157 DOI: 10.3389/fphys.2022.850301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Congestive heart failure (CHF) has increased over the years, in part because of recent progress in the management of chronic diseases, thus contributing to the maintenance of an increasingly aging population. CHF represents an unresolved health problem and therefore the establishment of animal models that recapitulates the complexity of CHF will become a critical element to be addressed, representing a serious challenge given the complexity of the pathogenesis of CHF itself, which is further compounded by methodological biases that depend on the animal species in use. Animal models of CHF have been developed in many different species, with different surgical procedures, all with promising results but, for the moment, unable to fully recapitulate the human disease. Large animal models often provide a more promising reality, with all the difficulties that their use entails, and which limit their performance to fewer laboratories, the costly of animal housing, animal handling, specialized facilities, skilled methodological training, and reproducibility as another important limiting factor when considering a valid animal model versus potentially better performing alternatives. In this review we will discuss the different animal models of CHF, their advantages and, above all, the limitations of each procedure with respect to effectiveness of results in terms of clinical application.
Collapse
Affiliation(s)
- Marta Saura
- Departamento de Biología de Sistemas, Facultad de Medicina (IRYCIS), Universidad de Alcalá, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jose Luis Zamorano
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departamento de Cardiología, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Carlos Zaragoza
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Unidad de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain
- *Correspondence: Carlos Zaragoza,
| |
Collapse
|
23
|
Morris CC, Ref J, Acharya S, Johnson KJ, Squire S, Acharya T, Dennis T, Daugherty S, McArthur A, Chinyere IR, Koevary JW, Hare JM, Lancaster JJ, Goldman S, Avery R. Free-breathing gradient recalled echo-based CMR in a swine heart failure model. Sci Rep 2022; 12:3698. [PMID: 35260607 PMCID: PMC8904633 DOI: 10.1038/s41598-022-07611-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 02/10/2022] [Indexed: 11/09/2022] Open
Abstract
In swine models, there are well-established protocols for creating a closed-chest myocardial infarction (MI) as well as protocols for characterization of cardiac function with cardiac magnetic resonance (CMR). This methods manuscript outlines a novel technique in CMR data acquisition utilizing smart-signal gradient recalled echo (GRE)-based array sequences in a free-breathing swine heart failure model allowing for both high spatial and temporal resolution imaging. Nine male Yucatan mini swine weighing 48.7 ± 1.6 kg at 58.2 ± 3.1 weeks old underwent the outlined imaging protocol before and 1-month after undergoing closed chest left anterior descending coronary artery (LAD) occlusion/reperfusion. The left ventricular ejection fraction (LVEF) at baseline was 59.3 ± 2.4% and decreased to 48.1 ± 3.7% 1-month post MI (P = 0.029). The average end-diastolic volume (EDV) at baseline was 55.2 ± 1.7 ml and increased to 74.2 ± 4.2 ml at 1-month post MI (P = 0.001). The resulting images from this novel technique and post-imaging analysis are presented and discussed. In a Yucatan swine model of heart failure via closed chest left anterior descending coronary artery (LAD) occlusion/reperfusion, we found that CMR with GRE-based array sequences produced clinical-grade images with high spatial and temporal resolution in the free-breathing setting.
Collapse
Affiliation(s)
- Craig C Morris
- Department of Medicine, Oregon Health and Sciences University, Portland, OR, USA
| | - Jacob Ref
- MD Program, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Satya Acharya
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Kevin J Johnson
- Magnetic Resonance Research Facility, University of Arizona, Tucson, AZ, USA
| | - Scott Squire
- Magnetic Resonance Research Facility, University of Arizona, Tucson, AZ, USA
| | | | - Tyler Dennis
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | | | - Alice McArthur
- Sarver Heart Center, University of Arizona, Tucson, AZ, USA
| | - Ikeotunye Royal Chinyere
- Sarver Heart Center, University of Arizona, Tucson, AZ, USA.,MD-PhD Program, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Jen Watson Koevary
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | - Joshua M Hare
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Steven Goldman
- Sarver Heart Center, University of Arizona, Tucson, AZ, USA
| | - Ryan Avery
- Department of Radiology, Northwestern University, 676 N Saint Clair, Suite 800, Chicago, IL, 60611, USA.
| |
Collapse
|
24
|
Gabisonia K, Burjanadze G, Woitek F, Keles A, Seki M, Gorgodze N, Carlucci L, Ilchenko S, Kurishima C, Walsh K, Piontkivska H, Recchia FA, Kasumov T. Proteome dynasmics and bioinformatics reveal major alterations in the turnover rate of functionally related cardiac and plasma proteins in a dog model of congestive heart failure. J Card Fail 2021; 28:588-600. [PMID: 34785403 DOI: 10.1016/j.cardfail.2021.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 11/26/2022]
Abstract
Protein pool turnover is a critically important cellular homeostatic component, yet it has been little explored in the context of heart failure (HF) pathophysiology. We employed in vivo 2H labeling/ proteome dynamics for non-biased discovery of turnover alterations involving functionally linked cardiac and plasma proteins in canine tachypacing-induced HF, an established preclinical model of dilated cardiomyopathy. Compared to control, dogs with congestive HF displayed bidirectional turnover changes of 28 cardiac proteins, i.e. reduced half-life of several key enzymes involved in glycolysis, homocysteine metabolism and glycogenesis, and increased half-life of proteins involved in proteolysis. Changes in plasma proteins were more modest: only 5 proteins, involved in various functions including proteolysis inhibition, hemoglobin, calcium and ferric-iron binding, displayed increased or decreased turnover rates. In other dogs undergoing cardiac tachypacing, we infused for 2 weeks the myokine Follistatin-like protein 1 (FSTL1), known for its ameliorative effects on HF-induced alterations. Proteome dynamics proved very sensitive in detecting the partial or complete prevention, by FSTL1, of cardiac and plasma protein turnover alterations. In conclusion, our study unveiled, for the first time in a large mammal, numerous HF-related alterations that may serve as the basis for future mechanistic research and/or as conceptually new molecular markers.
Collapse
Key Words
- ATIC, 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase /IMP cyclohydrolase
- BNP, brain natriuretic peptide
- CLTC, Clathrin heavy chain
- CRP, Pentraxin
- CYB5R3, NADH-cytochrome b5 reductase
- DPYSL2, Dihydropyrimidinase Like 2
- FDR, false discovery rate
- FSTL1, Follistatin-like protein 1
- GAPDHS, Glyceraldehyde-3-phosphate dehydrogenase
- GYS1, Glycogen synthase
- HF, Heart failure
- HSP90, Heat shock protein 90
- HSP90AB1, Heat shock protein 90 alpha family class B member 1
- HSPA1A, Heat Shock Protein A1
- LC-MS, liquid chromatography-mass spectrometry
- LFQ, Label-free quantification
- LOC479668, Haptoglobin
- LTAH4, Leukotriene A (4) hydrolase
- LV, Left ventricle
- PCA, Principal Component Analysis
- PDHA1, Pyruvate dehydrogenase E1 component subunit alpha
- PDHB, Pyruvate dehydrogenase E1 component subunit beta
- PGM, Phosphoglucomutase 1
- PSMD2, Proteasome 26S subunit, non-ATPase 2
- STIP1, Stress induced phosphoprotein
- TF, Transferrin
- proteome dynamics, bioinformatics, cardiac disease, heart failure, List of abbreviations: ANP, atrial natriuretic peptide
Collapse
Affiliation(s)
- Khatia Gabisonia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa; Fondazione Gabriele Monasterio, Pisa, Italy
| | - Gia Burjanadze
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa; Fondazione Gabriele Monasterio, Pisa, Italy
| | - Felix Woitek
- Heart Center Dresden-University Clinic, Technical University Dresden, Dresden, Germany
| | - Ayse Keles
- Northeast Ohio Medical University, Rootstown, OH, USA
| | - Mitsuru Seki
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Nikoloz Gorgodze
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa; Fondazione Gabriele Monasterio, Pisa, Italy
| | - Lucia Carlucci
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa; Fondazione Gabriele Monasterio, Pisa, Italy
| | - Serguei Ilchenko
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Clara Kurishima
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Helen Piontkivska
- Department of Biological Sciences and Brain Health Research Institute, Kent State University, Kent, OH, USA
| | - Fabio A Recchia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa; Fondazione Gabriele Monasterio, Pisa, Italy; Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| | | |
Collapse
|
25
|
Ziegler O, Sriram N, Gelev V, Radeva D, Todorov K, Feng J, Sellke FW, Robson SC, Hiromura M, Alexandrov BS, Usheva A. The cardiac molecular setting of metabolic syndrome in pigs reveals disease susceptibility and suggests mechanisms that exacerbate COVID-19 outcomes in patients. Sci Rep 2021; 11:19752. [PMID: 34611227 PMCID: PMC8492658 DOI: 10.1038/s41598-021-99143-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/21/2021] [Indexed: 12/02/2022] Open
Abstract
Although metabolic syndrome (MetS) is linked to an elevated risk of cardiovascular disease (CVD), the cardiac-specific risk mechanism is unknown. Obesity, hypertension, and diabetes (all MetS components) are the most common form of CVD and represent risk factors for worse COVID-19 outcomes compared to their non MetS peers. Here, we use obese Yorkshire pigs as a highly relevant animal model of human MetS, where pigs develop the hallmarks of human MetS and reproducibly mimics the myocardial pathophysiology in patients. Myocardium-specific mass spectroscopy-derived metabolomics, proteomics, and transcriptomics enabled the identity and quality of proteins and metabolites to be investigated in the myocardium to greater depth. Myocardium-specific deregulation of pro-inflammatory markers, propensity for arterial thrombosis, and platelet aggregation was revealed by computational analysis of differentially enriched pathways between MetS and control animals. While key components of the complement pathway and the immune response to viruses are under expressed, key N6-methyladenosin RNA methylation enzymes are largely overexpressed in MetS. Blood tests do not capture the entirety of metabolic changes that the myocardium undergoes, making this analysis of greater value than blood component analysis alone. Our findings create data associations to further characterize the MetS myocardium and disease vulnerability, emphasize the need for a multimodal therapeutic approach, and suggests a mechanism for observed worse outcomes in MetS patients with COVID-19 comorbidity.
