1
|
Moraña-Fernández S, Vázquez-Abuín X, Aragón-Herrera A, Anido-Varela L, García-Seara J, Otero-García Ó, Rodríguez-Penas D, Campos-Toimil M, Otero-Santiago M, Rodrigues A, Gonçalves A, Pereira Morais J, Alves IN, Sousa-Mendes C, Falcão-Pires I, González-Juanatey JR, Feijóo-Bandín S, Lago F. Cardiometabolic effects of sacubitril/valsartan in a rat model of heart failure with preserved ejection fraction. Biochem Pharmacol 2024; 230:116571. [PMID: 39424202 DOI: 10.1016/j.bcp.2024.116571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/30/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
The promising results obtained in the PARADIGM-HF trial prompted the approval of sacubitril/valsartan (SAC/VAL) as a first-in-class treatment for heart failure with reduced ejection fraction (HFrEF) patients. The effect of SAC/VAL treatment was also studied in patients with heart failure with preserved ejection fraction (HFpEF) and, although improvements in New York Heart Association (NYHA) class, HF hospitalizations, and cardiovascular deaths were observed, these results were not so promising. However, the demand for HFpEF therapies led to the approval of SAC/VAL as an alternative treatment, although further studies are needed. We aimed to elucidate the effects of a 9-week SAC/VAL treatment in cardiac function and metabolism using a preclinical model of HFpEF, the Zucker Fatty and Spontaneously Hypertensive (ZSF1) rats. We found that SAC/VAL significantly improved diastolic function parameters and modulated respiratory quotient during exercise. Ex-vivo studies showed that SAC/VAL treatment significantly decreased heart, liver, spleen, and visceral fat weights; cardiac hypertrophy and percentage of fibrosis; lipid infiltration in liver and circulating levels of cholesterol and sodium. Moreover, SAC/VAL reduced glycerophospholipids, cholesterol, and cholesteryl esters while increasing triglyceride levels in cardiac tissue. In conclusion, SAC/VAL treatment improved diastolic and hepatic function, respiratory metabolism, reduced hypercholesterolemia and cardiac fibrosis and hypertrophy, and was able to modulate cardiac metabolic profile. Our findings might provide further insight into the therapeutic benefits of SAC/VAL treatment in obese patients with HFpEF.
Collapse
Affiliation(s)
- Sandra Moraña-Fernández
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Cardiology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Xocas Vázquez-Abuín
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Alana Aragón-Herrera
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain.
| | - Laura Anido-Varela
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier García-Seara
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Arrhytmia Unit, Cardiology Department, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Óscar Otero-García
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Cardiology Department, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain
| | - Diego Rodríguez-Penas
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Cardiology Department Clinical Trial Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain
| | - Manuel Campos-Toimil
- Physiology and Pharmacology of Chronic Diseases (FIFAEC), Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Otero-Santiago
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Clinical Biochemistry Laboratory, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain
| | - Alexandre Rodrigues
- Cardiovascular R&D Centre - UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Alexandre Gonçalves
- Cardiovascular R&D Centre - UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Juliana Pereira Morais
- CINTESIS@RISE, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, UnIC@RISE - Cardiovascular Research Centre, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Inês N Alves
- Cardiovascular R&D Centre - UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Cláudia Sousa-Mendes
- Cardiovascular R&D Centre - UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Inês Falcão-Pires
- Cardiovascular R&D Centre - UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - José Ramón González-Juanatey
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Cardiology Department, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain
| | - Sandra Feijóo-Bandín
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Erdogan BR, Yesilyurt-Dirican ZE, Karaomerlioglu I, Muderrisoglu AE, Sevim K, Michel MC, Arioglu-Inan E. Sacubitril/Valsartan Combination Partially Improves Cardiac Systolic, but Not Diastolic, Function through β-AR Responsiveness in a Rat Model of Type 2 Diabetes. Int J Mol Sci 2024; 25:10617. [PMID: 39408945 PMCID: PMC11476658 DOI: 10.3390/ijms251910617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Cardiovascular complications are the major cause of diabetes mellitus-related morbidity and mortality. Increased renin-angiotensin-aldosterone system activity and decreased β-adrenergic receptor (β-AR) responsiveness contribute to diabetic cardiac dysfunction. We evaluated the effect of sacubitril/valsartan (neprilysin inhibitor plus angiotensin receptor antagonist combination) and valsartan treatments on the diabetic cardiac function through β-AR responsiveness and on protein expression of diastolic components. Six-week-old male Sprague Dawley rats were divided into control, diabetic, sacubitril/valsartan (68 mg/kg)-, and valsartan-treated (31 mg/kg) diabetic groups. Diabetes was induced by a high-fat diet plus low-dose streptozotocin (30 mg/kg, intraperitoneal). After 10 weeks of diabetes, rats were treated for 4 weeks. Systolic/diastolic function was assessed by in vivo echocardiography and pressure-volume loop analysis. β-AR-mediated responsiveness was assessed by in vitro papillary muscle and Langendorff heart experiments. Protein expression of sarcoplasmic reticulum calcium ATPase2a, phospholamban, and phosphorylated phospholamban was determined by Western blot. Sacubitril/valsartan improved ejection fraction and fractional shortening to a similar extent as valsartan alone. None of the treatments affected in vivo diastolic parameters or the expression of related proteins. β1-/β2-AR-mediated responsiveness was partially restored in treated animals. β3-AR-mediated cardiac relaxation (an indicator of diastolic function) responses were comparable among groups. The beneficial effect of sacubitril/valsartan on systolic function may be attributed to improved β1-/β2-AR responsiveness.
Collapse
Affiliation(s)
- Betul R. Erdogan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara 06560, Türkiye; (B.R.E.); (Z.E.Y.-D.); (I.K.); (A.E.M.)
| | - Zeynep E. Yesilyurt-Dirican
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara 06560, Türkiye; (B.R.E.); (Z.E.Y.-D.); (I.K.); (A.E.M.)
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara 06330, Türkiye
| | - Irem Karaomerlioglu
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara 06560, Türkiye; (B.R.E.); (Z.E.Y.-D.); (I.K.); (A.E.M.)
| | - Ayhanim Elif Muderrisoglu
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara 06560, Türkiye; (B.R.E.); (Z.E.Y.-D.); (I.K.); (A.E.M.)
- Department of Medical Pharmacology, Istanbul Medipol University, Istanbul 34815, Türkiye
| | - Kadir Sevim
- Department of Internal Medicine, Faculty of Veterinary Medicine, Ankara University, Ankara 06110, Türkiye;
| | - Martin C. Michel
- Department of Pharmacology, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara 06560, Türkiye; (B.R.E.); (Z.E.Y.-D.); (I.K.); (A.E.M.)
| |
Collapse
|
3
|
Wang X, Pabon MA, Cikes M, Jering K, Mullens W, Kober L, Jhund PS, Kovacs A, Merkely B, Zhou Y, McMurray JJV, Shah AM, Hegde SM, Claggett B, Pfeffer MA, Solomon SD. Sex differences in cardiac structure and function following acute myocardial infarction: Insights from the PARADISE-MI echocardiographic substudy. Eur J Heart Fail 2024. [PMID: 39315586 DOI: 10.1002/ejhf.3472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
AIMS The incidence of heart failure hospitalization is higher in women than in men after myocardial infarction (MI). Sex-related differences in left ventricular (LV) remodelling may contribute to the differences in post-MI outcomes. The aim of this study was to assess sex differences in echocardiographic parameters post-MI, and whether the relationship between echocardiographic parameters and clinical outcomes differs by sex. METHODS AND RESULTS In the PARADISE-MI trial, patients were randomized to sacubitril/valsartan or ramipril within 0.5 to 7 days of high-risk MI. In the pre-specified echocardiographic substudy, 544 patients underwent echocardiography at the time of randomization and after 8 months. We compared key echocardiographic parameters in men and women and their association with primary composite outcome (cardiovascular death or incident heart failure). At baseline, women had higher LV ejection fraction (LVEF), lower LV end-diastolic volume (LVEDV) index, LV end-systolic volume (LVESV) index, and LV mass index. After adjusting for baseline clinical differences, changes in these echocardiographic parameters from baseline to 8 months were not significantly different in women versus men. Lower LVEF, higher LVEDV, LVESV, left atrial volume index, and average E/e' were associated with a higher risk of the primary composite outcome. Sex did not modify the relationship between echocardiographic parameters and clinical outcome. CONCLUSIONS Despite baseline differences in measures of cardiac function between men and women following acute high-risk MI, there were no significant sex-related changes in chamber size or LV function. Sex did not modify the association between echocardiographic parameters and clinical outcome.
Collapse
Affiliation(s)
- Xiaowen Wang
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Maria A Pabon
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Maja Cikes
- University of Zagreb School of Medicine, Department of Cardiovascular Diseases, University Hospital Center Zagreb, Zagreb, Croatia
| | - Karola Jering
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Wilfried Mullens
- Department of Cardiology, Ziekenhuis Oost-Limburg AV, Genk, Belgium
| | - Lars Kober
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Pardeep S Jhund
- British Heart Foundation Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Attila Kovacs
- Semmelweis University Heart and Vascular Center, Budapest, Hungary
| | - Bela Merkely
- Semmelweis University Heart and Vascular Center, Budapest, Hungary
| | - Yinong Zhou
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - John J V McMurray
- British Heart Foundation Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Amil M Shah
- Division of Cardiovascular Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sheila M Hegde
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Brian Claggett
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Marc A Pfeffer
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Scott D Solomon
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
4
|
Jin N, Qiu Y, Zhang K, Fang Y, Qu S, Zhu L, Li H, Nie B. Sacubitril/valsartan alleviates myocardial infarction-induced inflammation in mice by promoting M2 macrophage polarisation via regulation of PI3K/Akt pathway. Acta Cardiol 2024:1-10. [PMID: 39257342 DOI: 10.1080/00015385.2024.2400401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/11/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Macrophage polarisation-mediated inflammation plays a critical role in ventricular remodelling after myocardial infarction (MI). Sacubitril/Valsartan (Sac/Val) is an angiotensin receptor-neprilysin inhibitor that has shown beneficial effects on MI and heart failure. This study aims to further explore the mechanisms by which Sac/Val exerts its protective effects against MI. METHODS A mouse MI model was induced by ligating the left anterior descending coronary artery, followed by Sac/Val administration. TTC staining and Masson trichrome staining were employed for estimating myocardial infarct size and fibrosis, respectively. The expression levels of proinflammatory factors were determined by ELISA and RT-qPCR. Flow cytometry and immunofluorescence staining were implemented to detect CD206-positive cell infiltration in mouse hearts. Western blotting was conducted to assess protein levels of Arg1, pro-fibrotic factors, and PI3K/Akt signalling-related markers. RESULTS Sac/Val treatment reduced myocardial infarct size and fibrosis in mice after MI. Sac/Val administration decreased proinflammatory cytokine production and facilitated M2 macrophage polarisation in MI mouse cardiac tissues. Sac/Val activated PI3K/Akt signalling in MI mouse hearts. Blocking PI3K/Akt signalling counteracted Sac/Val-mediated protective effects in MI mice. CONCLUSION Sac/Val ameliorates MI-induced inflammation by facilitating M2 macrophage polarisation and activating PI3K/Akt signalling.
Collapse
Affiliation(s)
- Nan Jin
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Ying Qiu
- Department of General practice, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Kuanxin Zhang
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Yulin Fang
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Shifang Qu
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Lu Zhu
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Han Li
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Bin Nie
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| |
Collapse
|
5
|
Munkhjargal U, Fukuda D, Maeda J, Hara T, Okamoto S, Bavuu O, Yamamoto T, Sata M. LCZ696, an Angiotensin Receptor-Neprilysin Inhibitor, Ameliorates Endothelial Dysfunction in Diabetic C57BL/6 Mice. J Atheroscler Thromb 2024; 31:1333-1340. [PMID: 38616113 PMCID: PMC11374559 DOI: 10.5551/jat.64468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/18/2024] [Indexed: 04/16/2024] Open
Abstract
AIMS LCZ696 (sacubitril/valsartan) exerts cardioprotective effects. Recent studies have suggested that it improves the endothelial function; however, the underlying mechanisms have not been thoroughly investigated. We investigated whether LCZ696 ameliorates diabetes-induced endothelial dysfunction. METHODS Diabetes was induced using streptozotocin in 8-week-old male C57BL/6 mice. Diabetic mice were randomly assigned to receive LCZ696 (100 mg/kg/day), valsartan (50 mg/kg/day), or a vehicle for three weeks. The endothelium-dependent and endothelium-independent vascular responses of the aortic segments were determined based on the response to acetylcholine and sodium nitroprusside, respectively. Human umbilical vein endothelial cells (HUVEC) and aortic segments obtained from C57BL/6 mice were used to perform in vitro and ex vivo experiments, respectively. RESULTS LCZ696 and valsartan reduced the blood pressure in diabetic mice (P<0.05). The administration of LCZ696 (P<0.001) and valsartan (P<0.01) ameliorated endothelium-dependent vascular relaxation, but not endothelium-independent vascular relaxation, under diabetic conditions. LCZ696, but not valsartan, increased eNOSSer1177 (P=0.06) and Akt (P<0.05) phosphorylation in the aorta. In HUVEC, methylglyoxal (MGO), a major precursor of advanced glycation end products, decreased eNOSSer1177 phosphorylation (P<0.05) and increased eNOSThr495 phosphorylation (P<0.001). However, atrial natriuretic peptide (ANP) reversed these effects. ANP also ameliorated the MGO-induced impairment of endothelium-dependent vascular relaxation in the aortic segments (P<0.05), although L-NAME completely blocked this effect (P<0.001). CONCLUSION LCZ696 ameliorated diabetes-induced endothelial dysfunction by increasing the bioavailability of ANP. Our findings suggest that LCZ696 has a vascular protective effect in a diabetic model and highlight that it may be more effective than valsartan.
Collapse
Affiliation(s)
- Uugantsetseg Munkhjargal
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Daiju Fukuda
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Juri Maeda
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tomoya Hara
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Shintaro Okamoto
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Oyunbileg Bavuu
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Takayuki Yamamoto
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
6
|
Vergaro G, Del Franco A, Carecci A, Ferrari Chen YF, Aimo A, Forini F, Nicolini G, Kusmic C, Faita F, Castiglione V, De Tata V, Pucci A, Musetti V, Burchielli S, Passino C, Emdin M. Effects of sacubitril-valsartan on remodelling, fibrosis and mitochondria in a murine model of isoproterenol-induced left ventricular dysfunction. Int J Cardiol 2024; 409:132203. [PMID: 38795973 DOI: 10.1016/j.ijcard.2024.132203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/02/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Sacubitril/valsartan has been demonstrated to promote left ventricular (LV) reverse remodelling and improve outcomes in patients with heart failure (HF) with reduced ejection fraction (EF). Its molecular and tissue effects have not been fully elucidated yet, due to the paucity of preclinical studies, mostly based on ischaemic models. We aimed to evaluate the effects of sacubitril/valsartan on LV remodelling, myocardial fibrosis and mitochondrial biology in a murine model of non-ischaemic LV dysfunction. METHODS Adult transgenic male mice with cardiac-specific hyperaldosteronism (AS mice) received subcutaneous isoproterenol injections to induce LV systolic dysfunction. After 7 days, mice were randomized to a 2-week treatment with saline (ISO-AS n = 15), valsartan (ISO + V n = 12) or sacubitril/valsartan (ISO + S/V n = 12). Echocardiography was performed at baseline, at day 7, and after each of the 2 weeks of treatment. After sacrifice at day 21, histological and immunochemical assays were performed. A control group of AS mice was also obtained (Ctrl-AS n = 8). RESULTS Treatment with sacubitril/valsartan, but not with valsartan, induced a significant improvement in LVEF (p = 0.009 vs ISO-AS) and fractional shortening (p = 0.032 vs ISO-AS) after 2- week treatment. In both ISO + V and ISO + S/V groups, a trend toward reduction of the cardiac collagen 1/3 expression ratio was detected. ISO + V and ISO + S/V groups showed a significant recovery of mitochondrial morphology and inner membrane function meant for oxidative phosphorylation. CONCLUSION In a murine model of non-ischaemic HF, sacubitril/valsartan proved to have beneficial effects on LV systolic function, and on cardiac energetics, by improving mitochondrial activity.
