1
|
Bhagirath P, Strocchi M, Bishop MJ, Boyle PM, Plank G. From bits to bedside: entering the age of digital twins in cardiac electrophysiology. Europace 2024; 26:euae295. [PMID: 39688585 PMCID: PMC11649999 DOI: 10.1093/europace/euae295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
This State of the Future Review describes and discusses the potential transformative power of digital twins in cardiac electrophysiology. In this 'big picture' approach, we explore the evolution of mechanistic modelling based digital twins, their current and immediate clinical applications, and envision a future where continuous updates, advanced calibration, and seamless data integration redefine clinical practice of cardiac electrophysiology. Our aim is to inspire researchers and clinicians to embrace the extraordinary possibilities that digital twins offer in the pursuit of precision medicine.
Collapse
Affiliation(s)
- Pranav Bhagirath
- Department of Cardiology, Amsterdam University Medical Center, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
- School of Biomedical Engineering and Imaging Sciences, King’s College London, SE1 7EH London, UK
| | - Marina Strocchi
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Martin J Bishop
- School of Biomedical Engineering and Imaging Sciences, King’s College London, SE1 7EH London, UK
| | - Patrick M Boyle
- Department of Bioengineering, University of Washington, Seattle, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, USA
| | - Gernot Plank
- Gottfried Schatz Research Center, Medical Physics and Biophysics, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
2
|
Bertelli M, Ziacchi M, van Slochteren F, Rondanina E, Lazzeri M, Carecci A, Biffi M. LV cathode position in CRT recipients: How can we benefit from CMR? Int J Cardiol 2024; 412:132321. [PMID: 38977225 DOI: 10.1016/j.ijcard.2024.132321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Left ventricular lead positioning represents a key step in CRT optimization. However, evidence for its guidance based on specific topographical factors and related imaging techniques is sparse. OBJECTIVE To analyze reverse remodeling (RR) and clinical events in CRT recipients based on LV cathode (LVC) position relative to latest mechanical activation (LMA) and scar as determined by cardiac magnetic resonance (CMR). METHODS This is a retrospective single-center study of 68 consecutive Q-LV-guided CRT-D and CRT-P recipients. Through CMR-based 3D reconstructions overlayed on fluoroscopy images, LVCs were stratified as concordant, adjacent, or discordant to LMA (3 segments with latest and greatest radial strain) and scar (segments with >50% scar transmurality). The primary endpoint of RR (expressed as percentage ESV change) and secondary composite endpoint of HF hospitalizations, LVAD/heart transplant, or cardiovascular death were compared across categories. RESULTS LVC proximity to LMA was associated with a progressive increase in RR (percentage ESV change: concordant -47.0 ± 5.9%, adjacent -31.4 ± 3.1%, discordant +0.4 ± 3.7%), while proximity to scar was associated with sharply decreasing RR (concordant +10.7 ± 12.9%, adjacent +0.3 ± 5.3%, discordant -31.3 ± 4.4%, no scar -35.4 ± 4.8%). 4 integrated classes of LVC position demonstrated a significant positive RR gradient the more optimal the category (class I -47.0 ± 5.9%, class II -34.9 ± 2.8%, class III -5.5 ± 4.3%, class IV + 3.4 ± 5.2%). Freedom from composite secondary endpoint of HF hospitalization, LVAD/heart transplant, or cardiovascular death confirmed these trends demonstrating significant differences across both integrated as well as individual LMA and scar categories. CONCLUSION Integrated CMR-determined LVC position relative to LMA and scar stratifies response to CRT.
Collapse
Affiliation(s)
- Michele Bertelli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Department of Cardiology, 40122 Bologna, Italy.
| | - Matteo Ziacchi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Department of Cardiology, 40122 Bologna, Italy
| | | | | | - Mirco Lazzeri
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Department of Cardiology, 40122 Bologna, Italy
| | - Alessandro Carecci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Department of Cardiology, 40122 Bologna, Italy
| | - Mauro Biffi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Department of Cardiology, 40122 Bologna, Italy
| |
Collapse
|
3
|
Pujol-López M, Jiménez-Arjona R, Garcia-Ribas C, Borràs R, Guasch E, Regany-Closa M, Graterol FR, Niebla M, Carro E, Roca-Luque I, Guichard JB, Castel MÁ, Arbelo E, Porta-Sánchez A, Brugada J, Sitges M, Tolosana JM, Doltra A, Mont L. Longitudinal comparison of dyssynchrony correction and 'strain' improvement by conduction system pacing: LEVEL-AT trial secondary findings. Eur Heart J Cardiovasc Imaging 2024; 25:1394-1404. [PMID: 38768299 PMCID: PMC11441034 DOI: 10.1093/ehjci/jeae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/27/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
AIMS Longitudinal dyssynchrony correction and 'strain' improvement by comparable cardiac resynchronization therapy (CRT) techniques is unreported. Our purpose was to compare echocardiographic dyssynchrony correction and 'strain' improvement by conduction system pacing (CSP) vs. biventricular pacing (BiVP) as a marker of contractility improvement during 1-year follow-up. METHODS AND RESULTS A treatment-received analysis was performed in patients included in the LEVEL-AT trial (NCT04054895), randomized to CSP or BiVP, and evaluated at baseline (ON and OFF programming) and at 6 and 12 months (n = 69, 32% women). Analysis included intraventricular (septal flash), interventricular (difference between left and right ventricular outflow times), and atrioventricular (diastolic filling time) dyssynchrony and 'strain' parameters [septal rebound, global longitudinal 'strain' (GLS), LBBB pattern, and mechanical dispersion). Baseline left ventricular ejection fraction (LVEF) was 27.5 ± 7%, and LV end-systolic volume (LVESV) was 138 ± 77 mL, without differences between groups. Longitudinal analysis showed LVEF and LVESV improvement (P < 0.001), without between-group differences. At 12-month follow-up, adjusted mean LVEF was 46% with CSP (95% CI 42.2 and 49.3%) vs. 43% with BiVP (95% CI 39.6 and 45.8%), (P = 0.31), and LVESV was 80 mL (95% CI 55.3 and 104.5 mL) vs. 100 mL (95% CI 78.7 and 121.6 mL), respectively (P = 0.66). Longitudinal analysis showed a significant improvement of all dyssynchrony parameters and GLS over time (P < 0.001), without differences between groups. Baseline GLS significantly correlated with LVEF and LVESV at 12-month follow-up. CONCLUSION CSP and BiVP provided similar dyssynchrony and 'strain' correction over time. Baseline global longitudinal 'strain' predicted ventricular remodelling at 12-month follow-up.
Collapse
Affiliation(s)
- Margarida Pujol-López
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, Universitat de Barcelona, Villarroel 170, 08036 Barcelona, Catalonia, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 249-253, 08036 Barcelona, Catalonia, Spain
| | - Rafael Jiménez-Arjona
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, Universitat de Barcelona, Villarroel 170, 08036 Barcelona, Catalonia, Spain
| | - Cora Garcia-Ribas
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 249-253, 08036 Barcelona, Catalonia, Spain
| | - Roger Borràs
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, Universitat de Barcelona, Villarroel 170, 08036 Barcelona, Catalonia, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 249-253, 08036 Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red; Salud Mental (CIBERSAM), Instituto de Salut Carlos III, Madrid, Spain
| | - Eduard Guasch
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, Universitat de Barcelona, Villarroel 170, 08036 Barcelona, Catalonia, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 249-253, 08036 Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red; Enfermedades Cardiovasculares (CIBERCV), Instituto de Salut Carlos III, Madrid, Spain
| | - Mariona Regany-Closa
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, Universitat de Barcelona, Villarroel 170, 08036 Barcelona, Catalonia, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 249-253, 08036 Barcelona, Catalonia, Spain
| | - Freddy R Graterol
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, Universitat de Barcelona, Villarroel 170, 08036 Barcelona, Catalonia, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 249-253, 08036 Barcelona, Catalonia, Spain
| | - Mireia Niebla
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, Universitat de Barcelona, Villarroel 170, 08036 Barcelona, Catalonia, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 249-253, 08036 Barcelona, Catalonia, Spain
| | - Esther Carro
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, Universitat de Barcelona, Villarroel 170, 08036 Barcelona, Catalonia, Spain
| | - Ivo Roca-Luque
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, Universitat de Barcelona, Villarroel 170, 08036 Barcelona, Catalonia, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 249-253, 08036 Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red; Enfermedades Cardiovasculares (CIBERCV), Instituto de Salut Carlos III, Madrid, Spain
| | - J Baptiste Guichard
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, Universitat de Barcelona, Villarroel 170, 08036 Barcelona, Catalonia, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 249-253, 08036 Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red; Enfermedades Cardiovasculares (CIBERCV), Instituto de Salut Carlos III, Madrid, Spain
| | - M Ángeles Castel
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, Universitat de Barcelona, Villarroel 170, 08036 Barcelona, Catalonia, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 249-253, 08036 Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red; Enfermedades Cardiovasculares (CIBERCV), Instituto de Salut Carlos III, Madrid, Spain
| | - Elena Arbelo
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, Universitat de Barcelona, Villarroel 170, 08036 Barcelona, Catalonia, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 249-253, 08036 Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red; Enfermedades Cardiovasculares (CIBERCV), Instituto de Salut Carlos III, Madrid, Spain
| | - Andreu Porta-Sánchez
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, Universitat de Barcelona, Villarroel 170, 08036 Barcelona, Catalonia, Spain
| | - Josep Brugada
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, Universitat de Barcelona, Villarroel 170, 08036 Barcelona, Catalonia, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 249-253, 08036 Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red; Enfermedades Cardiovasculares (CIBERCV), Instituto de Salut Carlos III, Madrid, Spain
| | - Marta Sitges
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, Universitat de Barcelona, Villarroel 170, 08036 Barcelona, Catalonia, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 249-253, 08036 Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red; Enfermedades Cardiovasculares (CIBERCV), Instituto de Salut Carlos III, Madrid, Spain
| | - José M Tolosana
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, Universitat de Barcelona, Villarroel 170, 08036 Barcelona, Catalonia, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 249-253, 08036 Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red; Enfermedades Cardiovasculares (CIBERCV), Instituto de Salut Carlos III, Madrid, Spain
| | - Adelina Doltra
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, Universitat de Barcelona, Villarroel 170, 08036 Barcelona, Catalonia, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 249-253, 08036 Barcelona, Catalonia, Spain
| | - Lluís Mont
- Institut Clínic Cardiovascular (ICCV), Hospital Clínic, Universitat de Barcelona, Villarroel 170, 08036 Barcelona, Catalonia, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 249-253, 08036 Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red; Enfermedades Cardiovasculares (CIBERCV), Instituto de Salut Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Smiseth OA, Rider O, Cvijic M, Valkovič L, Remme EW, Voigt JU. Myocardial Strain Imaging: Theory, Current Practice, and the Future. JACC Cardiovasc Imaging 2024:S1936-878X(24)00301-2. [PMID: 39269417 DOI: 10.1016/j.jcmg.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 09/15/2024]
Abstract
Myocardial strain imaging by echocardiography or cardiac magnetic resonance (CMR) is a powerful method to diagnose cardiac disease. Strain imaging provides measures of myocardial shortening, thickening, and lengthening and can be applied to any cardiac chamber. Left ventricular (LV) global longitudinal strain by speckle-tracking echocardiography is the most widely used clinical strain parameter. Several CMR-based modalities are available and are ready to be implemented clinically. Clinical applications of strain include global longitudinal strain as a more sensitive method than ejection fraction for diagnosing mild systolic dysfunction. This applies to patients suspected of having heart failure with normal LV ejection fraction, to early systolic dysfunction in valvular disease, and when monitoring myocardial function during cancer chemotherapy. Segmental LV strain maps provide diagnostic clues in specific cardiomyopathies, when evaluating LV dyssynchrony and ischemic dysfunction. Strain imaging is a promising modality to quantify right ventricular function. Left atrial strain may be used to evaluate LV diastolic function and filling pressure.
Collapse
Affiliation(s)
- Otto A Smiseth
- Institute for Surgical Research, Division of Cardiovascular and Pulmonary Diseases, Oslo University Hospital, Rikshospitalet, and University of Oslo, Oslo, Norway.
| | - Oliver Rider
- Oxford Centre for Clinical Magnetic Resonance Research, RDM Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - Marta Cvijic
- Department of Cardiology, University Medical Centre Ljubljana, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ladislav Valkovič
- Oxford Centre for Clinical Magnetic Resonance Research, RDM Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom; Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Espen W Remme
- Institute for Surgical Research, Division of Cardiovascular and Pulmonary Diseases, Oslo University Hospital, Rikshospitalet, and University of Oslo, Oslo, Norway; The Intervention Center, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Jens-Uwe Voigt
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium; Department of Cardiovascular Sciences, KU Leuven-University of Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Lazăr-Höcher AI, Cozma D, Cirin L, Cozgarea A, Faur-Grigori AA, Catană R, Tudose DG, Târtea G, Crișan S, Gaiță D, Luca CT, Văcărescu C. A Comparative Analysis of Apical Rocking and Septal Flash: Two Views of the Same Systole? J Clin Med 2024; 13:3109. [PMID: 38892820 PMCID: PMC11172686 DOI: 10.3390/jcm13113109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/11/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Heart failure (HF) is a complex medical condition characterized by both electrical and mechanical dyssynchrony. Both dyssynchrony mechanisms are intricately linked together, but the current guidelines for cardiac resynchronization therapy (CRT) rely only on the electrical dyssynchrony criteria, such as the QRS complex duration. This possible inconsistency may result in undertreating eligible individuals who could benefit from CRT due to their mechanical dyssynchrony, even if they fail to fulfill the electrical criteria. The main objective of this literature review is to provide a comprehensive analysis of the practical value of echocardiography for the assessment of left ventricular (LV) dyssynchrony using parameters such as septal flash and apical rocking, which have proven their relevance in patient selection for CRT. The secondary objectives aim to offer an overview of the relationship between septal flash and apical rocking, to emphasize the primary drawbacks and benefits of using echocardiography for evaluation of septal flash and apical rocking, and to offer insights into potential clinical applications and future research directions in this area. Conclusion: there is an opportunity to render resynchronization therapy more effective for every individual; septal flash and apical rocking could be a very useful and straightforward echocardiography resource.
Collapse
Affiliation(s)
- Alexandra-Iulia Lazăr-Höcher
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.-I.L.-H.); (L.C.); (A.C.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania; (A.-A.F.-G.); (S.C.); (D.G.); (C.-T.L.); (C.V.)
| | - Dragoș Cozma
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania; (A.-A.F.-G.); (S.C.); (D.G.); (C.-T.L.); (C.V.)
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Liviu Cirin
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.-I.L.-H.); (L.C.); (A.C.)
| | - Andreea Cozgarea
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.-I.L.-H.); (L.C.); (A.C.)
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania
| | - Adelina-Andreea Faur-Grigori
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania; (A.-A.F.-G.); (S.C.); (D.G.); (C.-T.L.); (C.V.)
| | - Rafael Catană
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Dănuț George Tudose
- Institute of Cardiovascular Diseases C.C. Iliescu, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Georgică Târtea
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Simina Crișan
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania; (A.-A.F.-G.); (S.C.); (D.G.); (C.-T.L.); (C.V.)
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Dan Gaiță
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania; (A.-A.F.-G.); (S.C.); (D.G.); (C.-T.L.); (C.V.)
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Constantin-Tudor Luca
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania; (A.-A.F.-G.); (S.C.); (D.G.); (C.-T.L.); (C.V.)
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Cristina Văcărescu
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania; (A.-A.F.-G.); (S.C.); (D.G.); (C.-T.L.); (C.V.)