Collapse
Affiliation(s)
- Olivia Ziegler
- Division of Cardiothoracic Surgery, Department of Surgery and, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Nivedita Sriram
- Division of Cardiothoracic Surgery, Department of Surgery and, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Vladimir Gelev
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
- Department of Chemistry, Sofia University, Sofia, Bulgaria
| | - Denitsa Radeva
- Department of Chemistry, Sofia University, Sofia, Bulgaria
| | - Kostadin Todorov
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
- Medical University, Sofia, Bulgaria
| | - Jun Feng
- Division of Cardiothoracic Surgery, Department of Surgery and, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery and, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Simon C Robson
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Makoto Hiromura
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
- Daiichi University of Pharmacy, Fukuoka, 815-8511, Japan
| | | | - Anny Usheva
- Division of Cardiothoracic Surgery, Department of Surgery and, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA.
| |
Collapse
|
26
|
Zhang XJ, Liu X, Hu M, Zhao GJ, Sun D, Cheng X, Xiang H, Huang YP, Tian RF, Shen LJ, Ma JP, Wang HP, Tian S, Gan S, Xu H, Liao R, Zou T, Ji YX, Zhang P, Cai J, Wang ZV, Meng G, Xu Q, Wang Y, Ma XL, Liu PP, Huang Z, Zhu L, She ZG, Zhang X, Bai L, Yang H, Lu Z, Li H. Pharmacological inhibition of arachidonate 12-lipoxygenase ameliorates myocardial ischemia-reperfusion injury in multiple species. Cell Metab 2021; 33:2059-2075.e10. [PMID: 34536344 DOI: 10.1016/j.cmet.2021.08.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/01/2020] [Accepted: 08/25/2021] [Indexed: 12/18/2022]
Abstract
Myocardial ischemia-reperfusion (MIR) injury is a major cause of adverse outcomes of revascularization after myocardial infarction. To identify the fundamental regulator of reperfusion injury, we performed metabolomics profiling in plasma of individuals before and after revascularization and identified a marked accumulation of arachidonate 12-lipoxygenase (ALOX12)-dependent 12-HETE following revascularization. The potent induction of 12-HETE proceeded by reperfusion was conserved in post-MIR in mice, pigs, and monkeys. While genetic inhibition of Alox12 protected mouse hearts from reperfusion injury and remodeling, Alox12 overexpression exacerbated MIR injury. Remarkably, pharmacological inhibition of ALOX12 significantly reduced cardiac injury in mice, pigs, and monkeys. Unexpectedly, ALOX12 promotes cardiomyocyte injury beyond its enzymatic activity and production of 12-HETE but also by its suppression of AMPK activity via a direct interaction with its upstream kinase TAK1. Taken together, our study demonstrates that ALOX12 is a novel AMPK upstream regulator in the post-MIR heart and that it represents a conserved therapeutic target for the treatment of myocardial reperfusion injury.
Collapse
Affiliation(s)
- Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Xiaolan Liu
- Institute of Model Animal of Wuhan University, Wuhan 430071, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Manli Hu
- Institute of Model Animal of Wuhan University, Wuhan 430071, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Guo-Jun Zhao
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Dating Sun
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Xu Cheng
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Hui Xiang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Yong-Ping Huang
- Institute of Model Animal of Wuhan University, Wuhan 430071, China; College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Rui-Feng Tian
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Li-Jun Shen
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Jun-Peng Ma
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Hai-Ping Wang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Song Tian
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Shanyu Gan
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Rufang Liao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Toujun Zou
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Yan-Xiao Ji
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Peng Zhang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Jingjing Cai
- Department of Cardiology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zhao V Wang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guannan Meng
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China
| | - Qingbo Xu
- Centre for Clinic Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Yibin Wang
- Department of Anesthesiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19004, USA
| | - Peter P Liu
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| | - Zan Huang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lihua Zhu
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Xin Zhang
- Gannan Institute of Translational Medicine, Ganzhou 341000, China
| | - Lan Bai
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China.
| | - Hailong Yang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China.
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430060, China.
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
27
|
Schachtschneider KM, Schook LB, Meudt JJ, Shanmuganayagam D, Zoller JA, Haghani A, Li CZ, Zhang J, Yang A, Raj K, Horvath S. Epigenetic clock and DNA methylation analysis of porcine models of aging and obesity. GeroScience 2021; 43:2467-2483. [PMID: 34523051 PMCID: PMC8599541 DOI: 10.1007/s11357-021-00439-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/09/2021] [Indexed: 12/29/2022] Open
Abstract
DNA-methylation profiles have been used successfully to develop highly accurate biomarkers of age, epigenetic clocks, for many species. Using a custom methylation array, we generated DNA methylation data from n = 238 porcine tissues including blood, bladder, frontal cortex, kidney, liver, and lung, from domestic pigs (Sus scrofa domesticus) and minipigs (Wisconsin Miniature Swine™). Samples used in this study originated from Large White X Landrace crossbred pigs, Large White X Minnesota minipig crossbred pigs, and Wisconsin Miniature Swine™. We present 4 epigenetic clocks for pigs that are distinguished by their compatibility with tissue type (pan-tissue and blood clock) and species (pig and human). Two dual-species human-pig pan-tissue clocks accurately measure chronological age and relative age, respectively. We also characterized CpGs that differ between minipigs and domestic pigs. Strikingly, several genes implicated by our epigenetic studies of minipig status overlap with genes (ADCY3, TFAP2B, SKOR1, and GPR61) implicated by genetic studies of body mass index in humans. In addition, CpGs with different levels of methylation between the two pig breeds were identified proximal to genes involved in blood LDL levels and cholesterol synthesis, of particular interest given the minipig's increased susceptibility to cardiovascular disease compared to domestic pigs. Thus, breed-specific differences of domestic and minipigs may potentially help to identify biological mechanisms underlying weight gain and aging-associated diseases. Our porcine clocks are expected to be useful for elucidating the role of epigenetics in aging and obesity, and the testing of anti-aging interventions.