Collapse
Affiliation(s)
- Giuseppe Vergaro
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Pisa, Italy; Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy.
| | - Annamaria Del Franco
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Pisa, Italy; Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alessandro Carecci
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Yu Fu Ferrari Chen
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Alberto Aimo
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Pisa, Italy; Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | | | | | | | - Vincenzo Castiglione
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Pisa, Italy; Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Vincenzo De Tata
- Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Angela Pucci
- Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Veronica Musetti
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | | | - Claudio Passino
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Pisa, Italy; Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Michele Emdin
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Pisa, Italy; Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
7
|
Boehmer AA, Schubert T, Rothe M, Keim C, Wiedenmann L, Ruckes C, von Stuelpnagel L, Theurl F, Schreinlechner M, Dobre BC, Kaess BM, Bauer A, Ehrlich JR. Angiotensin Receptor-Neprilysin Inhibitor Is Associated With Improved Cardiac Autonomic Function in Heart Failure. J Am Heart Assoc 2024; 13:e033538. [PMID: 39082399 DOI: 10.1161/jaha.123.033538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/24/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Heart failure with reduced ejection fraction is associated with potentially deleterious imbalance of the cardiac autonomic nervous system. Sacubitril/valsartan (angiotensin receptor-neprilysin inhibitor [ARNI]) reduces cardiovascular mortality and hospitalization for heart failure with reduced ejection fraction. Whether ARNI affects the cardiac autonomic nervous system has not been studied. METHODS AND RESULTS This investigator-initiated, prospective, single-center cohort study compared heart rate (HR) variability, HR, deceleration capacity, and periodic repolarization dynamics as noninvasive measures of the cardiac autonomic nervous system before and after initiation of ARNI therapy. Patients underwent standardized 12-lead Holter-ECG, echocardiography and laboratory testing before and 3 months after start of therapy. End points were changes in HR variability (SD of normal-to-normal intervals, mean square of differences between consecutive R-R intervals), HR, deceleration capacity, and periodic repolarization dynamics as well as ventricular function and NT-proBNP (N-terminal pro-B-type natriuretic peptide). Of 63 patients with heart failure with reduced ejection fraction enrolled, 48 (76.2%) patients were still on ARNI at follow-up. SD of normal-to-normal intervals increased from 25 to 36 milliseconds (P<0.001), mean square of differences between consecutive R-R intervals increased from 12 to 19 milliseconds (P<0.001), HR decreased from 73±9 bpm to 67±4 bpm, (P<0.001), and deceleration capacity increased from 2.1 to 4.4 milliseconds (P<0.001). A trend for periodic repolarization dynamics reduction was observed (5.6 deg2 versus 4.7 deg2, P=0.09). Autonomic changes were accompanied by increased left ventricular ejection fraction (29±6% versus 40±8%, P<0.001) and reduced NT-proBNP (3548 versus 685 ng/L, P<0.001). Correlation analysis showed a significant relationship between volume-unloading (as evidenced by NT-proBNP reduction) and autonomic improvement. CONCLUSIONS Three months of ARNI therapy resulted in a significant increase in cardiac parasympathetic tone. The improvement in autonomic properties may be mediated by "volume unloading" and likely contributes to the beneficial effects of ARNI in heart failure with reduced ejection fraction. REGISTRATION URL: https://www.clinicaltrials.gov; Unique Identifier: NCT04587947.
Collapse
Affiliation(s)
- Andreas A Boehmer
- Division of Cardiology St. Josefs-Hospital Wiesbaden Wiesbaden Germany
| | - Tim Schubert
- Division of Cardiology St. Josefs-Hospital Wiesbaden Wiesbaden Germany
| | - Moritz Rothe
- Division of Cardiology St. Josefs-Hospital Wiesbaden Wiesbaden Germany
| | - Christoph Keim
- Division of Cardiology St. Josefs-Hospital Wiesbaden Wiesbaden Germany
| | - Lilli Wiedenmann
- Division of Cardiology St. Josefs-Hospital Wiesbaden Wiesbaden Germany
| | - Christian Ruckes
- University Medical Center Mainz Interdisciplinary Center for Clinical Trials Mainz Germany
| | | | - Fabian Theurl
- Division of Cardiology Medical University of Innsbruck Innsbruck Austria
| | | | - Bianca C Dobre
- Division of Cardiology St. Josefs-Hospital Wiesbaden Wiesbaden Germany
| | - Bernhard M Kaess
- Division of Cardiology St. Josefs-Hospital Wiesbaden Wiesbaden Germany
| | - Axel Bauer
- Division of Cardiology Medical University of Innsbruck Innsbruck Austria
| | - Joachim R Ehrlich
- Division of Cardiology St. Josefs-Hospital Wiesbaden Wiesbaden Germany
| |
Collapse
|
8
|
Li Y, Yao M, Xie F, Qiu Y, Zhao X, Li R. Gut microbiota as a residual risk factor causally influencing cardiac structure and function: Mendelian randomization analysis and biological annotation. Front Microbiol 2024; 15:1410272. [PMID: 39132134 PMCID: PMC11316272 DOI: 10.3389/fmicb.2024.1410272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/04/2024] [Indexed: 08/13/2024] Open
Abstract
Background The gut microbiota (GM) is widely acknowledged to have a significant impact on cardiovascular health and may act as a residual risk factor affecting cardiac structure and function. However, the causal relationship between GM and cardiac structure and function remains unclear. Objective This study aims to employ a two-sample Mendelian randomization (MR) approach to investigate the causal association between GM and cardiac structure and function. Methods Data on 119 GM genera were sourced from a genome-wide association study (GWAS) meta-analysis (13,266 European participants) conducted by the MiBioGen consortium, while data on 16 parameters of cardiac structure and function were obtained from the UK Biobank's GWAS of cardiac magnetic resonance imaging (up to 41,135 European participants). Inverse variance weighted (IVW), MR-Egger, and weighted median (WM) methods were utilized for causal association assessments, with sensitivity analyses conducted to reinforce the findings. Finally, biological annotation was performed on the GWAS data of GM and cardiac phenotypes with causal associations to explore potential mechanisms. Results The MR analysis, predominantly based on the IVW model, revealed 93 causal associations between the genetically predicted abundance of 44 GM genera and 16 cardiac structure and function parameters. These associations maintained consistent directions in MR-Egger and WM models, with no evidence of pleiotropy detected. Biological annotations suggest that GM may influence cardiac structure and function through pathways involved in myocardial cell development, cardiac contractility, and apoptosis. Conclusion The MR analysis supports a causal association between certain abundances of genetically predicted GM and cardiac structure and function, suggesting that GM could be a residual risk factor impacting cardiac phenotypes.
Collapse
Affiliation(s)
- Yihua Li
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meidan Yao
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- National Key Laboratory of Chinese Medicine Evidence, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fei Xie
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yijun Qiu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinjun Zhao
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rong Li
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
Guzzoni V, Emerich de Abreu ICM, Bertagnolli M, Mendes RH, Belló-Klein A, Casarini DE, Flues K, Cândido GO, Paulini J, De Angelis K, Marcondes FK, Irigoyen MC, Sousa Cunha T. Aerobic training increases renal antioxidant defence and reduces angiotensin II levels, mitigating the high mortality in SHR-STZ model. Arch Physiol Biochem 2024:1-13. [PMID: 39016681 DOI: 10.1080/13813455.2024.2377381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024]
Abstract
OBJECTVE The purpose of the research was to investigate the effects of aerobic training on renal function, oxidative stress, intrarenal renin-angiotensin system, and mortality of hypertensive and diabetic (SHR-STZ) rats. MATERIALS AND METHODS Blood pressure, creatinine, urea levels, urinary glucose, urine volume, and protein excretion were reduced in trained SHR-STZ rats. RESULTS Aerobic training not only attenuated oxidative stress but also elevated the activity of antioxidant enzymes in the kid'ney of SHR-STZ rats. Training increased intrarenal levels of angiotensin-converting enzymes (ACE and ACE2) as well as the neprilysin (NEP) activity, along with decreased intrarenal angiotensin II (Ang II) levels. Aerobic training significantly improved the survival of STZ-SHR rats. CONCLUSION The protective role of aerobic training was associated with improvements in the renal antioxidative capacity, reduced urinary protein excretion along with reduced intrarenal Ang II and increased NEP activity. These findings might reflect a better survival under the combined pathological conditions, hypertension, and diabetes.
Collapse
Affiliation(s)
- Vinicius Guzzoni
- Department of Medicine, School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Mariane Bertagnolli
- Laboratory of Maternal-child Health, Hospital Sacre-Coeur Research Center, CIUSSS Nord-de-l'Île-de-Montréal, Montreal, Canada
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Canada
| | - Roberta Hack Mendes
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Adriane Belló-Klein
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Dulce Elena Casarini
- Department of Medicine, School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Karin Flues
- Laboratory of Experimental Hypertension, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Geórgia Orsi Cândido
- Laboratory of Experimental Hypertension, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Janaína Paulini
- Laboratory of Experimental Hypertension, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Kátia De Angelis
- Department of Physiology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Nove de Julho University (UNINOVE), São Paulo, Brazil
| | - Fernanda Klein Marcondes
- Department of Biosciences, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (FOP - UNICAMP), Piracicaba, Brazil
| | - Maria Cláudia Irigoyen
- Laboratory of Experimental Hypertension, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Tatiana Sousa Cunha
- Department of Science and Technology, Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, Brazil
| |
Collapse
|
10
|
Rubiś P, Banyś P, Krupiński M, Mielnik M, Wiśniowska-Śmiałek S, Dziewięcka E, Urbańczyk-Zawadzka M. Temporal progression of replacement and interstitial fibrosis in optimally managed dilated cardiomyopathy patients: A prospective study. Int J Cardiol 2024; 407:131988. [PMID: 38547964 DOI: 10.1016/j.ijcard.2024.131988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/25/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND To prospectively examine the dynamic evolution of fibrotic processes within a one-year in patients with dilated cardiomyopathy (DCM). METHODS Between May 2019 and September 2020, 102 DCM patients (mean age 45.2 ± 11.8 years, EF 29.9 ± 11.6%) underwent cardiac magnetic resonance (CMR-1). After 13.9 ± 2.9 months, 92 of these patients underwent a follow-up CMR (CMR-2). Replacement fibrosis was assessed via late gadolinium enhancement (LGE), quantified in terms of LGE mass and extent. Interstitial fibrosis was evaluated via T1-mapping and expressed as extracellular volume fraction (ECV). This data, along with left ventricular (LV) mass, facilitated the calculation of LV matrix and cellular volumes. RESULTS At CMR-1, LGE was present in 45 patients (48.9%), whereas at CMR-2 LGE was detected in 46 (50%) (p = 0.88). Although LGE mass remained stable, LGE extent increased from 2.18 ± 4.1% to 2.7 ± 4.6% (p < 0.01). Conversely, ECV remained unchanged [27.7% (25.5-31.3) vs. 26.7% (24.5-29.9); p = 0.19]; however, LV matrix and cell volumes exhibited a noteworthy regression. During a subsequent follow-up of 19.2 ± 9 months (spanning from CMR-2 to April 30th, 2023), the composite primary outcome (all-cause mortality, HTX, LVAD or heart failure worsening) was evident in 18 patients. Only the LV matrix volume index at follow-up was an independent predictor of outcome (OR 1.094; 95%CI 1.004-1.192; p < 0.05). CONCLUSIONS In optimally managed DCM patients, both replacement and interstitial fibrosis remained stable over the course of one year. In contrast, LV matrix and cell volumes displayed significant regression. LV matrix volume index at 12-month follow-up was found to be an independent predictor of outcome in DCM.
Collapse
Affiliation(s)
- Pawel Rubiś
- Krakow Specialist Hospital named after St. John Paul II, Pradnicka street 80, 31-202 Krakow, Poland; Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, Institute of Cardiology, Krakow Specialist Hospital named after St. John Paul II, Poland.
| | - Paweł Banyś
- Department of Radiology, Krakow Specialist Hospital named after St. John Paul II, Pradnicka street 80, 31-202 Krakow, Poland
| | - Maciej Krupiński
- Department of Radiology, Krakow Specialist Hospital named after St. John Paul II, Pradnicka street 80, 31-202 Krakow, Poland
| | - Małgorzata Mielnik
- Department of Radiology, Krakow Specialist Hospital named after St. John Paul II, Pradnicka street 80, 31-202 Krakow, Poland
| | - Sylwia Wiśniowska-Śmiałek
- Krakow Specialist Hospital named after St. John Paul II, Pradnicka street 80, 31-202 Krakow, Poland; Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, Institute of Cardiology, Krakow Specialist Hospital named after St. John Paul II, Poland
| | - Ewa Dziewięcka
- Krakow Specialist Hospital named after St. John Paul II, Pradnicka street 80, 31-202 Krakow, Poland; Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, Institute of Cardiology, Krakow Specialist Hospital named after St. John Paul II, Poland
| | - Małgorzata Urbańczyk-Zawadzka
- Department of Radiology, Krakow Specialist Hospital named after St. John Paul II, Pradnicka street 80, 31-202 Krakow, Poland
| |
Collapse
|
11
|
Simko F, Stanko P, Repova K, Baka T, Krajcirovicova K, Aziriova S, Domenig O, Zorad S, Adamcova M, Paulis L. Effect of sacubitril/valsartan on the hypertensive heart in continuous light-induced and lactacystin-induced pre-hypertension: Interactions with the renin-angiotensin-aldosterone system. Biomed Pharmacother 2024; 173:116391. [PMID: 38461685 DOI: 10.1016/j.biopha.2024.116391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
This study investigated whether sacubitril/valsartan or valsartan are able to prevent left ventricular (LV) fibrotic remodelling and dysfunction in two experimental models of pre-hypertension induced by continuous light (24 hours/day) exposure or by chronic lactacystin treatment, and how this potential protection interferes with the renin-angiotensin-aldosterone system (RAAS). Nine groups of three-month-old male Wistar rats were treated for six weeks as follows: untreated controls (C), sacubitril/valsartan (ARNI), valsartan (Val), continuous light (24), continuous light plus sacubitril/valsartan (24+ARNI) or valsartan (24+Val), lactacystin (Lact), lactacystin plus sacubitil/valsartan (Lact+ARNI) or plus valsartan (Lact+Val). Both the 24 and Lact groups developed a mild but significant systolic blood pressure (SBP) increase, LV hypertrophy and fibrosis, as well as LV systolic and diastolic dysfunction. Yet, no changes in serum renin-angiotensin were observed either in the 24 or Lact groups, though aldosterone was increased in the Lact group compared to the controls. In both models, sacubitril/valsartan and valsartan reduced elevated SBP, LV hypertrophy and fibrosis and attenuated LV systolic and diastolic dysfunction. Sacubitril/valsartan and valsartan increased the serum levels of angiotensin (Ang) II, Ang III, Ang IV, Ang 1-5, Ang 1-7 in the 24 and Lact groups and reduced aldosterone in the Lact group. We conclude that both continuous light exposure and lactacystin treatment induced normal-to-low serum renin-angiotensin models of pre-hypertension, whereas aldosterone was increased in lactacystin-induced pre-hypertension. The protection by ARNI or valsartan in the hypertensive heart in either model was related to the Ang II blockade and the protective Ang 1-7, while in lactacystin-induced pre-hypertension this protection seems to be additionally related to the reduced aldosterone level.
Collapse
Affiliation(s)
- Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava 81108, Slovak Republic; 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava 83305, Slovak Republic; Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava 84505, Slovak Republic.
| | - Peter Stanko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava 81108, Slovak Republic; Department of Pneumology, Phthisiology and Functional Diagnostics, Slovak Medical University and Bratislava University Hospital, Bratislava, Slovak Republic
| | - Kristina Repova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava 81108, Slovak Republic
| | - Tomas Baka
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava 81108, Slovak Republic
| | - Kristina Krajcirovicova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava 81108, Slovak Republic
| | - Silvia Aziriova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava 81108, Slovak Republic
| | | | - Stefan Zorad
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava 84505, Slovak Republic
| | - Michaela Adamcova
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove 50003, Czech Republic
| | - Ludovit Paulis
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava 81108, Slovak Republic; Centre of Experimental Medicine SAS, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava 813 71, Slovak Republic
| |
Collapse
|
12
|
Stanko P, Repova K, Baka T, Krajcirovicova K, Aziriova S, Barta A, Zorad S, Adamcova M, Simko F. Sacubitril/Valsartan Alleviates Cardiac Remodeling and Dysfunction in L-NAME-Induced Hypertension and Hypertensive Heart Disease. Biomedicines 2024; 12:733. [PMID: 38672089 PMCID: PMC11047969 DOI: 10.3390/biomedicines12040733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/06/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
There is ample evidence on the benefit of angiotensin receptor-neprilysin inhibitors (ARNIs) in heart failure, yet data regarding the potential protective action of ARNIs in hypertensive heart disease are sparse. The aim of this study was to show whether an ARNI exerts a protective effect in a model of Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertension with a hypertensive heart and to compare this potential benefit with an angiotensin-converting enzyme inhibitor, captopril. Five groups of adult male Wistar rats were studied (14 per group) for four weeks: untreated controls; ARNI (68 mg/kg/day); L-NAME (40 mg/kg/day); L-NAME treated with ARNI; and L-NAME treated with captopril (100 mg/kg/day). L-NAME administration induced hypertension, accompanied by increased left ventricular (LV) weight and fibrotic rebuilding of the LV in terms of increased concentration and content of hydroxyproline in insoluble collagen and in total collagen and with a histological finding of fibrosis. These alterations were associated with a compromised systolic and diastolic LV function. Treatment with either an ARNI or captopril reduced systolic blood pressure (SBP), alleviated LV hypertrophy and fibrosis, and prevented the development of both systolic and diastolic LV dysfunction. Moreover, the serum levels of prolactin and prolactin receptor were reduced significantly by ARNI and slightly by captopril. In conclusion, in L-NAME-induced hypertension, the dual inhibition of neprilysin and AT1 receptors by ARNI reduced SBP and prevented the development of LV hypertrophy, fibrosis, and systolic and diastolic dysfunction. These data suggest that ARNI could provide protection against LV structural remodeling and functional disorders in hypertensive heart disease.
Collapse
Affiliation(s)
- Peter Stanko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (P.S.); (K.R.); (T.B.); (K.K.); (S.A.)
- Department of Pneumology, Phthisiology and Functional Diagnostics, Slovak Medical University and Bratislava University Hospital, 82606 Bratislava, Slovakia
| | - Kristina Repova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (P.S.); (K.R.); (T.B.); (K.K.); (S.A.)
| | - Tomas Baka
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (P.S.); (K.R.); (T.B.); (K.K.); (S.A.)
| | - Kristina Krajcirovicova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (P.S.); (K.R.); (T.B.); (K.K.); (S.A.)
| | - Silvia Aziriova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (P.S.); (K.R.); (T.B.); (K.K.); (S.A.)
| | - Andrej Barta
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 81371 Bratislava, Slovakia;
| | - Stefan Zorad
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia;
| | - Michaela Adamcova
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic;
| | - Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (P.S.); (K.R.); (T.B.); (K.K.); (S.A.)