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| |
Collapse
|
6
|
Koopsen T, van Osta N, van Loon T, Meiburg R, Huberts W, Beela AS, Kirkels FP, van Klarenbosch BR, Teske AJ, Cramer MJ, Bijvoet GP, van Stipdonk A, Vernooy K, Delhaas T, Lumens J. Parameter subset reduction for imaging-based digital twin generation of patients with left ventricular mechanical discoordination. Biomed Eng Online 2024; 23:46. [PMID: 38741182 DOI: 10.1186/s12938-024-01232-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/02/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Integration of a patient's non-invasive imaging data in a digital twin (DT) of the heart can provide valuable insight into the myocardial disease substrates underlying left ventricular (LV) mechanical discoordination. However, when generating a DT, model parameters should be identifiable to obtain robust parameter estimations. In this study, we used the CircAdapt model of the human heart and circulation to find a subset of parameters which were identifiable from LV cavity volume and regional strain measurements of patients with different substrates of left bundle branch block (LBBB) and myocardial infarction (MI). To this end, we included seven patients with heart failure with reduced ejection fraction (HFrEF) and LBBB (study ID: 2018-0863, registration date: 2019-10-07), of which four were non-ischemic (LBBB-only) and three had previous MI (LBBB-MI), and six narrow QRS patients with MI (MI-only) (study ID: NL45241.041.13, registration date: 2013-11-12). Morris screening method (MSM) was applied first to find parameters which were important for LV volume, regional strain, and strain rate indices. Second, this parameter subset was iteratively reduced based on parameter identifiability and reproducibility. Parameter identifiability was based on the diaphony calculated from quasi-Monte Carlo simulations and reproducibility was based on the intraclass correlation coefficient ( ICC ) obtained from repeated parameter estimation using dynamic multi-swarm particle swarm optimization. Goodness-of-fit was defined as the mean squared error (χ 2 ) of LV myocardial strain, strain rate, and cavity volume. RESULTS A subset of 270 parameters remained after MSM which produced high-quality DTs of all patients (χ 2 < 1.6), but minimum parameter reproducibility was poor (ICC min = 0.01). Iterative reduction yielded a reproducible (ICC min = 0.83) subset of 75 parameters, including cardiac output, global LV activation duration, regional mechanical activation delay, and regional LV myocardial constitutive properties. This reduced subset produced patient-resembling DTs (χ 2 < 2.2), while septal-to-lateral wall workload imbalance was higher for the LBBB-only DTs than for the MI-only DTs (p < 0.05). CONCLUSIONS By applying sensitivity and identifiability analysis, we successfully determined a parameter subset of the CircAdapt model which can be used to generate imaging-based DTs of patients with LV mechanical discoordination. Parameters were reproducibly estimated using particle swarm optimization, and derived LV myocardial work distribution was representative for the patient's underlying disease substrate. This DT technology enables patient-specific substrate characterization and can potentially be used to support clinical decision making.
Collapse
Affiliation(s)
- Tijmen Koopsen
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| | - Nick van Osta
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Tim van Loon
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Roel Meiburg
- Group SIMBIOTX, Institut de Recherche en Informatique et en Automatique (INRIA), Paris, France
| | - Wouter Huberts
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Ahmed S Beela
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Cardiology, Suez Canal University, Ismailia, Egypt
| | - Feddo P Kirkels
- Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Bas R van Klarenbosch
- Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Arco J Teske
- Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Maarten J Cramer
- Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Geertruida P Bijvoet
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Cardiology, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands
| | - Antonius van Stipdonk
- Department of Cardiology, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands
| | - Kevin Vernooy
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Cardiology, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands
- Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tammo Delhaas
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
7
|
Sperlongano S, Benfari G, Ilardi F, Lisi M, Malagoli A, Mandoli GE, Pastore MC, Mele D, Cameli M, D'Andrea A. Role of speckle tracking echocardiography beyond current guidelines in cardiac resynchronization therapy. Int J Cardiol 2024; 402:131885. [PMID: 38382847 DOI: 10.1016/j.ijcard.2024.131885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 01/11/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Cardiac resynchronization therapy (CRT) is a device-based treatment applied to patients with a specific profile of heart failure. According to current guidelines, indication for CRT is given on the basis of QRS morphology and duration, and traditional transthoracic echocardiography is mainly used to estimate left ventricular (LV) ejection fraction. However, the identification of patients who may benefit from CRT remains challenging, since the application of the above-mentioned guidelines is still associated with a high rate of non-responders. The assessment of various aspects of LV mechanics (including contractile synchrony, coordination and propagation, and myocardial work) performed by conventional and novel ultrasound technologies, first of all speckle tracking echocardiography (STE), may provide additional, useful information for CRT patients' selection, in particular among non-LBBB patients, who generally respond less to CRT. A multiparametric approach, based on the combination of ECG criteria and echocardiographic indices of LV dyssynchrony/discoordination would be desirable to improve the prediction of CRT response.
Collapse
Affiliation(s)
- Simona Sperlongano
- Division of Cardiology, Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy.
| | - Giovanni Benfari
- Section of Cardiology, Department of Medicine, University of Verona, Verona, Italy
| | - Federica Ilardi
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy; Mediterranea Cardiocentro, Naples, Italy
| | - Matteo Lisi
- Department of Cardiovascular Disease - AUSL Romagna, Division of Cardiology, Ospedale S. Maria delle Croci, Ravenna, Italy
| | - Alessandro Malagoli
- Division of Cardiology, Nephro-Cardiovascular Department, Baggiovara Hospital, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Elena Mandoli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Siena, Italy
| | - Maria Concetta Pastore
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Siena, Italy
| | - Donato Mele
- Department of Cardiac Thoracic Vascular Sciences, University of Padua, Padua, Italy
| | - Matteo Cameli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Siena, Italy
| | - Antonello D'Andrea
- Division of Cardiology, Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy; Department of Cardiology, Umberto I Hospital, Nocera Inferiore, Italy
| |
Collapse
|
8
|
Chubb H, Salvador M, Marsden AL. Computational modelling of cardiac resynchronization therapy in congenital heart disease: fantasy or the future? Europace 2024; 26:euae027. [PMID: 38266146 PMCID: PMC10838144 DOI: 10.1093/europace/euae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024] Open
Affiliation(s)
- Henry Chubb
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford University, 750 Welch Road, Palo Alto, CA 94304-5701, USA
| | - Matteo Salvador
- Department of Bioengineering, Stanford University, Palo Alto, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Palo Alto, CA, USA
| | - Alison L Marsden
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford University, 750 Welch Road, Palo Alto, CA 94304-5701, USA
- Department of Bioengineering, Stanford University, Palo Alto, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Palo Alto, CA, USA
- Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
9
|
Ložek M, Kovanda J, Kubuš P, Vrbík M, Lhotská L, Lumens J, Delhaas T, Janoušek J. How to assess and treat right ventricular electromechanical dyssynchrony in post-repair tetralogy of Fallot: insights from imaging, invasive studies, and computational modelling. Europace 2024; 26:euae024. [PMID: 38266248 PMCID: PMC10838147 DOI: 10.1093/europace/euae024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND AND AIMS Right bundle branch block (RBBB) and resulting right ventricular (RV) electromechanical discoordination are thought to play a role in the disease process of subpulmonary RV dysfunction that frequently occur post-repair tetralogy of Fallot (ToF). We sought to describe this disease entity, the role of pulmonary re-valvulation, and the potential added value of RV cardiac resynchronization therapy (RV-CRT). METHODS Two patients with repaired ToF, complete RBBB, pulmonary regurgitation, and significantly decreased RV function underwent echocardiography, cardiac magnetic resonance, and an invasive study to evaluate the potential for RV-CRT as part of the management strategy. The data were used to personalize the CircAdapt model of the human heart and circulation. Resulting Digital Twins were analysed to quantify the relative effects of RV pressure and volume overload and to predict the effect of RV-CRT. RESULTS Echocardiography showed components of a classic RV dyssynchrony pattern which could be reversed by RV-CRT during invasive study and resulted in acute improvement in RV systolic function. The Digital Twins confirmed a contribution of electromechanical RV dyssynchrony to RV dysfunction and suggested improvement of RV contraction efficiency after RV-CRT. The one patient who underwent successful permanent RV-CRT as part of the pulmonary re-valvulation procedure carried improvements that were in line with the predictions based on his Digital Twin. CONCLUSION An integrative diagnostic approach to RV dysfunction, including the construction of Digital Twins may help to identify candidates for RV-CRT as part of the lifetime management of ToF and similar congenital heart lesions.
Collapse
Affiliation(s)
- Miroslav Ložek
- Children's Heart Center, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Úvalu 84, 150 06 Prague, Czech Republic
- Department of Biomedical Informatics, 1st Faculty of Medicine, Charles University in Prague, Kateřinská 1660/32, 121 08 Prague, Czech Republic
| | - Jan Kovanda
- Children's Heart Center, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Úvalu 84, 150 06 Prague, Czech Republic
| | - Peter Kubuš
- Children's Heart Center, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Úvalu 84, 150 06 Prague, Czech Republic
| | - Michal Vrbík
- Children's Heart Center, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Úvalu 84, 150 06 Prague, Czech Republic
| | - Lenka Lhotská
- Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Jugoslávských partyzánů 1580/3, 160 00 Prague, Czech Republic
| | - Joost Lumens
- Maastricht University Medical Center, CARIM School for Cardiovascular Diseases, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Tammo Delhaas
- Maastricht University Medical Center, CARIM School for Cardiovascular Diseases, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Jan Janoušek
- Children's Heart Center, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Úvalu 84, 150 06 Prague, Czech Republic
| |
Collapse
|
10
|
Abu-Alrub S, Strik M, Huntjens P, Haïssaguerre M, Eschalier R, Bordachar P, Ploux S. Current Role of Electrocardiographic Imaging in Patient Selection for Cardiac Resynchronization Therapy. J Cardiovasc Dev Dis 2024; 11:24. [PMID: 38248894 PMCID: PMC10816019 DOI: 10.3390/jcdd11010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Cardiac resynchronization therapy (CRT) is a recognized therapy for heart failure with altered ejection fraction and abnormal left ventricular activation time. Since the introduction of the therapy, a 30% rate of non-responders is observed and unchanged. The 12-lead ECG remains the only recommended tool for patient selection to CRT. The 12-lead ECG is, however, limited in its inability to provide a precise pattern of regional electrical activity. Electrocardiographic imaging (ECGi) provides a non-invasive detailed mapping of cardiac activation and therefore appears as a promising tool for CRT candidates. The non-invasive ventricular activation maps acquired by ECGi have been primarily explored for the diagnosis and guidance of therapy in patients with atrial or ventricular tachyarrhythmia. However, the accuracy of the system in this field is lacking and needs further improvement before considering a clinical application. On the other hand, its use for patient selection for CRT is encouraging. In this review, we introduce the technical considerations and we describe how ECGi can precisely characterize ventricular activation, especially in patients with left bundle branch block, thus identifying the electrical substrate responsive to CRT.
Collapse
Affiliation(s)
- Saer Abu-Alrub
- Cardiology Department, Centre Hospitalier Universitaire Clermont-Ferrand, 63000 Clermont-Ferrand, France;
| | - Marc Strik
- Cardio-Thoracic Unit, Bordeaux University Hospital (Centre Hospitalier Universitaire), 33600 Pessac-Bordeaux, France; (M.S.); (S.P.); (P.B.); (M.H.)
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, F-33600 Pessac-Bordeaux, France
| | - Peter Huntjens
- Division of Cardiology, Washington University in St. Louis, St. Louis, MO 63110, USA;
| | - Michel Haïssaguerre
- Cardio-Thoracic Unit, Bordeaux University Hospital (Centre Hospitalier Universitaire), 33600 Pessac-Bordeaux, France; (M.S.); (S.P.); (P.B.); (M.H.)
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, F-33600 Pessac-Bordeaux, France
| | - Romain Eschalier
- Cardiology Department, Centre Hospitalier Universitaire Clermont-Ferrand, 63000 Clermont-Ferrand, France;
| | - Pierre Bordachar
- Cardio-Thoracic Unit, Bordeaux University Hospital (Centre Hospitalier Universitaire), 33600 Pessac-Bordeaux, France; (M.S.); (S.P.); (P.B.); (M.H.)
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, F-33600 Pessac-Bordeaux, France
| | - Sylvain Ploux
- Cardio-Thoracic Unit, Bordeaux University Hospital (Centre Hospitalier Universitaire), 33600 Pessac-Bordeaux, France; (M.S.); (S.P.); (P.B.); (M.H.)
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, F-33600 Pessac-Bordeaux, France
| |
Collapse
|
11
|
Henkens MTHM, Raafs AG, Vanloon T, Vos JL, Vandenwijngaard A, Brunner HG, Krapels IPC, Knackstedt C, Gerretsen S, Hazebroek MR, Vernooy K, Nijveldt R, Lumens J, Verdonschot JAJ. Left Atrial Function in Patients with Titin Cardiomyopathy. J Card Fail 2024; 30:51-60. [PMID: 37230314 DOI: 10.1016/j.cardfail.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/01/2023] [Accepted: 05/01/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Truncating variants in titin (TTNtv) are the most prevalent genetic etiology of dilated cardiomyopathy (DCM). Although TTNtv has been associated with atrial fibrillation, it remains unknown whether and how left atrial (LA) function differs between patients with DCM with and without TTNtv. We aimed to determine and compare LA function in patients with DCM with and without TTNtv and to evaluate whether and how left ventricular (LV) function affects the LA using computational modeling. METHODS AND RESULTS Patients with DCM from the Maastricht DCM registry that underwent genetic testing and cardiovascular magnetic resonance (CMR) were included in the current study. Subsequent computational modeling (CircAdapt model) was performed to identify potential LV and LA myocardial hemodynamic substrates. In total, 377 patients with DCM (n = 42 with TTNtv, n = 335 without a genetic variant) were included (median age 55 years, interquartile range [IQR] 46-62 years, 62% men). Patients with TTNtv had a larger LA volume and decreased LA strain compared with patients without a genetic variant (LA volume index 60 mLm-2 [IQR 49-83] vs 51 mLm-2 [IQR 42-64]; LA reservoir strain 24% [IQR 10-29] vs 28% [IQR 20-34]; LA booster strain 9% [IQR 4-14] vs 14% [IQR 10-17], respectively; all P < .01). Computational modeling suggests that while the observed LV dysfunction partially explains the observed LA dysfunction in the patients with TTNtv, both intrinsic LV and LA dysfunction are present in patients with and without a TTNtv. CONCLUSIONS Patients with DCM with TTNtv have more severe LA dysfunction compared with patients without a genetic variant. Insights from computational modeling suggest that both intrinsic LV and LA dysfunction are present in patients with DCM with and without TTNtv.
Collapse
Affiliation(s)
- Michiel T H M Henkens
- Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands; Centre for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands; Netherlands Heart Institute (NLHI), Utrecht, the Netherlands
| | - Anne G Raafs
- Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands; Centre for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Tim Vanloon
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Jacqueline L Vos
- Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Arthur Vandenwijngaard
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Han G Brunner
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands; GROW Institute for Developmental Biology and Cancer, Maastricht University, Maastricht, the Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ingrid P C Krapels
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Christian Knackstedt
- Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands; Centre for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Suzanne Gerretsen
- Department of Radiology and Nuclear Medicine, Cardiovascular research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Mark R Hazebroek
- Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Kevin Vernooy
- Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands; Centre for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Robin Nijveldt
- Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joost Lumens
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Job A J Verdonschot
- Centre for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands; Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands.
| |
Collapse
|
12
|
Stankovic I, Voigt JU, Burri H, Muraru D, Sade LE, Haugaa KH, Lumens J, Biffi M, Dacher JN, Marsan NA, Bakelants E, Manisty C, Dweck MR, Smiseth OA, Donal E. Imaging in patients with cardiovascular implantable electronic devices: part 1-imaging before and during device implantation. A clinical consensus statement of the European Association of Cardiovascular Imaging (EACVI) and the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J Cardiovasc Imaging 2023; 25:e1-e32. [PMID: 37861372 DOI: 10.1093/ehjci/jead272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 10/15/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023] Open
Abstract
More than 500 000 cardiovascular implantable electronic devices (CIEDs) are implanted in the European Society of Cardiology countries each year. The role of cardiovascular imaging in patients being considered for CIED is distinctly different from imaging in CIED recipients. In the former group, imaging can help identify specific or potentially reversible causes of heart block, the underlying tissue characteristics associated with malignant arrhythmias, and the mechanical consequences of conduction delays and can also aid challenging lead placements. On the other hand, cardiovascular imaging is required in CIED recipients for standard indications and to assess the response to device implantation, to diagnose immediate and delayed complications after implantation, and to guide device optimization. The present clinical consensus statement (Part 1) from the European Association of Cardiovascular Imaging, in collaboration with the European Heart Rhythm Association, provides comprehensive, up-to-date, and evidence-based guidance to cardiologists, cardiac imagers, and pacing specialists regarding the use of imaging in patients undergoing implantation of conventional pacemakers, cardioverter defibrillators, and resynchronization therapy devices. The document summarizes the existing evidence regarding the use of imaging in patient selection and during the implantation procedure and also underlines gaps in evidence in the field. The role of imaging after CIED implantation is discussed in the second document (Part 2).