Collapse
Affiliation(s)
- Kyle M. Schachtschneider
- Department of Radiology, University of Illinois At Chicago, Chicago, IL USA
- Department of Biochemistry and Molecular Genetics, University of Illinois At Chicago, Chicago, IL USA
- National Center for Supercomputing Applications, University of Illinois At Urbana-Champaign, Urban, IL USA
| | - Lawrence B. Schook
- Department of Radiology, University of Illinois At Chicago, Chicago, IL USA
- Department of Animal Sciences, University of Illinois At Urbana-Champaign, Urbana, IL USA
| | - Jennifer J. Meudt
- Biomedical & Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin – Madison, Madison, WI USA
| | - Dhanansayan Shanmuganayagam
- Biomedical & Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin – Madison, Madison, WI USA
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI USA
| | - Joseph A. Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA USA
| | - Amin Haghani
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA USA
| | - Caesar Z. Li
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA USA
| | - Joshua Zhang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Gonda Building, 695 Charles Young Drive South, Los Angeles, CA 90095 USA
| | - Andrew Yang
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA USA
| | - Ken Raj
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, UK
| | - Steve Horvath
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Gonda Building, 695 Charles Young Drive South, Los Angeles, CA 90095 USA
| |
Collapse
|
28
|
Liu W, Nguyen-Truong M, Ahern M, Labus KM, Puttlitz CM, Wang Z. Different Passive Viscoelastic Properties Between the Left and Right Ventricles in Healthy Adult Ovine. J Biomech Eng 2021; 143:1115540. [PMID: 34350934 DOI: 10.1115/1.4052004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Indexed: 01/03/2023]
Abstract
Ventricle dysfunction is the most common cause of heart failure, which leads to high mortality and morbidity. The mechanical behavior of the ventricle is critical to its physiological function. It is known that the ventricle is anisotropic and viscoelastic. However, the understanding of ventricular viscoelasticity is much less than that of its elasticity. Moreover, the left and right ventricles (LV&RV) are different in embryologic origin, anatomy, and function, but whether they distinguish in viscoelastic properties is unclear. We hypothesized that passive viscoelasticity is different between healthy LVs and RVs. Ex vivo cyclic biaxial tensile mechanical tests (1, 0.1, 0.01 Hz) and stress relaxation (strain of 3, 6, 9, 12, 15%) were performed for ventricles from healthy adult sheep. Outflow track direction was defined as the longitudinal direction. Hysteresis stress-strain loops and stress relaxation curves were obtained to quantify the viscoelastic properties. We found that the RV had more pronounced frequency-dependent viscoelastic changes than the LV. Under the physiological frequency (1 Hz), the LV was more anisotropic in the elasticity and stiffer than the RV in both directions, whereas the RV was more anisotropic in the viscosity and more viscous than the LV in the longitudinal direction. The LV was quasi-linear viscoelastic in the longitudinal but not circumferential direction, and the RV was nonlinear viscoelastic in both directions. This study is the first to investigate passive viscoelastic differences in healthy LVs and RVs, and the findings will deepen the understanding of biomechanical mechanisms of ventricular function.
Collapse
Affiliation(s)
- Wenqiang Liu
- School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, CO 80523
| | - Michael Nguyen-Truong
- School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, CO 80523
| | - Matt Ahern
- School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, CO 80523
| | - Kevin M Labus
- Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery,Fort Collins, CO 80523
| | - Christian M Puttlitz
- School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, CO 80523; Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery, Fort Collins, CO 80523; Department of Clinical Sciences, Colorado State University, 1678 Campus Delivery, Fort Collins, CO 80523
| | - Zhijie Wang
- Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery, Fort Collins, CO 80523; School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, CO 80523; 1301 Campus Delivery, Fort Collins, CO 80523
| |
Collapse
|
29
|
Weisskopf M, Kron M, Giering T, Walker T, Cesarovic N. The sheep as a pre-clinical model for testing intra-aortic percutaneous mechanical circulatory support devices. Int J Artif Organs 2021; 44:703-710. [PMID: 34405723 PMCID: PMC8450982 DOI: 10.1177/03913988211025537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The save deployment of intra-aortic percutaneous mechanical circulatory support devices is highly dependent on the inner aortic diameter. Finding the anatomically and ethically most suitable animal model for performance testing of new pMCS devices remains challenging. For this study, an ovine model using adult ewes of a large framed breed (Swiss White Alpine Sheep) was developed to test safety, reliability, and biocompatibility of catheter-mounted mechanical support devices placed in the descending thoracic aorta. Following the drawback of fluctuating aortic diameter and device malfunction in the first four animals, the model was improved by stenting the following animals with an aortic stent. Stenting the animals with an intra-aortic over the balloon stent was found to standardize the experimental set-up and to avoid early termination of the experiment due to non-device related issues.
Collapse
Affiliation(s)
- Miriam Weisskopf
- Center of Surgical Research, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mareike Kron
- Center of Surgical Research, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | | | - Nikola Cesarovic
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Department of Cardiothoracic and Vascular Surgery, German Heart Institute Berlin, Berlin, Germany
| |
Collapse
|
30
|
Wang VY, Tartibi M, Zhang Y, Selvaganesan K, Haraldsson H, Auger DA, Faraji F, Spaulding K, Takaba K, Collins A, Aguayo E, Saloner D, Wallace AW, Weinsaft JW, Epstein FH, Guccione J, Ge L, Ratcliffe MB. A kinematic model-based analysis framework for 3D Cine-DENSE-validation with an axially compressed gel phantom and application in sheep before and after antero-apical myocardial infarction. Magn Reson Med 2021; 86:2105-2121. [PMID: 34096083 DOI: 10.1002/mrm.28775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/06/2022]
Abstract
PURPOSE Myocardial strain is increasingly used to assess left ventricular (LV) function. Incorporation of LV deformation into finite element (FE) modeling environment with subsequent strain calculation will allow analysis to reach its full potential. We describe a new kinematic model-based analysis framework (KMAF) to calculate strain from 3D cine-DENSE (displacement encoding with stimulated echoes) MRI. METHODS Cine-DENSE allows measurement of 3D myocardial displacement with high spatial accuracy. The KMAF framework uses cine cardiovascular magnetic resonance (CMR) to facilitate cine-DENSE segmentation, interpolates cine-DENSE displacement, and kinematically deforms an FE model to calculate strain. This framework was validated in an axially compressed gel phantom and applied in 10 healthy sheep and 5 sheep after myocardial infarction (MI). RESULTS Excellent Bland-Altman agreement of peak circumferential (Ecc ) and longitudinal (Ell ) strain (mean difference = 0.021 ± 0.04 and -0.006 ± 0.03, respectively), was found between KMAF estimates and idealized FE simulation. Err had a mean difference of -0.014 but larger variation (±0.12). Cine-DENSE estimated end-systolic (ES) Ecc , Ell and Err exhibited significant spatial variation for healthy sheep. Displacement magnitude was reduced on average by 27%, 42%, and 56% after MI in the remote, adjacent and MI regions, respectively. CONCLUSIONS The KMAF framework allows accurate calculation of 3D LV Ecc and Ell from cine-DENSE.
Collapse
Affiliation(s)
- Vicky Y Wang
- Veterans Affairs Medical Center, San Francisco, California, USA
| | - Mehrzad Tartibi
- Veterans Affairs Medical Center, San Francisco, California, USA
| | - Yue Zhang
- Veterans Affairs Medical Center, San Francisco, California, USA
| | - Kartiga Selvaganesan
- Department of Biomedical Engineering, University of Berkeley, Berkeley, California, USA
| | - Henrik Haraldsson
- Veterans Affairs Medical Center, San Francisco, California, USA.,Department of Radiology, University of California, San Francisco, California, USA
| | - Daniel A Auger
- Department of Radiology and Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.,Medical Metrics, Inc., Houston, Texas, USA
| | - Farshid Faraji
- Veterans Affairs Medical Center, San Francisco, California, USA.,Department of Radiology, University of California, San Francisco, California, USA
| | | | - Kiyoaki Takaba
- Veterans Affairs Medical Center, San Francisco, California, USA
| | | | - Esteban Aguayo
- Veterans Affairs Medical Center, San Francisco, California, USA
| | - David Saloner
- Veterans Affairs Medical Center, San Francisco, California, USA.,Department of Radiology, University of California, San Francisco, California, USA
| | - Arthur W Wallace
- Veterans Affairs Medical Center, San Francisco, California, USA.,Department of Bioengineering, University of California, San Francisco, California, USA.,Department of Anesthesia, University of California, San Francisco, California, USA
| | | | - Frederick H Epstein
- Department of Radiology and Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Julius Guccione
- Veterans Affairs Medical Center, San Francisco, California, USA.,Department of Bioengineering, University of California, San Francisco, California, USA.,Department of Surgery, University of California, San Francisco, California, USA
| | - Liang Ge
- Veterans Affairs Medical Center, San Francisco, California, USA.,Department of Bioengineering, University of California, San Francisco, California, USA.,Department of Surgery, University of California, San Francisco, California, USA
| | - Mark B Ratcliffe
- Veterans Affairs Medical Center, San Francisco, California, USA.,Department of Bioengineering, University of California, San Francisco, California, USA.,Department of Surgery, University of California, San Francisco, California, USA.,Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
31
|
Gordon HP, Katz MG, Fazal S, Gillespie VL, Fargnoli AS, Gubara SM, Madjarova SJ, Cohen JA. Inflammatory Responses with Left Ventricular Compromise after Induction of Myocardial Infarcts in Sheep (Ovis aries). Comp Med 2021; 71:240-246. [PMID: 34082856 DOI: 10.30802/aalas-cm-21-000005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Ischemic myocardial disease is a major cause of death among humans worldwide; it results in scarring and pallor of the myocardium and triggers an inflammatory response that contributes to impaired left ventricular function. This response includes and is evidenced by the production of several inflammatory cytokines including TNFα, IL1β, IL4, IFNγ, IL10 and IL6. In the current study, myocardial infarcts were induced in 6 mo old male castrated sheep by ligation of the left circumflex obtuse marginal arteries (OM 1 and 2). MRI was used to measure parameters of left ventricular function that include EDV, ESV, EF, SVI, dp/dt max and dp/dt min at baseline and at 4 wk and 3 mo after infarct induction. We also measured serum concentrations of an array of cytokines. Postmortem histologic findings corroborate the existence of left ventricular myocardial injury and deterioration. Our data show a correlation between serum cytokine concentrations and the development of myocardial damage and left ventricular functional compromise.