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia;
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 83305 Bratislava, Slovakia
| |
Collapse
|
13
|
Zaher W, Della Rocca DG, Pannone L, Boveda S, de Asmundis C, Chierchia GB, Sorgente A. Anti-Arrhythmic Effects of Heart Failure Guideline-Directed Medical Therapy and Their Role in the Prevention of Sudden Cardiac Death: From Beta-Blockers to Sodium-Glucose Cotransporter 2 Inhibitors and Beyond. J Clin Med 2024; 13:1316. [PMID: 38592135 PMCID: PMC10931968 DOI: 10.3390/jcm13051316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024] Open
Abstract
Sudden cardiac death (SCD) accounts for a substantial proportion of mortality in heart failure with reduced ejection fraction (HFrEF), frequently triggered by ventricular arrhythmias (VA). This review aims to analyze the pathophysiological mechanisms underlying VA and SCD in HFrEF and evaluate the effectiveness of guideline-directed medical therapy (GDMT) in reducing SCD. Beta-blockers, angiotensin receptor-neprilysin inhibitors, and mineralocorticoid receptor antagonists have shown significant efficacy in reducing SCD risk. While angiotensin-converting enzyme inhibitors and angiotensin receptor blockers exert beneficial impacts on the renin-angiotensin-aldosterone system, their direct role in SCD prevention remains less clear. Emerging treatments like sodium-glucose cotransporter 2 inhibitors show promise but necessitate further research for conclusive evidence. The favorable outcomes of those molecules on VA are notably attributable to sympathetic nervous system modulation, structural remodeling attenuation, and ion channel stabilization. A multidimensional pharmacological approach targeting those pathophysiological mechanisms offers a complete and synergy approach to reducing SCD risk, thereby highlighting the importance of optimizing GDMT for HFrEF. The current landscape of HFrEF pharmacotherapy is evolving, with ongoing research needed to clarify the full extent of the anti-arrhythmic benefits offered by both existing and new treatments.
Collapse
Affiliation(s)
- Wael Zaher
- Department of Cardiology, Centre Hospitalier EpiCURA, Route de Mons 63, 7301 Hornu, Belgium;
| | - Domenico Giovanni Della Rocca
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Laarbeeklan 101, Jette, 1090 Brussels, Belgium; (D.G.D.R.); (L.P.); (C.d.A.); (G.-B.C.)
| | - Luigi Pannone
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Laarbeeklan 101, Jette, 1090 Brussels, Belgium; (D.G.D.R.); (L.P.); (C.d.A.); (G.-B.C.)
| | - Serge Boveda
- Heart Rhythm Management Department, Clinique Pasteur, 31076 Toulouse, France;
| | - Carlo de Asmundis
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Laarbeeklan 101, Jette, 1090 Brussels, Belgium; (D.G.D.R.); (L.P.); (C.d.A.); (G.-B.C.)
| | - Gian-Battista Chierchia
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Laarbeeklan 101, Jette, 1090 Brussels, Belgium; (D.G.D.R.); (L.P.); (C.d.A.); (G.-B.C.)
| | - Antonio Sorgente
- Department of Cardiology, Centre Hospitalier EpiCURA, Route de Mons 63, 7301 Hornu, Belgium;
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Laarbeeklan 101, Jette, 1090 Brussels, Belgium; (D.G.D.R.); (L.P.); (C.d.A.); (G.-B.C.)
| |
Collapse
|
14
|
Schellinger IN, Dannert A, Hoffmann A, Chodisetti G, Mattern K, Petzold A, Klöting N, Schuster A, Wagenhäuser MU, Emrich F, Stumvoll M, Hasenfuß G, Raaz U. Angiotensin Receptor-Neprilysin Inhibition (Sacubitril/Valsartan) Reduces Structural Arterial Stiffness in Middle-Aged Mice. J Am Heart Assoc 2024; 13:e032641. [PMID: 38348796 PMCID: PMC11010079 DOI: 10.1161/jaha.123.032641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Increasing arterial stiffness is a prominent feature of the aging cardiovascular system. Arterial stiffening leads to fundamental alterations in central hemodynamics with widespread detrimental implications for organ function resulting in significant morbidity and death, and specific therapies to address the underlying age-related structural arterial remodeling remain elusive. The present study investigates the potential of the recently clinically available dual angiotensin receptor-neprilysin inhibitor (ARNI) sacubitril/valsartan (LCZ696) to counteract age-related arterial fibrotic remodeling and stiffening in 1-year-old mice. METHODS AND RESULTS Treatment of in 1-year-old mice with ARNI (sacubitril/valsartan), in contrast to angiotensin receptor blocker monotherapy (valsartan) and vehicle treatment (controls), significantly decreases structural aortic stiffness (as measured by in vivo pulse-wave velocity and ex vivo aortic pressure myography). This phenomenon appears, at least partly, independent of (indirect) blood pressure effects and may be related to a direct antifibrotic interference with aortic smooth muscle cell collagen production. Furthermore, we find aortic remodeling and destiffening due to ARNI treatment to be associated with improved parameters of cardiac diastolic function in aged mice. CONCLUSIONS This study provides preclinical mechanistic evidence indicating that ARNI-based interventions may counteract age-related arterial stiffening and may therefore be further investigated as a promising strategy to improve cardiovascular outcomes in the elderly.
Collapse
Affiliation(s)
- Isabel N. Schellinger
- Department of Cardiology and PneumologyHeart Center at the University Medical Center GöttingenGöttingenGermany
- German Center for Cardiovascular Research (DZHK) e.V. Partner site GöttingenGöttingenGermany
- Department for Endocrinology, Nephrology and RheumatologyUniversity Medical Center Leipzig, University of LeipzigLeipzigGermany
| | - Angelika Dannert
- Department of Cardiology and PneumologyHeart Center at the University Medical Center GöttingenGöttingenGermany
| | - Annet Hoffmann
- Department for Endocrinology, Nephrology and RheumatologyUniversity Medical Center Leipzig, University of LeipzigLeipzigGermany
| | - Giriprakash Chodisetti
- Department of Cardiology and PneumologyHeart Center at the University Medical Center GöttingenGöttingenGermany
| | - Karin Mattern
- Department of Cardiology and PneumologyHeart Center at the University Medical Center GöttingenGöttingenGermany
| | - Anne Petzold
- Department of Cardiology and PneumologyHeart Center at the University Medical Center GöttingenGöttingenGermany
| | - Nora Klöting
- Department for Endocrinology, Nephrology and RheumatologyUniversity Medical Center Leipzig, University of LeipzigLeipzigGermany
| | - Andreas Schuster
- Department of Cardiology and PneumologyHeart Center at the University Medical Center GöttingenGöttingenGermany
- German Center for Cardiovascular Research (DZHK) e.V. Partner site GöttingenGöttingenGermany
| | - Markus U. Wagenhäuser
- Department of Vascular and Endovascular SurgeryUniversity Hospital Düsseldorf, Heinrich‐Heine‐UniversityDüsseldorfGermany
| | - Fabian Emrich
- Department of Cardiothoracic and Vascular SurgeryGoethe University Hospital FrankfurtFrankfurtGermany
| | - Michael Stumvoll
- Department for Endocrinology, Nephrology and RheumatologyUniversity Medical Center Leipzig, University of LeipzigLeipzigGermany
| | - Gerd Hasenfuß
- Department of Cardiology and PneumologyHeart Center at the University Medical Center GöttingenGöttingenGermany
- German Center for Cardiovascular Research (DZHK) e.V. Partner site GöttingenGöttingenGermany
| | - Uwe Raaz
- Department of Cardiology and PneumologyHeart Center at the University Medical Center GöttingenGöttingenGermany
- German Center for Cardiovascular Research (DZHK) e.V. Partner site GöttingenGöttingenGermany
| |
Collapse
|
15
|
Shi H, Lu H, Zheng Y, Pu P, Wei L, Hu D, Tang H, Wang L. Bioinformatics and experimental studies jointly reveal that Sacubitril Valsartan improves myocardial oxidative stress and inflammation by regulating the MAPK signaling pathway to treat chemotherapy related cardiotoxicity. Biochem Biophys Res Commun 2024; 690:149244. [PMID: 38029488 DOI: 10.1016/j.bbrc.2023.149244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/28/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND CRC is a common but serious complication or sequela of tumor treatment, and new coping strategies are urgently needed. SV is a classic clinical cardiovascular protective drug, which has been widely used in the treatment of heart failure, hypertension and other diseases. It has good therapeutic effect in other cardiovascular diseases such as diabetes cardiomyopathy, ischemic cardiomyopathy and vascular disease, but it has not been proved by research that SV can prevent and treat CRC. METHOD In this study, DOX was used to induce a rat CRC model and evaluate the therapeutic effect of SV on it. Subsequently, R software was applied to analyze the control group, SV group, and DOX group in databases GSE207283 and GSE22369, and to screen for common differentially expressed genes. Use the DAVID website for enrichment analysis and visualization. Use STRING website to analyze and visualize protein interaction networks of key genes. Finally, experimental verification was conducted on key genes. RESULT Our research results show that SV has a protective effect on DOX induced myocardial injury by alleviating Weight loss, increasing Ejection fraction, and reducing the level of biomarkers of myocardial injury. Meanwhile, SV can effectively alleviate the above abnormalities. Bioinformatics and KEGG pathway analysis showed significant enrichment of metabolic and MAPK signaling pathways, suggesting that they may be the main regulatory pathway for SV treatment of CRC. Subsequent studies have also confirmed that SV can inhibit DOX induced myocardial injury through the MAPK signaling pathway, and alleviate DOX induced oxidative stress and inflammatory states. CONCLUSION Our research indicates that SV is a potential drug for treating CRC and preliminarily elucidates its molecular mechanism of regulating the MAPK pathway to improve oxidative stress and inflammation.
Collapse
Affiliation(s)
- Hongwei Shi
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Lu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanlei Zheng
- Department of Critical Care Medicine, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
| | - Peng Pu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lai Wei
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Desheng Hu
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Heng Tang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Linlin Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
16
|
Pei Z, Yang C, Guo Y, Dong M, Wang F. The Role of NAD + in Myocardial Ischemia-induced Heart Failure in Sprague-dawley Rats and Beagles. Curr Pharm Biotechnol 2024; 25:2300-2311. [PMID: 38357951 DOI: 10.2174/0113892010275059240103054554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 02/16/2024]
Abstract
INTRODUCTION Nicotinamide adenine dinucleotide (NAD+) participates in various processes that are dysregulated in cardiovascular diseases. Supplementation with NAD+ may be cardioprotective. However, whether the protective effect exerted by NAD+ in heart failure (HF) is more effective before acute myocardial infarction (MI) or after remains unclear. The left anterior descending arteries of male Sprague Dawley rats and beagles that developed HF following MI were ligated for 1 week, following which the animals were treated for 4 weeks with low, medium, and high doses of NAD+ and LCZ696. METHODS Cardiac function, hemodynamics, and biomarkers were evaluated during the treatment period. Heart weight, myocardial fibrosis, and MI rate were measured eventually. RESULTS Compared with the HF groups, groups treated with LCZ696 and different doses of NAD+ showed increased ejection fractions, fractional shortening, cardiac output, and stroke volume and decreased end-systolic volume, end-systolic dimension, creatine kinase, and lactic dehydrogenase. LV blood pressure was lower in the HF group than in the control group, but this decrease was significantly greater in the medium and high NAD+ dose groups. CONCLUSION The ratios of heart weight indexes, fibrotic areas, and MI rates in the CZ696 and medium and high NAD+ dose groups were lower than those in the HF group. Medium and highdose NAD+ showed superior positive effects on myocardial hypertrophy, cardiac function, and myocardial fibrosis and reduced the MI rate.
Collapse
Affiliation(s)
- Zuowei Pei
- Department of Cardiology, Central Hospital of Dalian University of Technology, Dalian, 116033, China
- Faculty of Medicine, Dalian University of Technology, Dalian, 116024, China
| | - Chenguang Yang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ying Guo
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Dong
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Fang Wang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| |
Collapse
|
17
|
Malekian F, Shamsian A, Kodam SP, Ullah M. Exosome engineering for efficient and targeted drug delivery: Current status and future perspective. J Physiol 2023; 601:4853-4872. [PMID: 35570717 DOI: 10.1113/jp282799] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2023] Open
Abstract
Exosomes are membrane-bound vesicles that are released by most cells. They carry nucleic acids, cytokines, growth factors, proteins, lipids, and metabolites. They are responsible for inter- and intracellular communications and their role in drug delivery is well defined. Exosomes have great potential for therapeutic applications, but the clinical use is restricted because of limitations in standardized procedures for isolation, purification, and drug delivery. Bioengineering of exosomes could be one approach to achieve standardization and reproducible isolation for clinical use. Exosomes are important transporters for targeted drug delivery because of their small size, stable structure, non-immunogenicity, and non-toxic nature, as well as their ability to carry a wide variety of compounds. These features of exosomes can be enhanced further by bioengineering. In this review, possible exosome bioengineering approaches, their biomedical applications, and targeted drug delivery are discussed.
Collapse
Affiliation(s)
- Farzaneh Malekian
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Alireza Shamsian
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Sai Priyanka Kodam
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
18
|
Wan J, Zhang Z, Wu C, Tian S, Zang Y, Jin G, Sun Q, Wang P, Luan X, Yang Y, Zhan X, Ye LL, Duan DD, Liu X, Zhang W. Astragaloside IV derivative HHQ16 ameliorates infarction-induced hypertrophy and heart failure through degradation of lncRNA4012/9456. Signal Transduct Target Ther 2023; 8:414. [PMID: 37857609 PMCID: PMC10587311 DOI: 10.1038/s41392-023-01660-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Reversing ventricular remodeling represents a promising treatment for the post-myocardial infarction (MI) heart failure (HF). Here, we report a novel small molecule HHQ16, an optimized derivative of astragaloside IV, which effectively reversed infarction-induced myocardial remodeling and improved cardiac function by directly acting on the cardiomyocyte to reverse hypertrophy. The effect of HHQ16 was associated with a strong inhibition of a newly discovered Egr2-affiliated transcript lnc9456 in the heart. While minimally expressed in normal mouse heart, lnc9456 was dramatically upregulated in the heart subjected to left anterior descending coronary artery ligation (LADL) and in cardiomyocytes subjected to hypertrophic stimulation. The critical role of lnc9456 in cardiomyocyte hypertrophy was confirmed by specific overexpression and knockout in vitro. A physical interaction between lnc9456 and G3BP2 increased NF-κB nuclear translocation, triggering hypertrophy-related cascades. HHQ16 physically bound to lnc9456 with a high-affinity and induced its degradation. Cardiomyocyte-specific lnc9456 overexpression induced, but knockout prevented LADL-induced, cardiac hypertrophy and dysfunction. HHQ16 reversed the effect of lnc9456 overexpression while lost its protective role when lnc9456 was deleted, further confirming lnc9456 as the bona fide target of HHQ16. We further identified the human ortholog of lnc9456, also an Egr2-affiliated transcript, lnc4012. Similarly, lnc4012 was significantly upregulated in hypertrophied failing hearts of patients with dilated cardiomyopathy. HHQ16 also specifically bound to lnc4012 and caused its degradation and antagonized its hypertrophic effects. Targeted degradation of pathological increased lnc4012/lnc9456 by small molecules might serve as a novel promising strategy to regress infarction-induced cardiac hypertrophy and HF.
Collapse
Affiliation(s)
- Jingjing Wan
- School of Pharmacy, Second Military Medical University, Shanghai, PR China
| | - Zhen Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, PR China
| | - Chennan Wu
- School of Pharmacy, Second Military Medical University, Shanghai, PR China
| | - Saisai Tian
- School of Pharmacy, Second Military Medical University, Shanghai, PR China
| | - Yibei Zang
- School of Pharmacy, Second Military Medical University, Shanghai, PR China
| | - Ge Jin
- School of Pharmacy, Second Military Medical University, Shanghai, PR China
| | - Qingyan Sun
- China Institute of Pharmaceutical Industry, Shanghai, PR China
| | - Pin Wang
- Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai, PR China
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yili Yang
- China Regional Research Centre, International Centre of Genetic Engineering & Biotechnology, Taizhou, PR China
| | - Xuelin Zhan
- China Regional Research Centre, International Centre of Genetic Engineering & Biotechnology, Taizhou, PR China
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, PR China
| | - Lingyu Linda Ye
- Center for Phenomics of Traditional Chinese Medicine, Hospital of Traditional Chinese Medicine Affiliated to Southwest Medical University, Southwest Medical University, Luzhou, PR China
| | - Dayue Darrel Duan
- Center for Phenomics of Traditional Chinese Medicine, Hospital of Traditional Chinese Medicine Affiliated to Southwest Medical University, Southwest Medical University, Luzhou, PR China.
- Key Laboratory of Autoimmune Diseases and Precision Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, PR China.
| | - Xia Liu
- School of Pharmacy, Second Military Medical University, Shanghai, PR China.
| | - Weidong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, PR China.
