1
|
Ipek R, Holland J, Cramer M, Rider O. CMR to characterize myocardial structure and function in heart failure with preserved left ventricular ejection fraction. Eur Heart J Cardiovasc Imaging 2024; 25:1491-1504. [PMID: 39205602 PMCID: PMC11522877 DOI: 10.1093/ehjci/jeae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Despite remarkable progress in therapeutic drugs, morbidity, and mortality for heart failure (HF) remains high in developed countries. HF with preserved ejection fraction (HFpEF) now accounts for around half of all HF cases. It is a heterogeneous disease, with multiple aetiologies, and as such poses a significant diagnostic challenge. Cardiac magnetic resonance (CMR) has become a valuable non-invasive modality to assess cardiac morphology and function, but beyond that, the multi-parametric nature of CMR allows novel approaches to characterize haemodynamics and with magnetic resonance spectroscopy (MRS), the study of metabolism. Furthermore, exercise CMR, when combined with lung water imaging provides an in-depth understanding of the underlying pathophysiological and mechanistic processes in HFpEF. Thus, CMR provides a comprehensive phenotyping tool for HFpEF, which points towards a targeted and personalized therapy with improved diagnostics and prevention.
Collapse
Affiliation(s)
- Rojda Ipek
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, Level 0, University of Oxford, Oxford, OX3 9DU, UK
- Divison of Cardiology, Pulmonary Disease and Vascular Medicine, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jennifer Holland
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, Level 0, University of Oxford, Oxford, OX3 9DU, UK
| | - Mareike Cramer
- Divison of Cardiology, Pulmonary Disease and Vascular Medicine, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Oliver Rider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, Level 0, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
2
|
Dall'Armellina E, Ennis DB, Axel L, Croisille P, Ferreira PF, Gotschy A, Lohr D, Moulin K, Nguyen C, Nielles-Vallespin S, Romero W, Scott AD, Stoeck C, Teh I, Tunnicliffe L, Viallon M, Wang, Young AA, Schneider JE, Sosnovik DE. Cardiac diffusion-weighted and tensor imaging: a Society for Cardiovascular Magnetic Resonance (SCMR) special interest group consensus statement. J Cardiovasc Magn Reson 2024:101109. [PMID: 39442672 DOI: 10.1016/j.jocmr.2024.101109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
Thanks to recent developments in Cardiovascular magnetic resonance (CMR), cardiac diffusion-weighted magnetic resonance is fast emerging in a range of clinical applications. Cardiac diffusion-weighted imaging (cDWI) and diffusion tensor imaging (cDTI) now enable investigators and clinicians to assess and quantify the 3D microstructure of the heart. Free-contrast DWI is uniquely sensitized to the presence and displacement of water molecules within the myocardial tissue, including the intra-cellular, extra-cellular and intra-vascular spaces. CMR can determine changes in microstructure by quantifying: a) mean diffusivity (MD) -measuring the magnitude of diffusion; b) fractional anisotropy (FA) - specifying the directionality of diffusion; c) helix angle (HA) and transverse angle (TA) -indicating the orientation of the cardiomyocytes; d) E2A and E2A mobility - measuring the alignment and systolic-diastolic mobility of the sheetlets, respectively. This document provides recommendations for both clinical and research cDWI and cDTI, based on published evidence when available and expert consensus when not. It introduces the cardiac microstructure focusing on the cardiomyocytes and their role in cardiac physiology and pathophysiology. It highlights methods, observations and recommendations in terminology, acquisition schemes, post-processing pipelines, data analysis and interpretation of the different biomarkers. Despite the ongoing challenges discussed in the document and the need for ongoing technical improvements, it is clear that cDTI is indeed feasible, can be accurately and reproducibly performed and, most importantly, can provide unique insights into myocardial pathophysiology.
Collapse
Affiliation(s)
- E Dall'Armellina
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, UK
| | - D B Ennis
- Department of Radiology, Stanford University, Stanford, California, USA
| | - L Axel
- Department of Radiology, and Division of Cardiology, Department of Internal Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - P Croisille
- Univ Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, F-42023, Department of Radiology, University Hospital Saint-Etienne, France
| | - P F Ferreira
- Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - A Gotschy
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland and Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - D Lohr
- Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - K Moulin
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, US
| | - C Nguyen
- Harvard Medical School, MA, and Cardiovascular Innovation Research Center, Cleveland Clinic, United States
| | - S Nielles-Vallespin
- Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - W Romero
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, Saint Etienne, France
| | - A D Scott
- Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - C Stoeck
- University and ETH Zurich, Switzerland
| | - I Teh
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, UK
| | - L Tunnicliffe
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford UK
| | - M Viallon
- Univ Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, F-42023, Department of Radiology, University Hospital Saint-Etienne, France
| | - Wang
- Department of Radiology, Stanford University, Stanford, California, USA
| | | | - J E Schneider
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, UK
| | - D E Sosnovik
- Martinos Center for Biomedical Imaging and Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
3
|
Davies J, Thai MT, Sharma B, Hoang TT, Nguyen CC, Phan PT, Vuong TNAM, Ji A, Zhu K, Nicotra E, Toh YC, Stevens M, Hayward C, Phan HP, Lovell NH, Do TN. Soft robotic artificial left ventricle simulator capable of reproducing myocardial biomechanics. Sci Robot 2024; 9:eado4553. [PMID: 39321276 DOI: 10.1126/scirobotics.ado4553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024]
Abstract
The heart's intricate myocardial architecture has been called the Gordian knot of anatomy, an impossible tangle of intricate muscle fibers. This complexity dictates equally complex cardiac motions that are difficult to mimic in physical systems. If these motions could be generated by a robotic system, then cardiac device testing, cardiovascular disease studies, and surgical procedure training could reduce their reliance on animal models, saving time, costs, and lives. This work introduces a bioinspired soft robotic left ventricle simulator capable of reproducing the minutiae of cardiac motion while providing physiological pressures. This device uses thin-filament artificial muscles to mimic the multilayered myocardial architecture. To demonstrate the device's ability to follow the cardiac motions observed in the literature, we used canine myocardial strain data as input signals that were subsequently applied to each artificial myocardial layer. The device's ability to reproduce physiological volume and pressure under healthy and heart failure conditions, as well as effective simulation of a cardiac support device, were experimentally demonstrated in a left-sided mock circulation loop. This work also has the potential to deliver faithful simulated cardiac motion for preclinical device and surgical procedure testing, with the potential to simulate patient-specific myocardial architecture and motion.