Collapse
Affiliation(s)
- Hylton P Gordon
- Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mt. Sinai, New York, New York;,
| | - Michael G Katz
- Department of Cardiology, Icahn School of Medicine at Mt. Sinai, New York, New York
| | - Shahood Fazal
- Department of Cardiology, Icahn School of Medicine at Mt. Sinai, New York, New York
| | - Virginia L Gillespie
- Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mt. Sinai, New York, New York
| | - Anthony S Fargnoli
- Department of Cardiology, Icahn School of Medicine at Mt. Sinai, New York, New York
| | - Sarah M Gubara
- Department of Cardiology, Icahn School of Medicine at Mt. Sinai, New York, New York
| | - Sophia J Madjarova
- Department of Biology, Columbia University School of Medicine, New York, New York
| | - Jonathan A Cohen
- Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mt. Sinai, New York, New York
| |
Collapse
|
32
|
Tan W, Li X, Zheng S, Li X, Zhang X, Pyle WG, Chen H, Wu J, Sun H, Zou Y, Backx PH, Yang FH. A Porcine Model of Heart Failure With Preserved Ejection Fraction Induced by Chronic Pressure Overload Characterized by Cardiac Fibrosis and Remodeling. Front Cardiovasc Med 2021; 8:677727. [PMID: 34150870 PMCID: PMC8206269 DOI: 10.3389/fcvm.2021.677727] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Heart failure is induced by multiple pathological mechanisms, and current therapies are ineffective against heart failure with preserved ejection fraction (HFpEF). As there are limited animal models of HFpEF, its underlying mechanisms have not yet been elucidated. Here, we employed the descending aortic constriction (DAC) technique to induce chronic pressure overload in the left ventricles of Tibetan minipigs for 12 weeks. Cardiac function, pathological and cellular changes, fibrotic signaling activation, and gene expression profiles were explored. The left ventricles developed concentric hypertrophy from weeks 4 to 6 and transition to dilation starting in week 10. Notably, the left ventricular ejection fraction was maintained at >50% in the DAC group during the 12-week period. Pathological examination, biochemical analyses, and gene profile analysis revealed evidence of inflammation, fibrosis, cell death, and myofilament dephosphorylation in the myocardium of HFpEF model animals, together with gene expression shifts promoting cardiac remodeling and downregulating metabolic pathways. Furthermore, we noted the activation of several signaling proteins that impact cardiac fibrosis and remodeling, including transforming growth factor-β/SMAD family members 2/3, type I/III/V collagens, phosphatidylinositol 3-kinase, extracellular signal-regulated kinase, matrix metalloproteinases 2 and 9, tissue inhibitor of metalloproteinases 1 and 2, interleukins 6 and 1β, and inhibitor of κBα/nuclear factor-κB. Our findings demonstrate that this chronic pressure overload-induced porcine HFpEF model is a powerful tool to elucidate the mechanisms of this disease and translate preclinical findings.
Collapse
Affiliation(s)
- Weijiang Tan
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Xiang Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Shuang Zheng
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Xiaohui Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xiaoshen Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - W. Glen Pyle
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Honghua Chen
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Huan Sun
- Cardiology Department, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Peter H. Backx
- Department of Biology, York University, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Feng Hua Yang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
33
|
Khaliulin I, Ascione R, Maslov LN, Amal H, Suleiman MS. Preconditioning or Postconditioning with 8-Br-cAMP-AM Protects the Heart against Regional Ischemia and Reperfusion: A Role for Mitochondrial Permeability Transition. Cells 2021; 10:1223. [PMID: 34067674 PMCID: PMC8155893 DOI: 10.3390/cells10051223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 01/15/2023] Open
Abstract
The cAMP analogue 8-Br-cAMP-AM (8-Br) confers marked protection against global ischaemia/reperfusion of isolated perfused heart. We tested the hypothesis that 8-Br is also protective under clinically relevant conditions (regional ischaemia) when applied either before ischemia or at the beginning of reperfusion, and this effect is associated with the mitochondrial permeability transition pore (MPTP). 8-Br (10 μM) was administered to Langendorff-perfused rat hearts for 5 min either before or at the end of 30 min regional ischaemia. Ca2+-induced mitochondria swelling (a measure of MPTP opening) and binding of hexokinase II (HKII) to mitochondria were assessed following the drug treatment at preischaemia. Haemodynamic function and ventricular arrhythmias were monitored during ischaemia and 2 h reperfusion. Infarct size was evaluated at the end of reperfusion. 8-Br administered before ischaemia attenuated ventricular arrhythmias, improved haemodynamic function, and reduced infarct size during ischaemia/reperfusion. Application of 8-Br at the end of ischaemia protected the heart during reperfusion. 8-Br promoted binding of HKII to the mitochondria and reduced Ca2+-induced mitochondria swelling. Thus, 8-Br protects the heart when administered before regional ischaemia or at the beginning of reperfusion. This effect is associated with inhibition of MPTP via binding of HKII to mitochondria, which may underlie the protective mechanism.
Collapse
Affiliation(s)
- Igor Khaliulin
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Pharmacy Building, Ein Karem, Jerusalem 91120, Israel;
- Bristol Medical School (THS), Faculty of Health Sciences, University of Bristol, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK; (R.A.); (M.S.S.)
| | - Raimondo Ascione
- Bristol Medical School (THS), Faculty of Health Sciences, University of Bristol, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK; (R.A.); (M.S.S.)
| | - Leonid N. Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center, The Russian Academy of Sciences, 111 a, Kievskaya Street, 634012 Tomsk, Russia;
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Pharmacy Building, Ein Karem, Jerusalem 91120, Israel;
| | - M. Saadeh Suleiman
- Bristol Medical School (THS), Faculty of Health Sciences, University of Bristol, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK; (R.A.); (M.S.S.)
| |
Collapse
|
34
|
Batkai S, Genschel C, Viereck J, Rump S, Bär C, Borchert T, Traxler D, Riesenhuber M, Spannbauer A, Lukovic D, Zlabinger K, Hašimbegović E, Winkler J, Garamvölgyi R, Neitzel S, Gyöngyösi M, Thum T. CDR132L improves systolic and diastolic function in a large animal model of chronic heart failure. Eur Heart J 2021; 42:192-201. [PMID: 33089304 PMCID: PMC7813625 DOI: 10.1093/eurheartj/ehaa791] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/16/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022] Open
Abstract
Aims Cardiac miR-132 activation leads to adverse remodelling and pathological hypertrophy. CDR132L is a synthetic lead-optimized oligonucleotide inhibitor with proven preclinical efficacy and safety in heart failure (HF) early after myocardial infarction (MI), and recently completed clinical evaluation in a Phase 1b study (NCT04045405). The aim of the current study was to assess safety and efficacy of CDR132L in a clinically relevant large animal (pig) model of chronic heart failure following MI. Methods and results In a chronic model of post-MI HF, slow-growing pigs underwent 90 min left anterior descending artery occlusion followed by reperfusion. Animals were randomized and treatment started 1-month post-MI. Monthly intravenous (IV) treatments of CDR132L over 3 or 5 months (3× or 5×) were applied in a blinded randomized placebo-controlled fashion. Efficacy was evaluated based on serial magnetic resonance imaging, haemodynamic, and biomarker analyses. The treatment regime provided sufficient tissue exposure and CDR132L was well tolerated. Overall, CDR132L treatment significantly improved cardiac function and reversed cardiac remodelling. In addition to the systolic recovery, diastolic function was also ameliorated in this chronic model of HF. Conclusion Monthly repeated dosing of CDR132L is safe and adequate to provide clinically relevant exposure and therapeutic efficacy in a model of chronic post-MI HF. CDR132L thus should be explored as treatment for the broad area of chronic heart failure. ![]()
Collapse
Affiliation(s)
- Sandor Batkai
- CARDIOR Pharmaceuticals GmbH, Feodor-Lynen-Str. 15, Hannover 30625, Germany
| | - Celina Genschel
- CARDIOR Pharmaceuticals GmbH, Feodor-Lynen-Str. 15, Hannover 30625, Germany
| | - Janika Viereck
- CARDIOR Pharmaceuticals GmbH, Feodor-Lynen-Str. 15, Hannover 30625, Germany
| | - Steffen Rump
- CARDIOR Pharmaceuticals GmbH, Feodor-Lynen-Str. 15, Hannover 30625, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Tobias Borchert
- CARDIOR Pharmaceuticals GmbH, Feodor-Lynen-Str. 15, Hannover 30625, Germany
| | - Denise Traxler
- Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Martin Riesenhuber
- Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Andreas Spannbauer
- Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Dominika Lukovic
- Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Katrin Zlabinger
- Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Ena Hašimbegović
- Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Johannes Winkler
- Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Rita Garamvölgyi
- Department of Diagnostic Imaging and Oncoradiology, University of Kaposvár, Guba S. Street 40, Kaposvár 7400, Hungary
| | - Sonja Neitzel
- Axolabs GmbH, Fritz-Hornschuch-Straße 9, Kulmbach 95326, Germany
| | - Mariann Gyöngyösi
- Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Thomas Thum
- CARDIOR Pharmaceuticals GmbH, Feodor-Lynen-Str. 15, Hannover 30625, Germany.,Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| |
Collapse
|
35
|
Shin HS, Shin HH, Shudo Y. Current Status and Limitations of Myocardial Infarction Large Animal Models in Cardiovascular Translational Research. Front Bioeng Biotechnol 2021; 9:673683. [PMID: 33996785 PMCID: PMC8116580 DOI: 10.3389/fbioe.2021.673683] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/06/2021] [Indexed: 01/16/2023] Open
Abstract
Establishing an appropriate disease model that mimics the complexities of human cardiovascular disease is critical for evaluating the clinical efficacy and translation success. The multifaceted and complex nature of human ischemic heart disease is difficult to recapitulate in animal models. This difficulty is often compounded by the methodological biases introduced in animal studies. Considerable variations across animal species, modifications made in surgical procedures, and inadequate randomization, sample size calculation, blinding, and heterogeneity of animal models used often produce preclinical cardiovascular research that looks promising but is irreproducible and not translatable. Moreover, many published papers are not transparent enough for other investigators to verify the feasibility of the studies and the therapeutics' efficacy. Unfortunately, successful translation of these innovative therapies in such a closed and biased research is difficult. This review discusses some challenges in current preclinical myocardial infarction research, focusing on the following three major inhibitors for its successful translation: Inappropriate disease model, frequent modifications to surgical procedures, and insufficient reporting transparency.