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
19
|
Guo C, Ji W, Yang W, Deng Q, Zheng T, Wang Z, Sui W, Zhai C, Yu F, Xi B, Yu X, Xu F, Zhang Q, Zhang W, Kong J, Zhang M, Zhang C. NKRF in Cardiac Fibroblasts Protects against Cardiac Remodeling Post-Myocardial Infarction via Human Antigen R. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303283. [PMID: 37667861 PMCID: PMC10602562 DOI: 10.1002/advs.202303283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/09/2023] [Indexed: 09/06/2023]
Abstract
Myocardial infarction (MI) remains the leading cause of death worldwide. Cardiac fibroblasts (CFs) are abundant in the heart and are responsible for cardiac repair post-MI. NF-κB-repressing factor (NKRF) plays a significant role in the transcriptional inhibition of various specific genes. However, the NKRF action mechanism in CFs remains unclear in cardiac repair post-MI. This study investigates the NKRF mechanism in cardiac remodeling and dysfunction post-MI by establishing a CF-specific NKRF-knockout (NKRF-CKO) mouse model. NKRF expression is downregulated in CFs in response to pathological cardiac remodeling in vivo and TNF-α in vitro. NKRF-CKO mice demonstrate worse cardiac function and survival and increased infarct size, heart weight, and MMP2 and MMP9 expression post-MI compared with littermates. NKRF inhibits CF migration and invasion in vitro by downregulating MMP2 and MMP9 expression. Mechanistically, NKRF inhibits human antigen R (HuR) transcription by binding to the classical negative regulatory element within the HuR promoter via an NF-κB-dependent mechanism. This decreases HuR-targeted Mmp2 and Mmp9 mRNA stability. This study suggests that NKRF is a therapeutic target for pathological cardiac remodeling.
Collapse
Affiliation(s)
- Chenghu Guo
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Wei Ji
- Department of UltrasonographyAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinan250014China
| | - Wei Yang
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Qiming Deng
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Tengfei Zheng
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Zunzhe Wang
- Department of Geriatric CardiologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan250021China
| | - Wenhai Sui
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Chungang Zhai
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Fangpu Yu
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Bo Xi
- Department of EpidemiologySchool of Public HealthCheeloo College of MedicineShandong UniversityJinan250012China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of EducationDepartment of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinan250012China
| | - Feng Xu
- Department of Emergency MedicineChest Pain CenterShandong Provincial Clinical Research Center for Emergency and Critical Care MedicineQilu HospitalShandong UniversityJinan250012China
| | - Qunye Zhang
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Wencheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Jing Kong
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Meng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
- Cardiovascular Disease Research Center of Shandong First Medical UniversityCentral Hospital Affiliated to Shandong First Medical UniversityJinan250013China
| | - Cheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
- Cardiovascular Disease Research Center of Shandong First Medical UniversityCentral Hospital Affiliated to Shandong First Medical UniversityJinan250013China
| |
Collapse
|
20
|
Yu X. Promising Therapeutic Treatments for Cardiac Fibrosis: Herbal Plants and Their Extracts. Cardiol Ther 2023; 12:415-443. [PMID: 37247171 PMCID: PMC10423196 DOI: 10.1007/s40119-023-00319-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/27/2023] [Indexed: 05/30/2023] Open
Abstract
Cardiac fibrosis is closely associated with multiple heart diseases, which are a prominent health issue in the global world. Neurohormones and cytokines play indispensable roles in cardiac fibrosis. Many signaling pathways participate in cardiac fibrosis as well. Cardiac fibrosis is due to impaired degradation of collagen and impaired fibroblast activation, and collagen accumulation results in increasing heart stiffness and inharmonious activity, leading to structure alterations and finally cardiac function decline. Herbal plants have been applied in traditional medicines for thousands of years. Because of their naturality, they have attracted much attention for use in resisting cardiac fibrosis in recent years. This review sheds light on several extracts from herbal plants, which are promising therapeutics for reversing cardiac fibrosis.
Collapse
Affiliation(s)
- Xuejing Yu
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75235, USA.
| |
Collapse
|
21
|
Lee V, Zheng Q, Toh DF, Pua CJ, Bryant JA, Lee CH, Cook SA, Butler J, Díez J, Richards AM, Le TT, Chin CWL. Sacubitril/valsartan versus valsartan in regressing myocardial fibrosis in hypertension: a prospective, randomized, open-label, blinded endpoint clinical trial protocol. Front Cardiovasc Med 2023; 10:1248468. [PMID: 37674806 PMCID: PMC10478086 DOI: 10.3389/fcvm.2023.1248468] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023] Open
Abstract
Background Diffuse interstitial myocardial fibrosis is a key common pathological manifestation in hypertensive heart disease (HHD) progressing to heart failure (HF). Angiotensin receptor-neprilysin inhibitors (ARNi), now a front-line treatment for HF, confer benefits independent of blood pressure, signifying a multifactorial mode of action beyond hemodynamic regulation. We aim to test the hypothesis that compared with angiotensin II receptor blockade (ARB) alone, ARNi is more effective in regressing diffuse interstitial myocardial fibrosis in HHD. Methods Role of ARNi in Ventricular Remodeling in Hypertensive LVH (REVERSE-LVH) is a prospective, randomized, open-label, blinded endpoint (PROBE) clinical trial. Adults with hypertension and left ventricular hypertrophy (LVH) according to Asian sex- and age-specific thresholds on cardiovascular magnetic resonance (CMR) imaging are randomized to treatment with either sacubitril/valsartan (an ARNi) or valsartan (an ARB) in 1:1 ratio for a duration of 52 weeks, at the end of which a repeat CMR is performed to assess differential changes from baseline between the two groups. The primary endpoint is the change in CMR-derived diffuse interstitial fibrosis volume. Secondary endpoints include changes in CMR-derived left ventricular mass, volumes, and functional parameters. Serum samples are collected and stored to assess the effects of ARNi, compared with ARB, on circulating biomarkers of cardiac remodeling. The endpoints will be analyzed with reference to the corresponding baseline parameters to evaluate the therapeutic effect of sacubitril/valsartan vs. valsartan. Discussion REVERSE-LVH will examine the anti-fibrotic potential of sacubitril/valsartan and will offer mechanistic insights into the clinical benefits of sacubitril/valsartan in hypertension in relation to cardiac remodeling. Advancing the knowledge of the pathophysiology of HHD will consolidate effective risk stratification and personalized treatment through a multimodal manner integrating complementary CMR and biomarkers into the conventional care approach.Clinical Trial Registration: ClinicalTrials.gov, identifier, NCT03553810.
Collapse
Affiliation(s)
- Vivian Lee
- National Heart Research Institute Singapore (NHRIS), National Heart Centre Singapore, Singapore, Singapore
| | | | - Desiree-Faye Toh
- National Heart Research Institute Singapore (NHRIS), National Heart Centre Singapore, Singapore, Singapore
| | - Chee Jian Pua
- National Heart Research Institute Singapore (NHRIS), National Heart Centre Singapore, Singapore, Singapore
| | - Jennifer A. Bryant
- Department of Cardiology, National Heart Centre Singapore, Singapore, Singapore
| | - Chi-Hang Lee
- Department of Cardiology, National University Heart Centre Singapore, Singapore, Singapore
| | - Stuart A. Cook
- National Heart Research Institute Singapore (NHRIS), National Heart Centre Singapore, Singapore, Singapore
- Department of Cardiology, National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, TX, United States
- Department of Medicine, University of Mississippi School of Medicine, Jackson, MS, United States
| | - Javier Díez
- Centre for Applied Medical Research (CIMA), and School of Medicine, University of Navarra, Pamplona, Spain
- Center for Network Biomedical Research of Cardiovascular Diseases (CIBERCV), Carlos III Institute of Health, Madrid, Spain
| | - A. Mark Richards
- Cardiovascular Research Institute, National University Heart Centre, Singapore, Singapore
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - Thu-Thao Le
- National Heart Research Institute Singapore (NHRIS), National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular Academic Clinical Program (ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Calvin W. L. Chin
- National Heart Research Institute Singapore (NHRIS), National Heart Centre Singapore, Singapore, Singapore
- Department of Cardiology, National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular Academic Clinical Program (ACP), Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
22
|
Majid A, Hassan FO, Hoque MM, Gbadegoye JO, Lebeche D. Bioactive Compounds and Cardiac Fibrosis: Current Insight and Future Prospect. J Cardiovasc Dev Dis 2023; 10:313. [PMID: 37504569 PMCID: PMC10380727 DOI: 10.3390/jcdd10070313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Cardiac fibrosis is a pathological condition characterized by excessive deposition of collagen and other extracellular matrix components in the heart. It is recognized as a major contributor to the development and progression of heart failure. Despite significant research efforts in characterizing and identifying key molecular mechanisms associated with myocardial fibrosis, effective treatment for this condition is still out of sight. In this regard, bioactive compounds have emerged as potential therapeutic antifibrotic agents due to their anti-inflammatory and antioxidant properties. These compounds exhibit the ability to modulate fibrogenic processes by inhibiting the production of extracellular matrix proteins involved in fibroblast to myofibroblast differentiation, or by promoting their breakdown. Extensive investigation of these bioactive compounds offers new possibilities for preventing or reducing cardiac fibrosis and its detrimental consequences. This comprehensive review aims to provide a thorough overview of the mechanisms underlying cardiac fibrosis, address the limitations of current treatment strategies, and specifically explore the potential of bioactive compounds as therapeutic interventions for the treatment and/or prevention of cardiac fibrosis.
Collapse
Affiliation(s)
- Abdul Majid
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Translational Research Building, Room 318H, 71 S. Manassas, Memphis, TN 38163, USA
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Fasilat Oluwakemi Hassan
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Translational Research Building, Room 318H, 71 S. Manassas, Memphis, TN 38163, USA
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Md Monirul Hoque
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Translational Research Building, Room 318H, 71 S. Manassas, Memphis, TN 38163, USA
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Joy Olaoluwa Gbadegoye
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Translational Research Building, Room 318H, 71 S. Manassas, Memphis, TN 38163, USA
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Djamel Lebeche
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Translational Research Building, Room 318H, 71 S. Manassas, Memphis, TN 38163, USA
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
23
|
Confalonieri F, Lumi X, Petrovski G. Spontaneous Epiretinal Membrane Resolution and Angiotensin Receptor Blockers: Case Observation, Literature Review and Perspectives. Biomedicines 2023; 11:1976. [PMID: 37509613 PMCID: PMC10377102 DOI: 10.3390/biomedicines11071976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/05/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
INTRODUCTION Epiretinal membrane (ERM) is a relatively common condition affecting the macula. When symptoms become apparent and compromise a patient's quality of vision, the only therapeutic approach available today is surgery with a vitrectomy and peeling of the ERM. Angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACE-Is) reduce the effect of angiotensin II, limit the amount of fibrosis, and demonstrate consequences on fibrinogenesis in the human body. Case Description and Materials and Methods: A rare case of spontaneous ERM resolution with concomitant administration of ARB is reported. The patient was set on ARB treatment for migraines and arterial hypertension, and a posterior vitreous detachment was already present at the first diagnosis of ERM. The scientific literature addressing the systemic relationship between ARB, ACE-Is, and fibrosis in the past 25 years was searched in the PubMed, Medline, and EMBASE databases. RESULTS In total, 38 and 16 original articles have been selected for ARBs and ACE-Is, respectively, in regard to fibrosis modulation. CONCLUSION ARBs and ACE-Is might have antifibrotic activity on ERM formation and resolution. Further clinical studies are necessary to explore this phenomenon.
Collapse
Affiliation(s)
- Filippo Confalonieri
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, 0450 Oslo, Norway
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway
| | - Xhevat Lumi
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, 0450 Oslo, Norway
- Eye Hospital, University Medical Centre Ljubljana, Zaloška Cesta 2, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Goran Petrovski
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, 0450 Oslo, Norway
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, 21000 Split, Croatia
| |
Collapse
|
24
|
Shen M, Zheng C, Chen L, Li M, Huang X, He M, Liu C, Lin H, Liao W, Bin J, Cao S, Liao Y. LCZ696 (sacubitril/valsartan) inhibits pulmonary hypertension induced right ventricular remodeling by targeting pyruvate dehydrogenase kinase 4. Biomed Pharmacother 2023; 162:114569. [PMID: 37001183 DOI: 10.1016/j.biopha.2023.114569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Right ventricular (RV) function is a major prognostic factor in patients with cardiopulmonary disease. Effective medical therapies are available for left heart failure, but they are usually less effective or even ineffective in right heart failure. Here, we tested the hypothesis that LCZ696 (sacubitril/valsartan) can attenuate pressure overload-induced RV remodeling by inhibiting pyruvate dehydrogenase kinase 4 (PDK4). METHODS Adult male C57 mice were subjected to transverse aortic constriction (TAC), pulmonary artery constriction (PAC), or sham surgery. Bioinformatics analysis was used to screen for common differentially expressed genes (DEGs) between TAC and PAC. Chemical compounds targeting DEGs were predicted by molecular docking analysis. Effects of LCZ696 on PAC-induced RV remodeling and the associated PDK4-related mechanisms were investigated. RESULTS We found 60 common DEGs between PAC and TAC, and Pdk4 was one of the downregulated DEGs. From 47 chemical compounds with potential cardiovascular activity and PDK4 protein binding ability, we selected LCZ696 to treat PAC-induced RV remodeling because of its high docking score for binding PDK4. Compared with vehicle-treated PAC mice, LCZ696-treated mice had significantly smaller RV wall thickness and RV diameters, less myocardial fibrosis, lower expression of PDK4 protein, and less phosphorylation of glycogen synthase kinase-3β (p-GSK3β). In PAC mice, overexpression of Pdk4 blocked the inhibitory effect of LCZ696 on RV remodeling, whereas conditional knockout of Pdk4 attenuated PAC-induced RV remodeling. CONCLUSIONS Pdk4 is a common therapeutic target for pressure overload-induced left ventricular and RV remodeling, and LCZ696 attenuates RV remodeling by downregulating Pdk4 and inhibiting PDK4/p-GSK3β signal.
Collapse
|
25
|
Nugara C, Giallauria F, Vitale G, Sarullo S, Gentile G, Clemenza F, Lo Voi A, Zarcone A, Venturini E, Iannuzzo G, Coats AJS, Sarullo FM. Effects of Sacubitril/Valsartan on Exercise Capacity in Patients with Heart Failure with Reduced Ejection Fraction and the Role of Percentage of Delayed Enhancement Measured by Cardiac Magnetic Resonance in Predicting Therapeutic Response: A Multicentre Study. Card Fail Rev 2023; 9:e07. [PMID: 37427008 PMCID: PMC10326660 DOI: 10.15420/cfr.2022.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/15/2022] [Indexed: 07/11/2023] Open
Abstract
Background: This study aims to evaluate the cardiopulmonary effects of sacubitril/valsartan therapy in patients with heart failure with reduced ejection fraction (HFrEF), investigating a possible correlation with the degree of myocardial fibrosis, as assessed by cardiac magnetic resonance. Methods: A total of 134 outpatients with HFrEF were enrolled. Results: After a mean follow-up of 13.3 ± 6.6 months, an improvement in ejection fraction and a reduction in E/A ratio, inferior vena cava size and N-terminal pro-B-type natriuretic peptide levels were observed. At follow-up, we observed an increase in VO2 peak of 16% (p<0.0001) and in O2 pulse of 13% (p=0.0002) as well as an improvement in ventilatory response associated with a 7% reduction in the VE/VCO2 slope (p=0.0001). An 8% increase in the ΔVO2/Δ work ratio and an 18% increase in exercise tolerance were also observed. Multivariate logistic regression analysis showed that the main predictors of events during follow-up were VE/VCO2 slope >34 (OR 3.98; 95% CI [1.59-10.54]; p=0.0028); ventilatory oscillatory pattern (OR 4.65; 95% CI [1.55-16.13]; p=0.0052); and haemoglobin level (OR 0.35; 95% CI [0.21-0.55]; p<0.0001). In patients who had cardiac magnetic resonance, when delayed enhancement >4.6% was detected, a lower response after sacubitril/valsartan therapy was observed as expressed by improvement in ΔVO2 peak, O2 pulse, LVEF and N-terminal pro-B-type natriuretic peptide. No significant differences were observed in ΔVO2/Δ work and VE/VCO2 slope. Conclusion:Sacubitril/valsartan improves cardiopulmonary functional capacity in HFrEF patients. The presence of myocardial fibrosis on cardiac magnetic resonance is a predictor of response to therapy.