Collapse
Affiliation(s)
- James Davies
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Mai Thanh Thai
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Bibhu Sharma
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Trung Thien Hoang
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Chi Cong Nguyen
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Phuoc Thien Phan
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Thao Nhu Anne Marie Vuong
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Adrienne Ji
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Kefan Zhu
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Emanuele Nicotra
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Yi-Chin Toh
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Michael Stevens
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
| | - Christopher Hayward
- Department of Cardiology, St Vincent's Hospital, Sydney, NSW 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Hoang-Phuong Phan
- Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
- School of Mechanical and Manufacturing Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Nigel Hamilton Lovell
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
| | - Thanh Nho Do
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Chen R, Luo R, Xu Y, Ou J, Li X, Yang Y, Cao L, Wu Z, Luo W, Liu H. Second-Order Motion-Compensated Echo-Planar Cardiac Diffusion-Weighted MRI: Usefulness of Compressed Sensitivity Encoding. J Magn Reson Imaging 2024. [PMID: 38587265 DOI: 10.1002/jmri.29383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Cardiac diffusion-weighted imaging (DWI) using second-order motion-compensated spin echo (M2C) can provide noninvasive in-vivo microstructural assessment, but limited by relatively low signal-to-noise ratio (SNR). Echo-planar imaging (EPI) with compressed sensitivity encoding (EPICS) could address these issues. PURPOSE To combine M2C DWI and EPCIS (M2C EPICS DWI), and compare image quality for M2C DWI. STUDY TYPE Prospective. POPULATION Ten ex-vivo hearts, 10 healthy volunteers (females, 5 [50%]; mean ± SD of age, 25 ± 4 years), and 12 patients with diseased hearts (female, 1 [8.3%]; mean ± SD of age, 44 ± 16 years; including coronary artery heart disease, congenital heart disease, dilated cardiomyopathy, amyloidosis, and myocarditis). FIELD STRENGTH/SEQUENCE 3-T, M2C EPICS DWI, and M2C DWI. ASSESSMENT The apparent SNR (aSNR) and the rating scores were used to evaluate and compared image quality of all three groups. The aSNR was calculated usingaSNR = Mean intensity myocardium / Standard deviation myocardium $$ \mathrm{aSNR}={\mathrm{Mean}\ \mathrm{intensity}}_{\mathrm{myocardium}}/{\mathrm{Standard}\ \mathrm{deviation}}_{\mathrm{myocardium}} $$ , and the myocardium was segmented manually. Three observers independently rated subjective image quality using a 5-point Likert scale. STATISTICAL TESTS Bland-Altman analysis and paired t-tests. The threshold for statistical significance was set at P < 0.05. RESULTS In healthy volunteers, the aSNR with a b-value of 450 s/mm2 acquired by M2C EPICS DWI was significantly higher than M2C DWI at in-plane resolutions of 3.0 × 3.0, 2.5 × 2.5, and 2.0 × 2.0 mm2. In patients with diseased hearts, the aSNR ofM2C EPICS DWI was also significantly higher than that for M2C DWI (bias of M2C EPICS-M2C = 1.999, 95% limits of agreement, 0.362 to 3.636; mean ± SD, 7.80 ± 1.37 vs. 5.80 ± 0.81). The ADC values of M2C EPICS was significantly higher than M2C DWI in in-vivo hearts. Over 80% of the images with rating scores for M2C EPICS DWI were higher than M2C DWI in in-vivo hearts. DATA CONCLUSION Cardiac imaging by M2C EPICS DWI may demonstrate better overall image quality and higher aSNR than M2C DWI. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Rui Chen
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ruohong Luo
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yongzhou Xu
- Department of MSC Clinical & Technical Solutions, Philips Healthcare, Shenzhen, China
| | - Jiehao Ou
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaodan Li
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yuelong Yang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Liqi Cao
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhigang Wu
- Department of MSC Clinical & Technical Solutions, Philips Healthcare, Shenzhen, China
| | - Wei Luo
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Hui Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Park CH, Kim PK, Kim Y, Kim TH, Hong YJ, Ahn E, Cha YJ, Choi BW. Development and validation of cardiac diffusion weighted magnetic resonance imaging for the diagnosis of myocardial injury in small animal models. Sci Rep 2024; 14:3552. [PMID: 38346998 PMCID: PMC10861543 DOI: 10.1038/s41598-024-52746-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
Cardiac diffusion weighted-magnetic resonance imaging (DWI) has slowly developed due to its technical difficulties. However, this limitation could be overcome by advanced techniques, including a stimulated echo technique and a gradient moment nulling technique. This study aimed to develop and validate a high-order DWI sequence, using echo-planar imaging (EPI) and second-order motion-compensated (M012) diffusion gradient applied to cardiac imaging in small-sized animals with fast heart and respiratory rates, and to investigate the feasibility of cardiac DWI, diagnosing acute myocardial injury in isoproterenol-induced myocardial injury rat models. The M012 diffusion gradient sequence was designed for diffusion tensor imaging of the rat myocardium and validated in the polyvinylpyrrolidone phantom. Following sequence optimization, 23 rats with isoproterenol-induced acute myocardial injury and five healthy control rats underwent cardiac MRI, including cine imaging, T1 mapping, and DWI. Diffusion gradient was applied using a 9.4-T MRI scanner (Bruker, BioSpec 94/20, gradient amplitude = 440 mT/m, maximum slew rate = 3440 T/m/s) with double gating (electrocardiogram and respiratory gating). Troponin I was used as a serum biomarker for myocardial injury. Histopathologic examination of the heart was subsequently performed. The developed DWI sequence using EPI and M012 provided the interpretable images of rat hearts. The apparent diffusion coefficient (ADC) values were significantly higher in rats with acute myocardial injury than in the control group (1.847 ± 0.326 * 10-3 mm2/s vs. 1.578 ± 0.144 * 10-3 mm2/s, P < 0.001). Troponin I levels were increased in the blood samples of rats with acute myocardial injury (P < 0.001). Histopathologic examinations detected myocardial damage and subendocardial fibrosis in rats with acute myocardial injury. The newly developed DWI technique has the ability to detect myocardial injury in small animal models, representing high ADC values on the myocardium with isoproterenol-induced injury.
Collapse
Affiliation(s)
- Chul Hwan Park
- Department of Radiology and the Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Pan Ki Kim
- Department of Radiology and the Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoonjung Kim
- Department of Laboratory Medicine, Gangnam Severance Hospital Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae Hoon Kim
- Department of Radiology and the Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoo Jin Hong
- Department of Radiology and the Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eunkyung Ahn
- Department of Radiology and the Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Jin Cha
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea.
| | - Byoung Wook Choi
- Department of Radiology and the Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Rodero C, Baptiste TMG, Barrows RK, Lewalle A, Niederer SA, Strocchi M. Advancing clinical translation of cardiac biomechanics models: a comprehensive review, applications and future pathways. FRONTIERS IN PHYSICS 2023; 11:1306210. [PMID: 38500690 PMCID: PMC7615748 DOI: 10.3389/fphy.2023.1306210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Cardiac mechanics models are developed to represent a high level of detail, including refined anatomies, accurate cell mechanics models, and platforms to link microscale physiology to whole-organ function. However, cardiac biomechanics models still have limited clinical translation. In this review, we provide a picture of cardiac mechanics models, focusing on their clinical translation. We review the main experimental and clinical data used in cardiac models, as well as the steps followed in the literature to generate anatomical meshes ready for simulations. We describe the main models in active and passive mechanics and the different lumped parameter models to represent the circulatory system. Lastly, we provide a summary of the state-of-the-art in terms of ventricular, atrial, and four-chamber cardiac biomechanics models. We discuss the steps that may facilitate clinical translation of the biomechanics models we describe. A well-established software to simulate cardiac biomechanics is lacking, with all available platforms involving different levels of documentation, learning curves, accessibility, and cost. Furthermore, there is no regulatory framework that clearly outlines the verification and validation requirements a model has to satisfy in order to be reliably used in applications. Finally, better integration with increasingly rich clinical and/or experimental datasets as well as machine learning techniques to reduce computational costs might increase model reliability at feasible resources. Cardiac biomechanics models provide excellent opportunities to be integrated into clinical workflows, but more refinement and careful validation against clinical data are needed to improve their credibility. In addition, in each context of use, model complexity must be balanced with the associated high computational cost of running these models.