Collapse
Affiliation(s)
- Hye Sook Shin
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Heather Hyeyoon Shin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Yasuhiro Shudo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
36
|
Woodward HJ, Zhu D, Hadoke PWF, MacRae VE. Regulatory Role of Sex Hormones in Cardiovascular Calcification. Int J Mol Sci 2021; 22:4620. [PMID: 33924852 PMCID: PMC8125640 DOI: 10.3390/ijms22094620] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Sex differences in cardiovascular disease (CVD), including aortic stenosis, atherosclerosis and cardiovascular calcification, are well documented. High levels of testosterone, the primary male sex hormone, are associated with increased risk of cardiovascular calcification, whilst estrogen, the primary female sex hormone, is considered cardioprotective. Current understanding of sexual dimorphism in cardiovascular calcification is still very limited. This review assesses the evidence that the actions of sex hormones influence the development of cardiovascular calcification. We address the current question of whether sex hormones could play a role in the sexual dimorphism seen in cardiovascular calcification, by discussing potential mechanisms of actions of sex hormones and evidence in pre-clinical research. More advanced investigations and understanding of sex hormones in calcification could provide a better translational outcome for those suffering with cardiovascular calcification.
Collapse
Affiliation(s)
- Holly J. Woodward
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK;
| | - Dongxing Zhu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Patrick W. F. Hadoke
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK;
| | - Victoria E. MacRae
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK;
| |
Collapse
|
37
|
Liu Chung Ming C, Sesperez K, Ben-Sefer E, Arpon D, McGrath K, McClements L, Gentile C. Considerations to Model Heart Disease in Women with Preeclampsia and Cardiovascular Disease. Cells 2021; 10:899. [PMID: 33919808 PMCID: PMC8070848 DOI: 10.3390/cells10040899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Preeclampsia is a multifactorial cardiovascular disorder diagnosed after 20 weeks of gestation, and is the leading cause of death for both mothers and babies in pregnancy. The pathophysiology remains poorly understood due to the variability and unpredictability of disease manifestation when studied in animal models. After preeclampsia, both mothers and offspring have a higher risk of cardiovascular disease (CVD), including myocardial infarction or heart attack and heart failure (HF). Myocardial infarction is an acute myocardial damage that can be treated through reperfusion; however, this therapeutic approach leads to ischemic/reperfusion injury (IRI), often leading to HF. In this review, we compared the current in vivo, in vitro and ex vivo model systems used to study preeclampsia, IRI and HF. Future studies aiming at evaluating CVD in preeclampsia patients could benefit from novel models that better mimic the complex scenario described in this article.
Collapse
Affiliation(s)
- Clara Liu Chung Ming
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Sydney, NSW 2007, Australia; (C.L.C.M.); (E.B.-S.); (D.A.)
| | - Kimberly Sesperez
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (K.S.); (K.M.); (L.M.)
| | - Eitan Ben-Sefer
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Sydney, NSW 2007, Australia; (C.L.C.M.); (E.B.-S.); (D.A.)
| | - David Arpon
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Sydney, NSW 2007, Australia; (C.L.C.M.); (E.B.-S.); (D.A.)
| | - Kristine McGrath
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (K.S.); (K.M.); (L.M.)
| | - Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (K.S.); (K.M.); (L.M.)
| | - Carmine Gentile
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Sydney, NSW 2007, Australia; (C.L.C.M.); (E.B.-S.); (D.A.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2000, Australia
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
38
|
Abstract
Diffuse myocardial fibrosis resulting from the excessive deposition of collagen fibres through the entire myocardium is encountered in a number of chronic cardiac diseases. This lesion results from alterations in the regulation of fibrillary collagen turnover by fibroblasts, facilitating the excessive deposition of type I and type III collagen fibres within the myocardial interstitium and around intramyocardial vessels. The available evidence suggests that, beyond the extent of fibrous deposits, collagen composition and the physicochemical properties of the fibres are also relevant in the detrimental effects of diffuse myocardial fibrosis on cardiac function and clinical outcomes in patients with heart failure. In this regard, findings from the past 20 years suggest that various clinicopathological phenotypes of diffuse myocardial fibrosis exist in patients with heart failure. In this Review, we summarize the current knowledge on the mechanisms and detrimental consequences of diffuse myocardial fibrosis in heart failure. Furthermore, we discuss the validity and usefulness of available imaging techniques and circulating biomarkers to assess the clinicopathological variation in this lesion and to track its clinical evolution. Finally, we highlight the currently available and potential future therapeutic strategies aimed at personalizing the prevention and reversal of diffuse myocardial fibrosis in patients with heart failure.
Collapse
|
39
|
Zacharski M, Tomaszek A, Kiczak L, Ugorski M, Bania J, Pasławska U, Rybinska I, Jankowska EA, Janiszewski A, Ponikowski P. Catabolic/Anabolic Imbalance Is Accompanied by Changes of Left Ventricular Steroid Nuclear Receptor Expression in Tachycardia-Induced Systolic Heart Failure in Male Pigs. J Card Fail 2021; 27:682-692. [PMID: 33450412 DOI: 10.1016/j.cardfail.2020.12.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/13/2020] [Accepted: 12/29/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Steroid hormones play an important role in heart failure (HF) pathogenesis, and clinical data have revealed disordered steroidogenesis in male patients with HF. However, there is still a lack of studies on steroid hormones and their receptors during HF progression. Therefore, a porcine model of tachycardia-induced cardiomyopathy corresponding to HF was used to assess steroid hormone concentrations in serum and their nuclear receptor levels in heart tissue during the consecutive stages of HF. METHODS AND RESULTS Male pigs underwent right ventricular pacing and developed a clinical picture of mild, moderate, or severe HF. Serum concentrations of dehydroepiandrosterone, testosterone, dihydrotestosterone, estradiol, aldosterone, and cortisol were assessed by enzyme-linked immunosorbent assay. Androgen receptor, estrogen receptor alpha, mineralocorticoid receptor, and glucocorticoid receptor messenger RNA levels in the left ventricle were determined by qPCR.The androgen level decreased in moderate and severe HF animals, while the corticosteroid level increased. The estradiol concentration remained stable. The quantitative real-time polymerase chain reaction revealed the downregulation of androgen receptor in consecutive stages of HF and increased expression of mineralocorticoid receptor messenger RNA under these conditions. CONCLUSIONS In the HF pig model, deteriorated catabolic/anabolic balance, manifested by upregulation of aldosterone and cortisol and downregulation of androgen signaling on the ligand level, was augmented by changes in steroid hormone receptor expression in the heart tissue.