Collapse
Affiliation(s)
- Ivan Stankovic
- Clinical Hospital Centre Zemun, Department of Cardiology, Faculty of Medicine, University of Belgrade, Vukova 9, 11080 Belgrade, Serbia
| | - Jens-Uwe Voigt
- Department of Cardiovascular Diseases, University Hospitals Leuven/Department of Cardiovascular Sciences, Catholic University of Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Haran Burri
- Cardiac Pacing Unit, Cardiology Department, University Hospital of Geneva, Geneva, Switzerland
| | - Denisa Muraru
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Department of Cardiology, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Leyla Elif Sade
- University of Pittsburgh Medical Center, Heart and Vascular Institute, Pittsburgh, PA, USA
- Department of Cardiology, University of Baskent, Ankara, Turkey
| | - Kristina Hermann Haugaa
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine Karolinska Institutet AND Cardiovascular Division, Karolinska University Hospital, Stockholm Sweden
| | - Joost Lumens
- Cardiovascular Research Center Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Mauro Biffi
- Department of Cardiology, IRCCS, Azienda Ospedaliero Universitaria Di Bologna, Policlinico Di S.Orsola, Bologna, Italy
| | - Jean-Nicolas Dacher
- Department of Radiology, Normandie University, UNIROUEN, INSERM U1096 - Rouen University Hospital, F 76000 Rouen, France
| | - Nina Ajmone Marsan
- Department of Cardiology, Heart and Lung Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Elise Bakelants
- Cardiac Pacing Unit, Cardiology Department, University Hospital of Geneva, Geneva, Switzerland
| | - Charlotte Manisty
- Department of Cardiovascular Imaging, Barts Heart Centre, Barts Health NHS Trust, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Marc R Dweck
- Centre for Cardiovascular Science, University of Edinburgh, Little France Crescent, Edinburgh EH16 4SB, United Kingdom
| | - Otto A Smiseth
- Institute for Surgical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Erwan Donal
- University of Rennes, CHU Rennes, Inserm, LTSI-UMR 1099, Rennes, France
| |
Collapse
|
13
|
Duchenne J, Larsen CK, Cvijic M, Galli E, Aalen JM, Klop B, Mirea O, Puvrez A, Bézy S, Wouters L, Minten L, Sirnes PA, Khan FH, Voros G, Willems R, Penicka M, Kongsgård E, Hopp E, Bogaert J, Smiseth OA, Donal E, Voigt JU. Mechanical Dyssynchrony Combined with Septal Scarring Reliably Identifies Responders to Cardiac Resynchronization Therapy. J Clin Med 2023; 12:6108. [PMID: 37763048 PMCID: PMC10531814 DOI: 10.3390/jcm12186108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Background and aim: The presence of mechanical dyssynchrony on echocardiography is associated with reverse remodelling and decreased mortality after cardiac resynchronization therapy (CRT). Contrarily, myocardial scar reduces the effect of CRT. This study investigated how well a combined assessment of different markers of mechanical dyssynchrony and scarring identifies CRT responders. Methods: In a prospective multicentre study of 170 CRT recipients, septal flash (SF), apical rocking (ApRock), systolic stretch index (SSI), and lateral-to-septal (LW-S) work differences were assessed using echocardiography. Myocardial scarring was quantified using cardiac magnetic resonance imaging (CMR) or excluded based on a coronary angiogram and clinical history. The primary endpoint was a CRT response, defined as a ≥15% reduction in LV end-systolic volume 12 months after implantation. The secondary endpoint was time-to-death. Results: The combined assessment of mechanical dyssynchrony and septal scarring showed AUCs ranging between 0.81 (95%CI: 0.74-0.88) and 0.86 (95%CI: 0.79-0.91) for predicting a CRT response, without significant differences between the markers, but significantly higher than mechanical dyssynchrony alone. QRS morphology, QRS duration, and LV ejection fraction were not superior in their prediction. Predictive power was similar in the subgroups of patients with ischemic cardiomyopathy. The combined assessments significantly predicted all-cause mortality at 44 ± 13 months after CRT with a hazard ratio ranging from 0.28 (95%CI: 0.12-0.67) to 0.20 (95%CI: 0.08-0.49). Conclusions: The combined assessment of mechanical dyssynchrony and septal scarring identified CRT responders with high predictive power. Both visual and quantitative markers were highly feasible and demonstrated similar results. This work demonstrates the value of imaging LV mechanics and scarring in CRT candidates, which can already be achieved in a clinical routine.
Collapse
Affiliation(s)
- Jürgen Duchenne
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium (L.M.)
- Department of Cardiovascular Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Camilla K. Larsen
- Institute for Surgical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0313 Oslo, Norway
- Department of Cardiology, Oslo University Hospital, 0379 Oslo, Norway
| | - Marta Cvijic
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium (L.M.)
- Department of Cardiovascular Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Elena Galli
- Inserm, LTSI-UMR, 1099, 35042 Rennes, France; (E.G.)
- Department of Cardiology, CHU Rennes, 35033 Rennes, France
| | - John M. Aalen
- Institute for Surgical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0313 Oslo, Norway
- Department of Cardiology, Oslo University Hospital, 0379 Oslo, Norway
| | - Boudewijn Klop
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium (L.M.)
- Department of Cardiovascular Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Oana Mirea
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium (L.M.)
- Department of Cardiovascular Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
- Department of Cardiology, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | - Alexis Puvrez
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium (L.M.)
- Department of Cardiovascular Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Stéphanie Bézy
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium (L.M.)
- Department of Cardiovascular Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Laurine Wouters
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium (L.M.)
- Department of Cardiovascular Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Lennert Minten
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium (L.M.)
- Department of Cardiovascular Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Per A. Sirnes
- Institute for Surgical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0313 Oslo, Norway
- Department of Cardiology, Oslo University Hospital, 0379 Oslo, Norway
| | - Faraz H. Khan
- Institute for Surgical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0313 Oslo, Norway
- Department of Cardiology, Oslo University Hospital, 0379 Oslo, Norway
| | - Gabor Voros
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium (L.M.)
- Department of Cardiovascular Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Rik Willems
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium (L.M.)
- Department of Cardiovascular Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Martin Penicka
- Cardiovascular Center Aalst, OLV Clinic, 9300 Aalst, Belgium
| | - Erik Kongsgård
- Institute for Surgical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0313 Oslo, Norway
- Department of Cardiology, Oslo University Hospital, 0379 Oslo, Norway
| | - Einar Hopp
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, 0379 Oslo, Norway
| | - Jan Bogaert
- Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
- Department of Radiology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Otto A. Smiseth
- Institute for Surgical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0313 Oslo, Norway
- Department of Cardiology, Oslo University Hospital, 0379 Oslo, Norway
| | - Erwan Donal
- Inserm, LTSI-UMR, 1099, 35042 Rennes, France; (E.G.)
- Department of Cardiology, CHU Rennes, 35033 Rennes, France
| | - Jens-Uwe Voigt
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium (L.M.)
- Department of Cardiovascular Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
14
|
Galli E, Galand V, Le Rolle V, Taconne M, Wazzan AA, Hernandez A, Leclercq C, Donal E. The saga of dyssynchrony imaging: Are we getting to the point. Front Cardiovasc Med 2023; 10:1111538. [PMID: 37063957 PMCID: PMC10103462 DOI: 10.3389/fcvm.2023.1111538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/27/2023] [Indexed: 04/03/2023] Open
Abstract
Cardiac resynchronisation therapy (CRT) has an established role in the management of patients with heart failure, reduced left ventricular ejection fraction (LVEF < 35%) and widened QRS (>130 msec). Despite the complex pathophysiology of left ventricular (LV) dyssynchrony and the increasing evidence supporting the identification of specific electromechanical substrates that are associated with a higher probability of CRT response, the assessment of LVEF is the only imaging-derived parameter used for the selection of CRT candidates.This review aims to (1) provide an overview of the evolution of cardiac imaging for the assessment of LV dyssynchrony and its role in the selection of patients undergoing CRT; (2) highlight the main pitfalls and advantages of the application of cardiac imaging for the assessment of LV dyssynchrony; (3) provide some perspectives for clinical application and future research in this field.Conclusionthe road for a more individualized approach to resynchronization therapy delivery is open and imaging might provide important input beyond the assessment of LVEF.
Collapse
|
15
|
Galli E, Baritussio A, Sitges M, Donnellan E, Jaber WA, Gimelli A. Multi-modality imaging to guide the implantation of cardiac electronic devices in heart failure: is the sum greater than the individual components? Eur Heart J Cardiovasc Imaging 2023; 24:163-176. [PMID: 36458875 DOI: 10.1093/ehjci/jeac237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022] Open
Abstract
Heart failure is a clinical syndrome with an increasing prevalence and incidence worldwide that impacts patients' quality of life, morbidity, and mortality. Implantable cardioverter-defibrillator and cardiac resynchronization therapy are pillars of managing patients with HF and reduced left ventricular ejection fraction. Despite the advances in cardiac imaging, the assessment of patients needing cardiac implantable electronic devices relies essentially on the measure of left ventricular ejection fraction. However, multi-modality imaging can provide important information concerning the aetiology of heart failure, the extent and localization of myocardial scar, and the pathophysiological mechanisms of left ventricular conduction delay. This paper aims to highlight the main novelties and progress in the field of multi-modality imaging to identify patients who will benefit from cardiac resynchronization therapy and/or implantable cardioverter-defibrillator. We also want to underscore the boundaries that prevent the application of imaging-derived parameters to patients who will benefit from cardiac implantable electronic devices and orient the choice of the device. Finally, we aim at providing some reflections for future research in this field.
Collapse
Affiliation(s)
- Elena Galli
- Department of Cardiology, University Hospital of Rennes, 35000 Rue Henri Le Guilloux, Rennes, France
| | - Anna Baritussio
- Cardiology, Department of Cardiac, Vascular, Thoracic Sciences and Public Health, University Hospital of Padua, 35121 Via Nicolò Giustiniani, Padua, Italy
| | - Marta Sitges
- Cardiovascular Institute, Hospital Clínic, Universitat de Barcelona, 08036 C. de Villarroel, Barcelona, Spain
| | - Eoin Donnellan
- Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Wael A Jaber
- Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Alessia Gimelli
- Fondazione Toscana G. Monasterio, 56124 Via Giuseppe Moruzzi, Pisa, Italy
| |
Collapse
|
16
|
Maffessanti F, Jadczyk T, Wilczek J, Conte G, Caputo ML, Gołba KS, Biernat J, Cybulska M, Caluori G, Regoli F, Krause R, Wojakowski W, Prinzen FW, Auricchio A. Electromechanical factors associated with favourable outcome in cardiac resynchronization therapy. Europace 2022; 25:546-553. [PMID: 36106562 PMCID: PMC9935025 DOI: 10.1093/europace/euac157] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/08/2022] [Indexed: 11/14/2022] Open
Abstract
AIMS Electromechanical coupling in patients receiving cardiac resynchronization therapy (CRT) is not fully understood. Our aim was to determine the best combination of electrical and mechanical substrates associated with effective CRT. METHODS AND RESULTS Sixty-two patients were prospectively enrolled from two centres. Patients underwent 12-lead electrocardiogram (ECG), cardiovascular magnetic resonance (CMR), echocardiography, and anatomo-electromechanical mapping (AEMM). Remodelling was measured as the end-systolic volume (ΔESV) decrease at 6 months. CRT was defined effective with ΔESV ≤ -15%. QRS duration (QRSd) was measured from ECG. Area strain was obtained from AEMM and used to derive systolic stretch index (SSI) and total left-ventricular mechanical time. Total left-ventricular activation time (TLVAT) and transeptal time (TST) were derived from AEMM and ECG. Scar was measured from CMR. Significant correlations were observed between ΔESV and TST [rho = 0.42; responder: 50 (20-58) vs. non-responder: 33 (8-44) ms], TLVAT [-0.68; 81 (73-97) vs. 112 (96-127) ms], scar [-0.27; 0.0 (0.0-1.2) vs. 8.7 (0.0-19.1)%], and SSI [0.41; 10.7 (7.1-16.8) vs. 4.2 (2.9-5.5)], but not QRSd [-0.13; 155 (140-176) vs. 167 (155-177) ms]. TLVAT and SSI were highly accurate in identifying CRT response [area under the curve (AUC) > 0.80], followed by scar (AUC > 0.70). Total left-ventricular activation time (odds ratio = 0.91), scar (0.94), and SSI (1.29) were independent factors associated with effective CRT. Subjects with SSI >7.9% and TLVAT <91 ms all responded to CRT with a median ΔESV ≈ -50%, while low SSI and prolonged TLVAT were more common in non-responders (ΔESV ≈ -5%). CONCLUSION Electromechanical measurements are better associated with CRT response than conventional ECG variables. The absence of scar combined with high SSI and low TLVAT ensures effectiveness of CRT.
Collapse
Affiliation(s)
| | - Tomasz Jadczyk
- Corresponding author. Tel: +48 32 252 39 30; fax: +48 32 252 39 30. E-mail address:
| | - Jacek Wilczek
- Department of Electrocardiology and Heart Failure, Medical University of Silesia, Katowice, Poland
| | - Giulio Conte
- Division of Cardiology, Istituto Cardiocentro Ticino, Lugano, Switzerland
| | - Maria Luce Caputo
- Division of Cardiology, Istituto Cardiocentro Ticino, Lugano, Switzerland
| | - Krzysztof S Gołba
- Department of Electrocardiology and Heart Failure, Medical University of Silesia, Katowice, Poland
| | - Jolanta Biernat
- Department of Electrocardiology and Heart Failure, Medical University of Silesia, Katowice, Poland
| | - Magdalena Cybulska
- Department of Electrocardiology and Heart Failure, Medical University of Silesia, Katowice, Poland
| | - Guido Caluori
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, University of Bordeaux & INSERM, U 1045,Cardiothoracic Research Center of Bordeaux, Pessac, France
| | - François Regoli
- Division of Cardiology, Istituto Cardiocentro Ticino, Lugano, Switzerland,Cardiology Service, Ospedale Regionale di Bellinzona e Valli, Bellinzona, Switzerland
| | - Rolf Krause
- Center for Computational Medicine in Cardiology, Università della Svizzera Italiana, Lugano, Switzerland,Euler institute, Università della Svizzera Italiana, Lugano, Switzerland
| | - Wojciech Wojakowski
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
| | - Frits W Prinzen
- Department of Physiology, CARIM, Maastricht University, Maastricht, The Netherlands
| | - Angelo Auricchio
- Center for Computational Medicine in Cardiology, Università della Svizzera Italiana, Lugano, Switzerland,Division of Cardiology, Istituto Cardiocentro Ticino, Lugano, Switzerland
| |
Collapse
|
17
|
Prinzen FW, Auricchio A, Mullens W, Linde C, Huizar JF. Electrical management of heart failure: from pathophysiology to treatment. Eur Heart J 2022; 43:1917-1927. [PMID: 35265992 PMCID: PMC9123241 DOI: 10.1093/eurheartj/ehac088] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/02/2021] [Accepted: 02/22/2022] [Indexed: 11/14/2022] Open
Abstract
Electrical disturbances, such as atrial fibrillation (AF), dyssynchrony, tachycardia, and premature ventricular contractions (PVCs), are present in most patients with heart failure (HF). While these disturbances may be the consequence of HF, increasing evidence suggests that they may also cause or aggravate HF. Animal studies show that longer-lasting left bundle branch block, tachycardia, AF, and PVCs lead to functional derangements at the organ, cellular, and molecular level. Conversely, electrical treatment may reverse or mitigate HF. Clinical studies have shown the superiority of atrial and pulmonary vein ablation for rhythm control and AV nodal ablation for rate control in AF patients when compared with medical treatment. Ablation of PVCs can also improve left ventricular function. Cardiac resynchronization therapy (CRT) is an established adjunct therapy currently undergoing several interesting innovations. The current guideline recommendations reflect the safety and efficacy of these ablation therapies and CRT, but currently, these therapies are heavily underutilized. This review focuses on the electrical treatment of HF with reduced ejection fraction (HFrEF). We believe that the team of specialists treating an HF patient should incorporate an electrophysiologist in order to achieve a more widespread use of electrical therapies in the management of HFrEF and should also include individual conditions of the patient, such as body size and gender in therapy fine-tuning.