Collapse
Affiliation(s)
- Cristobal Rodero
- Cardiac Electro-Mechanics Research Group (CEMRG), National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Tiffany M. G. Baptiste
- Cardiac Electro-Mechanics Research Group (CEMRG), National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Rosie K. Barrows
- Cardiac Electro-Mechanics Research Group (CEMRG), National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Alexandre Lewalle
- Cardiac Electro-Mechanics Research Group (CEMRG), National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Steven A. Niederer
- Cardiac Electro-Mechanics Research Group (CEMRG), National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
- Turing Research and Innovation Cluster in Digital Twins (TRIC: DT), The Alan Turing Institute, London, United Kingdom
| | - Marina Strocchi
- Cardiac Electro-Mechanics Research Group (CEMRG), National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
7
|
Dileep D, Syed TA, Sloan TFW, Dhandapany PS, Siddiqi K, Sirajuddin M. Cardiomyocyte orientation recovery at micrometer scale reveals long-axis fiber continuum in heart walls. EMBO J 2023; 42:e113288. [PMID: 37671467 PMCID: PMC10548172 DOI: 10.15252/embj.2022113288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 09/07/2023] Open
Abstract
Coordinated cardiomyocyte contraction drives the mammalian heart to beat and circulate blood. No consensus model of cardiomyocyte geometrical arrangement exists, due to the limited spatial resolution of whole heart imaging methods and the piecemeal nature of studies based on histological sections. By combining microscopy and computer vision, we produced the first-ever three-dimensional cardiomyocyte orientation reconstruction across mouse ventricular walls at the micrometer scale, representing a gain of three orders of magnitude in spatial resolution. We recovered a cardiomyocyte arrangement aligned to the long-axis direction of the outer ventricular walls. This cellular network lies in a thin shell and forms a continuum with longitudinally arranged cardiomyocytes in the inner walls, with a complex geometry at the apex. Our reconstruction methods can be applied at fine spatial scales to further understanding of heart wall electrical function and mechanics, and set the stage for the study of micron-scale fiber remodeling in heart disease.
Collapse
Affiliation(s)
- Drisya Dileep
- Centre for Cardiovascular Biology and DiseaseInstitute for Stem Cell Science and Regenerative MedicineBengaluruIndia
- The University of Trans‐Disciplinary Health Sciences and Technology (TDU)BengaluruIndia
| | - Tabish A Syed
- School of Computer Science and Centre for Intelligent MachinesMcGill University, and MILA – Québec AI InstituteMontréalQCCanada
| | | | - Perundurai S Dhandapany
- Centre for Cardiovascular Biology and DiseaseInstitute for Stem Cell Science and Regenerative MedicineBengaluruIndia
| | - Kaleem Siddiqi
- School of Computer Science and Centre for Intelligent MachinesMcGill University, and MILA – Québec AI InstituteMontréalQCCanada
| | - Minhajuddin Sirajuddin
- Centre for Cardiovascular Biology and DiseaseInstitute for Stem Cell Science and Regenerative MedicineBengaluruIndia
| |
Collapse
|
8
|
Pan J, Ng SM, Neubauer S, Rider OJ. Phenotyping heart failure by cardiac magnetic resonance imaging of cardiac macro- and microscopic structure: state of the art review. Eur Heart J Cardiovasc Imaging 2023; 24:1302-1317. [PMID: 37267310 PMCID: PMC10531211 DOI: 10.1093/ehjci/jead124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023] Open
Abstract
Heart failure demographics have evolved in past decades with the development of improved diagnostics, therapies, and prevention. Cardiac magnetic resonance (CMR) has developed in a similar timeframe to become the gold-standard non-invasive imaging modality for characterizing diseases causing heart failure. CMR techniques to assess cardiac morphology and function have progressed since their first use in the 1980s. Increasingly efficient acquisition protocols generate high spatial and temporal resolution images in less time. This has enabled new methods of characterizing cardiac systolic and diastolic function such as strain analysis, exercise real-time cine imaging and four-dimensional flow. A key strength of CMR is its ability to non-invasively interrogate the myocardial tissue composition. Gadolinium contrast agents revolutionized non-invasive cardiac imaging with the late gadolinium enhancement technique. Further advances enabled quantitative parametric mapping to increase sensitivity at detecting diffuse pathology. Novel methods such as diffusion tensor imaging and artificial intelligence-enhanced image generation are on the horizon. Magnetic resonance spectroscopy (MRS) provides a window into the molecular environment of the myocardium. Phosphorus (31P) spectroscopy can inform the status of cardiac energetics in health and disease. Proton (1H) spectroscopy complements this by measuring creatine and intramyocardial lipids. Hyperpolarized carbon (13C) spectroscopy is a novel method that could further our understanding of dynamic cardiac metabolism. CMR of other organs such as the lungs may add further depth into phenotypes of heart failure. The vast capabilities of CMR should be deployed and interpreted in context of current heart failure challenges.
Collapse
Affiliation(s)
- Jiliu Pan
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Level 0, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Sher May Ng
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Level 0, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Stefan Neubauer
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Level 0, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Oliver J Rider
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Level 0, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| |
Collapse
|
9
|
Dejea H, Schlepütz CM, Méndez-Carmona N, Arnold M, Garcia-Canadilla P, Longnus SL, Stampanoni M, Bijnens B, Bonnin A. A tomographic microscopy-compatible Langendorff system for the dynamic structural characterization of the cardiac cycle. Front Cardiovasc Med 2022; 9:1023483. [PMID: 36620622 PMCID: PMC9815149 DOI: 10.3389/fcvm.2022.1023483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Cardiac architecture has been extensively investigated ex vivo using a broad spectrum of imaging techniques. Nevertheless, the heart is a dynamic system and the structural mechanisms governing the cardiac cycle can only be unveiled when investigating it as such. Methods This work presents the customization of an isolated, perfused heart system compatible with synchrotron-based X-ray phase contrast imaging (X-PCI). Results Thanks to the capabilities of the developed setup, it was possible to visualize a beating isolated, perfused rat heart for the very first time in 4D at an unprecedented 2.75 μm pixel size (10.6 μm spatial resolution), and 1 ms temporal resolution. Discussion The customized setup allows high-spatial resolution studies of heart architecture along the cardiac cycle and has thus the potential to serve as a tool for the characterization of the structural dynamics of the heart, including the effects of drugs and other substances able to modify the cardiac cycle.