Collapse
Affiliation(s)
- Maciej Zacharski
- Regional Specialist Hospital in Wroclaw - Research and Development Centre, Wroclaw, Poland; Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.
| | - Alicja Tomaszek
- Regional Specialist Hospital in Wroclaw - Research and Development Centre, Wroclaw, Poland; Department of Pathology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Liliana Kiczak
- Regional Specialist Hospital in Wroclaw - Research and Development Centre, Wroclaw, Poland; Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Maciej Ugorski
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Jacek Bania
- Regional Specialist Hospital in Wroclaw - Research and Development Centre, Wroclaw, Poland; Department of Food Hygiene and Consumer Health Protection, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Urszula Pasławska
- Regional Specialist Hospital in Wroclaw - Research and Development Centre, Wroclaw, Poland; Department of Diagnostics and Clinical Science, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University Toruń, Poland; Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Ilona Rybinska
- Regional Specialist Hospital in Wroclaw - Research and Development Centre, Wroclaw, Poland; Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Italy
| | - Ewa Anita Jankowska
- Regional Specialist Hospital in Wroclaw - Research and Development Centre, Wroclaw, Poland; Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland; Centre for Heart Diseases, University Hospital, Wroclaw, Poland
| | - Adrian Janiszewski
- Regional Specialist Hospital in Wroclaw - Research and Development Centre, Wroclaw, Poland; Department of Internal Disease and Veterinary Diagnosis, Faculty of Veterinary Medicine and Animal Sciences, Poznań University of Life Sciences, Poznań, Poland
| | - Piotr Ponikowski
- Regional Specialist Hospital in Wroclaw - Research and Development Centre, Wroclaw, Poland; Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland; Centre for Heart Diseases, University Hospital, Wroclaw, Poland
| |
Collapse
|
40
|
Smith KJ, Mathur M, Meador WD, Phillips-Garcia B, Sugerman GP, Menta AK, Jazwiec T, Malinowski M, Timek TA, Rausch MK. Tricuspid chordae tendineae mechanics: Insertion site, leaflet, and size-specific analysis and constitutive modelling. SHI YAN LI XUE = JOURNAL OF EXPERIMENTAL MECHANICS 2021; 61:19-29. [PMID: 39564577 PMCID: PMC11575976 DOI: 10.1007/s11340-020-00594-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/20/2020] [Indexed: 11/21/2024]
Abstract
Background Tricuspid valve chordae tendineae play a vital role in our cardiovascular system. They function as "parachute cords" to the tricuspid leaflets to prevent prolapse during systole. However, in contrast to the tricuspid annulus and leaflets, the tricuspid chordae tendineae have received little attention. Few previous studies have described their mechanics and their structure-function relationship. Objective In this study, we aimed to quantify the mechanics of tricuspid chordae tendineae based on their leaflet of origin, insertion site, and size. Methods Specifically, we uniaxially stretched 53 tricuspid chordae tendineae from sheep and recorded their stress-strain behavior. We also analyzed the microstructure of the tricuspid chordae tendineae based on two-photon microscopy and histology. Finally, we compared eight different hyperelastic constitutive models and their ability to fit our data. Results We found that tricuspid chordae tendineae are highly organized collageneous tissues, which are populated with cells throughout their thickness. In uniaxial stretching, this microstructure causes the classic J-shaped nonlinear stress-strain response known from other collageneous tissues. We found differences in stiffness between tricuspid chordae tendineae from the anterior, posterior, or septal leaflets only at small strains. Similarly, we found significant differences based on their insertion site or size also only at small strains. Of the models we fit to our data, we recommend the Ogden two-parameter model. This model fit the data excellently and required a minimal number of parameters. For future use, we identified and reported the Ogden material parameters for an average data set. Conclusion The data presented in this study help to explain the mechanics and structure-function relationship of tricuspid chordae tendineae and provide a model recommendation (with parameters) for use in computational simulations of the tricuspid valve.
Collapse
Affiliation(s)
- K J Smith
- The University of Texas at Austin, Austin, TX 78712
| | - M Mathur
- The University of Texas at Austin, Austin, TX 78712
| | - W D Meador
- The University of Texas at Austin, Austin, TX 78712
| | | | - G P Sugerman
- The University of Texas at Austin, Austin, TX 78712
| | - A K Menta
- The University of Texas at Austin, Austin, TX 78712
| | - T Jazwiec
- Spectrum Health, Grand Rapids, MI 49503
| | | | - T A Timek
- Spectrum Health, Grand Rapids, MI 49503
| | - M K Rausch
- The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
41
|
Azakie A, Carney JP, Lahti MT, Bianco RW, Doyle MJ, Kalra R, Martin CM. Porcine Model of the Arterial Switch Operation: Implications for Unique Strategies in the Management of Hypoplastic Left Ventricles. Pediatr Cardiol 2021; 42:501-509. [PMID: 33252768 PMCID: PMC7990748 DOI: 10.1007/s00246-020-02507-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/17/2020] [Indexed: 11/26/2022]
Abstract
There are no reports on the performance of the arterial switch operation (ASO) in a normal heart with normally related great vessels. The objective of this study was to determine whether the ASO could be performed in a healthy animal model. Cardiopulmonary bypass (CPB) and coronary translocation techniques were used to perform ASO in neonatal piglets or a staged ASO with prior main pulmonary artery (PA) banding. Primary ASO was performed in four neonatal piglets. Coronary translocation was effective with angiograms confirming patency. Piglets could not be weaned from CPB due to right ventricle (RV) dysfunction. To improve RV function for the ASO, nine piglets had PA banding. All survived the procedure. Post-banding RV pressure increased from a mean of 20.3 ± 2.2 mmHg to 36.5 ± 7.3 mmHg (p = 0.007). At 58 ± 1 days post-banding, piglets underwent cardiac MRIs revealing RV hypertrophy, and RV pressure overload with mildly reduced RV function. Catheterization confirmed RV systolic pressures of 84.0 ± 6.7 mmHg with LV systolic pressure 83.3 ± 6.7 mmHg (p = 0.43). The remaining five PA banded piglets underwent ASO at 51 ± 0 days post-banding. Three of five were weaned from bypass with patent coronary arteries and adequate RV function. We were able to successfully perform an arterial switch with documented patent coronary arteries on standard anatomy great vessels in a healthy animal model. To our knowledge this is the first time this procedure has been successfully performed. The model may have implications for studying the failing systemic RV, and may support a novel approach for management of borderline, pulsatile left ventricles.
Collapse
Affiliation(s)
- Anthony Azakie
- Experimental Surgical Services Laboratory, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455 USA
| | - John P. Carney
- Experimental Surgical Services Laboratory, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455 USA
| | - Matthew T. Lahti
- Experimental Surgical Services Laboratory, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455 USA
| | - Richard W. Bianco
- Experimental Surgical Services Laboratory, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455 USA
| | - Michelle J. Doyle
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN USA
| | - Rajat Kalra
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN USA
| | - Cindy M. Martin
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN USA
| |
Collapse
|
42
|
Hála P, Kittnar O. Hemodynamic adaptation of heart failure to percutaneous venoarterial extracorporeal circulatory supports. Physiol Res 2020; 69:739-757. [PMID: 32901493 DOI: 10.33549/physiolres.934332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Extracorporeal life support (ECLS) is a treatment modality that provides prolonged blood circulation, gas exchange and can partially support or fully substitute functions of heart and lungs in patients with severe but potentially reversible cardiopulmonary failure refractory to conventional therapy. Due to high-volume bypass, the extracorporeal flow is interacting with native cardiac output. The pathophysiology of circulation and ECLS support reveals significant effects on arterial pressure waveforms, cardiac hemodynamics, and myocardial perfusion. Moreover, it is still subject of research, whether increasing stroke work caused by the extracorporeal flow is accompanied by adequate myocardial oxygen supply. The left ventricular (LV) pressure-volume mechanics are reflecting perfusion and loading conditions and these changes are dependent on the degree of the extracorporeal blood flow. By increasing the afterload, artificial circulation puts higher demands on heart work with increasing myocardial oxygen consumption. Further, this can lead to LV distention, pulmonary edema, and progression of heart failure. Multiple methods of LV decompression (atrial septostomy, active venting, intra-aortic balloon pump, pulsatility of flow) have been suggested to relieve LV overload but the main risk factors still remain unclear. In this context, it has been recommended to keep the rate of circulatory support as low as possible. Also, utilization of detailed hemodynamic monitoring has been suggested in order to avoid possible harm from excessive extracorporeal flow.