Collapse
Affiliation(s)
- Cinzia Nugara
- Cardiovascular Rehabilitation Unit, Buccheri La Ferla Fatebenefratelli HospitalPalermo, Italy
| | - Francesco Giallauria
- Department of Translational Medical Sciences, Federico II University of NaplesNaples, Italy
| | - Giuseppe Vitale
- Cardiovascular Rehabilitation Unit, Buccheri La Ferla Fatebenefratelli HospitalPalermo, Italy
| | - Silvia Sarullo
- School of Sport Medicine and Physical Exercise Medicine, Department of Biomedicine, Neurosciences and Advances Diagnostic, University of PalermoPalermo, Italy
| | - Giovanni Gentile
- Diagnostic and Therapeutic Services, Radiology Unit, IRCCS-ISMETTPalermo, Italy
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETTPalermo, Italy
| | - Francesco Clemenza
- Diagnostic and Therapeutic Services, Radiology Unit, IRCCS-ISMETTPalermo, Italy
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETTPalermo, Italy
| | - Annamaria Lo Voi
- Cardiovascular Rehabilitation Unit, Buccheri La Ferla Fatebenefratelli HospitalPalermo, Italy
| | - Antonino Zarcone
- Cardiovascular Rehabilitation Unit, Buccheri La Ferla Fatebenefratelli HospitalPalermo, Italy
| | - Elio Venturini
- Cardiac Rehabilitation Unit, AUSL Toscana Nord-Ovest, Cecina Civil HospitalLivorno, Italy
| | - Gabriella Iannuzzo
- Department of Clinical Medicine and Surgery, Federico II University of NaplesNaples, Italy
| | - Andrew JS Coats
- Monash UniversityAustralia
- University of WarwickUK
- IRCCS San Raffaele PisanaRome, Italy
| | - Filippo M Sarullo
- Cardiovascular Rehabilitation Unit, Buccheri La Ferla Fatebenefratelli HospitalPalermo, Italy
| |
Collapse
|
26
|
Ohnewein B, Shomanova Z, Paar V, Topf A, Jirak P, Fiedler L, Granitz C, Van Almsick V, Semo D, Zagidullin N, Dieplinger AM, Sindermann J, Reinecke H, Hoppe UC, Pistulli R, Motloch LJ. Effects of Angiotensin Receptor-Neprilysin Inhibitors (ARNIs) on the Glucose and Fat Metabolism Biomarkers Leptin and Fructosamine. J Clin Med 2023; 12:3083. [PMID: 37176525 PMCID: PMC10179018 DOI: 10.3390/jcm12093083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
(1) Background: Heart failure with reduced ejection fraction (HFrEF) remains a major health burden. Angiotensin-Receptor-Neprilysin-Inhibitors (ARNIs) are an established HFrEF therapy which increases natriuretic peptide levels by inhibiting neprilysin. Leptin is a lipid metabolism parameter, which is also involved in glucose metabolism and is suggested to correlate with HF burden. While the hormone also seems to interact with neprilysin, potential associations with ARNI therapy have not been investigated yet. (2) Methods: To study this issue, we measured levels of leptin and fructosamine in consecutive 72 HFrEF patients before initiation of ARNI therapy and 3-6 months after initiation of therapy in two European centers. Biomarker levels were correlated with clinical parameters including ejection fraction, LVEF, and NYHA class. (3) Results: During a follow-up of up to 6 months, clinical parameters improved significantly (LVEF: 30.2 ± 7.8% to 37.6 ± 10.0%, (p < 0.001) and a significant improvement of the mean NYHA class with initial 32 patients in NYHA III or IV and 8 patients in NYHA class III/IV during the follow up (p < 0.001). The initial NT-proBNP levels of 2251.5 ± 2566.8 pg/mL significantly improved to 1416.7 ± 2145 pg/mL, p = 0.008) during follow up. ARNI therapy was also associated with an increase in leptin levels (17.5 ± 23.4 µg/L to 22.9 ± 29.3, p < 0.001) and furthermore, affected glucose metabolism indicated by elevation of fructosamine values (333.9 ± 156.8 µmol/L to 454.8 ± 197.8 µmol/L, p = 0.013). (4) Conclusion: while in the early phase of therapy, ARNI promotes clinical improvement of HFrEF, and it also seems to affect fat and glucose parameters, indicating significant metabolic implications of this therapy regime.
Collapse
Affiliation(s)
- Bernhard Ohnewein
- Department for Internal Medicine II, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Zornitsa Shomanova
- Department of Cardiology I, Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Muenster, 48149 Muenster, Germany (R.P.)
| | - Vera Paar
- Department for Internal Medicine II, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Albert Topf
- Department for Internal Medicine II, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Peter Jirak
- Department for Internal Medicine II, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Lukas Fiedler
- Department of Internal Medicine, Cardiology, Nephrology and Intensive Care Medicine, Hospital Wiener Neustadt, 2700 Wiener Neustadt, Austria
| | - Christina Granitz
- Department for Internal Medicine II, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Vincent Van Almsick
- Department of Cardiology I, Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Muenster, 48149 Muenster, Germany (R.P.)
| | - Dilvin Semo
- Department of Cardiology I, Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Muenster, 48149 Muenster, Germany (R.P.)
| | - Naufal Zagidullin
- Department of Internal Diseases, Bashkir State Medical University, Lenin str., 3, 450008 Ufa, Russia
| | - Anna-Maria Dieplinger
- Institute for Nursing Science and Practice, Paracelsus Medical University, 5020 Salzburg, Austria
- Medical Faculty, Johannes Kepler University Linz, 4040 Linz, Austria
| | - Juergen Sindermann
- Department of Cardiology I, Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Muenster, 48149 Muenster, Germany (R.P.)
| | - Holger Reinecke
- Department of Cardiology I, Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Muenster, 48149 Muenster, Germany (R.P.)
| | - Uta C. Hoppe
- Department for Internal Medicine II, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Rudin Pistulli
- Department of Cardiology I, Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Muenster, 48149 Muenster, Germany (R.P.)
| | - Lukas J. Motloch
- Department for Internal Medicine II, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
27
|
Zheng J, Wu Q, Li Q, Tang M, He J, Qiu Z, Xie L, Chen L. Benefits of sacubitril/valsartan use in patients with chronic heart failure after cardiac valve surgery: a single-center retrospective study. J Cardiothorac Surg 2023; 18:138. [PMID: 37041595 PMCID: PMC10091567 DOI: 10.1186/s13019-023-02252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 04/03/2023] [Indexed: 04/13/2023] Open
Abstract
OBJECTIVES To evaluate the efficacy of sacubitril/valsartan for the treatment of patients with chronic heart failure (CHF) after cardiac valve surgery (CVS). METHODS Data were collected from 259 patients who underwent CVS due to valvular heart disease and were admitted to the hospital with CHF from January 2018 to December 2020. The patients were divided into Group A (treatment with sacubitril/valsartan) and Group B (treatment without sacubitril/valsartan). The duration of treatment and follow-up was 6 months. The two groups' prior and clinical characteristics, post-treatment data, mortality, and follow-up data were analysed. RESULTS The effective rate of Group A was higher than that of Group B (82.56% versus 65.52%, P < 0.05). The left ventricular ejection fraction (LVEF, %) was improved in both groups. The final value minus the initial value was (11.14 ± 10.16 versus 7.15 ± 11.18, P = 0.004). The left ventricular end-diastolic/-systolic diameter (LVEDD/LVESD, mm) in Group A decreased more than in Group B. The final value minus the initial value was (-3.58 ± 9.21 versus - 0.27 ± 14.44, P = 0.026; -4.21 ± 8.15 versus - 1.14 ± 12.12, P = 0.016, respectively). Both groups decreased the N-terminal prohormone of B-type natriuretic peptide (NT-proBNP, pg/ml). The final value minus initial value was [-902.0(-2226.0, -269.5) versus - 535.0(-1738, -7.0), P = 0.029]. The systolic and diastolic blood pressure (SBP/DBP, mmHg) in Group A decreased more than in Group B. The final value minus the initial value was (-13.13 ± 23.98 versus - 1.81 ± 10.89, P < 0.001; -8.28 ± 17.79 versus - 2.37 ± 11.41, P = 0.005, respectively). Liver and renal insufficiency, hyperkalaemia, symptomatic hypotension, angioedema, and acute heart failure had no statistical differences between the two groups. CONCLUSIONS Sacubitril/valsartan can effectively improve the cardiac function of patients with CHF after CVS by increasing LVEF and reducing LVEDD, LVESD, NT-proBNP, and BP, with good safety.
Collapse
Affiliation(s)
- Jian Zheng
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Qingsong Wu
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Xinquan Road 29, 350001, Fuzhou, Fujian, P. R. China
- Key Laboratory of Cardio-Thoracic SurgeryFujian Medical University), Fujian Province University, Fujian Medical University), Fuzhou, Fujian, P. R. China
| | - Qianzhen Li
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Xinquan Road 29, 350001, Fuzhou, Fujian, P. R. China
| | - Mirong Tang
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Xinquan Road 29, 350001, Fuzhou, Fujian, P. R. China
| | - Jian He
- Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Zhihuang Qiu
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Xinquan Road 29, 350001, Fuzhou, Fujian, P. R. China
- Key Laboratory of Cardio-Thoracic SurgeryFujian Medical University), Fujian Province University, Fujian Medical University), Fuzhou, Fujian, P. R. China
| | - Linfeng Xie
- Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Liangwan Chen
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Xinquan Road 29, 350001, Fuzhou, Fujian, P. R. China.
- Key Laboratory of Cardio-Thoracic SurgeryFujian Medical University), Fujian Province University, Fujian Medical University), Fuzhou, Fujian, P. R. China.
| |
Collapse
|
28
|
Sobiborowicz-Sadowska AM, Kamińska K, Cudnoch-Jędrzejewska A. Neprilysin Inhibition in the Prevention of Anthracycline-Induced Cardiotoxicity. Cancers (Basel) 2023; 15:312. [PMID: 36612307 PMCID: PMC9818213 DOI: 10.3390/cancers15010312] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Anthracycline-induced cardiotoxicity (AIC) poses a clinical challenge in the management of cancer patients. AIC is characterized by myocardial systolic dysfunction and remodeling, caused by cardiomyocyte DNA damage, oxidative stress, mitochondrial dysfunction, or renin-angiotensin-aldosterone system (RAAS) dysregulation. In the past decade, after positive results of a PARADIGM-HF trial, a new class of drugs, namely angiotensin receptor/neprilysin inhibitors (ARNi), was incorporated into the management of patients with heart failure with reduced ejection fraction. As demonstrated in a variety of preclinical studies of cardiovascular diseases, the cardioprotective effects of ARNi administration are associated with decreased oxidative stress levels, the inhibition of myocardial inflammatory response, protection against mitochondrial damage and endothelial dysfunction, and improvement in the RAAS imbalance. However, data on ARNi's effectiveness in the prevention of AIC remains limited. Several reports of ARNi administration in animal models of AIC have shown promising results, as ARNi prevented ventricular systolic dysfunction and electrocardiographic changes and ameliorated oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, and the inflammatory response associated with anthracyclines. There is currently an ongoing PRADAII trial aimed to assess the efficacy of ARNi in patients receiving breast cancer treatment, which is expected to be completed by late 2025.
Collapse
Affiliation(s)
| | - Katarzyna Kamińska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland
| | | |
Collapse
|
29
|
Liu J, Li J, Yang S, She Y, Li X, Jia Y. Phillyrin Inhibits Isoproterenol-Induced Cardiac Hypertrophy Via P38 and NF-κB Pathways. Nat Prod Commun 2023. [DOI: 10.1177/1934578x221144581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cardiac hypertrophy (CH) is the main compensatory response to chronic heart stress and often progresses to a decompensation state potentially leading to heart failure. Phillyrin (PHI) is a novel compound derived from Forsythia, which has shown anti-inflammatory and anti-virus activities as well as renal protective effects on diabetic nephropathy. Therefore, we investigated the effects of PHI on CH induced by isoproterenol (ISO). Cardiac hypertrophy was induced by ISO in vivo, and the H9C2 cells were treated with ISO. PHI treatment alleviated CH in isoproterenol-induced mice in 7 and 14 days. Echocardiography showed that the PHI improved ISO-induced CH heart function and structure. PHI significantly decreased heart weight/body weight (HW/BW) and heart weight/tibia length (HW/TL) ratios and improved left ventricular (LV) function in ISO-treated mice. Hematoxylin and eosin staining revealed cardiomyocyte areas of the ISO group were significantly increased, and PHI was significantly reduced at 7 and 14 days, PHI-100 groups showed significantly better improvements than PHI-50. Sirius red staining indicated PHI significantly decreased collagen deposition in heart cross-sections induced by ISO, and PHI repressed ISO-induced cTn-I and NT-proBNP expression in mouse serum. In vitro data from H9C2 cells showed that PHI decreased cell areas and total cell protein levels in cells induced by ISO, whereas ANP, BNP, IL-6, and IL-1β expression was significantly inhibited by PHI. Also, PHI simultaneously inhibited P65 and P38 phosphorylation in vivo and in vitro. In conclusion, this study demonstrated the protective effect of PHI on CH in in vivo and in vitro, and this effect was related to the suppression of inflammation through the activation of the P38/NF-κB pathway.
Collapse
Affiliation(s)
- Juanjuan Liu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, ChongQing, China
| | - Jiahang Li
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, ChongQing, China
| | - Shengqian Yang
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, ChongQing, China
| | - Yuanting She
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, ChongQing, China
| | - Xiaohui Li
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, ChongQing, China
| | - Yi Jia
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, ChongQing, China
| |
Collapse
|
30
|
Hu T, Liu Y, Lou Y. Sacubitril-valsartan versus enalapril for the treatment of acute decompensated heart failure in Chinese settings: A cost-effectiveness analysis. Front Pharmacol 2023; 14:925375. [PMID: 36937882 PMCID: PMC10018029 DOI: 10.3389/fphar.2023.925375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Background: The episode of acute decompensated heart failure (ADHF) is the main cause of hospitalization for heart failure (HF). Sacubitril-valsartan has been proven to be effective in reducing the risks of hospitalization for HF in ADHF. When to initiate sacubitril-valsartan in ADHF to make it the most cost-effective in China remains unclear. Methods: A lifetime Markov model with a 1-month cycle length was developed to evaluate the cost-effectiveness of early or late initiation of sacubitril-valsartan versus enalapril in ADHF. Early initiation of sacubitril-valsartan meant that it was initiated after stabilization from ADHF, and late initiation of sacubitril-valsartan meant that it was initiated after stabilization from HF, which includes no hospitalization for at least three consecutive months. The primary outcome was the incremental cost-effectiveness ratio (ICER), expressed as the ratio of incremental cost to incremental effectiveness. The secondary outcomes were total costs and total effectiveness. Three times of per capita GDP of China in 2021 was set as the willingness-to-pay threshold. One-way sensitivity analysis and probabilistic sensitivity analysis were employed to test the robustness of the results. Results: The early initiation of sacubitril-valsartan treatment resulted in an ICER of 3,662.4 USD per quality-adjusted life year, lower than the willingness-to-pay threshold, and the late initiation of sacubitril-valsartan treatment gained an ICER of 4,444.4 USD/QALY, still lower than the willingness-to-pay threshold. One-way sensitivity analysis showed that our results were robust, and probabilistic sensitivity analysis suggested that early initiation of sacubitril-valsartan in ADHF was cost-effective under a 97.4% circumstance. Conclusion: Early initiation of sacubitril-valsartan after stabilization of ADHF is highly cost-effective compared with the use of enalapril; late initiation of sacubitril-valsartan after stabilization of HF is still cost-effective but not as cost-effective as early initiation of sacubitril-valsartan in ADHF. For Chinese ADHF patients, the time to initiate sacubitril-valsartan should be when the patient is stabilized from ADHF rather than when stabilized from HF, from the perspective of economic evaluation.
Collapse
Affiliation(s)
- Tianyang Hu
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiting Liu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yake Lou
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Yake Lou,
| |
Collapse
|
31
|
Lund LH, Zeymer U, Clark AL, Barrios V, Damy T, Drożdż J, Fonseca C, Kalus S, Ferber PC, Koch C, Maggioni AP. Association between sacubitril/valsartan initiation and changes in left ventricular ejection fraction: Insights from ARIADNE registry. Int J Cardiol 2023; 370:279-286. [PMID: 36216094 DOI: 10.1016/j.ijcard.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Abstract
AIMS We tested the hypothesis that initiation versus non-initiation of sacubitril/valsartan is associated with a more favorable subsequent change in left ventricular ejection fraction (LVEF) in a real-world setting. METHODS A prospective, non-randomized, double-arm, open-label, cohort study had been conducted across 687 centers in 17 European countries enrolling HFrEF patients aged ≥18 years with symptoms of HF (New York Heart Association [NYHA] II-IV) and "reduced LVEF". For the current analysis, 2602 patients with LVEF measured at baseline and follow-up were chosen, of which 860 (33%, mean age 67 years, 26% women) were started on sacubitril/valsartan at baseline and 1742 (67%, 68 years, 23% women) were not. Patients started on sacubitril/valsartan had higher NYHA class and lower LVEF. RESULTS LVEF increased from mean 32.7% to 38.1% in the sacubitril/valsartan group versus from 35.9% to 38.7% in the non-sacubitril/valsartan group (mean difference in increase 2.6%, p < 0.001). LVEF increased from baseline in 64% versus 53% of patients and increased by ≥5% (absolute %) in 50% versus 35% of patients in the sacubitril/valsartan versus non-sacubitril/valsartan groups, respectively. In the overall cohort, initiation of sacubitril/valsartan was independently associated with any increase in LVEF (adjusted odds ratio [OR] 1.49 [1.26-1.75]) and with increase by ≥5% (OR 1.65 [1.39-1.95]). CONCLUSION Initiating versus not initiating sacubitril/valsartan was independently associated with a greater subsequent increase in LVEF in this real-world setting. Reverse cardiac remodeling may be one mechanism of benefit of sacubitril/valsartan.
Collapse
Affiliation(s)
- Lars H Lund
- Department of Medicine, Karolinska Institutet, And Heart Vascular and Neuro Theme Karolinska University Hospital, Stockholm, Sweden.
| | - Uwe Zeymer
- Klinikum Ludwigshafen and Institut für Herzinfarktforschung, Ludwigshafen-am-Rhein, Germany
| | - Andrew L Clark
- Castle Hill Hospital, Kingston Upon Hull, United Kingdom
| | | | - Thibaud Damy
- University Hospital Henri Mondor, Créteil, France
| | | | - Candida Fonseca
- Hospital de Sao Francisco Xavier, CHLO, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Stefanie Kalus
- GKM Gesellschaft für Therapieforschung mbH, Munich, Germany
| | | | | | - Aldo P Maggioni
- Associazione Nazionale Medici Cardiologi Ospedalieri Research Center, Florence, Italy; Maria Cecilia Hospital, GVM Care & Research, Italy
| |
Collapse
|
32
|
Litwin SE, East CA. Assessing clinical and biomarker characteristics to optimize the benefits of sacubitril/valsartan in heart failure. Front Cardiovasc Med 2022; 9:1058998. [PMID: 36620638 PMCID: PMC9815716 DOI: 10.3389/fcvm.2022.1058998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Of the various medical therapies for heart failure (HF), sacubitril/valsartan is a first-in-class angiotensin receptor-neprilysin inhibitor that combines sacubitril, a pro-drug that is further metabolized to the neprilysin inhibitor sacubitrilat, and the angiotensin II type 1 receptor blocker valsartan. Inhibition of neprilysin and blockade of the angiotensin II type 1 receptor with sacubitril/valsartan increases vasoactive peptide levels, increasing vasodilation, natriuresis, and diuresis. Left ventricular ejection fraction (LVEF) is widely used to classify HF, to assist with clinical decision-making, for patient selection in HF clinical trials, and to optimize the benefits of sacubitril/valsartan in HF. However, as HF is a complex syndrome that occurs on a continuum of overlapping and changing phenotypes, patient classification based solely on LVEF becomes problematic. LVEF measurement can be imprecise, have low reproducibility, and often changes over time. LVEF may not accurately reflect inherent disease heterogeneity and complexity, and the addition of alternate criteria to LVEF may improve phenotyping of HF and help guide treatment choices. Sacubitril/valsartan may work, in part, by mechanisms that are not directly related to the LVEF. For example, this drug may exert antifibrotic and neurohumoral modulatory effects through inhibition or activation of several signaling pathways. In this review, we discuss markers of cardiac remodeling, fibrosis, systemic inflammation; activation of neurohormonal pathways, including the natriuretic system and the sympathetic nervous system; the presence of comorbidities; patient characteristics; hemodynamics; and HF signs and symptoms that may all be used to (1) better understand the mechanisms of action of sacubitril/valsartan and (2) help to identify subsets of patients who might benefit from treatment, regardless of LVEF.