Collapse
Affiliation(s)
- Hector Dejea
- Paul Scherrer Institute, Villigen, Switzerland,Institute for Biomedical Engineering, University and ETH Zürich, Zurich, Switzerland,*Correspondence: Hector Dejea ✉
| | | | - Natalia Méndez-Carmona
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, Bern, Switzerland,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Maria Arnold
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, Bern, Switzerland,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Patricia Garcia-Canadilla
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, University of Barcelona, Barcelona, Spain,Cardiovascular Diseases and Child Development, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Sarah L. Longnus
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, Bern, Switzerland,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Marco Stampanoni
- Paul Scherrer Institute, Villigen, Switzerland,Institute for Biomedical Engineering, University and ETH Zürich, Zurich, Switzerland
| | - Bart Bijnens
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Anne Bonnin
- Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
10
|
Ferreira PF, Banerjee A, Scott AD, Khalique Z, Yang G, Rajakulasingam R, Dwornik M, De Silva R, Pennell DJ, Firmin DN, Nielles‐Vallespin S. Accelerating Cardiac Diffusion Tensor Imaging With a U-Net Based Model: Toward Single Breath-Hold. J Magn Reson Imaging 2022; 56:1691-1704. [PMID: 35460138 PMCID: PMC9790699 DOI: 10.1002/jmri.28199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND In vivo cardiac diffusion tensor imaging (cDTI) characterizes myocardial microstructure. Despite its potential clinical impact, considerable technical challenges exist due to the inherent low signal-to-noise ratio. PURPOSE To reduce scan time toward one breath-hold by reconstructing diffusion tensors for in vivo cDTI with a fitting-free deep learning approach. STUDY TYPE Retrospective. POPULATION A total of 197 healthy controls, 547 cardiac patients. FIELD STRENGTH/SEQUENCE A 3 T, diffusion-weighted stimulated echo acquisition mode single-shot echo-planar imaging sequence. ASSESSMENT A U-Net was trained to reconstruct the diffusion tensor elements of the reference results from reduced datasets that could be acquired in 5, 3 or 1 breath-hold(s) (BH) per slice. Fractional anisotropy (FA), mean diffusivity (MD), helix angle (HA), and sheetlet angle (E2A) were calculated and compared to the same measures when using a conventional linear-least-square (LLS) tensor fit with the same reduced datasets. A conventional LLS tensor fit with all available data (12 ± 2.0 [mean ± sd] breath-holds) was used as the reference baseline. STATISTICAL TESTS Wilcoxon signed rank/rank sum and Kruskal-Wallis tests. Statistical significance threshold was set at P = 0.05. Intersubject measures are quoted as median [interquartile range]. RESULTS For global mean or median results, both the LLS and U-Net methods with reduced datasets present a bias for some of the results. For both LLS and U-Net, there is a small but significant difference from the reference results except for LLS: MD 5BH (P = 0.38) and MD 3BH (P = 0.09). When considering direct pixel-wise errors the U-Net model outperformed significantly the LLS tensor fit for reduced datasets that can be acquired in three or just one breath-hold for all parameters. DATA CONCLUSION Diffusion tensor prediction with a trained U-Net is a promising approach to minimize the number of breath-holds needed in clinical cDTI studies. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Pedro F. Ferreira
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | | | - Andrew D. Scott
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Zohya Khalique
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Guang Yang
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Ramyah Rajakulasingam
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Maria Dwornik
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Ranil De Silva
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Dudley J. Pennell
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - David N. Firmin
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Sonia Nielles‐Vallespin
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| |
Collapse
|
11
|
van Gorkum RJH, Guenthner C, Koethe A, Stoeck CT, Kozerke S. Characterization and correction of diffusion gradient-induced eddy currents in second-order motion-compensated echo-planar and spiral cardiac DTI. Magn Reson Med 2022; 88:2378-2394. [PMID: 35916545 PMCID: PMC9804234 DOI: 10.1002/mrm.29378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE Very high gradient amplitudes played out over extended time intervals as required for second-order motion-compensated cardiac DTI may violate the assumption of a linear time-invariant gradient system model. The aim of this work was to characterize diffusion gradient-related system nonlinearity and propose a correction approach for echo-planar and spiral spin-echo motion-compensated cardiac DTI. METHODS Diffusion gradient-induced eddy currents of 9 diffusion directions were characterized at b values of 150 s/mm2 and 450 s/mm2 for a 1.5 Tesla system and used to correct phantom, ex vivo, and in vivo motion-compensated cardiac DTI data acquired with echo-planar and spiral trajectories. Predicted trajectories were calculated using gradient impulse response function and diffusion gradient strength- and direction-dependent zeroth- and first-order eddy current responses. A reconstruction method was implemented using the predicted <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics><mml:mrow><mml:mi>k</mml:mi></mml:mrow> <mml:annotation>$$ k $$</mml:annotation></mml:semantics> </mml:math> -space trajectories to additionally include off-resonances and concomitant fields. Resulting images were compared to a reference reconstruction omitting diffusion gradient-induced eddy current correction. RESULTS Diffusion gradient-induced eddy currents exhibited nonlinear effects when scaling up the gradient amplitude and could not be described by a 3D basis alone. This indicates that a gradient impulse response function does not suffice to describe diffusion gradient-induced eddy currents. Zeroth- and first-order diffusion gradient-induced eddy current effects of up to -1.7 rad and -16 to +12 rad/m, respectively, were identified. Zeroth- and first-order diffusion gradient-induced eddy current correction yielded improved image quality upon image reconstruction. CONCLUSION The proposed approach offers correction of diffusion gradient-induced zeroth- and first-order eddy currents, reducing image distortions to promote improvements of second-order motion-compensated spin-echo cardiac DTI.
Collapse
Affiliation(s)
| | - Christian Guenthner
- Institute for Biomedical Engineering, University and ETH Zurich
ZurichSwitzerland
| | - Andreas Koethe
- Institute for Biomedical Engineering, University and ETH Zurich
ZurichSwitzerland,Center for Proton Therapy, Paul Scherrer InstituteVilligenSwitzerland
| | - Christian T. Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich
ZurichSwitzerland,Division of Surgical ResearchUniversity Hospital Zurich, University ZurichZurichSwitzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich
ZurichSwitzerland
| |
Collapse
|
12
|
Wilson AJ, Sands GB, LeGrice IJ, Young AA, Ennis DB. Myocardial mesostructure and mesofunction. Am J Physiol Heart Circ Physiol 2022; 323:H257-H275. [PMID: 35657613 PMCID: PMC9273275 DOI: 10.1152/ajpheart.00059.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022]
Abstract
The complex and highly organized structural arrangement of some five billion cardiomyocytes directs the coordinated electrical activity and mechanical contraction of the human heart. The characteristic transmural change in cardiomyocyte orientation underlies base-to-apex shortening, circumferential shortening, and left ventricular torsion during contraction. Individual cardiomyocytes shorten ∼15% and increase in diameter ∼8%. Remarkably, however, the left ventricular wall thickens by up to 30-40%. To accommodate this, the myocardium must undergo significant structural rearrangement during contraction. At the mesoscale, collections of cardiomyocytes are organized into sheetlets, and sheetlet shear is the fundamental mechanism of rearrangement that produces wall thickening. Herein, we review the histological and physiological studies of myocardial mesostructure that have established the sheetlet shear model of wall thickening. Recent developments in tissue clearing techniques allow for imaging of whole hearts at the cellular scale, whereas magnetic resonance imaging (MRI) and computed tomography (CT) can image the myocardium at the mesoscale (100 µm to 1 mm) to resolve cardiomyocyte orientation and organization. Through histology, cardiac diffusion tensor imaging (DTI), and other modalities, mesostructural sheetlets have been confirmed in both animal and human hearts. Recent in vivo cardiac DTI methods have measured reorientation of sheetlets during the cardiac cycle. We also examine the role of pathological cardiac remodeling on sheetlet organization and reorientation, and the impact this has on ventricular function and dysfunction. We also review the unresolved mesostructural questions and challenges that may direct future work in the field.