Collapse
Affiliation(s)
- P Hála
- Department of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | |
Collapse
|
43
|
Searching for Preclinical Models of Acute Decompensated Heart Failure: a Concise Narrative Overview and a Novel Swine Model. Cardiovasc Drugs Ther 2020; 36:727-738. [PMID: 33098053 PMCID: PMC9270312 DOI: 10.1007/s10557-020-07096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 11/25/2022]
Abstract
Purpose Available animal models of acute heart failure (AHF) and their limitations are discussed herein. A novel and preclinically relevant porcine model of decompensated AHF (ADHF) is then presented. Methods Myocardial infarction (MI) was induced by occlusion of left anterior descending coronary artery in 17 male pigs (34 ± 4 kg). Two weeks later, ADHF was induced in the survived animals (n = 15) by occlusion of the circumflex coronary artery, associated with acute volume overload and increases in arterial blood pressure by vasoconstrictor infusion. After onset of ADHF, animals received 48-h iv infusion of either serelaxin (n = 9) or placebo (n = 6). The pathophysiology and progression of ADHF were described by combining evaluation of hemodynamics, echocardiography, bioimpedance, blood gasses, circulating biomarkers, and histology. Results During ADHF, animals showed reduced left ventricle (LV) ejection fraction < 30%, increased thoracic fluid content > 35%, pulmonary edema, and high pulmonary capillary wedge pressure ~ 30 mmHg (p < 0.01 vs. baseline). Other ADHF-induced alterations in hemodynamics, i.e., increased central venous and pulmonary arterial pressures; respiratory gas exchanges, i.e., respiratory acidosis with low arterial PO2 and high PCO2; and LV dysfunction, i.e., increased LV end-diastolic/systolic volumes, were observed (p < 0.01 vs. baseline). Representative increases in circulating cardiac biomarkers, i.e., troponin T, natriuretic peptide, and bio-adrenomedullin, occurred (p < 0.01 vs. baseline). Finally, elevated renal and liver biomarkers were observed 48 h after onset of ADHF. Mortality was ~ 50%. Serelaxin showed beneficial effects on congestion, but none on mortality. Conclusion This new model, resulting from a combination of chronic and acute MI, and volume and pressure overload, was able to reproduce all the typical clinical signs occurring during ADHF in a consistent and reproducible manner. Electronic supplementary material The online version of this article (10.1007/s10557-020-07096-5) contains supplementary material, which is available to authorized users.
Collapse
|
44
|
Mondritzki T, Mai TA, Vogel J, Pook E, Wasnaire P, Schmeck C, Hüser J, Dinh W, Truebel H, Kolkhof P. Cardiac output improvement by pecavaptan: a novel dual-acting vasopressin V1a/V2 receptor antagonist in experimental heart failure. Eur J Heart Fail 2020; 23:743-750. [PMID: 32946151 PMCID: PMC8359415 DOI: 10.1002/ejhf.2001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 01/09/2023] Open
Abstract
AIMS Arginine vasopressin (AVP) mediates deleterious effects via vascular V1a and renal V2 receptors in heart failure (HF). Despite positive short-term decongestive effects in phase II HF studies, selective V2 receptor antagonism has shown no long-term mortality benefit, potentially related to unopposed V1a receptor activation. We compared the novel dual V1a/V2 receptor antagonist pecavaptan with the selective V2 receptor antagonist tolvaptan in pre-clinical HF models. METHODS AND RESULTS In vitro IC50 determination in recombinant cell lines revealed similar receptor selectivity profiles (V2:V1a) of tolvaptan and pecavaptan for human and dog AVP receptors, respectively. Two canine models were used to compare haemodynamic and aquaretic effects: (i) anaesthetised dogs with tachypacing-induced HF, and (ii) conscious telemetric dogs with a non-invasive cardiac output (CO) monitor. Tolvaptan and pecavaptan exhibited no differences in urinary output. In HF dogs, pecavaptan counteracted the AVP-induced increase in afterload and decrease in CO (pecavaptan: 1.83 ± 0.31 L/min; vs. tolvaptan: 1.46 ± 0.07 L/min, P < 0.05). In conscious telemetric animals, pecavaptan led to a significant increase in CO (+0.26 ± 0.17 L/min, P = 0.0086 vs. placebo), in cardiac index (+0.58 ± 0.39 L/min/m2 , P = 0.009 vs. placebo) and a significant decrease in total peripheral resistance (-5348.6 ± 3601.3 dyn × s/cm5 , P < 0.0001 vs. placebo), whereas tolvaptan was without any significant effect. CONCLUSIONS Simultaneous blockade of vascular V1a and renal V2 receptors efficiently induces aquaresis and counteracts AVP-mediated haemodynamic aggravation in HF models. Dual V1a/V2 antagonism may lead to improved outcomes in HF.
Collapse
Affiliation(s)
- Thomas Mondritzki
- Bayer AG, Wuppertal, Germany.,University of Witten/Herdecke, Witten, Germany
| | | | - Julia Vogel
- University of Witten/Herdecke, Witten, Germany.,University of Duisburg-Essen, Essen, Germany
| | | | | | | | | | - Wilfried Dinh
- Bayer AG, Wuppertal, Germany.,University of Witten/Herdecke, Witten, Germany.,Department of Cardiology, HELIOS Clinic Wuppertal, University Hospital Witten/Herdecke, Wuppertal, Germany
| | - Hubert Truebel
- Bayer AG, Wuppertal, Germany.,University of Witten/Herdecke, Witten, Germany
| | | |
Collapse
|
45
|
Species differences in cardiovascular physiology that affect pharmacology and toxicology. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2020.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Yamamoto S, Ding N, Matsumoto SI, Hirabayashi H. Highly specific, quantitative polymerase chain reaction probe for the quantification of human cells in cynomolgus monkeys. Drug Metab Pharmacokinet 2020; 36:100359. [PMID: 33348238 DOI: 10.1016/j.dmpk.2020.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
Quantification of human cells may be performed using quantitative polymerase chain reaction (qPCR). In preclinical studies, the human Alu sequence is widely used as biomarker for human DNA. However, because the Alu gene is shared by primates, its use is limited to non-primate studies. The biodistribution of human cells in primates is also necessary for translational studies. Therefore, we aimed to design a novel, human-specific primer/probe that enables the quantification of human cells in primates and other animal models. A novel primer/probe set was successfully designed based on highly repetitive LINE1 sequences. qPCR efficiency (94.95-99.21%) and linearity of calibration curves (r2 = 0.996-0.999) were confirmed in tissue homogenates of cynomolgus monkey. The lower limit of detection was 10 cells per 15-mg tissue sample, a sensitivity that is equivalent to existing Alu primers/probes. The set was also effective in other animal models such as mice, rabbits, pigs, and common marmosets. To our knowledge, this is the first study describing the successful design of a human-specific qPCR primer/probe for human cell quantification in various animals, including non-human primates, using LINE1 sequence. The excellent selectivity, sensitivity, and versatility of the LINE1 primers/probes make it a promising quantification tool in preclinical biodistribution studies.
Collapse
Affiliation(s)
- Syunsuke Yamamoto
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan.
| | - Ning Ding
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan.
| | - Shin-Ichi Matsumoto
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan.
| | - Hideki Hirabayashi
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan.
| |
Collapse
|
47
|
Lobb DC, Doviak H, Brower GL, Romito E, O'Neill JW, Smith S, Shuman JA, Freels PD, Zellars KN, Freeburg LA, Khakoo AY, Lee T, Spinale FG. Targeted Injection of a Truncated Form of Tissue Inhibitor of Metalloproteinase 3 Alters Post-Myocardial Infarction Remodeling. J Pharmacol Exp Ther 2020; 375:296-307. [PMID: 32958629 DOI: 10.1124/jpet.120.000047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/18/2020] [Indexed: 12/28/2022] Open
Abstract
Infarct expansion can occur after myocardial infarction (MI), which leads to adverse left ventricular (LV) remodeling and failure. An imbalance between matrix metalloproteinase (MMP) induction and tissue inhibitors of MMPs (TIMPs) can accelerate this process. Past studies have shown different biologic effects of TIMP-3, which may depend upon specific domains within the TIMP-3 molecule. This study tested the hypothesis that differential effects of direct myocardial injections of either a full-length recombinant TIMP-3 (F-TIMP-3) or a truncated form encompassing the N-terminal region (N-TIMP-3) could be identified post-MI. MI was induced in pigs that were randomized for MI injections (30 mg) and received targeted injections within the MI region of F-TIMP-3 (n = 8), N-TIMP-3 (n = 9), or saline injection (MI-only, n = 11). At 14 days post-MI, LV ejection fraction fell post-MI but remained higher in both TIMP-3 groups. Tumor necrosis factor and interleukin-10 mRNA increased by over 10-fold in the MI-only and N-TIMP-3 groups but were reduced with F-TIMP-3 at this post-MI time point. Direct MI injection of either a full-length or truncated form of TIMP-3 is sufficient to favorably alter the course of post-MI remodeling. The functional and differential relevance of TIMP-3 domains has been established in vivo since the TIMP-3 constructs demonstrated different MMP/cytokine expression profiles. These translational studies identify a unique and more specific therapeutic strategy to alter the course of LV remodeling and dysfunction after MI. SIGNIFICANCE STATEMENT: Using different formulations of tissue inhibitor of matrix metalloproteinase-3 (TIMP-3), when injected into the myocardial infarction (MI) region, slowed the progression of indices of left ventricular (LV) failure, suggesting that the N terminus of TIMP-3 is sufficient to attenuate early adverse functional events post-MI. Injections of full-length recombinant TIMP-3, but not of the N-terminal region of TIMP-3, reduced relative indices of inflammation at the mRNA level, suggesting that the C-terminal region affects other biological pathways. These unique proof-of-concept studies demonstrate the feasibility of using recombinant small molecules to selectively interrupt adverse LV remodeling post-MI.