Collapse
Affiliation(s)
- Sheldon E. Litwin
- Division of Cardiology, Medical University of South Carolina, Charleston, SC, United States,Ralph H. Johnson Veterans Affairs Health Network, Charleston, SC, United States,*Correspondence: Sheldon E. Litwin,
| | - Cara A. East
- Baylor Soltero Cardiovascular Research Center, Baylor Scott and White Research Institute, Dallas, TX, United States
| |
Collapse
|
33
|
Zhu T, Zhang W, Yang Q, Wang N, Fu Y, Li Y, Cheng G, Wang L, Zhang X, Yao H, Sun X, Chen Y, Wu X, Chen X, Liu X. Effect of angiotensin receptor-neprilysin inhibitor on atrial electrical instability in atrial fibrillation. Front Cardiovasc Med 2022; 9:1048077. [PMID: 36568557 PMCID: PMC9772445 DOI: 10.3389/fcvm.2022.1048077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Background and objective Around 33.5 million patients suffered from atrial fibrillation (AF), causing complications and increasing mortality and disability rate. Upstream treatment for AF is getting more popular in clinical practice in recent years. The angiotensin receptor-neprilysin inhibitor (ARNI) is one of the potential treatment options. Our study aimed to investigate the effect of ARNI on atrial electrical instability and structural remodeling in AF. Methods Our research consisted of two parts - a retrospective real-world clinical study and an animal experiment on calmness to verify the retrospective founding. In the retrospective study, we reviewed all patients (n = 110) who had undergone the first AF ablation from 1 August 2018 to 1 March 2022. Patients with ARNI (n = 36) or angiotensin II receptor antagonist (ARB) (n = 35) treatment were enrolled. Their clinical data, ultrasound cardiogram (UCG) and Holter parameters were collected before radiofrequency catheter ablation (RFCA) as baseline and at 24-week follow-up. Univariate and multivariate logistic regression analysis were performed. In the animal experiment, we established an AF model (n = 18) on canines by rapid atrial pacing. After the successful procedure of pacing, all the 15 alive beagles were equally and randomly assigned to three groups (n = 5 each): Control group, ARB group, and ARNI group. UCG was performed before the pacing as baseline. Physiological biopsy, UCG, and electrophysiological study (EPS) were performed at 8-week. Results Clinical data showed that the atrial arrhythmia rate at 24-week was significantly lower in ARNI group compared to ARB group (P < 0.01), and ARNI was independently associated with a lower atrial arrhythmia rate (P < 0.05) at 24-week in multivariate regression logistic analysis. In the animal experiment, ARNI group had a higher atrial electrical stability score and a shorter AF duration in the EPS compared to Control and ARB group (P < 0.05). In the left atrium voltage mapping, ARNI group showed less low voltage and disordered zone compared to Control and ARB group. Compared to Control group, right atrium diameter (RAD), left ventricle end-diastolic volume index (LVEDVI), E/A, and E/E' were lower in ARNI group (P < 0.05) at the 8-weeks follow-up, while left atrium ejection fraction (LAEF) and left ventricle ejection fraction (LVEF) were higher (P < 0.01). Compared to ARB group, LVEF was higher in ARNI group at the 8-week follow-up (P < 0.05). ARB and ARNI group had a lower ratio of fibrotic lesions in the left atrium tissues compared to Control group (P < 0.01), but no difference was found between the ARB and the ARNI group. Conclusion ARNI could reduce atrial electrical instability in AF in comparison with ARB in both retrospective study and animal experiment.
Collapse
Affiliation(s)
- Tianyu Zhu
- Department of Cardiology, Peking University International Hospital, Beijing, China
| | - Wenchao Zhang
- Department of Cardiology, Peking University International Hospital, Beijing, China
| | - Quan Yang
- Department of Cardiology, Peking University International Hospital, Beijing, China
| | - Ning Wang
- Department of Cardiology, Peking University International Hospital, Beijing, China
| | - Yuwei Fu
- Department of Ultrasound, Peking University International Hospital, Beijing, China
| | - Yan Li
- Department of Cardiology, Peking University International Hospital, Beijing, China
| | - Guanliang Cheng
- Department of Cardiology, Peking University International Hospital, Beijing, China
| | - Liang Wang
- Department of Cardiology, Peking University International Hospital, Beijing, China
| | - Xian Zhang
- Department of Cardiology, Peking University International Hospital, Beijing, China
| | - Hongying Yao
- Department of Cardiology, Peking University International Hospital, Beijing, China
| | - Xinghe Sun
- Department of Cardiology, Peking University International Hospital, Beijing, China
| | - Yu Chen
- Department of Cardiology, Peking University International Hospital, Beijing, China
| | - Xiaohui Wu
- Department of Cardiology, Peking University International Hospital, Beijing, China
| | - Xuezhi Chen
- Department of Cardiology, Peking University International Hospital, Beijing, China,*Correspondence: Xuezhi Chen,
| | - Xiaohui Liu
- Department of Cardiology, Peking University International Hospital, Beijing, China,Xiaohui Liu,
| |
Collapse
|
34
|
Naryzhnaya NV, Maslov LN, Popov SV, Mukhomezyanov AV, Ryabov VV, Kurbatov BK, Gombozhapova AE, Singh N, Fu F, Pei JM, Logvinov SV. Pyroptosis is a drug target for prevention of adverse cardiac remodeling: The crosstalk between pyroptosis, apoptosis, and autophagy. J Biomed Res 2022; 36:375-389. [PMID: 36320147 PMCID: PMC9724161 DOI: 10.7555/jbr.36.20220123] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Acute myocardial infarction (AMI) is one of the main reasons of cardiovascular disease-related death. The introduction of percutaneous coronary intervention to clinical practice dramatically decreased the mortality rate in AMI. Adverse cardiac remodeling is a serious problem in cardiology. An increase in the effectiveness of AMI treatment and prevention of adverse cardiac remodeling is difficult to achieve without understanding the mechanisms of reperfusion cardiac injury and cardiac remodeling. Inhibition of pyroptosis prevents the development of postinfarction and pressure overload-induced cardiac remodeling, and mitigates cardiomyopathy induced by diabetes and metabolic syndrome. Therefore, it is reasonable to hypothesize that the pyroptosis inhibitors may find a role in clinical practice for treatment of AMI and prevention of cardiac remodeling, diabetes and metabolic syndrome-triggered cardiomyopathy. It was demonstrated that pyroptosis interacts closely with apoptosis and autophagy. Pyroptosis could be inhibited by nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 inhibitors, caspase-1 inhibitors, microRNA, angiotensin-converting enzyme inhibitors, angiotensin Ⅱ receptor blockers, and traditional Chinese herbal medicines.
Collapse
Affiliation(s)
- Natalia V. Naryzhnaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Leonid N. Maslov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia,Leonid N. Maslov, Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Kyevskaya 111A, Tomsk, Tomsk Region 634012, Russia. Tel: +7-3822-262174, E-mail:
| | - Sergey V. Popov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Alexandr V. Mukhomezyanov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Vyacheslav V. Ryabov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Boris K. Kurbatov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Alexandra E. Gombozhapova
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jian-Ming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Sergey V. Logvinov
- Department of Histology, Embryology and Cytology, Siberian State Medical University, Tomsk, Tomsk Region 634055, Russia
| |
Collapse
|
35
|
Jing X, Hao L, Yuan‐Nan L, Wei‐Ke L, Lu‐Shen J, Jin‐Yan K, Yi‐Lian C, Yi‐Xuan Q, Li‐Sha G, Yue‐Chun L. The protective effect of LCZ696 in coxsackievirus B3-induced acute viral myocarditis mice. ESC Heart Fail 2022; 10:366-376. [PMID: 36245336 PMCID: PMC9871654 DOI: 10.1002/ehf2.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 08/17/2022] [Accepted: 10/02/2022] [Indexed: 01/27/2023] Open
Abstract
AIMS Acute viral myocarditis (AVMC) is the aetiology of heart failure (HF) with few specific treatments. The improvement of left ventricular ejection fraction (LVEF) is a critical predictor for the prognosis of AVMC. LCZ696 is a drug used in HF to improve LVEF, with a few research on AVMC. In this research, we evaluated the effects and mechanism of LCZ696 in improving LVEF in AVMC. METHODS Eighty 4-week-old male BALB/c mice were randomly divided into four groups of 20: Sham; Sham + LCZ696 (60 mg/kg/d); AVMC; AVMC + LCZ696. The above experiments were repeated by CVB3-infected HL-1 and Mdivi-1 to down-regulated dynamin-related protein 1(Drp1). Adeno-associated virus 9 (AAV9) with enhanced green fluorescent proteins (GFP) was injected to produce Drp1-overexpression mice and set up four groups: AVMC group, AVMC + AAV group, AVMC + LCZ696 group, and AVMC + LCZ696 + AAV group (n = 20 in each group). LVEF was evaluated by echocardiography at a similar heart rate (HR) at d7, Drp1 (p-Drp1), inflammation and apoptosis by histology and Western blot (WB), and mitochondrial by electron microscopy. RESULTS Cardiac function were injured in AVMC that LCZ696 reversed (LVEF, %: Sham: 68.99 ± 9.67; Sham + LCZ696: 71.96 ± 6.20; AVMC: 30.95 ± 6.40*; AVMC + LCZ696: 68.99 ± 9.67*#, *P < 0.05 vs. Sham, #P < 0.05 vs. AVMC). LCZ696 attenuated p-Drp1 expression, inflammation, apoptosis, and mitochondrial fission (p-Drp1/Drp1: Sham: 1; Sham + LCZ696: 1.37 ± 0.22; AVMC: 2.29 ± 0.36*; AVMC+LCZ696: 1.43 ± 0.08*#, *P < 0.05 vs. Sham, #P < 0.05 vs. AVMC). Some of the above results were repeated in CVB3-infected HL-1 cells and Mdivi-1. AAV increased Drp1 expression and mitochondrial fission, inflammatory, and apoptosis. Compared with the AVMC + AAV group, the LVEF increased from 24.44 ± 0.03% to 32.33 ± 0.05% in the AVMC + LCZ696 + AAV group(P < 0.05), p-Drp1/Drp1 decreased from 0.54 ± 0.12 to 0.42 ± 0.09*, and IL-6, c-IL-1β, and c-caspase-3/caspase-3 decreased from 1.07 ± 0.22 to 0.72 ± 0.08*, from 1.03 ± 0.14 to 0.79 ± 0.09*, and from 4.69 ± 0.29 to 0.92 ± 0.13*, respectively (*P < 0.05). CONCLUSIONS LCZ696 has a protective effect on AVMC by improving LVEF and reducing inflammation and apoptosis, which may be due to the inhibition of Drp1-mediated mitochondrial fission.
Collapse
Affiliation(s)
- Xu Jing
- Department of CardiologySecond Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Lian Hao
- Department of CardiologyThe first people's Hospital of WenlingWenlingChina
| | - Lin Yuan‐Nan
- Department of CardiologySecond Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Liu Wei‐Ke
- Department of CardiologySecond Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Jin Lu‐Shen
- Department of CardiologySecond Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Ke Jin‐Yan
- Department of CardiologySecond Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Chen Yi‐Lian
- Department of CardiologySecond Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Qiu Yi‐Xuan
- Department of CardiologySecond Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Ge Li‐Sha
- Department of Pediatric EmergencyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Li Yue‐Chun
- Department of CardiologySecond Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325000China
| |
Collapse
|
36
|
Shah AM, Claggett B, Prasad N, Li G, Volquez M, Jering K, Cikes M, Kovacs A, Mullens W, Nicolau JC, Køber L, van der Meer P, Jhund PS, Ibram G, Lefkowitz M, Zhou Y, Solomon SD, Pfeffer MA. Impact of Sacubitril/Valsartan Compared With Ramipril on Cardiac Structure and Function After Acute Myocardial Infarction: The PARADISE-MI Echocardiographic Substudy. Circulation 2022; 146:1067-1081. [PMID: 36082663 PMCID: PMC9529950 DOI: 10.1161/circulationaha.122.059210] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 08/04/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Angiotensin-converting enzyme inhibitors attenuate left ventricular (LV) enlargement after acute myocardial infarction (AMI). Preclinical data suggest similar benefits with combined angiotensin receptor neprilysin inhibition, but human data are conflicting. The PARADISE-MI Echo Study (Prospective ARNI Versus ACE Inhibitor Trial to Determine Superiority in Reducing Heart Failure Events After Myocardial Infarction) tested the effect of sacubitril/valsartan compared with ramipril on LV function and adverse remodeling after high risk-AMI. METHODS In a prespecified substudy, 544 PARADISE-MI participants were enrolled in the Echo Study to undergo protocol echocardiography at randomization and after 8 months. Patients were randomized within 0.5 to 7 days of presentation with their index AMI to receive a target dose of sacubitril/valsartan 200 mg or ramipril 5 mg twice daily. Echocardiographic measures were performed at a core laboratory by investigators blinded to treatment assignment. The effect of treatment on change in echo measures was assessed with ANCOVA with adjustment for baseline value and enrollment region. The primary end points were change in LV ejection fraction (LVEF) and left atrial volume (LAV), and prespecified secondary end points included changes in LV end-diastolic and end-systolic volumes. RESULTS Mean age was 64±12 years; 26% were women; mean LVEF was 42±12%; and LAV was 49±17 mL. Of 544 enrolled patients, 457 (84%) had a follow-up echo at 8 months (228 taking sacubitril/valsartan, 229 taking ramipril). There was no significant difference in change in LVEF (P=0.79) or LAV (P =0.62) by treatment group. Patients randomized to sacubitril/valsartan demonstrated less increase in LV end-diastolic volume (P=0.025) and greater decline in LV mass index (P=0.037), increase in tissue Doppler e'lat (P=0.005), decrease in E/e'lat (P=0.045), and decrease in tricuspid regurgitation peak velocity (P=0.024) than patients randomized to ramipril. These differences remained significant after adjustment for differences in baseline characteristics. Baseline LVEF, LV end-diastolic volume, LV end-systolic volume, LV mass index, LAV, and Doppler-based diastolic indices were associated with risk of cardiovascular death or incident heart failure. CONCLUSIONS Treatment with sacubitril/valsartan compared with ramipril after AMI did not result in changes in LVEF or LAV at 8 months. Patients randomized to sacubitril/valsartan had less LV enlargement and greater improvement in filling pressure. Measures of LV size, systolic function, and diastolic properties were predictive of cardiovascular death and incident heart failure after AMI in this contemporary, well-treated cohort. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT02924727.
Collapse
Affiliation(s)
- Amil M Shah
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA (A.M.S., B.C., N.P., G.L., M.V., K.J., S.D.S, M.A.P.)
| | - Brian Claggett
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA (A.M.S., B.C., N.P., G.L., M.V., K.J., S.D.S, M.A.P.)
| | - Narayana Prasad
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA (A.M.S., B.C., N.P., G.L., M.V., K.J., S.D.S, M.A.P.)
| | - Guichu Li
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA (A.M.S., B.C., N.P., G.L., M.V., K.J., S.D.S, M.A.P.)
| | - Mayra Volquez
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA (A.M.S., B.C., N.P., G.L., M.V., K.J., S.D.S, M.A.P.)
| | - Karola Jering
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA (A.M.S., B.C., N.P., G.L., M.V., K.J., S.D.S, M.A.P.)
| | - Maja Cikes
- University of Zagreb School of Medicine and University Hospital Centre Zagreb, Croatia (M.C.)
| | - Attila Kovacs
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary (A.K.)
| | - Wilfried Mullens
- University Hasselt, Ziekenhuis Oost Limburg, Genk, Belgium (W.M.)
| | - Jose C Nicolau
- Instituto do Coracao, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, Brazil (J.C.N.)
| | - Lars Køber
- Rigshospitalet, Copenhagen, Denmark (L.K.)
| | | | | | - Ghionul Ibram
- Novartis Pharmaceutical Corporation, East Hanover, NJ (G.I., M.L., Y.Z.)
| | - Martin Lefkowitz
- Novartis Pharmaceutical Corporation, East Hanover, NJ (G.I., M.L., Y.Z.)
| | - Yinong Zhou
- Novartis Pharmaceutical Corporation, East Hanover, NJ (G.I., M.L., Y.Z.)
| | - Scott D Solomon
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA (A.M.S., B.C., N.P., G.L., M.V., K.J., S.D.S, M.A.P.)
| | - Marc A Pfeffer
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA (A.M.S., B.C., N.P., G.L., M.V., K.J., S.D.S, M.A.P.)
| |
Collapse
|
37
|
Mujadzic H, Prousi GS, Napier R, Siddique S, Zaman N. The Impact of Angiotensin Receptor-Neprilysin Inhibitors on Arrhythmias in Patients with Heart Failure: A Systematic Review and Meta-analysis. J Innov Card Rhythm Manag 2022; 13:5164-5175. [PMID: 36196235 PMCID: PMC9521726 DOI: 10.19102/icrm.2022.130905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022] Open
Abstract
Angiotensin receptor-neprilysin inhibitor (ARNI) use has become increasingly popular. Current guidelines recommend using ARNI therapy for heart failure with reduced (HFrEF) and preserved ejection fraction (HFpEF). As therapies become more widely available, heart failure-associated burdens such as ventricular arrhythmias and sudden cardiac death (SCD) will become increasingly prevalent. We conducted a systematic review and meta-analysis to assess the impact of ARNI therapy on HFrEF and HFpEF pertaining to arrhythmogenesis and SCD. We performed a search of MEDLINE (PubMed), the Cochrane Library, and ClinicalTrials.gov for relevant studies. The odds ratios (ORs) of SCD, ventricular tachycardia (VT), ventricular fibrillation (VF), atrial fibrillation/flutter (AF), supraventricular tachycardia (SVT), and implantable cardioverter-defibrillator (ICD) shocks were calculated. A total of 10 studies, including 6 randomized controlled trials and 4 observational studies, were included in the analysis. A total of 18,548 patients from all studies were included, with 9,328 patients in the ARNI arm and 9,220 patients in the angiotensin-converting enzyme inhibitor (ACEI)/angiotensin II receptor blocker (ARB) arm, with a median follow-up time of 15 months. There was a significant reduction in the composite outcomes of SCD and ventricular arrhythmias in patients treated with ARNIs compared to those treated with ACEIs/ARBs (OR, 0.71; 95% confidence interval, 0.54-0.93; P = .01; I2 = 17%; P = .29). ARNI therapy was also associated with a significant reduction in ICD shocks. There was no significant reduction in the VT, VF, AF, or SVT incidence rate in the ARNI group compared to the ACEI/ARB group. In conclusion, the use of ARNIs confers a reduction in composite outcomes of SCD and ventricular arrhythmias among patients with heart failure. These outcomes were mainly driven by SCD reduction in patients treated with ARNIs.