Collapse
Affiliation(s)
- Alexander J Wilson
- Department of Radiology, Stanford University, Stanford, California
- Stanford Cardiovascular Institute, Stanford University, Stanford, California
| | - Gregory B Sands
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Ian J LeGrice
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Alistair A Young
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, California
- Veterans Administration Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
13
|
Evaluation of Right Ventricular Function and Myocardial Microstructure in Fetal Hypoplastic Left Heart Syndrome. J Clin Med 2022; 11:jcm11154456. [PMID: 35956075 PMCID: PMC9369849 DOI: 10.3390/jcm11154456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
Right ventricular (RV) function is one of the critical factors affecting the prognosis of fetuses with hypoplastic left heart syndrome (HLHS). Our study objectives included assessment of cardiac function and comprehensive measurement of cardiac microstructure. We retrospectively studied 42 fetuses diagnosed as HLHS by echocardiography. Myocardial deformation of the right ventricular wall was calculated automatically in offline software. Postmortem cardiac imaging for three control fetal hearts and four HLHS specimens was performed by a 9.4T DTI scanner. Myocardial deformation parameters of the RV (including strain, strain rate, and velocity) were significantly lower in HLHS fetuses (all p < 0.01). FA values increased (0.18 ± 0.01 vs. 0.21 ± 0.02; p < 0.01) in HLHS fetuses, but MD reduced (1.3 ± 0.15 vs. 0.88 ± 0.13; p < 0.001). The HLHS fetuses’ RV lateral base wall (−7.31 ± 51.91 vs. −6.85 ± 31.34; p = 0.25), middle wall (1.71 ± 50.92 vs. −9.38 ± 28.18; p < 0.001), and apical wall (−6.19 ± 46.61 vs. −11.16 ± 29.86, p < 0.001) had HA gradient ascent but HA gradient descent in the anteroseptal wall (p < 0.001) and inferoseptal wall (p < 0.001). RV basal lateral wall HA degrees were correlated with RVGLS (R2 = 0.97, p = 0.02). MD values were positively correlated with RVGLS (R2 = 0.93, p = 0.04). Our study found morphological and functional changes of the RV in HLHS fetuses, and cardiac function was related to the orientation patterns of myocardial fibers. It may provide insight into understanding the underlying mechanisms of impaired RV performance in HLHS.
Collapse
|
14
|
Magat J, Yon M, Bihan-Poudec Y, Ozenne V. A groupwise registration and tractography framework for cardiac myofiber architecture description by diffusion MRI: An application to the ventricular junctions. PLoS One 2022; 17:e0271279. [PMID: 35849598 PMCID: PMC9292118 DOI: 10.1371/journal.pone.0271279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/27/2022] [Indexed: 11/19/2022] Open
Abstract
Background Knowledge of the normal myocardial–myocyte orientation could theoretically allow the definition of relevant quantitative biomarkers in clinical routine to diagnose heart pathologies. A whole heart diffusion tensor template representative of the global myofiber organization over species is therefore crucial for comparisons across populations. In this study, we developed a groupwise registration and tractography framework to resolve the global myofiber arrangement of large mammalian sheep hearts. To demonstrate the potential application of the proposed method, a novel description of sub-regions in the intraventricular septum is presented. Methods Three explanted sheep (ovine) hearts (size ~12×8×6 cm3, heart weight ~ 150 g) were perfused with contrast agent and fixative and imaged in a 9.4T magnet. A group-wise registration of high-resolution anatomical and diffusion-weighted images were performed to generate anatomical and diffusion tensor templates. Diffusion tensor metrics (eigenvalues, eigenvectors, fractional anisotropy …) were computed to provide a quantitative and spatially-resolved analysis of cardiac microstructure. Then tractography was performed using deterministic and probabilistic algorithms and used for different purposes: i) Visualization of myofiber architecture, ii) Segmentation of sub-area depicting the same fiber organization, iii) Seeding and Tract Editing. Finally, dissection was performed to confirm the existence of macroscopic structures identified in the diffusion tensor template. Results The template creation takes advantage of high-resolution anatomical and diffusion-weighted images obtained at an isotropic resolution of 150 μm and 600 μm respectively, covering ventricles and atria and providing information on the normal myocardial architecture. The diffusion metric distributions from the template were found close to the one of the individual samples validating the registration procedure. Small new sub-regions exhibiting spatially sharp variations in fiber orientation close to the junctions of the septum and ventricles were identified. Each substructure was defined and represented using streamlines. The existence of a fiber-bundles in the posterior junction was validated by anatomical dissection. A complex structural organization of the anterior junction in comparison to the posterior junction was evidenced by the high-resolution acquisition. Conclusions A new framework combining cardiac template generation and tractography was applied on the whole sheep heart. The framework can be used for anatomical investigation, characterization of microstructure and visualization of myofiber orientation across samples. Finally, a novel description of the ventricular junction in large mammalian sheep hearts was proposed.
Collapse
Affiliation(s)
- Julie Magat
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France
- Centre de recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Maxime Yon
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France
- Centre de recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Yann Bihan-Poudec
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Université Claude Bernard Lyon I, Bron, France
| | - Valéry Ozenne
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France
- Centre de recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Université de Bordeaux, Bordeaux, France
- * E-mail:
| |
Collapse
|
15
|
Eder RA, van den Boomen M, Yurista SR, Rodriguez-Aviles YG, Islam MR, Chen YCI, Trager L, Coll-Font J, Cheng L, Li H, Rosenzweig A, Wrann CD, Nguyen CT. Exercise-induced CITED4 expression is necessary for regional remodeling of cardiac microstructural tissue helicity. Commun Biol 2022; 5:656. [PMID: 35787681 PMCID: PMC9253017 DOI: 10.1038/s42003-022-03635-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/23/2022] [Indexed: 11/10/2022] Open
Abstract
Both exercise-induced molecular mechanisms and physiological cardiac remodeling have been previously studied on a whole heart level. However, the regional microstructural tissue effects of these molecular mechanisms in the heart have yet to be spatially linked and further elucidated. We show in exercised mice that the expression of CITED4, a transcriptional co-regulator necessary for cardioprotection, is regionally heterogenous in the heart with preferential significant increases in the lateral wall compared with sedentary mice. Concordantly in this same region, the heart's local microstructural tissue helicity is also selectively increased in exercised mice. Quantification of CITED4 expression and microstructural tissue helicity reveals a significant correlation across both sedentary and exercise mouse cohorts. Furthermore, genetic deletion of CITED4 in the heart prohibits regional exercise-induced microstructural helicity remodeling. Taken together, CITED4 expression is necessary for exercise-induced regional remodeling of the heart's microstructural helicity revealing how a key molecular regulator of cardiac remodeling manifests into downstream local tissue-level changes.
Collapse
Affiliation(s)
- Robert A Eder
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Maaike van den Boomen
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Radiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Harvard Medical School, Boston, MA, 02129, USA
| | - Salva R Yurista
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02129, USA
| | - Yaiel G Rodriguez-Aviles
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Ponce Health Sciences University, School of Medicine, Ponce, PR, 00716, USA
| | - Mohammad Rashedul Islam
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02129, USA
| | - Yin-Ching Iris Chen
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02129, USA
| | - Lena Trager
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Jaume Coll-Font
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02129, USA
| | - Leo Cheng
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02129, USA
| | - Haobo Li
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02129, USA
| | - Anthony Rosenzweig
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02129, USA
- Massachusetts General Hospital, Cardiology Division and Corrigan Minehan Heart Center, Boston, MA, 02114, USA
| | - Christiane D Wrann
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA.
- Harvard Medical School, Boston, MA, 02129, USA.
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, 02114, USA.
| | - Christopher T Nguyen
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA.
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA.
- Harvard Medical School, Boston, MA, 02129, USA.
- Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Cardiovascular Innovation Research Center, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, 44195, USA.
| |
Collapse
|
16
|
Scott AD, Jackson T, Khalique Z, Gorodezky M, Pardoe B, Begum L, Bruno VD, Chowdhury RA, Ferreira PF, Nielles‐Vallespin S, Roehl M, McCarthy KP, Sarathchandra P, Rose JN, Doorly DJ, Pennell DJ, Ascione R, de Silva R, Firmin DN. Development of a cardiovascular magnetic resonance-compatible large animal isolated heart model for direct comparison of beating and arrested hearts. NMR IN BIOMEDICINE 2022; 35:e4692. [PMID: 35040195 PMCID: PMC9286060 DOI: 10.1002/nbm.4692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 06/02/2023]
Abstract
Cardiac motion results in image artefacts and quantification errors in many cardiovascular magnetic resonance (CMR) techniques, including microstructural assessment using diffusion tensor cardiovascular magnetic resonance (DT-CMR). Here, we develop a CMR-compatible isolated perfused porcine heart model that allows comparison of data obtained in beating and arrested states. Ten porcine hearts (8/10 for protocol optimisation) were harvested using a donor heart retrieval protocol and transported to the remote CMR facility. Langendorff perfusion in a 3D-printed chamber and perfusion circuit re-established contraction. Hearts were imaged using cine, parametric mapping and STEAM DT-CMR at cardiac phases with the minimum and maximum wall thickness. High potassium and lithium perfusates were then used to arrest the heart in a slack and contracted state, respectively. Imaging was repeated in both arrested states. After imaging, tissue was removed for subsequent histology in a location matched to the DT-CMR data using fiducial markers. Regular sustained contraction was successfully established in six out of 10 hearts, including the final five hearts. Imaging was performed in four hearts and one underwent the full protocol, including colocalised histology. The image quality was good and there was good agreement between DT-CMR data in equivalent beating and arrested states. Despite the use of autologous blood and dextran within the perfusate, T2 mapping results, DT-CMR measures and an increase in mass were consistent with development of myocardial oedema, resulting in failure to achieve a true diastolic-like state. A contiguous stack of 313 5-μm histological sections at and a 100-μm thick section showing cell morphology on 3D fluorescent confocal microscopy colocalised to DT-CMR data were obtained. A CMR-compatible isolated perfused beating heart setup for large animal hearts allows direct comparisons of beating and arrested heart data with subsequent colocalised histology, without the need for onsite preclinical facilities.
Collapse
Affiliation(s)
- Andrew D. Scott
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Tim Jackson
- Department of PerfusionRoyal Brompton HospitalLondonUK
| | - Zohya Khalique
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Margarita Gorodezky
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Ben Pardoe
- Department of PerfusionRoyal Brompton HospitalLondonUK
| | - Lale Begum
- Department of PerfusionRoyal Brompton HospitalLondonUK
| | - V. Domenico Bruno
- Translational Biomedical Research CentreUniversity of BristolBristolUK
- Bristol Heart InstituteUniversity Hospital Bristol NHS Foundation TrustBristolUK
| | - Rasheda A. Chowdhury
- National Heart and Lung InstituteImperial CollegeLondonUK
- Imperial Centre for Cardiac EngineeringImperial CollegeLondonUK
| | - Pedro F. Ferreira
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Sonia Nielles‐Vallespin
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Malte Roehl
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | | | - Padmini Sarathchandra
- National Heart and Lung InstituteImperial CollegeLondonUK
- Magdi Yacoub Institute, National Heart and Lung InstituteImperial CollegeLondonUK
| | - Jan N. Rose
- Department of AeronauticsImperial CollegeLondonUK
| | | | - Dudley J. Pennell
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Raimondo Ascione
- Translational Biomedical Research CentreUniversity of BristolBristolUK
- Bristol Heart InstituteUniversity Hospital Bristol NHS Foundation TrustBristolUK
| | - Ranil de Silva
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - David N. Firmin
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| |
Collapse
|
17
|
Teh I, Romero R. WA, Boyle J, Coll‐Font J, Dall'Armellina E, Ennis DB, Ferreira PF, Kalra P, Kolipaka A, Kozerke S, Lohr D, Mongeon F, Moulin K, Nguyen C, Nielles‐Vallespin S, Raterman B, Schreiber LM, Scott AD, Sosnovik DE, Stoeck CT, Tous C, Tunnicliffe EM, Weng AM, Croisille P, Viallon M, Schneider JE. Validation of cardiac diffusion tensor imaging sequences: A multicentre test-retest phantom study. NMR IN BIOMEDICINE 2022; 35:e4685. [PMID: 34967060 PMCID: PMC9285553 DOI: 10.1002/nbm.4685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/19/2021] [Accepted: 12/24/2021] [Indexed: 05/23/2023]
Abstract
Cardiac diffusion tensor imaging (DTI) is an emerging technique for the in vivo characterisation of myocardial microstructure, and there is a growing need for its validation and standardisation. We sought to establish the accuracy, precision, repeatability and reproducibility of state-of-the-art pulse sequences for cardiac DTI among 10 centres internationally. Phantoms comprising 0%-20% polyvinylpyrrolidone (PVP) were scanned with DTI using a product pulsed gradient spin echo (PGSE; N = 10 sites) sequence, and a custom motion-compensated spin echo (SE; N = 5) or stimulated echo acquisition mode (STEAM; N = 5) sequence suitable for cardiac DTI in vivo. A second identical scan was performed 1-9 days later, and the data were analysed centrally. The average mean diffusivities (MDs) in 0% PVP were (1.124, 1.130, 1.113) x 10-3 mm2 /s for PGSE, SE and STEAM, respectively, and accurate to within 1.5% of reference data from the literature. The coefficients of variation in MDs across sites were 2.6%, 3.1% and 2.1% for PGSE, SE and STEAM, respectively, and were similar to previous studies using only PGSE. Reproducibility in MD was excellent, with mean differences in PGSE, SE and STEAM of (0.3 ± 2.3, 0.24 ± 0.95, 0.52 ± 0.58) x 10-5 mm2 /s (mean ± 1.96 SD). We show that custom sequences for cardiac DTI provide accurate, precise, repeatable and reproducible measurements. Further work in anisotropic and/or deforming phantoms is warranted.
Collapse
Affiliation(s)
- Irvin Teh
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - William A. Romero R.