Collapse
Affiliation(s)
- David C Lobb
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - Heather Doviak
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - Gregory L Brower
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - Eva Romito
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - Jason W O'Neill
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - Stephen Smith
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - James A Shuman
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - Parker D Freels
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - Kia N Zellars
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - Lisa A Freeburg
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - Aarif Y Khakoo
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - TaeWeon Lee
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| | - Francis G Spinale
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center, Columbia, South Carolina (D.C.L., H.D., G.L.B., E.R., J.A.S., P.D.F., K.N.Z., L.A.F., F.G.S.) and Amgen, Metabolic Disorders, South San Francisco, California (J.W.O., S.S., A.Y.K., T.L.)
| |
Collapse
|
48
|
Optimizing the Use of iPSC-CMs for Cardiac Regeneration in Animal Models. Animals (Basel) 2020; 10:ani10091561. [PMID: 32887495 PMCID: PMC7552322 DOI: 10.3390/ani10091561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary In 2006, the first induced pluripotent stem cells were generated by reprogramming skin cells. Induced pluripotent stem cells undergo fast cell division, can differentiate into many different cell types, can be patient-specific, and do not raise ethical issues. Thus, they offer great promise as in vitro disease models, drug toxicity testing platforms, and for autologous tissue regeneration. Heart failure is one of the major causes of death worldwide. It occurs when the heart cannot meet the body’s metabolic demands. Induced pluripotent stem cells can be differentiated into cardiac myocytes, can form patches resembling native cardiac tissue, and can engraft to the damaged heart. However, despite correct host/graft coupling, most animal studies demonstrate an arrhythmogenicity of the engrafted tissue and variable survival. This is partially because of the heterogeneity and immaturity of the cells. New evidence suggests that by modulating induced pluripotent stem cells-cardiac myocytes (iPSC-CM) metabolism by switching substrates and changing metabolic pathways, you can decrease iPSC-CM heterogeneity and arrhythmogenicity. Novel culture methods and tissue engineering along with animal models of heart failure are needed to fully unlock the potential of cardiac myocytes derived from induced pluripotent stem cells for cardiac regeneration. Abstract Heart failure (HF) is a common disease in which the heart cannot meet the metabolic demands of the body. It mostly occurs in individuals 65 years or older. Cardiac transplantation is the best option for patients with advanced HF. High numbers of patient-specific cardiac myocytes (CMs) can be generated from induced pluripotent stem cells (iPSCs) and can possibly be used to treat HF. While some studies found iPSC-CMS can couple efficiently to the damaged heart and restore cardiac contractility, almost all found iPSC-CM transplantation is arrhythmogenic, thus hampering the use of iPSC-CMs for cardiac regeneration. Studies show that iPSC-CM cultures are highly heterogeneous containing atrial-, ventricular- and nodal-like CMs. Furthermore, they have an immature phenotype, resembling more fetal than adult CMs. There is an urgent need to overcome these issues. To this end, a novel and interesting avenue to increase CM maturation consists of modulating their metabolism. Combined with careful engineering and animal models of HF, iPSC-CMs can be assessed for their potential for cardiac regeneration and a cure for HF.
Collapse
|
49
|
Brook J, Kim MY, Koutsoftidis S, Pitcher D, Agha-Jaffar D, Sufi A, Jenkins C, Tzortzis K, Ma S, Jabbour RJ, Houston C, Handa BS, Li X, Chow JJ, Jothidasan A, Bristow P, Perkins J, Harding S, Bharath AA, Ng FS, Peters NS, Cantwell CD, Chowdhury RA. Development of a pro-arrhythmic ex vivo intact human and porcine model: cardiac electrophysiological changes associated with cellular uncoupling. Pflugers Arch 2020; 472:1435-1446. [PMID: 32870378 PMCID: PMC7476990 DOI: 10.1007/s00424-020-02446-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/11/2020] [Accepted: 08/06/2020] [Indexed: 01/19/2023]
Abstract
We describe a human and large animal Langendorff experimental apparatus for live electrophysiological studies and measure the electrophysiological changes due to gap junction uncoupling in human and porcine hearts. The resultant ex vivo intact human and porcine model can bridge the translational gap between smaller simple laboratory models and clinical research. In particular, electrophysiological models would benefit from the greater myocardial mass of a large heart due to its effects on far-field signal, electrode contact issues and motion artefacts, consequently more closely mimicking the clinical setting. Porcine (n = 9) and human (n = 4) donor hearts were perfused on a custom-designed Langendorff apparatus. Epicardial electrograms were collected at 16 sites across the left atrium and left ventricle. A total of 1 mM of carbenoxolone was administered at 5 ml/min to induce cellular uncoupling, and then recordings were repeated at the same sites. Changes in electrogram characteristics were analysed. We demonstrate the viability of a controlled ex vivo model of intact porcine and human hearts for electrophysiology with pharmacological modulation. Carbenoxolone reduces cellular coupling and changes contact electrogram features. The time from stimulus artefact to (-dV/dt)max increased between baseline and carbenoxolone (47.9 ± 4.1–67.2 ± 2.7 ms) indicating conduction slowing. The features with the largest percentage change between baseline and carbenoxolone were fractionation + 185.3%, endpoint amplitude − 106.9%, S-endpoint gradient + 54.9%, S point − 39.4%, RS ratio + 38.6% and (-dV/dt)max − 20.9%. The physiological relevance of this methodological tool is that it provides a model to further investigate pharmacologically induced pro-arrhythmic substrates.
Collapse
Affiliation(s)
- Joseph Brook
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Min-Young Kim
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Simos Koutsoftidis
- Faculty of Engineering, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, UK
| | - David Pitcher
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Danya Agha-Jaffar
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Annam Sufi
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Catherine Jenkins
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Konstantinos Tzortzis
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Suofeiya Ma
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Richard J Jabbour
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Charles Houston
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Balvinder S Handa
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Xinyang Li
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Ji-Jian Chow
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | | | - Poppy Bristow
- Royal Veterinary College, University of London, Hawkshead Lane, Hertfordshire, AL97TA, UK
| | - Justin Perkins
- Royal Veterinary College, University of London, Hawkshead Lane, Hertfordshire, AL97TA, UK
| | - Sian Harding
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Anil A Bharath
- Faculty of Engineering, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, UK
| | - Fu Siong Ng
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Nicholas S Peters
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Chris D Cantwell
- Faculty of Engineering, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, UK
| | - Rasheda A Chowdhury
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
50
|
Klein V, Davids M, Schad LR, Wald LL, Guérin B. Investigating cardiac stimulation limits of MRI gradient coils using electromagnetic and electrophysiological simulations in human and canine body models. Magn Reson Med 2020; 85:1047-1061. [PMID: 32812280 PMCID: PMC7722025 DOI: 10.1002/mrm.28472] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/23/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022]
Abstract
Purpose: Cardiac stimulation (CS) limits to gradient coil switching speed are difficult to measure in humans; instead, current regulatory guidelines (IEC 60601–2-33) are based on animal experiments and electric field–to-dB/dt conversion factors computed for a simple, homogeneous body model. We propose improvement to this methodology by using more detailed CS modeling based on realistic body models and electrophysiological models of excitable cardiac fibers. Methods: We compute electric fields induced by a solenoid, coplanar loops, and a commercial gradient coil in two human body models and a canine model. The canine simulations mimic previously published experiments. We generate realistic fiber topologies for the cardiac Purkinje and ventricular muscle fiber networks using rule-based algorithms, and evaluate CS thresholds using validated electrodynamic models of these fibers. Results: We were able to reproduce the average measured canine CS thresholds within 5%. In all simulations, the Purkinje fibers were stimulated before the ventricular fibers, and therefore set the effective CS threshold. For the investigated gradient coil, simulated CS thresholds for the x-, y-, and z-axis were at least one order of magnitude greater than the International Electrotechnical Commission limit. Conclusion: We demonstrate an approach to simulate gradient-induced CS using a combination of electromagnetic and electrophysiological modeling. Pending additional validation, these simulations could guide the assessment of CS limits to MRI gradient coil switching speed. Such an approach may lead to less conservative, but still safe, operation limits, enabling the use of the maximum gradient amplitude versus slew rate parameter space of recent, powerful gradient systems.
Collapse
Affiliation(s)
- Valerie Klein
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Mathias Davids
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lawrence L Wald
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
| | - Bastien Guérin
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|