Collapse
Affiliation(s)
- Frits W Prinzen
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Angelo Auricchio
- Division of Cardiology, Istituto Cardiocentro Ticino, Lugano, Switzerland
| | - Wilfried Mullens
- Ziekenhuis Oost Limburg, Genk, Belgium
- Biomedical Research Institute, Faculty of Medicine and Life Sciences, University Hasselt, Hasselt, Belgium
| | - Cecilia Linde
- Department of Medicine, Karolinska Institutet, Solna, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Jose F Huizar
- Cardiology Division, Virginia Commonwealth University/Pauley Heart Center, Richmond, VA, USA
- Cardiology Division, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA, USA
| |
Collapse
|
18
|
Koopsen T, Van Osta N, Van Loon T, Van Nieuwenhoven FA, Prinzen FW, Van Klarenbosch BR, Kirkels FP, Teske AJ, Vernooy K, Delhaas T, Lumens J. A Lumped Two-Compartment Model for Simulation of Ventricular Pump and Tissue Mechanics in Ischemic Heart Disease. Front Physiol 2022; 13:782592. [PMID: 35634163 PMCID: PMC9130776 DOI: 10.3389/fphys.2022.782592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction: Computational modeling of cardiac mechanics and hemodynamics in ischemic heart disease (IHD) is important for a better understanding of the complex relations between ischemia-induced heterogeneity of myocardial tissue properties, regional tissue mechanics, and hemodynamic pump function. We validated and applied a lumped two-compartment modeling approach for IHD integrated into the CircAdapt model of the human heart and circulation. Methods: Ischemic contractile dysfunction was simulated by subdividing a left ventricular (LV) wall segment into a hypothetical contractile and noncontractile compartment, and dysfunction severity was determined by the noncontractile volume fraction (NCVF). Myocardial stiffness was determined by the zero-passive stress length (Ls0,pas) and nonlinearity (kECM) of the passive stress-sarcomere length relation of the noncontractile compartment. Simulated end-systolic pressure volume relations (ESPVRs) for 20% acute ischemia were qualitatively compared between a two- and one-compartment simulation, and parameters of the two-compartment model were tuned to previously published canine data of regional myocardial deformation during acute and prolonged ischemia and reperfusion. In six patients with myocardial infarction (MI), the NCVF was automatically estimated using the echocardiographic LV strain and volume measurements obtained acutely and 6 months after MI. Estimated segmental NCVF values at the baseline and 6-month follow-up were compared with percentage late gadolinium enhancement (LGE) at 6-month follow-up. Results: Simulation of 20% of NCVF shifted the ESPVR rightward while moderately reducing the slope, while a one-compartment simulation caused a leftward shift with severe reduction in the slope. Through tuning of the NCVF, Ls0,pas, and kECM, it was found that manipulation of the NCVF alone reproduced the deformation during acute ischemia and reperfusion, while additional manipulations of Ls0,pas and kECM were required to reproduce deformation during prolonged ischemia and reperfusion. Out of all segments with LGE>25% at the follow-up, the majority (68%) had higher estimated NCVF at the baseline than at the follow-up. Furthermore, the baseline NCVF correlated better with percentage LGE than NCVF did at the follow-up. Conclusion: We successfully used a two-compartment model for simulation of the ventricular pump and tissue mechanics in IHD. Patient-specific optimizations using regional myocardial deformation estimated the NCVF in a small cohort of MI patients in the acute and chronic phase after MI, while estimated NCVF values closely approximated the extent of the myocardial scar at the follow-up. In future studies, this approach can facilitate deformation imaging–based estimation of myocardial tissue properties in patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Tijmen Koopsen
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
- *Correspondence: Tijmen Koopsen,
| | - Nick Van Osta
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Tim Van Loon
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Frans A. Van Nieuwenhoven
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Frits W. Prinzen
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Bas R. Van Klarenbosch
- Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Feddo P. Kirkels
- Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Arco J. Teske
- Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Kevin Vernooy
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tammo Delhaas
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
19
|
Fixsen LS, Wouters PC, Lopata RGP, Kemps HMC. Strain-based discoordination imaging during exercise in heart failure with reduced ejection fraction: Feasibility and reproducibility. BMC Cardiovasc Disord 2022; 22:127. [PMID: 35337295 PMCID: PMC8957182 DOI: 10.1186/s12872-022-02578-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/15/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Various parameters of mechanical dyssynchrony have been proposed to improve patient selection criteria for cardiac resynchronization therapy, but sensitivity and specificity are lacking. However, echocardiographic parameters are consistently investigated at rest, whereas heart failure (HF) symptoms predominately manifest during submaximal exertion. Although strain-based predictors of response are promising, feasibility and reproducibility during exercise has yet to be demonstrated. METHODS Speckle-tracking echocardiography was performed in patients with HF at two separate visits. Echocardiography was performed at rest, during various exercise intensity levels, and during recovery from exercise. Systolic rebound stretch of the septum (SRSsept), systolic shortening, and septal discoordination index (SDI) were calculated. RESULTS Echocardiography was feasible in about 70-80% of all examinations performed during exercise. Of these acquired views, 84% of the cine-loops were suitable for analysis of strain-based mechanical dyssynchrony. Test-retest variability and intra- and inter-operator reproducibility at 30% and 60% of the ventilatory threshold (VT) were about 2.5%. SDI improved in the majority of patients at 30% and 60% of the VT, with moderate to good agreement between both intensity levels. CONCLUSION Although various challenges remain, exercise echocardiography with strain analysis appears to be feasible in the majority of patients with dyssynchronous heart failure. Inter- and intra-observer agreement of SRSsept and SDI up to 60% of the VT were comparable to resting values. During exercise, the extent of SDI was variable, suggesting a heterogeneous response to exercise. Further research is warranted to establish its clinical significance.
Collapse
Affiliation(s)
- Louis S Fixsen
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
| | - Philippe C Wouters
- Department of Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Richard G P Lopata
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Hareld M C Kemps
- Department of Cardiology, Maxima Medical Centre, Veldhoven, The Netherlands.,Department of Industrial Design, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
20
|
Owashi K, Taconné M, Courtial N, Simon A, Garreau M, Hernandez A, Donal E, Le Rolle V, Galli E. Desynchronization Strain Patterns and Contractility in Left Bundle Branch Block through Computer Model Simulation. J Cardiovasc Dev Dis 2022; 9:53. [PMID: 35200706 PMCID: PMC8875371 DOI: 10.3390/jcdd9020053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 01/24/2023] Open
Abstract
Left bundle branch block (LBBB) is associated with specific septal-to-lateral wall activation patterns which are strongly influenced by the intrinsic left ventricular (LV) contractility and myocardial scar localization. The objective of this study was to propose a computational-model-based interpretation of the different patterns of LV contraction observed in the case of LBBB and preserved contractility or myocardial scarring. Two-dimensional transthoracic echocardiography was used to obtain LV volumes and deformation patterns in three patients with LBBB: (1) a patient with non-ischemic dilated cardiomyopathy, (2) a patient with antero-septal myocardial scar, and (3) a patient with lateral myocardial scar. Scar was confirmed by the distribution of late gadolinium enhancement with cardiac magnetic resonance imaging (cMRI). Model parameters were evaluated manually to reproduce patient-derived data such as strain curves obtained from echocardiographic apical views. The model was able to reproduce the specific strain patterns observed in patients. A typical septal flash with pre-ejection shortening, rebound stretch, and delayed lateral wall activation was observed in the case of non-ischemic cardiomyopathy. In the case of lateral scar, the contractility of the lateral wall was significantly impaired and septal flash was absent. In the case of septal scar, septal flash and rebound stretch were also present as previously described in the literature. Interestingly, the model was also able to simulate the specific contractile properties of the myocardium, providing an excellent localization of LV scar in ischemic patients. The model was able to simulate the electromechanical delay and specific contractility patterns observed in patients with LBBB of ischemic and non-ischemic etiology. With further improvement and validation, this technique might be a useful tool for the diagnosis and treatment planning of heart failure patients needing CRT.
Collapse
|
21
|
Glikson M, Nielsen JC, Kronborg MB, Michowitz Y, Auricchio A, Barbash IM, Barrabés JA, Boriani G, Braunschweig F, Brignole M, Burri H, Coats AJ, Deharo JC, Delgado V, Diller GP, Israel CW, Keren A, Knops RE, Kotecha D, Leclercq C, Merkely B, Starck C, Thylén I, Tolosana JM. Grupo de trabajo sobre estimulación cardiaca y terapia de resincronización cardiaca de la Sociedad Europea de Cardiología (ESC). Rev Esp Cardiol 2022. [DOI: 10.1016/j.recesp.2021.10.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Abstract
The role of electromechanical dyssynchrony in heart failure gained prominence in literature with the results of trials of cardiac resynchronization therapy (CRT). CRT has shown to significantly decrease heart failure hospitalization and mortality in heart failure patients with dyssynchrony. Current guidelines recommend the use of electrical dyssynchrony based on a QRS > 150 ms and a left bundle branch block pattern on surface electrocardiogram to identify dyssynchrony in patients who will benefit from CRT implantation. However, predicting response to CRT remains a challenge with nearly one-third of patients gaining no benefit from the device. Multiple echocardiographic measures of mechanical dyssynchrony have been studied over the past two decade. However, trials where mechanical dyssynchrony used as an additional or lone criteria for CRT failed to show any benefit in the response to CRT. This shows that a deeper understanding of cardiac mechanics should be applied in the assessment of dyssynchrony. This review discusses the evolving role of imaging techniques in assessing cardiac dyssynchrony and their application in patients considered for device therapy.
Collapse
|
23
|
Glikson M, Nielsen JC, Kronborg MB, Michowitz Y, Auricchio A, Barbash IM, Barrabés JA, Boriani G, Braunschweig F, Brignole M, Burri H, Coats AJS, Deharo JC, Delgado V, Diller GP, Israel CW, Keren A, Knops RE, Kotecha D, Leclercq C, Merkely B, Starck C, Thylén I, Tolosana JM, Leyva F, Linde C, Abdelhamid M, Aboyans V, Arbelo E, Asteggiano R, Barón-Esquivias G, Bauersachs J, Biffi M, Birgersdotter-Green U, Bongiorni MG, Borger MA, Čelutkienė J, Cikes M, Daubert JC, Drossart I, Ellenbogen K, Elliott PM, Fabritz L, Falk V, Fauchier L, Fernández-Avilés F, Foldager D, Gadler F, De Vinuesa PGG, Gorenek B, Guerra JM, Hermann Haugaa K, Hendriks J, Kahan T, Katus HA, Konradi A, Koskinas KC, Law H, Lewis BS, Linker NJ, Løchen ML, Lumens J, Mascherbauer J, Mullens W, Nagy KV, Prescott E, Raatikainen P, Rakisheva A, Reichlin T, Ricci RP, Shlyakhto E, Sitges M, Sousa-Uva M, Sutton R, Suwalski P, Svendsen JH, Touyz RM, Van Gelder IC, Vernooy K, Waltenberger J, Whinnett Z, Witte KK. 2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. Europace 2022; 24:71-164. [PMID: 34455427 DOI: 10.1093/europace/euab232] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
24
|
Khamzin S, Dokuchaev A, Bazhutina A, Chumarnaya T, Zubarev S, Lyubimtseva T, Lebedeva V, Lebedev D, Gurev V, Solovyova O. Machine Learning Prediction of Cardiac Resynchronisation Therapy Response From Combination of Clinical and Model-Driven Data. Front Physiol 2022; 12:753282. [PMID: 34970154 PMCID: PMC8712879 DOI: 10.3389/fphys.2021.753282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Up to 30–50% of chronic heart failure patients who underwent cardiac resynchronization therapy (CRT) do not respond to the treatment. Therefore, patient stratification for CRT and optimization of CRT device settings remain a challenge. Objective: The main goal of our study is to develop a predictive model of CRT outcome using a combination of clinical data recorded in patients before CRT and simulations of the response to biventricular (BiV) pacing in personalized computational models of the cardiac electrophysiology. Materials and Methods: Retrospective data from 57 patients who underwent CRT device implantation was utilized. Positive response to CRT was defined by a 10% increase in the left ventricular ejection fraction in a year after implantation. For each patient, an anatomical model of the heart and torso was reconstructed from MRI and CT images and tailored to ECG recorded in the participant. The models were used to compute ventricular activation time, ECG duration and electrical dyssynchrony indices during intrinsic rhythm and BiV pacing from the sites of implanted leads. For building a predictive model of CRT response, we used clinical data recorded before CRT device implantation together with model-derived biomarkers of ventricular excitation in the left bundle branch block mode of activation and under BiV stimulation. Several Machine Learning (ML) classifiers and feature selection algorithms were tested on the hybrid dataset, and the quality of predictors was assessed using the area under receiver operating curve (ROC AUC). The classifiers on the hybrid data were compared with ML models built on clinical data only. Results: The best ML classifier utilizing a hybrid set of clinical and model-driven data demonstrated ROC AUC of 0.82, an accuracy of 0.82, sensitivity of 0.85, and specificity of 0.78, improving quality over that of ML predictors built on clinical data from much larger datasets by more than 0.1. Distance from the LV pacing site to the post-infarction zone and ventricular activation characteristics under BiV pacing were shown as the most relevant model-driven features for CRT response classification. Conclusion: Our results suggest that combination of clinical and model-driven data increases the accuracy of classification models for CRT outcomes.
Collapse
Affiliation(s)
- Svyatoslav Khamzin
- Institute of Immunology and Physiology Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Arsenii Dokuchaev
- Institute of Immunology and Physiology Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Anastasia Bazhutina
- Institute of Immunology and Physiology Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia.,Ural Federal University, Yekaterinburg, Russia
| | - Tatiana Chumarnaya
- Institute of Immunology and Physiology Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Stepan Zubarev
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | | | | | - Dmitry Lebedev
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | | | - Olga Solovyova
- Institute of Immunology and Physiology Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia.,Ural Federal University, Yekaterinburg, Russia
| |
Collapse
|
25
|
Prinzen FW, Lumens J, Duchenn J, Vernooy K. Electro-energetics of Biventricular, Septal and Conduction System Pacing. Arrhythm Electrophysiol Rev 2021; 10:250-257. [PMID: 35106177 PMCID: PMC8785089 DOI: 10.15420/aer.2021.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/27/2021] [Indexed: 11/10/2022] Open
Abstract
Abnormal electrical activation of the ventricles creates abnormalities in cardiac mechanics. Local contraction patterns, as reflected by strain, are not only out of phase, but also show opposing length changes in early and late activated regions. Consequently, the efficiency of cardiac pump function (the amount of stroke work generated by a unit of oxygen consumed), is approximately 30% lower in dyssynchronous than in synchronous hearts. Maintaining good cardiac efficiency appears important for long-term outcomes. Biventricular, left ventricular septal, His bundle and left bundle branch pacing may minimise the amount of pacing-induced dyssynchrony and efficiency loss when compared to conventional right ventricular pacing. An extensive animal study indicates maintenance of mechanical synchrony and efficiency during left ventricular septal pacing and data from a few clinical studies support the idea that this is also the case for left bundle branch pacing and His bundle pacing. This review discusses electro-mechanics and mechano-energetics under the various paced conditions and provides suggestions for future research.
Collapse
Affiliation(s)
- Frits W Prinzen
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - J�rgen Duchenn
- Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - Kevin Vernooy
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center+ (MUMC+), the Netherlands
- Department of Cardiology, Radboud University Medical Centre (Radboudumc), Nijmegen, the Netherlands
| |
Collapse
|
26
|
Wouters PC, van Everdingen WM, Vernooy K, Geelhoed B, Allaart CP, Rienstra M, Maass AH, Vos MA, Prinzen FW, Meine M, Cramer MJ. Does mechanical dyssynchrony in addition to QRS area ensure sustained response to cardiac resynchronization therapy? Eur Heart J Cardiovasc Imaging 2021; 23:1628-1635. [PMID: 34871385 PMCID: PMC9671288 DOI: 10.1093/ehjci/jeab264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/23/2021] [Indexed: 11/27/2022] Open
Abstract
Aims Judicious patient selection for cardiac resynchronization therapy (CRT) may further enhance treatment response. Progress has been made by using improved markers of electrical dyssynchrony and mechanical discoordination, using QRSAREA, and systolic rebound stretch of the septum (SRSsept) or systolic stretch index (SSI), respectively. To date, the relation between these measurements has not yet been investigated. Methods and results A total of 240 CRT patients were prospectively enrolled from six centres. Patients underwent standard 12-lead electrocardiography, and echocardiography, at baseline, 6-month, and 12-month follow-up. QRSAREA was derived using vectorcardiography, and SRSsept and SSI were measured using strain-analysis. Reverse remodelling was measured as the relative decrease in left ventricular end-systolic volume, indexed to body surface area (ΔLVESVi). Sustained response was defined as ≥15% decrease in LVESVi, at both 6- and 12-month follow-up. QRSAREA and SRSsept were both strong, multivariable adjusted, variables associated with reverse remodelling. SRSsept was associated with response, but only in patients with QRSAREA ≥ 120 μVs (AUC = 0.727 vs. 0.443). Combined presence of SRSsept ≥ 2.5% and QRSAREA ≥ 120 μVs significantly increased reverse remodelling compared with high QRSAREA alone (ΔLVESVi 38 ± 21% vs. 22 ± 21%). As a result, 92% of left bundle branch block (LBBB)-patients with combined electrical and mechanical dysfunction were ‘sustained’ volumetric responders, as opposed to 51% with high QRSAREA alone. Conclusion Parameters of mechanical dyssynchrony are better associated with response in the presence of a clear underlying electrical substrate. Combined presence of high SRSsept and QRSAREA, but not high QRSAREA alone, ensures a sustained response after CRT in LBBB patients.