- Univ Lyon, INSA‐Lyon, Université Claude Bernard Lyon 1UJM‐Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F‐42023Saint EtienneFrance
| | - Jordan Boyle
- School of Mechanical EngineeringUniversity of LeedsLeedsUK
| | - Jaume Coll‐Font
- Cardiovascular Research Center and A. A. Martinos Center for Biomedical ImagingMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Erica Dall'Armellina
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Daniel B. Ennis
- Division of RadiologyVA Palo Alto Health Care SystemPalo AltoCaliforniaUSA
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Pedro F. Ferreira
- Cardiovascular Magnetic Resonance UnitThe Royal Brompton and Harefield NHS Foundation TrustLondonUK
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Prateek Kalra
- Department of RadiologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Arunark Kolipaka
- Department of RadiologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Sebastian Kozerke
- Institute for Biomedical EngineeringUniversity and ETH ZurichZurichSwitzerland
| | - David Lohr
- Department of Cardiovascular ImagingComprehensive Heart Failure CenterWürzburgGermany
| | | | - Kévin Moulin
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Christopher Nguyen
- Cardiovascular Research Center and A. A. Martinos Center for Biomedical ImagingMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Sonia Nielles‐Vallespin
- Cardiovascular Magnetic Resonance UnitThe Royal Brompton and Harefield NHS Foundation TrustLondonUK
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Brian Raterman
- Department of RadiologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Laura M. Schreiber
- Department of Cardiovascular ImagingComprehensive Heart Failure CenterWürzburgGermany
| | - Andrew D. Scott
- Cardiovascular Magnetic Resonance UnitThe Royal Brompton and Harefield NHS Foundation TrustLondonUK
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - David E. Sosnovik
- Cardiovascular Research Center and A. A. Martinos Center for Biomedical ImagingMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Christian T. Stoeck
- Institute for Biomedical EngineeringUniversity and ETH ZurichZurichSwitzerland
| | - Cyril Tous
- Department of Radiology, Radiation‐Oncology and Nuclear Medicine and Institute of Biomedical EngineeringUniversité de MontréalMontréalCanada
| | - Elizabeth M. Tunnicliffe
- Radcliffe Department of MedicineUniversity of OxfordOxfordUK
- Oxford NIHR Biomedical Research CentreOxfordUK
| | - Andreas M. Weng
- Department of Diagnostic and Interventional RadiologyUniversity Hospital WürzburgWürzburgGermany
| | - Pierre Croisille
- Univ Lyon, INSA‐Lyon, Université Claude Bernard Lyon 1UJM‐Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F‐42023Saint EtienneFrance
| | - Magalie Viallon
- Univ Lyon, INSA‐Lyon, Université Claude Bernard Lyon 1UJM‐Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F‐42023Saint EtienneFrance
| | - Jürgen E. Schneider
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| |
Collapse
|
18
|
Rodriguez Padilla J, Petras A, Magat J, Bayer J, Bihan-Poudec Y, El-Hamrani D, Ramlugun G, Neic A, Augustin C, Vaillant F, Constantin M, Benoist D, Pourtau L, Dubes V, Rogier J, Labrousse L, Bernus O, Quesson B, Haissaguerre M, Gsell M, Plank G, Ozenne V, Vigmond E. Impact of Intraventricular Septal Fiber Orientation on Cardiac Electromechanical Function. Am J Physiol Heart Circ Physiol 2022; 322:H936-H952. [PMID: 35302879 PMCID: PMC9109800 DOI: 10.1152/ajpheart.00050.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac fiber direction is an important factor determining the propagation of electrical activity, as well as the development of mechanical force. In this article, we imaged the ventricles of several species with special attention to the intraventricular septum to determine the functional consequences of septal fiber organization. First, we identified a dual-layer organization of the fiber orientation in the intraventricular septum of ex vivo sheep hearts using diffusion tensor imaging at high field MRI. To expand the scope of the results, we investigated the presence of a similar fiber organization in five mammalian species (rat, canine, pig, sheep, and human) and highlighted the continuity of the layer with the moderator band in large mammalian species. We implemented the measured septal fiber fields in three-dimensional electromechanical computer models to assess the impact of the fiber orientation. The downward fibers produced a diamond activation pattern superficially in the right ventricle. Electromechanically, there was very little change in pressure volume loops although the stress distribution was altered. In conclusion, we clarified that the right ventricular septum has a downwardly directed superficial layer in larger mammalian species, which can have modest effects on stress distribution. NEW & NOTEWORTHY A dual-layer organization of the fiber orientation in the intraventricular septum was identified in ex vivo hearts of large mammals. The RV septum has a downwardly directed superficial layer that is continuous with the moderator band. Electrically, it produced a diamond activation pattern. Electromechanically, little change in pressure volume loops were noticed but stress distribution was altered. Fiber distribution derived from diffusion tensor imaging should be considered for an accurate strain and stress analysis.
Collapse
Affiliation(s)
| | - Argyrios Petras
- Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Linz, Austria
| | - Julie Magat
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Jason Bayer
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, IMB, UMR 5251, Talence, France
| | - Yann Bihan-Poudec
- Centre de Neuroscience Cognitive, CNRS UMR 5229, Université Claude Bernard Lyon I, France
| | - Dounia El-Hamrani
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Girish Ramlugun
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Aurel Neic
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Christoph Augustin
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Fanny Vaillant
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Marion Constantin
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - David Benoist
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Line Pourtau
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Virginie Dubes
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | | | | | - Olivier Bernus
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Bruno Quesson
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | | | - Matthias Gsell
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Gernot Plank
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Valéry Ozenne
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Université de Bordeaux, Bordeaux, France
| | - Edward Vigmond
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, IMB, UMR 5251, Talence, France
| |
Collapse
|
19
|
Stimm J, Nordsletten DA, Jilberto J, Miller R, Berberoğlu E, Kozerke S, Stoeck CT. Personalization of biomechanical simulations of the left ventricle by in-vivo cardiac DTI data: Impact of fiber interpolation methods. Front Physiol 2022; 13:1042537. [PMID: 36518106 PMCID: PMC9742433 DOI: 10.3389/fphys.2022.1042537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
Simulations of cardiac electrophysiology and mechanics have been reported to be sensitive to the microstructural anisotropy of the myocardium. Consequently, a personalized representation of cardiac microstructure is a crucial component of accurate, personalized cardiac biomechanical models. In-vivo cardiac Diffusion Tensor Imaging (cDTI) is a non-invasive magnetic resonance imaging technique capable of probing the heart's microstructure. Being a rather novel technique, issues such as low resolution, signal-to noise ratio, and spatial coverage are currently limiting factors. We outline four interpolation techniques with varying degrees of data fidelity, different amounts of smoothing strength, and varying representation error to bridge the gap between the sparse in-vivo data and the model, requiring a 3D representation of microstructure across the myocardium. We provide a workflow to incorporate in-vivo myofiber orientation into a left ventricular model and demonstrate that personalized modelling based on fiber orientations from in-vivo cDTI data is feasible. The interpolation error is correlated with a trend in personalized parameters and simulated physiological parameters, strains, and ventricular twist. This trend in simulation results is consistent across material parameter settings and therefore corresponds to a bias introduced by the interpolation method. This study suggests that using a tensor interpolation approach to personalize microstructure with in-vivo cDTI data, reduces the fiber uncertainty and thereby the bias in the simulation results.