Collapse
Affiliation(s)
- Hata Mujadzic
- Division of Internal Medicine, Prisma Health/University of South Carolina, Columbia, SC, USA,Address correspondence to: Hata Mujadzic, MD, Prisma Health/University of South Carolina School of Medicine, 2 Medical Park Rd, Columbia, SC 29203, USA.
| | - George S. Prousi
- Division of Cardiology, Prisma Health/University of South Carolina, Columbia, SC, USA
| | - Rebecca Napier
- Division of Advanced Heart Failure, Prisma Health, Columbia, SC, USA
| | - Sultan Siddique
- Division of Electrophysiology, Prisma Health, Columbia, SC, USA
| | - Ninad Zaman
- Division of Cardiology, Prisma Health/University of South Carolina, Columbia, SC, USA
| |
Collapse
|
38
|
The impact of Sacubitril/Valsartan on cardiac fibrosis early after myocardial infarction in hypertensive rats. J Hypertens 2022; 40:1822-1830. [PMID: 35943105 DOI: 10.1097/hjh.0000000000003230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Sacubitril/Valsartan, a dual inhibitor of the neprilysin and angiotensin receptor, exerts cardioprotective effects in heart failure. Little is known on the impact of Sacubitril/Valsartan in hypertensive patients early post myocardial infarction. METHODS Spontaneously hypertensive rats (SHR) were pretreated by daily angiotensin receptor blocker (ARB; 30 mg/kg intraperitoneally), Sacubitril/Valsartan (ARNI; 60 mg/kg intraperitoneally) or the same dosage of physiological saline for 1 week. Then each group underwent myocardial infarction induction and received the same treatment for another week. The blood pressure and cardiac function were evaluated prior to sacrifice. We performed histological and molecular evaluation of fibrosis in vivo and in vitro. RESULTS The blood pressure was comparable between three groups both 1 week prior to and post myocardial infarction. ARNI and ARB restore the decreased ejection fraction (57.3 ± 7.6 vs. 42.9 ± 5.2%, P < 0.05; 54.3 ± 6.9 vs. 42.9 ± 5.2%, P < 0.01, respectively) and fractional shortening (31.6 ± 5.4 vs. 22.1 ± 3.1%, P < 0.05; 29.4 ± 4.5 vs. 22.1 ± 3.1%, P < 0.05, respectively) post myocardial infarction. The infarct size and collagen deposition were also significantly mitigated in ARNI and ARB groups. In addition, ARNI and ARB treatment reduced the expression of cardiac remodeling-related factors, such as Bnp, α-SMA, Vimentin, and Col1a1 (all P < 0.05 vs. MI group). Finally, ARNI and ARB decreased the expression of α-SMA in cardiac fibroblasts treated with Ang II. CONCLUSION In conclusion, pretreatment with ARNI maintained cardiac function and reduced myocardial fibrosis in myocardial infarction, probably prior to any anti-hypertensive effect.
Collapse
|
39
|
Müller P, Leow MKS, Dietrich JW. Minor perturbations of thyroid homeostasis and major cardiovascular endpoints—Physiological mechanisms and clinical evidence. Front Cardiovasc Med 2022; 9:942971. [PMID: 36046184 PMCID: PMC9420854 DOI: 10.3389/fcvm.2022.942971] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
It is well established that thyroid dysfunction is linked to an increased risk of cardiovascular morbidity and mortality. The pleiotropic action of thyroid hormones strongly impacts the cardiovascular system and affects both the generation of the normal heart rhythm and arrhythmia. A meta-analysis of published evidence suggests a positive association of FT4 concentration with major adverse cardiovascular end points (MACE), but this association only partially extends to TSH. The risk for cardiovascular death is increased in both subclinical hypothyroidism and subclinical thyrotoxicosis. Several published studies found associations of TSH and FT4 concentrations, respectively, with major cardiovascular endpoints. Both reduced and elevated TSH concentrations predict the cardiovascular risk, and this association extends to TSH gradients within the reference range. Likewise, increased FT4 concentrations, but high-normal FT4 within its reference range as well, herald a poor outcome. These observations translate to a monotonic and sensitive effect of FT4 and a U-shaped relationship between TSH and cardiovascular risk. Up to now, the pathophysiological mechanism of this complex pattern of association is poorly understood. Integrating the available evidence suggests a dual etiology of elevated FT4 concentration, comprising both ensuing primary hypothyroidism and a raised set point of thyroid function, e. g. in the context of psychiatric disease, chronic stress and type 2 allostatic load. Addressing the association between thyroid homeostasis and cardiovascular diseases from a systems perspective could pave the way to new directions of research and a more personalized approach to the treatment of patients with cardiovascular risk.
Collapse
Affiliation(s)
- Patrick Müller
- Department for Electrophysiology, Medical Hospital I, Klinikum Vest, Recklinghausen, NRW, Germany
| | - Melvin Khee-Shing Leow
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
- Metabolic Disorders Research Programme, Lee Kong Chian School of Medicine, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Johannes W. Dietrich
- Diabetes, Endocrinology and Metabolism Section, Department of Internal Medicine I, St. Josef Hospital, Ruhr University Bochum, Bochum, NRW, Germany
- Diabetes Centre Bochum/Hattingen, St. Elisabeth-Hospital Blankenstein, Hattingen, NRW, Germany
- Centre for Rare Endocrine Diseases, Ruhr Centre for Rare Diseases (CeSER), Ruhr University Bochum and Witten/Herdecke University, Bochum, NRW, Germany
- Centre for Diabetes Technology, Catholic Hospitals Bochum, Ruhr University Bochum, Bochum, NRW, Germany
- *Correspondence: Johannes W. Dietrich
| |
Collapse
|
40
|
Simko F, Baka T, Stanko P, Repova K, Krajcirovicova K, Aziriova S, Domenig O, Zorad S, Adamcova M, Paulis L. Sacubitril/Valsartan and Ivabradine Attenuate Left Ventricular Remodelling and Dysfunction in Spontaneously Hypertensive Rats: Different Interactions with the Renin-Angiotensin-Aldosterone System. Biomedicines 2022; 10:1844. [PMID: 36009391 PMCID: PMC9405404 DOI: 10.3390/biomedicines10081844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated whether sacubitril/valsartan and ivabradine are able to prevent left ventricular (LV) fibrotic remodelling and dysfunction in a rat experimental model of spontaneous hypertension (spontaneously hypertensive rats, SHRs) and whether this potential protection is associated with RAAS alterations. Five groups of three-month-old male Wistar rats and SHRs were treated for six weeks as follows: untreated Wistar controls, Wistar plus sacubitril/valsartan, SHR, SHR plus sacubitril/valsartan, and SHR plus ivabradine. The SHRs developed a systolic blood pressure (SBP) increase, LV hypertrophy and fibrosis, and LV systolic and diastolic dysfunction. However, no changes in serum RAAS were observed in SHRs compared with the controls. Elevated SBP in SHRs was decreased by sacubitril/valsartan but not by ivabradine, and only sacubitril/valsartan attenuated LV hypertrophy. Both sacubitril/valsartan and ivabradine reduced LV collagen content and attenuated LV systolic and diastolic dysfunction. Sacubitril/valsartan increased the serum levels of angiotensin (Ang) II, Ang III, Ang IV, Ang 1-5, Ang 1-7, and aldosterone, while ivabradine did not affect the RAAS. We conclude that the SHR is a normal-to-low serum RAAS model of experimental hypertension. While the protection of the hypertensive heart in SHRs by sacubitril/valsartan may be related to an Ang II blockade and the protective Ang 1-7, the benefits of ivabradine were not associated with RAAS modulation.
Collapse
Affiliation(s)
- Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (T.B.); (P.S.); (K.R.); (K.K.); (S.A.); (L.P.)
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 83305 Bratislava, Slovakia
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia;
| | - Tomas Baka
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (T.B.); (P.S.); (K.R.); (K.K.); (S.A.); (L.P.)
| | - Peter Stanko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (T.B.); (P.S.); (K.R.); (K.K.); (S.A.); (L.P.)
| | - Kristina Repova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (T.B.); (P.S.); (K.R.); (K.K.); (S.A.); (L.P.)
| | - Kristina Krajcirovicova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (T.B.); (P.S.); (K.R.); (K.K.); (S.A.); (L.P.)
| | - Silvia Aziriova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (T.B.); (P.S.); (K.R.); (K.K.); (S.A.); (L.P.)
| | | | - Stefan Zorad
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia;
| | - Michaela Adamcova
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic;
| | - Ludovit Paulis
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (T.B.); (P.S.); (K.R.); (K.K.); (S.A.); (L.P.)
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 81371 Bratislava, Slovakia
| |
Collapse
|
41
|
Effects of Sacubitril/Valsartan on the Expression of CaMKII/Cav1.2 in Atrial Fibrillation Stimulation Rabbit Model. BIOMED RESEARCH INTERNATIONAL 2022. [DOI: 10.1155/2022/5832543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background and Objective. Atrial fibrillation (AF) is linked to high morbidity and death rates throughout the world due to limited therapeutic options and thus presents a major challenge to the developed and developing countries. In this study, we aim to investigate the influence of sacubitril/valsartan (sac/val) treatment on the calmodulin-dependent protein kinase II (CaMKII)/Cav1.2 expression in AF models. Methods. Overall, 18 rabbits were randomly divided into control, pacing (600 beats/min), and pacing+sac/val groups. The rabbits in the pacing+sac/val cohort received oral sac/val (10 mg/kg twice daily) across the 21-day investigation period. After three weeks, the atrial effective refractory period (AERP) and AF induction rate were compared. HL-1 cultures were exposed to fast pacing (24 h) with and without LBQ657 (active sacubitril form)/valsartan. Western blots were used for detecting Cav1.2 and CaMKII expression within atrial muscles of the rabbits and HL-1 cultures of AF model. Results. In comparison to the sham cohort, the AF induction rate was markedly increased together with AERP reduction within pacing cohort. Such changes were markedly rescued through sac/val treatment in pacing+sac/val cohort. The proteomic expression profiles of CaMKII and Cav1.2 showed that the CaMKII expression was markedly upregulated, while Cav1.2 expression was downregulated in the pacing cohort. Importantly, these effects were absent in pacing+sac/val cohort. Conclusion. Results of this study show that sac/val treatment regulates the expression of CaMKII/Cav1.2 and could alter this pathway in atrial rapid electrical stimulation models. Therefore, this investigation could contribute to a novel strategy in AF therapeutics in clinical settings.
Collapse
|
42
|
Wei Z, Zhang M, Zhang Q, Gong L, Wang X, Wang Z, Gao M, Zhang Z. A narrative review on sacubitril/valsartan and ventricular arrhythmias. Medicine (Baltimore) 2022; 101:e29456. [PMID: 35801732 PMCID: PMC9259167 DOI: 10.1097/md.0000000000029456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Sacubitril/valsartan, the first angiotensin receptor neprilysin inhibitor approved by the Food and Drug Administration for marketing, has been shown to reduce the risk of cardiovascular death or heart failure hospitalization and improve symptoms in patients with chronic heart failure with a reduced ejection fraction. However, some researchers have also found that sacubitril/valsartan has an antiarrhythmic effect. The mechanism by which sacubitril/valsartan reduces the mortality associated with malignant ventricular arrhythmias is not precise. Many studies have concluded that ventricular arrhythmia is associated with a reduction in myocardial fibrosis. This article reviews the current understanding of the effects of sacubitril/valsartan on the reduction of ventricular arrhythmia and explains its possible mechanisms. The results of this study suggest that sacubitril/valsartan reduces the occurrence of appropriate implantable cardioverter-defibrillator shocks. Meanwhile, sacubitril/valsartan may reduce the occurrence of ventricular arrhythmias by affecting 3 pathways of B-type natriuretic peptide, Angiotensin II, and Bradykinin. The conclusion of this study is that sacubitril/valsartan reduces the number of implantable cardioverter-defibrillator shocks and ventricular arrhythmias in heart failure with reduced ejection fraction patients.
Collapse
Affiliation(s)
- Zhaoyang Wei
- Department of Cardiology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Meiwei Zhang
- Department of Cardiology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qian Zhang
- Department of Cardiology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Linan Gong
- Department of Cardiology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiangyu Wang
- Department of Cardiology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zanzan Wang
- Department of Cardiology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ming Gao
- Department of Cardiology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhiguo Zhang
- Department of Cardiology, the First Hospital of Jilin University, Changchun, Jilin Province, China
- * Correspondence: Zhiguo Zhang, MD, Department of Cardiology, the First Hospital of Jilin University, Changchun, Jilin Province 130021, China (e-mail: )
| |
Collapse
|
43
|
Nakagawa H, Saito Y. Roles of Natriuretic Peptides and the Significance of Neprilysin in Cardiovascular Diseases. BIOLOGY 2022; 11:1017. [PMID: 36101398 PMCID: PMC9312343 DOI: 10.3390/biology11071017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022]
Abstract
Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) activate the guanylyl cyclase A receptor (GC-A), which synthesizes the second messenger cGMP in a wide variety of tissues and cells. C-type natriuretic peptide (CNP) activates the cGMP-producing guanylyl cyclase B receptor (GC-B) in chondrocytes, endothelial cells, and possibly smooth muscle cells, cardiomyocytes, and cardiac fibroblasts. The development of genetically modified mice has helped elucidate the physiological roles of natriuretic peptides via GC-A or GC-B. These include the hormonal effects of ANP/BNP in the vasculature, autocrine effects of ANP/BNP in cardiomyocytes, and paracrine effects of CNP in the vasculature and cardiomyocytes. Neprilysin (NEP) is a transmembrane neutral endopeptidase that degrades the three natriuretic peptides. Recently, mice overexpressing NEP, specifically in cardiomyocytes, revealed that local cardiac NEP plays a vital role in regulating natriuretic peptides in the heart tissue. Since NEP inhibition is a clinically accepted approach for heart failure treatment, the physiological roles of natriuretic peptides have regained attention. This article focuses on the physiological roles of natriuretic peptides elucidated in mice with GC-A or GC-B deletion, the significance of NEP in natriuretic peptide metabolism, and the long-term effects of angiotensin receptor-neprilysin inhibitor (ARNI) on cardiovascular diseases.