Collapse
Affiliation(s)
- Philippe C Wouters
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Wouter M van Everdingen
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Kevin Vernooy
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+ (MUMC+), 6229 HX Maastricht, The Netherlands.,Department of Cardiology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Bastiaan Geelhoed
- Department of Cardiology, Thoraxcentre, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Cornelis P Allaart
- Department of Cardiology, Amsterdam University Medical Center, Location VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Michiel Rienstra
- Department of Cardiology, Thoraxcentre, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Alexander H Maass
- Department of Cardiology, Thoraxcentre, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Marc A Vos
- Department of Medical Physiology, University of Utrecht, 3584 CM Utrecht, The Netherlands
| | - Frits W Prinzen
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Masstricht, The Netherlands
| | - Mathias Meine
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Maarten J Cramer
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
27
|
Östenson B, Ostenfeld E, Werther-Evaldsson A, Roijer A, Bakos Z, Kanski M, Heiberg E, Arheden H, Borgquist R, Carlsson M. Regional contributions to left ventricular stroke volume determined by cardiac magnetic resonance imaging in cardiac resynchronization therapy. BMC Cardiovasc Disord 2021; 21:519. [PMID: 34702172 PMCID: PMC8549254 DOI: 10.1186/s12872-021-02325-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cardiac resynchronization therapy (CRT) restores ventricular synchrony and induces left ventricular (LV) reverse remodeling in patients with heart failure (HF) and dyssynchrony. However, 30% of treated patients are non-responders despite all efforts. Cardiac magnetic resonance imaging (CMR) can be used to quantify regional contributions to stroke volume (SV) as potential CRT predictors. The aim of this study was to determine if LV longitudinal (SVlong%), lateral (SVlat%), and septal (SVsept%) contributions to SV differ from healthy controls and investigate if these parameters can predict CRT response. METHODS Sixty-five patients (19 women, 67 ± 9 years) with symptomatic HF (LVEF ≤ 35%) and broadened QRS (≥ 120 ms) underwent CMR. SVlong% was calculated as the volume encompassed by the atrioventricular plane displacement (AVPD) from end diastole (ED) to end systole (ES) divided by total SV. SVlat%, and SVsept% were calculated as the volume encompassed by radial contraction from ED to ES. Twenty age- and sex-matched healthy volunteers were used as controls. The regional measures were compared to outcome response defined as ≥ 15% decrease in echocardiographic LV end-systolic volume (LVESV) from pre- to 6-months post CRT (delta, Δ). RESULTS AVPD and SVlong% were lower in patients compared to controls (8.3 ± 3.2 mm vs 15.3 ± 1.6 mm, P < 0.001; and 53 ± 18% vs 64 ± 8%, P < 0.01). SVsept% was lower (0 ± 15% vs 10 ± 4%, P < 0.01) with a higher SVlat% in the patient group (42 ± 16% vs 29 ± 7%, P < 0.01). There were no differences between responders and non-responders in neither SVlong% (P = 0.87), SVlat% (P = 0.09), nor SVsept% (P = 0.65). In patients with septal net motion towards the right ventricle (n = 28) ΔLVESV was - 18 ± 22% and with septal net motion towards the LV (n = 37) ΔLVESV was - 19 ± 23% (P = 0.96). CONCLUSIONS Longitudinal function, expressed as AVPD and longitudinal contribution to SV, is decreased in patients with HF scheduled for CRT. A larger lateral contribution to SV compensates for the abnormal septal systolic net movement. However, LV reverse remodeling could not be predicted by these regional contributors to SV.
Collapse
Affiliation(s)
- Björn Östenson
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Ellen Ostenfeld
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anna Werther-Evaldsson
- Section for Heart Failure and Valvular Disease, Department of Clinical Sciences Lund, Cardiology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anders Roijer
- Section for Heart Failure and Valvular Disease, Department of Clinical Sciences Lund, Cardiology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Zoltan Bakos
- Section of Arrhythmia, Department of Clinical Sciences Lund, Cardiology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Mikael Kanski
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
- Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Einar Heiberg
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Håkan Arheden
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Rasmus Borgquist
- Section of Arrhythmia, Department of Clinical Sciences Lund, Cardiology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Marcus Carlsson
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
28
|
Carluccio E, Biagioli P, Mengoni A, Zuchi C, Lauciello R, Jacoangeli F, Bardelli G, Oliva V, Ambrosio G. Burden of Ventricular Arrhythmias in Cardiac Resynchronization Therapy Defibrillation and Implantable Cardioverter-Defibrillator Recipients with Recovered Left Ventricular Ejection Fraction: The Additive Role of Speckle-Tracking Echocardiography. J Am Soc Echocardiogr 2021; 35:355-365. [PMID: 34563638 DOI: 10.1016/j.echo.2021.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/01/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Patients with heart failure undergoing cardiac resynchronization therapy with or without defibrillator function may exhibit recovery of left ventricular ejection fraction (LVEF) during follow-up. Mechanical dispersion (MD; the SD of time to peak longitudinal strain by two-dimensional speckle-tracking echocardiography) is a known predictor of life-threatening ventricular arrhythmias (VAs). Relationships among LVEF recovery, changes in MD, and incidence of VA are still not extensively investigated. METHODS In this retrospective study, recipients of cardiac resynchronization therapy defibrillation (n = 183) or implantable cardioverter-defibrillators only (n = 87) underwent conventional and speckle-tracking echocardiography, both at baseline and after 10 to 12 months, and were followed clinically. Both a ≥10% increase in LVEF and a final LVEF > 35% defined echocardiographic response (EchoResp). Reduction in MD ≥10 msec defined MD response (MDResp). Risk for appropriate implantable cardioverter-defibrillator therapy for VAs was assessed using a multivariable Cox hazard model. RESULTS The prevalence of EchoResp+ and MDResp+ was 39% and 46%, respectively. During follow-up (49.8 ± 33.5 months), 74 VA events occurred. The incidence rate (per 100 patient-years) of VAs was lowest in the EchoResp+/MDResp+ group (1.66%; 95% CI, 0.69%-3.99%), highest in the EchoResp-/MDResp- group (12.8%; 95% CI, 9.53%-17.2%; P < .0001), and intermediate in the EchoResp-/MDResp+ (5.5%; 95% CI, 3.3%-9.4%) or EchoResp+/MDResp- (5.3%; 95% CI, 3.0%-9.4%) group. Multivariable analysis showed that higher MD at follow-up (>71.4 msec) was associated with VAs independent of whether final LVEF was below or above the guideline-reported cutoff of 35% (P < .05). CONCLUSIONS Among ICD recipients, improvements in both left ventricular function and MD are associated with reduced risk for VAs. In patients whose follow-up LVEFs improved to >35%, risk for VAs, although substantially decreased, remained elevated in the presence of still elevated MD.
Collapse
Affiliation(s)
- Erberto Carluccio
- Cardiology and Cardiovascular Pathophysiology, University of Perugia, Perugia, Italy.
| | - Paolo Biagioli
- Cardiology and Cardiovascular Pathophysiology, University of Perugia, Perugia, Italy
| | - Anna Mengoni
- Cardiology and Cardiovascular Pathophysiology, University of Perugia, Perugia, Italy
| | - Cinzia Zuchi
- Cardiology and Cardiovascular Pathophysiology, University of Perugia, Perugia, Italy
| | - Rosanna Lauciello
- Cardiology and Cardiovascular Pathophysiology, University of Perugia, Perugia, Italy
| | - Francesca Jacoangeli
- Cardiology and Cardiovascular Pathophysiology, University of Perugia, Perugia, Italy
| | - Giuliana Bardelli
- Cardiology and Cardiovascular Pathophysiology, University of Perugia, Perugia, Italy
| | - Viviana Oliva
- Cardiology and Cardiovascular Pathophysiology, University of Perugia, Perugia, Italy
| | - Giuseppe Ambrosio
- Cardiology and Cardiovascular Pathophysiology, University of Perugia, Perugia, Italy; CERICLET - Interdepartmental Center for Clinical and Translational Research, University of Perugia, Perugia, Italy
| |
Collapse
|
29
|
Glikson M, Nielsen JC, Kronborg MB, Michowitz Y, Auricchio A, Barbash IM, Barrabés JA, Boriani G, Braunschweig F, Brignole M, Burri H, Coats AJS, Deharo JC, Delgado V, Diller GP, Israel CW, Keren A, Knops RE, Kotecha D, Leclercq C, Merkely B, Starck C, Thylén I, Tolosana JM. 2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. Eur Heart J 2021; 42:3427-3520. [PMID: 34455430 DOI: 10.1093/eurheartj/ehab364] [Citation(s) in RCA: 1012] [Impact Index Per Article: 253.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
30
|
Marwick TH, Chandrashekhar Y. Imaging in Cardiac Resynchronization Therapy Needs to Consider More Than Mechanical Delay. JACC Cardiovasc Imaging 2021; 14:1881-1883. [PMID: 34503694 DOI: 10.1016/j.jcmg.2021.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Miyazaki A, Uemura H. Perspective of preexcitation induced cardiomyopathy; early septal contraction, and subsequent rebound stretch. J Cardiol 2021; 79:30-35. [PMID: 34497028 DOI: 10.1016/j.jjcc.2021.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/08/2021] [Accepted: 08/06/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Preexcitation-induced cardiomyopathy (PIC) is defined as a disease presenting ventricular dyssynchrony because of preexcitation through an accessory pathway (AP), being a cousin of pacing-induced cardiomyopathy. The present review aims at providing perspective of this uncharted subgroup. METHODS In order to determine mechanisms and clinical characteristics of PIC, 63 patients in 29 literature reports were reviewed. RESULTS A median age at onset was 4 (0.1-59) years; 55 patients (87%) under 18 years old including 16 infants. Twenty patients (32%) experienced supraventricular tachycardia prior and subsequent to the PIC onset. Heart failure and left ventricular (LV) dysfunction did not correlate with other clinical features. All the 65 APs identified (duplicated in 2 patients) were located on the right side of the atrioventricular junction; at the septal area (in 55%) or the anterolateral aspect (in 22%). AP conduction was successfully eliminated by medical or interventional treatments where attempted. LV function returned to normal within 6 months in 67% of patients, while recovery took longer than 3 years in 8%. Frequently seen at the basal segments of the interventricular septum were early contraction within the QRS complex, dyskinesis at mid-systole, and aneurysm/bulging or local thinning. CONCLUSIONS Several characteristic factors became clear as described above. Rebound stretch following early shortening of the interventricular septum is seemingly the major mechanism of PIC, and thus a right septal or right anterior/anterolateral AP needs attention as a higher risk for PIC.
Collapse
Affiliation(s)
- Aya Miyazaki
- Congenital Heart Disease Center, Nara Medical University, Nara, Japan; Department of Transitional Medicine, Division of Congenital Heart Disease, Shizuoka General Hospital, Shizuoka, Japan; Department of Cardiology, Mt. Fuji Shizuoka Children's Hospital, Shizuoka, Japan.
| | - Hideki Uemura
- Congenital Heart Disease Center, Nara Medical University, Nara, Japan
| |
Collapse
|
32
|
Salden OAE, Zweerink A, Wouters P, Allaart CP, Geelhoed B, de Lange FJ, Maass AH, Rienstra M, Vernooy K, Vos MA, Meine M, Prinzen FW, Cramer MJ. The value of septal rebound stretch analysis for the prediction of volumetric response to cardiac resynchronization therapy. Eur Heart J Cardiovasc Imaging 2021; 22:37-45. [PMID: 32699908 DOI: 10.1093/ehjci/jeaa190] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/02/2020] [Indexed: 01/27/2023] Open
Abstract
AIMS Patient selection for cardiac resynchronization therapy (CRT) may be enhanced by evaluation of systolic myocardial stretching. We evaluate whether systolic septal rebound stretch (SRSsept) derived from speckle tracking echocardiography is a predictor of reverse remodelling after CRT and whether it holds additive predictive value over the simpler visual dyssynchrony assessment by apical rocking (ApRock). METHODS AND RESULTS The association between SRSsept and change in left ventricular end-systolic volume (ΔLVESV) at 6 months of follow-up was assessed in 200 patients. Subsequently, the additive predictive value of SRSsept over the assessment of ApRock was evaluated in patients with and without left bundle branch block (LBBB) according to strict criteria. SRSsept was independently associated with ΔLVESV (β 0.221, P = 0.002) after correction for sex, age, ischaemic cardiomyopathy, QRS morphology and duration, and ApRock. A high SRSsept (≥optimal cut-off value 2.4) also coincided with more volumetric responders (ΔLVESV ≥ -15%) than low SRSsept in the entire cohort (70.0% and 56.4%), in patients with strict LBBB (83.3% vs. 56.7%, P = 0.024), and non-LBBB (70.7% vs. 46.3%, P = 0.004). Moreover, in non-LBBB patients, SRSsept held additional predictive information over the assessment of ApRock alone since patients that showed ApRock and high SRSsept were more often volumetric responder than those with ApRock but low SRSsept (82.8% vs. 47.4%, P = 0.001). CONCLUSION SRSsept is strongly associated with CRT-induced reduction in left ventricular end-systolic volume and holds additive prognostic information over QRS morphology and ApRock. Our data suggest that CRT patient selection may be improved by assessment of SRSsept, especially in the important subgroup without strict LBBB. CLINICAL TRIAL REGISTRATION The MARC study was registered at clinicaltrials.gov: NCT01519908.
Collapse
Affiliation(s)
- Odette A E Salden
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Alwin Zweerink
- Department of Cardiology, Amsterdam University Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Philippe Wouters
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Cornelis P Allaart
- Department of Cardiology, Amsterdam University Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Bastiaan Geelhoed
- Department of Cardiology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Frederik J de Lange
- Department of Cardiology, Amsterdam University Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Alexander H Maass
- Department of Cardiology, Amsterdam University Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Michiel Rienstra
- Department of Cardiology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Kevin Vernooy
- Department of Cardiology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands.,Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | - Marc A Vos
- Department of Medical Physiology, University of Utrecht, Yalelaan 50, 3584 CM Utrecht, the Netherlands
| | - Mathias Meine
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Frits W Prinzen
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | - Maarten J Cramer
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| |
Collapse
|
33
|
Donal E, Delgado V, Galli E. Mechanical dyssynchrony is better understood and it might be a good news for heart failure patients. Eur Heart J Cardiovasc Imaging 2021; 22:46-48. [PMID: 33040155 DOI: 10.1093/ehjci/jeaa216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Erwan Donal
- Service de Cardiologie - Hôpital Pontchaillou, CHU de Rennes, LTSI, Inserm 1099, Rennes 35000, France.,Department of Cardiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Victoria Delgado
- Service de Cardiologie - Hôpital Pontchaillou, CHU de Rennes, LTSI, Inserm 1099, Rennes 35000, France.,Department of Cardiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Elena Galli
- Service de Cardiologie - Hôpital Pontchaillou, CHU de Rennes, LTSI, Inserm 1099, Rennes 35000, France.,Department of Cardiology, Leiden University Medical Centre, Leiden, the Netherlands
| |
Collapse
|
34
|
Zweerink A, Friedman DJ, Klem I, van de Ven PM, Vink C, Biesbroek PS, Hansen SM, Kim RJ, van Rossum AC, Atwater BD, Allaart CP, Nijveldt R. Segment Length in Cine Strain Analysis Predicts Cardiac Resynchronization Therapy Outcome Beyond Current Guidelines. Circ Cardiovasc Imaging 2021; 14:e012350. [PMID: 34287001 DOI: 10.1161/circimaging.120.012350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Patients with a class I recommendation for cardiac resynchronization therapy (CRT) are likely to benefit, but the effect of CRT in class II patients is more heterogeneous and additional selection parameters are needed in this group. The recently validated segment length in cine strain analysis of the septum (SLICE-ESSsep) measurement on cardiac magnetic resonance cine imaging predicts left ventricular functional recovery after CRT but its prognostic value is unknown. This study sought to evaluate the prognostic value of SLICE-ESSsep for clinical outcome after CRT. METHODS Two hundred eighteen patients with a left bundle branch block or intraventricular conduction delay and a class I or class II indication for CRT who underwent preimplantation cardiovascular magnetic resonance examination were enrolled. SLICE-ESSsep was manually measured on standard cardiovascular magnetic resonance cine imaging. The primary combined end point was all-cause mortality, left ventricular assist device, or heart transplantation. Secondary end points were (1) appropriate implantable cardioverter defibrillator therapy and (2) heart failure hospitalization. RESULTS Two-thirds (65%) of patients had a positive SLICE-ESSsep ≥0.9% (ie, systolic septal stretching). During a median follow-up of 3.8 years, 66 (30%) patients reached the primary end point. Patients with positive SLICE-ESSsep were at lower risk to reach the primary end point (hazard ratio 0.36; P<0.001) and heart failure hospitalization (hazard ratio 0.41; P=0.019), but not for implantable cardioverter defibrillator therapy (hazard ratio, 0.66; P=0.272). Clinical outcome of class II patients with a positive ESSsep was similar to those of class I patients (hazard ratio, 1.38 [95% CI, 0.66-2.88]; P=0.396). CONCLUSIONS Strain assessment of the septum (SLICE-ESSsep) provides a prognostic measure for clinical outcome after CRT. Detection of a positive SLICE-ESSsep in patients with a class II indication predicts improved CRT outcome similar to those with a class I indication whereas SLICE-ESSsep negative patients have poor prognosis after CRT implantation.
Collapse
Affiliation(s)
- Alwin Zweerink
- Department of Cardiology, and Amsterdam Cardiovascular Sciences (ACS) (A.Z., C.V., P.S.B., A.C.v.R., C.P.A., R.N.), Amsterdam University Medical Center, location VU Medical Center, Amsterdam, The Netherlands
| | - Daniel J Friedman
- Section of Cardiac Electrophysiology, Yale School of Medicine, New Haven, CT (D.J.F., R.J.K.)
| | - Igor Klem
- Division of Cardiology, Duke University Medical Center, Durham, NC (I.K.)
| | - Peter M van de Ven
- Department of Epidemiology and Biostatistics (P.M.v.d.V.), Amsterdam University Medical Center, location VU Medical Center, Amsterdam, The Netherlands
| | - Caitlin Vink
- Department of Cardiology, and Amsterdam Cardiovascular Sciences (ACS) (A.Z., C.V., P.S.B., A.C.v.R., C.P.A., R.N.), Amsterdam University Medical Center, location VU Medical Center, Amsterdam, The Netherlands
| | - P Stefan Biesbroek
- Department of Cardiology, and Amsterdam Cardiovascular Sciences (ACS) (A.Z., C.V., P.S.B., A.C.v.R., C.P.A., R.N.), Amsterdam University Medical Center, location VU Medical Center, Amsterdam, The Netherlands
| | - Steen M Hansen
- Unit of Epidemiology and Biostatistics, Aalborg University Hospital, Denmark (S.M.H.)
| | - Raymond J Kim
- Section of Cardiac Electrophysiology, Yale School of Medicine, New Haven, CT (D.J.F., R.J.K.)
| | - Albert C van Rossum
- Department of Cardiology, and Amsterdam Cardiovascular Sciences (ACS) (A.Z., C.V., P.S.B., A.C.v.R., C.P.A., R.N.), Amsterdam University Medical Center, location VU Medical Center, Amsterdam, The Netherlands
| | | | - Cornelis P Allaart
- Department of Cardiology, and Amsterdam Cardiovascular Sciences (ACS) (A.Z., C.V., P.S.B., A.C.v.R., C.P.A., R.N.), Amsterdam University Medical Center, location VU Medical Center, Amsterdam, The Netherlands
| | - Robin Nijveldt
- Department of Cardiology, and Amsterdam Cardiovascular Sciences (ACS) (A.Z., C.V., P.S.B., A.C.v.R., C.P.A., R.N.), Amsterdam University Medical Center, location VU Medical Center, Amsterdam, The Netherlands.,Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands (R.N.)
| |
Collapse
|
35
|
Gorcsan J, Huntjens PR, Samii S. Regional Work in Left Bundle Branch Block: A Balancing Act With Clinical Implications. JACC Cardiovasc Imaging 2021; 14:2070-2072. [PMID: 34274274 DOI: 10.1016/j.jcmg.2021.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 10/20/2022]
Affiliation(s)
- John Gorcsan
- Heart and Vascular Institute, Hershey Medical Center, Penn State University College of Medicine, Hershey Pennsylvania, USA.
| | - Peter R Huntjens
- Division of Cardiology, Washington University Saint Louis, Saint Louis, Missouri, USA
| | - Soraya Samii
- Heart and Vascular Institute, Hershey Medical Center, Penn State University College of Medicine, Hershey Pennsylvania, USA
| |
Collapse
|
36
|
Loncaric F, Marti Castellote PM, Sanchez-Martinez S, Fabijanovic D, Nunno L, Mimbrero M, Sanchis L, Doltra A, Montserrat S, Cikes M, Crispi F, Piella G, Sitges M, Bijnens B. Automated Pattern Recognition in Whole-Cardiac Cycle Echocardiographic Data: Capturing Functional Phenotypes with Machine Learning. J Am Soc Echocardiogr 2021; 34:1170-1183. [PMID: 34245826 DOI: 10.1016/j.echo.2021.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Echocardiography provides complex data on cardiac function that can be integrated into patterns of dysfunction related to the severity of cardiac disease. The aim of this study was to demonstrate the feasibility of applying machine learning (ML) to automate the integration of echocardiographic data from the whole cardiac cycle and to automatically recognize patterns in velocity profiles and deformation curves, allowing the identification of functional phenotypes. METHODS Echocardiography was performed in 189 clinically managed patients with hypertension and 97 healthy individuals without hypertension. Speckle-tracking analysis of the left ventricle and atrium was performed, and deformation curves were extracted. Aortic and mitral blood pool pulsed-wave Doppler and mitral annular tissue pulsed-wave Doppler velocity profiles were obtained. These whole-cardiac cycle deformation and velocity curves were used as ML input. Unsupervised ML was used to create a representation of patients with hypertension in a virtual space in which patients are positioned on the basis of the similarity of their integrated whole-cardiac cycle echocardiography data. Regression methods were used to explore patterns of echocardiographic traces within this virtual ML-derived space, while clustering was used to define phenogroups. RESULTS The algorithm captured different patterns in tissue and blood-pool velocity and deformation profiles and integrated the findings, yielding phenotypes related to normal cardiac function and others to advanced remodeling associated with pressure overload in hypertension. The addition of individuals without hypertension into the ML-derived space confirmed the interpretation of normal and remodeled phenotypes. CONCLUSIONS ML-based pattern recognition is feasible from echocardiographic data obtained during the whole cardiac cycle. Automated algorithms can consistently capture patterns in velocity and deformation data and, on the basis of these patterns, group patients into interpretable, clinically comprehensive phenogroups that describe structural and functional remodeling. Automated pattern recognition may potentially aid interpretation of imaging data and diagnostic accuracy.
Collapse
Affiliation(s)
- Filip Loncaric
- Institute of Biomedical Research August Pi Sunyer, Barcelona, Spain.
| | - Pablo-Miki Marti Castellote
- Department of Information Technologies and Communication, Simulation, Imaging and Modelling for Biomedical Systems, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Dora Fabijanovic
- University of Zagreb School of Medicine, Department of Cardiovascular Diseases, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Loredana Nunno
- Institute of Biomedical Research August Pi Sunyer, Barcelona, Spain; Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Maria Mimbrero
- Institute of Biomedical Research August Pi Sunyer, Barcelona, Spain; Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Laura Sanchis
- Institute of Biomedical Research August Pi Sunyer, Barcelona, Spain; Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Adelina Doltra
- Institute of Biomedical Research August Pi Sunyer, Barcelona, Spain; Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Silvia Montserrat
- Institute of Biomedical Research August Pi Sunyer, Barcelona, Spain; Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; CIBERCV, Instituto de Salud Carlos III (CB16/11/00354), Madrid, Spain
| | - Maja Cikes
- University of Zagreb School of Medicine, Department of Cardiovascular Diseases, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Fatima Crispi
- Institute of Biomedical Research August Pi Sunyer, Barcelona, Spain; Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Institut Clínic de Ginecologia Obstetricia i Neonatologia, Centre for Biomedical Research on Rare Diseases, Barcelona, Spain
| | - Gema Piella
- Department of Information Technologies and Communication, Simulation, Imaging and Modelling for Biomedical Systems, Universitat Pompeu Fabra, Barcelona, Spain
| | - Marta Sitges
- Institute of Biomedical Research August Pi Sunyer, Barcelona, Spain; Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; CIBERCV, Instituto de Salud Carlos III (CB16/11/00354), Madrid, Spain
| | - Bart Bijnens
- Institute of Biomedical Research August Pi Sunyer, Barcelona, Spain; ICREA, Barcelona, Spain
| |
Collapse
|
37
|
Liu H, Soares JS, Walmsley J, Li DS, Raut S, Avazmohammadi R, Iaizzo P, Palmer M, Gorman JH, Gorman RC, Sacks MS. The impact of myocardial compressibility on organ-level simulations of the normal and infarcted heart. Sci Rep 2021; 11:13466. [PMID: 34188138 PMCID: PMC8242073 DOI: 10.1038/s41598-021-92810-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/25/2021] [Indexed: 11/09/2022] Open
Abstract
Myocardial infarction (MI) rapidly impairs cardiac contractile function and instigates maladaptive remodeling leading to heart failure. Patient-specific models are a maturing technology for developing and determining therapeutic modalities for MI that require accurate descriptions of myocardial mechanics. While substantial tissue volume reductions of 15-20% during systole have been reported, myocardium is commonly modeled as incompressible. We developed a myocardial model to simulate experimentally-observed systolic volume reductions in an ovine model of MI. Sheep-specific simulations of the cardiac cycle were performed using both incompressible and compressible tissue material models, and with synchronous or measurement-guided contraction. The compressible tissue model with measurement-guided contraction gave best agreement with experimentally measured reductions in tissue volume at peak systole, ventricular kinematics, and wall thickness changes. The incompressible model predicted myofiber peak contractile stresses approximately double the compressible model (182.8 kPa, 107.4 kPa respectively). Compensatory changes in remaining normal myocardium with MI present required less increase of contractile stress in the compressible model than the incompressible model (32.1%, 53.5%, respectively). The compressible model therefore provided more accurate representation of ventricular kinematics and potentially more realistic computed active contraction levels in the simulated infarcted heart. Our findings suggest that myocardial compressibility should be incorporated into future cardiac models for improved accuracy.
Collapse
Affiliation(s)
- Hao Liu
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The University of Texas at Austin, Austin, TX, USA
| | - João S Soares
- Engineered Tissue Multiscale Mechanics and Modeling Laboratory, Virginia Commonwealth University, Richmond, VA, USA
| | - John Walmsley
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The University of Texas at Austin, Austin, TX, USA
| | - David S Li
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The University of Texas at Austin, Austin, TX, USA
| | - Samarth Raut
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The University of Texas at Austin, Austin, TX, USA
| | - Reza Avazmohammadi
- Computational Cardiovascular Bioengineering Lab, Texas A&M University, College Station, TX, USA
| | - Paul Iaizzo
- Visible Heart Lab, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Mark Palmer
- Corporate Core Technologies, Medtronic, Inc., Minneapolis, USA
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael S Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
38
|
Riolet C, Menet A, Mailliet A, Binda C, Altes A, Appert L, Castel AL, Delelis F, Viart G, Guyomar Y, Le Goffic C, Decroocq M, Ennezat PV, Graux P, Tribouilloy C, Marechaux S. Clinical Significance of Global Wasted Work in Patients with Heart Failure Receiving Cardiac Resynchronization Therapy. J Am Soc Echocardiogr 2021; 34:976-986. [PMID: 34157400 DOI: 10.1016/j.echo.2021.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND The relationship between myocardial work assessment using pressure-strain loops by echocardiography before cardiac resynchronization therapy (CRT) and response to CRT has been recently revealed. Among myocardial work parameters, the impact of left ventricular myocardial global wasted work (GWW) on response to CRT and outcome following CRT has been seldom studied. Hence, the authors evaluated the relationship between preprocedural GWW and outcome in a large prospective cohort of patients with heart failure (HF) and reduced ejection fraction receiving CRT. METHODS The study included 249 patients with HF. Myocardial work indices including GWW were calculated using speckle-tracking strain two-dimensional echocardiography using pressure-strain loops. End points of the study were (1) response to CRT, defined as left ventricular reverse remodeling and/or absence of hospitalization for HF, and (2) all-cause death during follow-up. RESULTS Median follow-up duration was 48 months (interquartile range, 43-54 months). Median preoperative GWW was 281 mm Hg% (interquartile range, 184-388 mm Hg%). Preoperative GWW was associated with CRT response (area under the curve, 0.74; P < .0001), and a 200 mm Hg% threshold discriminated CRT nonresponders from responders with 85% specificity and 50% sensitivity, even after adjustment for known predictors of CRT response (adjusted odds ratio, 4.03; 95% CI, 1.91-8.68; P < .001). After adjustment for established predictors of outcome in patients with HF with reduced ejection fraction receiving CRT, GWW < 200 mm Hg% remained associated with a relative increased risk for all-cause death compared with GWW ≥ 200 mm Hg% (adjusted hazard ratio, 2.0; 95% CI, 1.1-3.9; P = .0245). Adding GWW to a baseline model including known predictors of outcome in CRT resulted in an improvement of this model (χ2 to improve 4.85, P = .028). The relationship between GWW and CRT response and outcome was stronger in terms of size effect and statistical significance than for other myocardial work indices. CONCLUSIONS Low preoperative GWW (<200 mm Hg%) is associated with absence of CRT response in CRT candidates and with a relative increased risk for all-cause death. GWW appears to be a promising parameter to improve selection for CRT of patients with HF with reduced ejection fraction.