Collapse
Affiliation(s)
- Hitoshi Nakagawa
- Cardiovascular Medicine, Nara Medical University, Kashihara 634-8522, Nara, Japan;
| | - Yoshihiko Saito
- Nara Prefecture Seiwa Medical Center, Mimuro 636-0802, Nara, Japan
| |
Collapse
|
44
|
Wang R, Ye H, Ma L, Wei J, Wang Y, Zhang X, Wang L. Effect of Sacubitril/Valsartan on Reducing the Risk of Arrhythmia: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front Cardiovasc Med 2022; 9:890481. [PMID: 35859597 PMCID: PMC9289747 DOI: 10.3389/fcvm.2022.890481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
Background and Objective Relevant data of PARADIGM-HF reveals sacubitril/valsartan (SV) therapy led to a greater reduction in the risks of arrhythmia, and sudden cardiac death than angiotensin converting enzyme inhibitor (ACEI)/angiotensin receptor inhibitor (ARB) therapy in HFrEF, however, inconsistent results were reported in subsequent studies. Here, we conduct a meta-analysis of related randomized controlled trials (RCTs) to evaluate the protective effect of SV on reducing the risk of arrhythmias. Methods and Results RCTs focused on the difference in therapeutic outcomes between SV and ACEI/ARB were searched from PUBMED, EMBASE, ClinicalTrials.gov, and Cochrane Library. The results were extracted from each individual study, expressed as binary risk, 95% confidence interval (CI) and relative risk (RR). Sixteen RCTs including 22, 563 patients met the study criteria. Compared with ACEI/ARB therapy, SV therapy did significantly reduce in the risks of severe arrhythmias among patients with heart failure with reduced ejection fraction (HFrEF) (RR 0.83, 95% CI 0.73–0.95, p = 0.006), ventricular tachycardia (VT) among patients with HFrEF (RR 0.69, 95% CI 0.51–0.92, p = 0.01), cardiac arrest among patients with heart failure (HF) (RR 0.52, 95% CI 0.37–0.73, p = 0.0002), cardiac arrest among patients with HFrEF (RR 0.49, 95% CI 0.32–0.76, p = 0.001), cardiac arrest or ventricular fibrillation (VF) among patients with HF (RR 0.63, 95% CI 0.48–0.83, p = 0.001), and cardiac arrest or VF among patients with HFrEF (RR 0.65, 95% CI 0.47–0.89, p = 0.008), but reduced the risks of arrhythmias (RR 0.87, 95% CI 0.74–1.01, p = 0.07), atrial arrhythmias (RR 0.98, 95% CI 0.83–1.16, p = 0.85), and atrial fibrillation (RR 0.98, 95% CI 0.82–1.17, p = 0.82) among all patients with no significant between-group difference. The merged result was robust after sensitivity analysis, and there was no publication bias. Conclusion Our meta-analysis provides evidence that, compared with ACEI/ARB, SV can additionally reduce the risks of most arrhythmias, just the significant differences are revealed in reducing the risks of VT, severe arrhythmias, and cardiac arrest in patients with HFrEF. Besides, the positive effect of SV on VF according to statistical result of combining VF with cardiac arrest in patients with HFrEF is credibility.
Collapse
Affiliation(s)
- Ruxin Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haowen Ye
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Li Ma
- Department of Functional Examination, Gansu Provincial Maternal and Child Health Hospital, Lanzhou, China
| | - Jinjing Wei
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ying Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaofang Zhang
- Clinical Experimental Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Xiaofang Zhang,
| | - Lihong Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Lihong Wang,
| |
Collapse
|
45
|
Angiotensin receptor/Neprilysin inhibitor effects in CRTd non-responders: From epigenetic to clinical beside. Pharmacol Res 2022; 182:106303. [PMID: 35697289 DOI: 10.1016/j.phrs.2022.106303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022]
Abstract
OBJECTIVES We evaluated whether Angiotensin receptor/Neprilysin inhibitors (ARNI) reduce heart failure (HF) hospitalizations and deaths in cardiac resynchronization therapy with defibrillator (CRTd) non-responders patients at 12 months of follow-up, modulating microRNAs (miRs) implied in adverse cardiac remodeling. BACKGROUND adverse cardiac remodeling characterized by left ventricle ejection fraction (LVEF) reduction, left ventricular end-systolic volume (LVESv) increase, and the 6-minute walking test (6MWT) reduction are relevant pathological mechanisms in CRTd non-responders and could be linked to changes in miRNAs (miRs), regulating cardiac fibrosis, apoptosis, and hypertrophy. METHODS miRs levels and clinical outcomes (LVEF, cardiac deaths, and 6MWT) were evaluated at baseline and one year of follow-up in CRTd non-responders divided into ARNI-users and Non-ARNI users. RESULTS At baseline, there were no differences in levels of inflammatory markers, miR-18, miR-145, and miR-181 (p > 0.05) between Non-ARNI users (n 106) and ARNI-users (n 312). At one year of follow-up, ARNI-users vs. Non-ARNI users showed lowest inflammatory markers (p < 0.01) and miR-181 levels (p < 0.01) and higher values of miR-18 (p < 0.01)and miR-145 (p < 0.01). At one year of follow-up, ARNI-users had a higher increase of LVEF (p < 0.01) and 6MWT (p < 0.01) along with a more significant reduction of LVESv (p < 0.01) compared to Non-ARNI users. Cox regression analysis evidenced that ARNI-based therapies increase the probability of anti-remodeling effects of CRTd. Based on symptomatic improvements, echocardiographic and functional classification improvements, 37 (34.9%) patients among ARNI-users became responders, while only twenty (6.4%) patients became responders among Non-ARNi-users. CONCLUSIONS ARNI might influence epigenetic mechanisms modulating miRs implicated in the adverse cardiac remodeling responses to CRTd.
Collapse
|
46
|
Zhuang C, Yi G, Wang W, Sun R, Qi M, Yu J. Sacubitril/Valsartan Improves Sexual Function and Fibrosis of the Clitoral and Vaginal Tissues in Female Spontaneously Hypertensive Rats. J Cardiovasc Pharmacol 2022; 79:858-872. [PMID: 35266909 PMCID: PMC9162275 DOI: 10.1097/fjc.0000000000001251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/22/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Female sexual dysfunction is common in hypertension. The effects of sacubitril/valsartan (SAC/VAL) as a potential therapy for hypertension and heart failure have not been studied in relation to sexual function and genital fibrosis in female spontaneously hypertensive rats (SHRs). Thirty female SHRs were administered VAL, SAC/VAL, or saline. Ten normotensive female Wistar-Kyoto (WKY) rats were included in the control group. We assessed estrous cyclicity and sexual behavior in the female rats. In addition, the morphology of clitoral and vaginal tissues was evaluated by histological analyses. Western blotting and enzyme-linked immunosorbent assays were used to assess the levels of fibrotic markers in vaginal and clitoral tissues. Furthermore, the protein levels of phosphatase and tensin homolog deleted from chromosome 10 (PTEN), phosphoinositide-3-kinase (PI3K), and AKT expression were measured by Western blotting. SAC/VAL treatment improved hypertension-induced sexual dysfunction, exhibited as a prolonged estrus phase, increased receptivity and proceptive events, and decreased aggressive events, compared with those of VAL treatment and control SHRs without treatments. In addition, SAC/VAL-treated SHRs had lower levels of fibrotic markers, estradiol, and estrogen receptor α/β than the levels of VAL-treated SHRs or SHRs without treatment. Moreover, SAC/VAL decreased p-PTEN expression and increased p-PI3K and p-AKT expression at the protein level compared with those in VAL treatment alone. VAL and SAC/VAL treatments have significantly increased sexual receptivity and proceptivity, decreased aggressiveness, and improved the fibrosis of vaginal and clitoral tissues in female SHRs. However, SAC/VAL treatment shows more effective results compared with VAL treatment, which may be related to the PTEN/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Chenchen Zhuang
- Hypertension Center, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China; and
| | - Guozi Yi
- School of Chemical Engineering, the University of New South Wales, Sydney, Australia.
| | - Wenjuan Wang
- Hypertension Center, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China; and
| | - Runmin Sun
- Hypertension Center, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China; and
| | - Miaomiao Qi
- Hypertension Center, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China; and
| | - Jing Yu
- Hypertension Center, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China; and
| |
Collapse
|
47
|
Zhang Y, Yuan M, Suo Y, Yang Q, Shao S, Li Y, Wang Y, Bao Q, Liu T, Li G. Angiotensin Receptor-Neprilysin Inhibitor Attenuates Cardiac Hypertrophy and Improves Diastolic Dysfunction in A Mouse Model of Heart Failure with Preserved Ejection Fraction. Clin Exp Pharmacol Physiol 2022; 49:848-857. [PMID: 35596518 DOI: 10.1111/1440-1681.13672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022]
Abstract
LCZ696, an angiotensin receptor-neprilysin inhibitor, has shown promising clinical efficacy in patients with heart failure (HF) with reduced ejection fraction. However, its potential effects on heart failure with preserved ejection fraction (HFpEF) are still not fully understood. We evaluated the effect of LCZ696 on HFpEF in transverse aortic constriction mice and compared it with the effect of the angiotensin receptor blocker valsartan. We found that LCZ696 improved cardiac diastolic function by reducing ventricular hypertrophy and fibrosis in mice with overload-induced diastolic dysfunction. In addition, there was superior inhibition of LCZ696 than stand-alone valsartan. As a potential underlying mechanism, we demonstrated that LCZ696 behaves as a potent suppressor of calcium-mediated calcineurin-NFAT signaling transduction pathways. Hence, we demonstrated the protective effects of LCZ696 in overload-induced HFpEF and provided a pharmaceutical therapeutic strategy for related diseases.
Collapse
Affiliation(s)
- Yue Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Meng Yuan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Ya Suo
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Qian Yang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Shuai Shao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Ying Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Yuanyuan Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Qiankun Bao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
48
|
Monosilio S, Filomena D, Luongo F, Sannino M, Cimino S, Neccia M, Mariani MV, Birtolo LI, Benedetti G, Tonti G, Pedrizzetti G, Vizza CD, Maestrini V, Agati L. Cardiac and Vascular Remodeling After 6 Months of Therapy With Sacubitril/Valsartan: Mechanistic Insights From Advanced Echocardiographic Analysis. Front Cardiovasc Med 2022; 9:883769. [PMID: 35665260 PMCID: PMC9157573 DOI: 10.3389/fcvm.2022.883769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/21/2022] [Indexed: 01/15/2023] Open
Abstract
Background Effects of Sacubitril/Valsartan (S/V) on left ventricular (LV) mechanics and ventricular-arterial coupling in patients with heart failure with reduced ejection fraction (HFrEF) are not completely understood. The aim of this study was to evaluate both cardiac and vascular remodeling in a group of HFrEF patients undergoing S/V therapy. Methods Fifty HFrEF patients eligible to start a therapy with S/V were enrolled. Echocardiographic evaluation was performed at baseline and after 6 months of follow-up (FU). Beside standard evaluation, including global longitudinal strain (GLS), estimated hemodynamic forces (HDFs) and non-invasive pressure-volume curves (PV loop) were assessed using dedicated softwares. HDFs were evaluated over the entire cardiac cycle, in systole and diastole, both in apex to base (A-B) and latero-septal (L-S) directions. The distribution of LV HDFs was evaluated by L-S over A-B HDFs ratio (L-S/A-B HDFs ratio). Parameters derived from estimated PV loop curves were left ventricular end-systolic elastance (Ees), arterial elastance (Ea), and ventricular-arterial coupling (VAC). Results At 6 months of FU indexed left ventricular end-diastolic and end-systolic volumes decreased (EDVi: 101 ± 28 mL vs. 86 ± 30 mL, p < 0.001; ESVi: 72 ± 23 mL vs. 55 ± 24 mL, p < 0.001), ejection fraction and GLS significantly improved (EF: 29 ± 6% vs. 37 ± 7%, p < 0.001; GLS: −9 ± 3% vs. −13 ± 4%, p < 0.001). A reduction of Ea (2.11 ± 0.91 mmHg/mL vs. 1.72 ± 0.44 mmHg/mL, p = 0.008) and an improvement of Ees (1.01 ± 0.37 mmHg/mL vs. 1.35 ± 0.6 mmHg/mL, p < 0.001) and VAC (2.3 ± 1.1 vs. 1.5 ± 0.7, p < 0.001) were observed. Re-alignment of HDFs occurred, with a reduction of diastolic L-S/A-B HDFs ratio [23 (20–35)% vs. 20 (11–28) %, p < 0.001]. Conclusion S/V therapy leads to a complex phenomenon of reverse remodeling involving increased myocardial contractility, HDFs distribution improvement, and afterload reduction.
Collapse
Affiliation(s)
- Sara Monosilio
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, “Sapienza” University of Rome, Policlinico Umberto I, Rome, Italy
| | - Domenico Filomena
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, “Sapienza” University of Rome, Policlinico Umberto I, Rome, Italy
| | - Federico Luongo
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, “Sapienza” University of Rome, Policlinico Umberto I, Rome, Italy
| | - Michele Sannino
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, “Sapienza” University of Rome, Policlinico Umberto I, Rome, Italy
| | - Sara Cimino
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, “Sapienza” University of Rome, Policlinico Umberto I, Rome, Italy
| | - Matteo Neccia
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, “Sapienza” University of Rome, Policlinico Umberto I, Rome, Italy
| | - Marco Valerio Mariani
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, “Sapienza” University of Rome, Policlinico Umberto I, Rome, Italy
| | - Lucia Ilaria Birtolo
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, “Sapienza” University of Rome, Policlinico Umberto I, Rome, Italy
| | - Giulia Benedetti
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, “Sapienza” University of Rome, Policlinico Umberto I, Rome, Italy
| | - Giovanni Tonti
- Cardiology Division, ‘G. D'Annunzio’ University, Chieti, Italy
| | - Gianni Pedrizzetti
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Carmine Dario Vizza
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, “Sapienza” University of Rome, Policlinico Umberto I, Rome, Italy
| | - Viviana Maestrini
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, “Sapienza” University of Rome, Policlinico Umberto I, Rome, Italy
| | - Luciano Agati
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, “Sapienza” University of Rome, Policlinico Umberto I, Rome, Italy
- *Correspondence: Luciano Agati
| |
Collapse
|
49
|
Yang L, Zhang M, Hao Z, Wang N, Zhang M. Sacubitril/valsartan attenuates atrial structural remodelling in atrial fibrillation patients. ESC Heart Fail 2022; 9:2428-2434. [PMID: 35437929 PMCID: PMC9288756 DOI: 10.1002/ehf2.13937] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/24/2021] [Accepted: 04/04/2022] [Indexed: 11/30/2022] Open
Abstract
Aims Radiofrequency catheter ablation (RFCA) is now an established therapeutic option for patients with atrial fibrillation (AF), but the long‐term recurrence rate of AF is still high. Sacubitril/valsartan (Sac/Val) is superior to valsartan in attenuating ventricular remodelling and improving clinical outcomes in heart failure patients, but whether this additional benefit exists in reversing atrial remodelling and reducing AF recurrence of RFCA‐treated AF patients remains uncovered. Methods and results Patients that had undergone RFCA were enrolled and randomly assigned 1:1 to valsartan (160 mg/day) or Sac/Val (200 mg/day) treatment group, in addition to other standard treatment of AF. Patients were followed up for 24 weeks. Echocardiography and ambulatory Holter monitoring for 24 h was performed at 24 weeks after RFCA. The primary end point was the change of atrial diameter from baseline to 24 weeks after RFCA. Second end points included the recurrence rate of AF, all‐cause hospitalization and all‐cause death. A total of 64 AF patients were enrolled, 32 of which received Sac/Val and 32 received valsartan treatment. There was no difference in the age (64.8 ± 9.8 vs. 63.7 ± 9.0, P = 0.634), gender (per cent of male: 59.4% vs. 50.0%, P = 0.616), heart rate (84.7 ± 4.1 b.p.m. vs. 80.9 ± 2.6 b.p.m., P = 0.428), systolic (127.5 ± 15.4 mmHg vs. 130.0 ± 17.8 mmHg, P = 0.549) or diastolic (81.7 ± 9.8 mmHg vs. 79.9 ± 12.6, P = 0.537) blood pressure upon admission between valsartan and Sac/Val treatment groups. The percentage of persistent AF was also comparable (43.8% vs. 53.1%, P = 0.617) in both treatment groups. Patients receiving Sac/Val treatment displayed significant decrease in the left atrial diameter (4.3 ± 0.5 cm to 3.8 ± 0.5 cm, P < 0.001), volume index (48.0 ± 6.4 mL/m2 to 41.7 ± 7.0 mL/m2, P < 0.001), and right atrial diameter (4.4 ± 0.8 cm to 3.9 ± 0.7 cm, P = 0.017) from baseline to 24 weeks after RFCA. This effect was not observed in valsartan treatment group. There was a numerical decrease in AF recurrence rate in the Sac/Val group compared with valsartan group (9.4% vs. 15.6%), although this difference did not reach a statistical significance (P = 0.708). No difference in all‐cause hospitalization rate (6.3% in each group) or all‐cause death rate (0% in each group) was observed. Conclusions Our data indicate that Sac/Val is superior to valsartan in attenuating atrial structural remodelling in catheter ablation‐treated AF patients.
Collapse
Affiliation(s)
- Liu Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhiheng Hao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
50
|
LCZ696 ameliorates doxorubicin-induced cardiomyocyte toxicity in rats. Sci Rep 2022; 12:4930. [PMID: 35322164 PMCID: PMC8943022 DOI: 10.1038/s41598-022-09094-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/17/2022] [Indexed: 12/11/2022] Open
Abstract
Doxorubicin (DOX)-based chemotherapy induces cardiotoxicity, which is considered the main bottleneck for its clinical application. In this study, we investigated the potential benefit of LCZ696, an angiotensin receptor-neprilysin inhibitor against DOX-induced cardiotoxicity in rats and H9c2 cells and determined whether the mechanism underlying any such effects involves its antioxidant activity. Male Sprague-Dawley rats were randomly separated into four groups, each consisting of 15 rats (DOX (1.5 mg/kg/day intraperitoneally for 10 days followed by non-treatment for 8 days); DOX + valsartan (31 mg/kg/day by gavage from day 1 to day 18); DOX + LCZ696 (68 mg/kg/day by gavage from day 1 to day 18); and control (saline intraperitoneally for 10 days). DOX-induced elevation of cardiac troponin T levels on day 18 was significantly reduced by LCZ696, but not valsartan. The DOX-induced increase in myocardial reactive oxygen species (ROS) levels determined using dihydroethidium was significantly ameliorated by LCZ696, but not valsartan, and was accompanied by the suppression of DOX-induced increase in p47phox. LCZ696 recovered the DOX-induced decrease in phosphorylation of adenosine monophosphate-activated protein kinase and increased the ratio of Bax and Bcl-2. In H9c2 cardiomyocytes, LCZ696 reduced DOX-induced mitochondrial ROS generation and improved cell viability more than valsartan. Our findings indicated that LCZ696 ameliorated DOX-induced cardiotoxicity in rat hearts in vivo and in vitro, possibly by mediating a decrease in oxidative stress.
Collapse
|