Collapse
Affiliation(s)
- Clemence Riolet
- GCS-Groupement des Hôpitaux de l'Institut Catholique de Lille, Laboratoire d'Échocardiographie, Service de Cardiologie Nord, Centre des Valvulopathies, Faculté de Médecine et de Maïeutique, Université Catholique de Lille, Lille, France
| | - Aymeric Menet
- GCS-Groupement des Hôpitaux de l'Institut Catholique de Lille, Laboratoire d'Échocardiographie, Service de Cardiologie Nord, Centre des Valvulopathies, Faculté de Médecine et de Maïeutique, Université Catholique de Lille, Lille, France
| | - Amandine Mailliet
- GCS-Groupement des Hôpitaux de l'Institut Catholique de Lille, Laboratoire d'Échocardiographie, Service de Cardiologie Nord, Centre des Valvulopathies, Faculté de Médecine et de Maïeutique, Université Catholique de Lille, Lille, France
| | - Camille Binda
- GCS-Groupement des Hôpitaux de l'Institut Catholique de Lille, Laboratoire d'Échocardiographie, Service de Cardiologie Nord, Centre des Valvulopathies, Faculté de Médecine et de Maïeutique, Université Catholique de Lille, Lille, France
| | - Alexandre Altes
- GCS-Groupement des Hôpitaux de l'Institut Catholique de Lille, Laboratoire d'Échocardiographie, Service de Cardiologie Nord, Centre des Valvulopathies, Faculté de Médecine et de Maïeutique, Université Catholique de Lille, Lille, France
| | - Ludovic Appert
- GCS-Groupement des Hôpitaux de l'Institut Catholique de Lille, Laboratoire d'Échocardiographie, Service de Cardiologie Nord, Centre des Valvulopathies, Faculté de Médecine et de Maïeutique, Université Catholique de Lille, Lille, France
| | - Anne Laure Castel
- GCS-Groupement des Hôpitaux de l'Institut Catholique de Lille, Laboratoire d'Échocardiographie, Service de Cardiologie Nord, Centre des Valvulopathies, Faculté de Médecine et de Maïeutique, Université Catholique de Lille, Lille, France
| | - François Delelis
- GCS-Groupement des Hôpitaux de l'Institut Catholique de Lille, Laboratoire d'Échocardiographie, Service de Cardiologie Nord, Centre des Valvulopathies, Faculté de Médecine et de Maïeutique, Université Catholique de Lille, Lille, France
| | - Guillaume Viart
- GCS-Groupement des Hôpitaux de l'Institut Catholique de Lille, Laboratoire d'Échocardiographie, Service de Cardiologie Nord, Centre des Valvulopathies, Faculté de Médecine et de Maïeutique, Université Catholique de Lille, Lille, France
| | - Yves Guyomar
- GCS-Groupement des Hôpitaux de l'Institut Catholique de Lille, Laboratoire d'Échocardiographie, Service de Cardiologie Nord, Centre des Valvulopathies, Faculté de Médecine et de Maïeutique, Université Catholique de Lille, Lille, France
| | - Caroline Le Goffic
- GCS-Groupement des Hôpitaux de l'Institut Catholique de Lille, Laboratoire d'Échocardiographie, Service de Cardiologie Nord, Centre des Valvulopathies, Faculté de Médecine et de Maïeutique, Université Catholique de Lille, Lille, France
| | - Marie Decroocq
- GCS-Groupement des Hôpitaux de l'Institut Catholique de Lille, Laboratoire d'Échocardiographie, Service de Cardiologie Nord, Centre des Valvulopathies, Faculté de Médecine et de Maïeutique, Université Catholique de Lille, Lille, France
| | | | - Pierre Graux
- GCS-Groupement des Hôpitaux de l'Institut Catholique de Lille, Laboratoire d'Échocardiographie, Service de Cardiologie Nord, Centre des Valvulopathies, Faculté de Médecine et de Maïeutique, Université Catholique de Lille, Lille, France
| | - Christophe Tribouilloy
- EA 7517 MP3CV Jules Verne University of Picardie, Amiens, France; Centre Hospitalier Universitaire d'Amiens, Amiens, France
| | - Sylvestre Marechaux
- GCS-Groupement des Hôpitaux de l'Institut Catholique de Lille, Laboratoire d'Échocardiographie, Service de Cardiologie Nord, Centre des Valvulopathies, Faculté de Médecine et de Maïeutique, Université Catholique de Lille, Lille, France; EA 7517 MP3CV Jules Verne University of Picardie, Amiens, France.
| |
Collapse
|
39
|
A Strain-Based Staging Classification of Left Bundle Branch Block-Induced Cardiac Remodeling. JACC Cardiovasc Imaging 2021; 14:1691-1702. [PMID: 33865764 DOI: 10.1016/j.jcmg.2021.02.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/15/2021] [Accepted: 02/11/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVES This study speculated that longitudinal strain curves in left bundle branch block (LBBB) could be shaped by the degree of LBBB-induced cardiac remodeling. BACKGROUND LBBB independently affects left ventricular (LV) structure and function, but large individual variability may exist in LBBB-induced adverse remodeling. METHODS Consecutive patients with LBBB with septal flash (LBBB-SF) underwent thorough echocardiographic assessment, including speckle tracking-based strain analysis. Four major septal longitudinal strain patterns (LBBB-1 through LBBB-4) were discerned and staged on the basis of: 1) correlation analysis with echocardiographic indexes of cardiac remodeling, including the extent of SF; 2) strain pattern analysis in cardiac resynchronization therapy (CRT) super-responders; and 3) strain pattern analysis in patients with acute procedural-induced LBBB. RESULTS The study enrolled 237 patients with LBBB-SF (mean age: 67 ± 13 years; 57% men). LBBB-1 was observed in 60 (26%), LBBB-2 in 118 (50%), LBBB-3 in 29 (12%), and LBBB-4 in 26 (11%) patients. Patients at higher LBBB stages had larger end-diastolic volumes, lower LV ejection fractions, longer QRS duration, increased mechanical dyssynchrony, and more prominent SF compared with less advanced stages (p < 0.001 for all). Among CRT super-responders (n = 30; mean age: 63 ± 10 years), an inverse transition from stages LBBB-3 and -4 (pre-implant) to stages LBBB-1 and -2 (pace-off, median follow-up of 66 months [interquartile range: 32 to 78 months]) was observed (p < 0.001). Patients with acute LBBB (n = 27; mean age: 83 ± 5.1 years) only presented with a stage LBBB-1 (72%) or -2 pattern (24%). CONCLUSIONS The proposed classification suggests a pathophysiological continuum of LBBB-induced LV remodeling and may be valuable to assess the attribution of LBBB to the extent of LV remodeling and dysfunction.
Collapse
|
40
|
Prinzen FW, Lumens J. Investigating myocardial work as a CRT response predictor is not a waste of work. Eur Heart J 2021; 41:3824-3826. [PMID: 32944764 DOI: 10.1093/eurheartj/ehaa677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Frits W Prinzen
- Departments of Physiology and Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Joost Lumens
- Departments of Physiology and Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
41
|
Chango Azanza DX, Munín MA, Raggio I, Perea G, Carbajales J. [Different phenotypes of mitral regurgitation in patients with right apical ventricular pacing: an echocardiographic approach in a heterogeneity of clinical scenarios]. ARCHIVOS PERUANOS DE CARDIOLOGIA Y CIRUGIA CARDIOVASCULAR 2021; 2:112-120. [PMID: 38274564 PMCID: PMC10809778 DOI: 10.47487/apcyccv.v2i2.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/26/2021] [Indexed: 01/27/2024]
Abstract
The presence of mitral regurgitation (MR) in patients with right ventricular apical pacing can be the result of multiple phenomena. On the one hand, this stimulation causes an asynchronous activation of the left ventricle (LV) and the papillary muscles, leading to a deterioration of the LV ejection fraction and causing an inadequate closure of the valve apparatus. However, there is a wide heterogeneity of ischemic and non-ischemic myocardial conditions that can coexist with mechanical alteration of the LV and the mitral valve leading to or worsening MR in these patients, which can make the etiological determination of valvular regurgitation difficult. Transthoracic echocardiography study allows comprehensive evaluation of mitral valve regurgitation and ventricular function parameters and mechanical asynchrony as a result of artificial pacing. The comprehensive study of these phenomena is relevant in clinical decision-making to define those patients who benefit from cardiac resynchronization therapy to alleviate symptomatic MR.
Collapse
Affiliation(s)
- Diego Xavier Chango Azanza
- Departamento de Cardiología. Hospital General de Agudos «Ramos Mejía». Buenos Aires, Argentina. Departamento de CardiologíaHospital General de Agudos «Ramos MejíaBuenos AiresArgentina
| | - Martín Alejandro Munín
- Departamento de Ultrasonido Cardiovascular. Centro de Educación Médica e Investigaciones Clínicas «Norberto Quirno» CEMIC. Buenos Aires, Argentina.Departamento de Ultrasonido CardiovascularCentro de Educación Médica e Investigaciones Clínicas «Norberto Quirno» CEMICBuenos AiresArgentina
| | - Ignacio Raggio
- Departamento de Ultrasonido Cardiovascular. Centro de Educación Médica e Investigaciones Clínicas «Norberto Quirno» CEMIC. Buenos Aires, Argentina.Departamento de Ultrasonido CardiovascularCentro de Educación Médica e Investigaciones Clínicas «Norberto Quirno» CEMICBuenos AiresArgentina
| | - Gabriel Perea
- Departamento de Ultrasonido Cardiovascular. Centro de Educación Médica e Investigaciones Clínicas «Norberto Quirno» CEMIC. Buenos Aires, Argentina.Departamento de Ultrasonido CardiovascularCentro de Educación Médica e Investigaciones Clínicas «Norberto Quirno» CEMICBuenos AiresArgentina
| | - Justo Carbajales
- Departamento de Cardiología. Hospital General de Agudos «Ramos Mejía». Buenos Aires, Argentina. Departamento de CardiologíaHospital General de Agudos «Ramos MejíaBuenos AiresArgentina
| |
Collapse
|
42
|
Cardiac Resynchronization Therapy in Non-Ischemic Cardiomyopathy: Role of Multimodality Imaging. Diagnostics (Basel) 2021; 11:diagnostics11040625. [PMID: 33808474 PMCID: PMC8066641 DOI: 10.3390/diagnostics11040625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/28/2022] Open
Abstract
Non-ischemic cardiomyopathy encompasses a heterogeneous group of diseases, with a generally unfavorable long-term prognosis. Cardiac resynchronization therapy (CRT) is a useful therapeutic option for patients with symptomatic heart failure, currently recommended by all available guidelines, with outstanding benefits, especially in non-ischemic dilated cardiomyopathy. Still, in spite of clear indications based on identifying a dyssynchronous pattern on the electrocardiogram (ECG,) a great proportion of patients are non-responders. The idea that multimodality cardiac imaging can play a role in refining the selection criteria and the implant technique and help with subsequent system optimization is promising. In this regard, predictors of CRT response, such as apical rocking and septal flash have been identified. Promising new data come from studies using cardiac magnetic resonance and nuclear imaging for showcasing myocardial dyssynchrony. Still, to date, no single imaging predictor has been included in the guidelines, probably due to lack of validation in large, multicenter cohorts. This review provides an up-to-date synthesis of the latest evidence of CRT use in non-ischemic cardiomyopathy and highlights the potential additional value of multimodality imaging for improving CRT response in this population. By incorporating all these findings into our clinical practice, we can aim toward obtaining a higher proportion of responders and improve the success rate of CRT.
Collapse
|
43
|
Hubert A, Gallard A, Rolle VL, Smiseth OA, Leclercq C, Voigt JU, Galli E, Galand V, Hernandez A, Donal E. Left ventricular strain for predicting the response to cardiac resynchronization therapy: two methods for one question. Eur Heart J Cardiovasc Imaging 2021:jeaa422. [PMID: 33517397 DOI: 10.1093/ehjci/jeaa422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/23/2020] [Indexed: 11/15/2022] Open
Abstract
AIMS Myocardial work (manually controlled software) and integral-derived longitudinal strain (automatic quantification of strain curves) are two promising tools to quantify dyssynchrony and potentially select the patients that are most likely to have a reverse remodelling due to cardiac resynchronization therapy (CRT). We sought to test and compare the value of these two methods in the prediction of CRT-response. MATERIALS AND RESULTS Two hundred and forty-three patients undergoing CRT-implantation from three European referral centres were considered. The characteristics from the six-segment of the four-chamber view were computed to obtain regional myocardial work and the automatically generated integrals of strain. The characteristics were studied in mono-parametric and multiparametric evaluations to predict CRT-induced 6-month reverse remodelling. For each characteristic, the performance to estimate the CRT response was determined with the receiver operating characteristic (ROC) curve and the difference between the performances was statistically evaluated. The best area under the curve (AUC) when only one characteristic used was obtained for a myocardial work (AUC = 0.73) and the ROC curve was significantly better than the others. The best AUC for the integrals was 0.63, and the ROC curve was not significantly greater than the others. However, with the best combination of works and integrals, the ROC curves were not significantly different and the AUCs were 0.77 and 0.72. CONCLUSION Myocardial work used in a mono-parametric estimation of the CRT-response has better performance compared to other methods. However, in a multiparametric application such as what could be done in a machine-learning approach, the two methods provide similar results.
Collapse
Affiliation(s)
- Arnaud Hubert
- Department of Cardiology, University of Rennes, CHU Rennes, Inserm, LTSI-UMR 1099, CHU Rennes, F-35000 Rennes, France
| | - Alban Gallard
- Department of Cardiology, University of Rennes, CHU Rennes, Inserm, LTSI-UMR 1099, CHU Rennes, F-35000 Rennes, France
| | - Virginie Le Rolle
- Department of Cardiology, University of Rennes, CHU Rennes, Inserm, LTSI-UMR 1099, CHU Rennes, F-35000 Rennes, France
| | - Otto A Smiseth
- Department of Cardiology, Institute for Surgical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Christophe Leclercq
- Department of Cardiology, University of Rennes, CHU Rennes, Inserm, LTSI-UMR 1099, CHU Rennes, F-35000 Rennes, France
| | - Jean-Uwe Voigt
- Department of Cardiovascular Disease, KU Leuven, Leuven, Belgium
- Department of Cardiovascular Science, KU Leuven, Leuven, Belgium
| | - Elena Galli
- Department of Cardiology, University of Rennes, CHU Rennes, Inserm, LTSI-UMR 1099, CHU Rennes, F-35000 Rennes, France
| | - Vincent Galand
- Department of Cardiology, University of Rennes, CHU Rennes, Inserm, LTSI-UMR 1099, CHU Rennes, F-35000 Rennes, France
| | - Alfredo Hernandez
- Department of Cardiology, University of Rennes, CHU Rennes, Inserm, LTSI-UMR 1099, CHU Rennes, F-35000 Rennes, France
| | - Erwan Donal
- Department of Cardiology, University of Rennes, CHU Rennes, Inserm, LTSI-UMR 1099, CHU Rennes, F-35000 Rennes, France
| |
Collapse
|
44
|
Zweerink A, Nijveldt R, Braams NJ, Maass AH, Vernooy K, de Lange FJ, Meine M, Geelhoed B, Rienstra M, van Gelder IC, Vos MA, van Rossum AC, Allaart CP. Segment length in cine (SLICE) strain analysis: a practical approach to estimate potential benefit from cardiac resynchronization therapy. J Cardiovasc Magn Reson 2021; 23:4. [PMID: 33423681 PMCID: PMC7798189 DOI: 10.1186/s12968-020-00701-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 08/24/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Segment length in cine (SLICE) strain analysis on standard cardiovascular magnetic resonance (CMR) cine images was recently validated against gold standard myocardial tagging. The present study aims to explore predictive value of SLICE for cardiac resynchronization therapy (CRT) response. METHODS AND RESULTS Fifty-seven patients with heart failure and left bundle branch block (LBBB) were prospectively enrolled in this multi-center study and underwent CMR examination before CRT implantation. Circumferential strains of the septal and lateral wall were measured by SLICE on short-axis cine images. In addition, timing and strain pattern parameters were assessed. After twelve months, CRT response was quantified by the echocardiographic change in left ventricular (LV) end-systolic volume (LVESV). In contrast to timing parameters, strain pattern parameters being systolic rebound stretch of the septum (SRSsep), systolic stretch index (SSIsep-lat), and internal stretch factor (ISFsep-lat) all correlated significantly with LVESV change (R - 0.56; R - 0.53; and R - 0.58, respectively). Of all strain parameters, end-systolic septal strain (ESSsep) showed strongest correlation with LVESV change (R - 0.63). Multivariable analysis showed ESSsep to be independently related to LVESV change together with age and QRSAREA. CONCLUSION The practicable SLICE strain technique may help the clinician to estimate potential benefit from CRT by analyzing standard CMR cine images without the need for commercial software. Of all strain parameters, end-systolic septal strain (ESSsep) demonstrates the strongest correlation with reverse remodeling after CRT. This parameter may be of special interest in patients with non-strict LBBB morphology for whom CRT benefit is doubted.
Collapse
Affiliation(s)
- Alwin Zweerink
- Department of Cardiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers (AUMC), Location VU University Medical Center, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Robin Nijveldt
- Department of Cardiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers (AUMC), Location VU University Medical Center, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
- Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Natalia J. Braams
- Department of Cardiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers (AUMC), Location VU University Medical Center, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Alexander H. Maass
- Department of Cardiology, Thoraxcentre, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Kevin Vernooy
- Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Cardiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Frederik J. de Lange
- Department of Cardiology, Amsterdam University Medical Centers (AUMC), Location Academic Medical Center, Amsterdam, The Netherlands
| | - Mathias Meine
- Department of Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Bastiaan Geelhoed
- Department of Cardiology, Thoraxcentre, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Michiel Rienstra
- Department of Cardiology, Thoraxcentre, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Isabelle C. van Gelder
- Department of Cardiology, Thoraxcentre, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Marc A. Vos
- Department of Medical Physiology, University of Utrecht, Utrecht, The Netherlands
| | - Albert C. van Rossum
- Department of Cardiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers (AUMC), Location VU University Medical Center, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Cornelis P. Allaart
- Department of Cardiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers (AUMC), Location VU University Medical Center, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
45
|
Galli E, Le Rolle V, Smiseth OA, Duchenne J, Aalen JM, Larsen CK, Sade EA, Hubert A, Anilkumar S, Penicka M, Linde C, Leclercq C, Hernandez A, Voigt JU, Donal E. Importance of Systematic Right Ventricular Assessment in Cardiac Resynchronization Therapy Candidates: A Machine Learning Approach. J Am Soc Echocardiogr 2021; 34:494-502. [PMID: 33422667 DOI: 10.1016/j.echo.2020.12.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Despite all having systolic heart failure and broad QRS intervals, patients screened for cardiac resynchronization therapy (CRT) are highly heterogeneous, and it remains extremely challenging to predict the impact of CRT devices on left ventricular function and outcomes. The aim of this study was to evaluate the relative impact of clinical, electrocardiographic, and echocardiographic data on the left ventricular remodeling and prognosis of CRT candidates by the application of machine learning approaches. METHODS One hundred ninety-three patients with systolic heart failure receiving CRT according to current recommendations were prospectively included in this multicenter study. A combination of the Boruta algorithm and random forest methods was used to identify features predicting both CRT volumetric response and prognosis. Model performance was tested using the area under the receiver operating characteristic curve. The k-medoid method was also applied to identify clusters of phenotypically similar patients. RESULTS From 28 clinical, electrocardiographic, and echocardiographic variables, 16 features were predictive of CRT response, and 11 features were predictive of prognosis. Among the predictors of CRT response, eight variables (50%) pertained to right ventricular size or function. Tricuspid annular plane systolic excursion was the main feature associated with prognosis. The selected features were associated with particularly good prediction of both CRT response (area under the curve, 0.81; 95% CI, 0.74-0.87) and outcomes (area under the curve, 0.84; 95% CI, 0.75-0.93). An unsupervised machine learning approach allowed the identification of two phenogroups of patients who differed significantly in clinical variables and parameters of biventricular size and right ventricular function. The two phenogroups had significantly different prognosis (hazard ratio, 4.70; 95% CI, 2.1-10.0; P < .0001; log-rank P < .0001). CONCLUSIONS Machine learning can reliably identify clinical and echocardiographic features associated with CRT response and prognosis. The evaluation of both right ventricular size and functional parameters has pivotal importance for the risk stratification of CRT candidates and should be systematically performed in patients undergoing CRT.
Collapse
Affiliation(s)
- Elena Galli
- Université de Rennes, CHU Rennes, Inserm, LTSI - UMR 1099, Rennes, France
| | - Virginie Le Rolle
- Université de Rennes, CHU Rennes, Inserm, LTSI - UMR 1099, Rennes, France
| | - Otto A Smiseth
- Institute for Surgical Research and Department of Cardiology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Jurgen Duchenne
- Department of Cardiovascular Disease, KU Leuven, Leuven, Belgium; Department of Cardiovascular Science, KU Leuven, Leuven, Belgium
| | - John M Aalen
- Institute for Surgical Research and Department of Cardiology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Camilla K Larsen
- Institute for Surgical Research and Department of Cardiology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Elif A Sade
- Department of Cardiology, Baskent University Hospital, Ankara, Turkey
| | - Arnaud Hubert
- Université de Rennes, CHU Rennes, Inserm, LTSI - UMR 1099, Rennes, France
| | - Smitha Anilkumar
- Non-Invasive Cardiac Laboratory, Department of Cardiology, Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | | | - Cecilia Linde
- Heart and Vascular Theme, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | | | - Alfredo Hernandez
- Université de Rennes, CHU Rennes, Inserm, LTSI - UMR 1099, Rennes, France
| | - Jens-Uwe Voigt
- Department of Cardiovascular Disease, KU Leuven, Leuven, Belgium; Department of Cardiovascular Science, KU Leuven, Leuven, Belgium
| | - Erwan Donal
- Université de Rennes, CHU Rennes, Inserm, LTSI - UMR 1099, Rennes, France.
| |
Collapse
|
46
|
Riolet C, Menet A, Verdun S, Altes A, Appert L, Guyomar Y, Delelis F, Ennezat PV, Guerbaai RA, Graux P, Tribouilloy C, Marechaux S. Clinical and prognostic implications of phenomapping in patients with heart failure receiving cardiac resynchronization therapy. Arch Cardiovasc Dis 2021; 114:197-210. [PMID: 33431324 DOI: 10.1016/j.acvd.2020.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Despite having an indication for cardiac resynchronization therapy according to current guidelines, patients with heart failure with reduced ejection fraction who receive cardiac resynchronization therapy do not consistently derive benefit from it. AIM To determine whether unsupervised clustering analysis (phenomapping) can identify distinct phenogroups of patients with differential outcomes among cardiac resynchronization therapy recipients from routine clinical practice. METHODS We used unsupervised hierarchical cluster analysis of phenotypic data after data reduction (55 clinical, biological and echocardiographic variables) to define new phenogroups among 328 patients with heart failure with reduced ejection fraction from routine clinical practice enrolled before cardiac resynchronization therapy. Clinical outcomes and cardiac resynchronization therapy response rate were studied according to phenogroups. RESULTS Although all patients met the recommended criteria for cardiac resynchronization therapy implantation, phenomapping analysis classified study participants into four phenogroups that differed distinctively in clinical, biological, electrocardiographic and echocardiographic characteristics and outcomes. Patients from phenogroups 1 and 2 had the most improved outcome in terms of mortality, associated with cardiac resynchronization therapy response rates of 81% and 78%, respectively. In contrast, patients from phenogroups 3 and 4 had cardiac resynchronization therapy response rates of 39% and 59%, respectively, and the worst outcome, with a considerably increased risk of mortality compared with patients from phenogroup 1 (hazard ratio 3.23, 95% confidence interval 1.9-5.5 and hazard ratio 2.49, 95% confidence interval 1.38-4.50, respectively). CONCLUSIONS Among patients with heart failure with reduced ejection fraction with an indication for cardiac resynchronization therapy from routine clinical practice, phenomapping identifies subgroups of patients with differential clinical, biological and echocardiographic features strongly linked to divergent outcomes and responses to cardiac resynchronization therapy. This approach may help to identify patients who will derive most benefit from cardiac resynchronization therapy in "individualized" clinical practice.
Collapse
Affiliation(s)
- Clémence Riolet
- Cardiology Department, Lille Catholic Hospitals, Lille Catholic University, 59160 Lomme, France
| | - Aymeric Menet
- Cardiology Department, Lille Catholic Hospitals, Lille Catholic University, 59160 Lomme, France
| | - Stéphane Verdun
- Biostatistics Department-Delegations for Clinical Research and Innovation, Lille Catholic Hospitals, Lille Catholic University, 59160 Lille, France
| | - Alexandre Altes
- Cardiology Department, Lille Catholic Hospitals, Lille Catholic University, 59160 Lomme, France
| | - Ludovic Appert
- Cardiology Department, Lille Catholic Hospitals, Lille Catholic University, 59160 Lomme, France
| | - Yves Guyomar
- Cardiology Department, Lille Catholic Hospitals, Lille Catholic University, 59160 Lomme, France
| | - François Delelis
- Cardiology Department, Lille Catholic Hospitals, Lille Catholic University, 59160 Lomme, France
| | | | - Raphaelle A Guerbaai
- Department of Public Health (DPH), Faculty of Medicine, Basel University, 4056 Basel, Switzerland
| | - Pierre Graux
- Cardiology Department, Lille Catholic Hospitals, Lille Catholic University, 59160 Lomme, France
| | - Christophe Tribouilloy
- Amiens University Hospital, 80080 Amiens, France; Laboratory MP3CV-EA 7517, University Centre for Health Research, Picardy University, 80000 Amiens, France
| | - Sylvestre Marechaux
- Cardiology Department, Lille Catholic Hospitals, Lille Catholic University, 59160 Lomme, France; Laboratory MP3CV-EA 7517, University Centre for Health Research, Picardy University, 80000 Amiens, France.
| |
Collapse
|
47
|
Corral-Acero J, Margara F, Marciniak M, Rodero C, Loncaric F, Feng Y, Gilbert A, Fernandes JF, Bukhari HA, Wajdan A, Martinez MV, Santos MS, Shamohammdi M, Luo H, Westphal P, Leeson P, DiAchille P, Gurev V, Mayr M, Geris L, Pathmanathan P, Morrison T, Cornelussen R, Prinzen F, Delhaas T, Doltra A, Sitges M, Vigmond EJ, Zacur E, Grau V, Rodriguez B, Remme EW, Niederer S, Mortier P, McLeod K, Potse M, Pueyo E, Bueno-Orovio A, Lamata P. The 'Digital Twin' to enable the vision of precision cardiology. Eur Heart J 2020; 41:4556-4564. [PMID: 32128588 PMCID: PMC7774470 DOI: 10.1093/eurheartj/ehaa159] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/29/2019] [Accepted: 02/24/2020] [Indexed: 12/26/2022] Open
Abstract
Providing therapies tailored to each patient is the vision of precision medicine, enabled by the increasing ability to capture extensive data about individual patients. In this position paper, we argue that the second enabling pillar towards this vision is the increasing power of computers and algorithms to learn, reason, and build the 'digital twin' of a patient. Computational models are boosting the capacity to draw diagnosis and prognosis, and future treatments will be tailored not only to current health status and data, but also to an accurate projection of the pathways to restore health by model predictions. The early steps of the digital twin in the area of cardiovascular medicine are reviewed in this article, together with a discussion of the challenges and opportunities ahead. We emphasize the synergies between mechanistic and statistical models in accelerating cardiovascular research and enabling the vision of precision medicine.
Collapse
Affiliation(s)
| | - Francesca Margara
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Maciej Marciniak
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Cristobal Rodero
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Filip Loncaric
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Yingjing Feng
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac-Bordeaux F-33600, France
- IMB, UMR 5251, University of Bordeaux, Talence F-33400, France
| | | | - Joao F Fernandes
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Hassaan A Bukhari
- IMB, UMR 5251, University of Bordeaux, Talence F-33400, France
- Aragón Institute of Engineering Research, Universidad de Zaragoza, IIS Aragón, Zaragoza, Spain
| | - Ali Wajdan
- The Intervention Centre, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | | | - Mehrdad Shamohammdi
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Hongxing Luo
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Philip Westphal
- Medtronic PLC, Bakken Research Center, Maastricht, the Netherlands
| | - Paul Leeson
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, Oxford Cardiovascular Clinical Research Facility, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Paolo DiAchille
- Healthcare and Life Sciences Research, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Viatcheslav Gurev
- Healthcare and Life Sciences Research, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Manuel Mayr
- King’s British Heart Foundation Centre, King’s College London, London, UK
| | - Liesbet Geris
- Virtual Physiological Human Institute, Leuven, Belgium
| | - Pras Pathmanathan
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Tina Morrison
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | | | - Frits Prinzen
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Tammo Delhaas
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Ada Doltra
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marta Sitges
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBERCV, Instituto de Salud Carlos III, (CB16/11/00354), CERCA Programme/Generalitat de, Catalunya, Spain
| | - Edward J Vigmond
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac-Bordeaux F-33600, France
- IMB, UMR 5251, University of Bordeaux, Talence F-33400, France
| | - Ernesto Zacur
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Vicente Grau
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Espen W Remme
- The Intervention Centre, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Steven Niederer
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | | | | | - Mark Potse
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac-Bordeaux F-33600, France
- IMB, UMR 5251, University of Bordeaux, Talence F-33400, France
- Inria Bordeaux Sud-Ouest, CARMEN team, Talence F-33400, France
| | - Esther Pueyo
- Aragón Institute of Engineering Research, Universidad de Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN), Madrid, Spain
| | - Alfonso Bueno-Orovio
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Pablo Lamata
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| |
Collapse
|
48
|
Prediction of response to cardiac resynchronization therapy using a multi-feature learning method. Int J Cardiovasc Imaging 2020; 37:989-998. [PMID: 33226549 DOI: 10.1007/s10554-020-02083-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/21/2020] [Indexed: 12/23/2022]
Abstract
We hypothesized that a multiparametric evaluation, based on the combination of electrocardiographic and echocardiographic parameters, could enhance the appraisal of the likelihood of reverse remodeling and prognosis of favorable clinical evolution to improve the response of cardiac resynchronization therapy (CRT). Three hundred and twenty-three heart failure patients were retrospectively included in this multicenter study. 221 patients (68%) were responders, defined by a decrease in left ventricle end-systolic volume ≥15% at the 6-month follow-up. In addition, strain data coming from echocardiography were analyzed with custom-made signal processing methods. Integrals of regional longitudinal strain signals from the beginning of the cardiac cycle to strain peak and to the instant of aortic valve closure were analyzed. QRS duration, septal flash and different other features manually extracted were also included in the analysis. The random forest (RF) method was applied to analyze the relative feature importance, to select the most significant features and to build an ensemble classifier with the objective of predicting response to CRT. The set of most significant features was composed of Septal Flash, E, E/A, E/EA, QRS, left ventricular end-diastolic volume and eight features extracted from strain curves. A Monte Carlo cross-validation method with 100 runs was applied, using, in each run, different random sets of 80% of patients for training and 20% for testing. Results show a mean area under the curve (AUC) of 0.809 with a standard deviation of 0.05. A multiparametric approach using a combination of echo-based parameters of left ventricular dyssynchrony and QRS duration helped to improve the prediction of the response to cardiac resynchronization therapy.
Collapse
|
49
|
His-bundle and left bundle pacing with optimized atrioventricular delay achieve superior electrical synchrony over endocardial and epicardial pacing in left bundle branch block patients. Heart Rhythm 2020; 17:1922-1929. [DOI: 10.1016/j.hrthm.2020.06.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 02/05/2023]
|
50
|
Hayama Y, Shimizu S, Kawada T, Negishi J, Sakaguchi H, Miyazaki A, Ohuchi H, Yamada O, Kurosaki K, Sugimachi M. Impact of delayed ventricular wall area ratio on pathophysiology of mechanical dyssynchrony: implication from single-ventricle physiology and 0D modeling. J Physiol Sci 2020; 70:38. [PMID: 32762655 PMCID: PMC10716988 DOI: 10.1186/s12576-020-00765-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/18/2020] [Indexed: 11/10/2022]
Abstract
Electrical disparity can induce inefficient cardiac performance, representing an uncoordinated wall motion at an earlier activated ventricular wall: an early shortening followed by a systolic rebound stretch. Although regional contractility and distensibility modulate this pathological motion, the effect of a morphological factor has not been emphasized. Our strain analysis in 62 patients with single ventricle revealed that those with an activation delay in 60-70% of ventricular wall area suffered from cardiac dysfunction and mechanical discoordination along with prolonged QRS duration. A computational simulation with a two-compartment ventricular model also suggested that the ventricle with an activation delay in 70% of the total volume was most vulnerable to a large activation delay, accompanied by an uncoordinated motion at an earlier activated wall. Taken together, the ratio of the delayed ventricular wall has a significant impact on the pathophysiology due to an activation delay, potentially highlighting an indicator of cardiac dysfunction.
Collapse
Affiliation(s)
- Yohsuke Hayama
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 6-1, Kishibe-shimmachi, Suita, Osaka, 564-8565, Japan
- Department of Cardiovascular Science, Faculty of Medicine, Osaka University Graduate School of Medicine, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Shuji Shimizu
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 6-1, Kishibe-shimmachi, Suita, Osaka, 564-8565, Japan
| | - Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 6-1, Kishibe-shimmachi, Suita, Osaka, 564-8565, Japan
| | - Jun Negishi
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, 6-1, Kishibe-shimmachi, Suita, Osaka, 564-8565, Japan
| | - Heima Sakaguchi
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, 6-1, Kishibe-shimmachi, Suita, Osaka, 564-8565, Japan
| | - Aya Miyazaki
- Department of Cardiology, Shizuoka Children's Hospital, 860, Urushiyama, Aoi-ku, Shizuoka, Shizuoka, 420-8660, Japan
| | - Hideo Ohuchi
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, 6-1, Kishibe-shimmachi, Suita, Osaka, 564-8565, Japan
| | - Osamu Yamada
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, 6-1, Kishibe-shimmachi, Suita, Osaka, 564-8565, Japan
| | - Kenichi Kurosaki
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, 6-1, Kishibe-shimmachi, Suita, Osaka, 564-8565, Japan
| | - Masaru Sugimachi
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 6-1, Kishibe-shimmachi, Suita, Osaka, 564-8565, Japan.
- Department of Cardiovascular Science, Faculty of Medicine, Osaka University Graduate School of Medicine, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|