Collapse
Affiliation(s)
- Johanna Stimm
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - David A Nordsletten
- Department of Biomedical Engineering and Cardiac Surgery, University of Michigan, Ann Arbor, MI, United States.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Javiera Jilberto
- Department of Biomedical Engineering and Cardiac Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Renee Miller
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Ezgi Berberoğlu
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Christian T Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.,Division of Surgical Research, University Hospital Zurich, University Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Coll-Font J, Chen S, Eder R, Fang Y, Han QJ, van den Boomen M, Sosnovik DE, Mekkaoui C, Nguyen CT. Manifold-based respiratory phase estimation enables motion and distortion correction of free-breathing cardiac diffusion tensor MRI. Magn Reson Med 2022; 87:474-487. [PMID: 34390021 PMCID: PMC8616783 DOI: 10.1002/mrm.28972] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE For in vivo cardiac DTI, breathing motion and B0 field inhomogeneities produce misalignment and geometric distortion in diffusion-weighted (DW) images acquired with conventional single-shot EPI. We propose using a dimensionality reduction method to retrospectively estimate the respiratory phase of DW images and facilitate both distortion correction (DisCo) and motion compensation. METHODS Free-breathing electrocardiogram-triggered whole left-ventricular cardiac DTI using a second-order motion-compensated spin echo EPI sequence and alternating directionality of phase encoding blips was performed on 11 healthy volunteers. The respiratory phase of each DW image was estimated after projecting the DW images into a 2D space with Laplacian eigenmaps. DisCo and motion compensation were applied to the respiratory sorted DW images. The results were compared against conventional breath-held T2 half-Fourier single shot turbo spin echo. Cardiac DTI parameters including fractional anisotropy, mean diffusivity, and helix angle transmurality were compared with and without DisCo. RESULTS The left-ventricular geometries after DisCo and motion compensation resulted in significantly improved alignment of DW images with T2 reference. DisCo reduced the distance between the left-ventricular contours by 13.2% ± 19.2%, P < .05 (2.0 ± 0.4 for DisCo and 2.4 ± 0.5 mm for uncorrected). DisCo DTI parameter maps yielded no significant differences (mean diffusivity: 1.55 ± 0.13 × 10-3 mm2 /s and 1.53 ± 0.13 × 10-3 mm2 /s, P = .09; fractional anisotropy: 0.375 ± 0.041 and 0.379 ± 0.045, P = .11; helix angle transmurality: 1.00% ± 0.10°/% and 0.99% ± 0.12°/%, P = .44), although the orientation of individual tensors differed. CONCLUSION Retrospective respiratory phase estimation with LE-based DisCo and motion compensation in free-breathing cardiac DTI resulting in significantly reduced geometric distortion and improved alignment within and across slices.
Collapse
Affiliation(s)
- Jaume Coll-Font
- Cardiovascular Research Center, Massachusetts General Hospital, Boston (MA), USA,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston (MA), USA,Harvard Medical School, Boston (MA), USA
| | - Shi Chen
- Cardiovascular Research Center, Massachusetts General Hospital, Boston (MA), USA
| | - Robert Eder
- Cardiovascular Research Center, Massachusetts General Hospital, Boston (MA), USA
| | - Yiling Fang
- Cardiovascular Research Center, Massachusetts General Hospital, Boston (MA), USA,Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, (MA), USA
| | - Qiao Joyce Han
- Cardiovascular Research Center, Massachusetts General Hospital, Boston (MA), USA,Harvard Medical School, Boston (MA), USA
| | - Maaike van den Boomen
- Cardiovascular Research Center, Massachusetts General Hospital, Boston (MA), USA,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston (MA), USA,Harvard Medical School, Boston (MA), USA,Department of Radiology, University Medical Center Groningen, Groningen, Netherlands
| | - David E. Sosnovik
- Cardiovascular Research Center, Massachusetts General Hospital, Boston (MA), USA,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston (MA), USA,Harvard Medical School, Boston (MA), USA
| | - Choukri Mekkaoui
- Cardiovascular Research Center, Massachusetts General Hospital, Boston (MA), USA,Harvard Medical School, Boston (MA), USA
| | - Christopher T. Nguyen
- Cardiovascular Research Center, Massachusetts General Hospital, Boston (MA), USA,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston (MA), USA,Harvard Medical School, Boston (MA), USA
| |
Collapse
|
21
|
Gusseva M, Hussain T, Friesen CH, Moireau P, Tandon A, Patte C, Genet M, Hasbani K, Greil G, Chapelle D, Chabiniok R. Biomechanical Modeling to Inform Pulmonary Valve Replacement in Tetralogy of Fallot Patients After Complete Repair. Can J Cardiol 2021; 37:1798-1807. [PMID: 34216743 PMCID: PMC9810481 DOI: 10.1016/j.cjca.2021.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/05/2021] [Accepted: 06/26/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND A biomechanical model of the heart can be used to incorporate multiple data sources (electrocardiography, imaging, invasive hemodynamics). The purpose of this study was to use this approach in a cohort of patients with tetralogy of Fallot after complete repair (rTOF) to assess comparative influences of residual right ventricular outflow tract obstruction (RVOTO) and pulmonary regurgitation on ventricular health. METHODS Twenty patients with rTOF who underwent percutaneous pulmonary valve replacement (PVR) and cardiovascular magnetic resonance imaging were included in this retrospective study. Biomechanical models specific to individual patient and physiology (before and after PVR) were created and used to estimate the RV myocardial contractility. The ability of models to capture post-PVR changes of right ventricular (RV) end-diastolic volume (EDV) and effective flow in the pulmonary artery (Qeff) was also compared with expected values. RESULTS RV contractility before PVR (mean 66 ± 16 kPa, mean ± standard deviation) was increased in patients with rTOF compared with normal RV (38-48 kPa) (P < 0.05). The contractility decreased significantly in all patients after PVR (P < 0.05). Patients with predominantly RVOTO demonstrated greater reduction in contractility (median decrease 35%) after PVR than those with predominant pulmonary regurgitation (median decrease 11%). The model simulated post-PVR decreased EDV for the majority and suggested an increase of Qeff-both in line with published data. CONCLUSIONS This study used a biomechanical model to synthesize multiple clinical inputs and give an insight into RV health. Individualized modeling allows us to predict the RV response to PVR. Initial data suggest that residual RVOTO imposes greater ventricular work than isolated pulmonary regurgitation.
Collapse
Affiliation(s)
- Maria Gusseva
- Inria, Palaiseau, France,LMS, École Polytechnique, CNRS, Institut Polytechnique de Paris, Palaiseau, France
| | - Tarique Hussain
- Division of Pediatric Cardiology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Camille Hancock Friesen
- Division of Pediatric Cardiothoracic Surgery, Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Philippe Moireau
- Inria, Palaiseau, France,LMS, École Polytechnique, CNRS, Institut Polytechnique de Paris, Palaiseau, France
| | - Animesh Tandon
- Division of Pediatric Cardiology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Cécile Patte
- Inria, Palaiseau, France,LMS, École Polytechnique, CNRS, Institut Polytechnique de Paris, Palaiseau, France
| | - Martin Genet
- Inria, Palaiseau, France,LMS, École Polytechnique, CNRS, Institut Polytechnique de Paris, Palaiseau, France
| | - Keren Hasbani
- Division of Pediatric Cardiology, Department of Pediatrics, Dell Medical School, University of Texas, Austin, Texas, USA
| | - Gerald Greil
- Division of Pediatric Cardiology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Dominique Chapelle
- Inria, Palaiseau, France,LMS, École Polytechnique, CNRS, Institut Polytechnique de Paris, Palaiseau, France
| | - Radomír Chabiniok
- Inria, Palaiseau, France,LMS, École Polytechnique, CNRS, Institut Polytechnique de Paris, Palaiseau, France,Division of Pediatric Cardiology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas, USA,School of Biomedical Engineering & Imaging Sciences, St Thomas’ Hospital, King’s College London, London, United Kingdom,Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| |
Collapse
|
22
|
Stoeck CT, von Deuster C, Fuetterer M, Polacin M, Waschkies CF, van Gorkum RJH, Kron M, Fleischmann T, Cesarovic N, Weisskopf M, Kozerke S. Cardiovascular magnetic resonance imaging of functional and microstructural changes of the heart in a longitudinal pig model of acute to chronic myocardial infarction. J Cardiovasc Magn Reson 2021; 23:103. [PMID: 34538266 PMCID: PMC8451129 DOI: 10.1186/s12968-021-00794-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/09/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND We examined the dynamic response of the myocardium to infarction in a longitudinal porcine study using relaxometry, functional as well as diffusion cardiovascular magnetic resonance (CMR). We sought to compare non contrast CMR methods like relaxometry and in-vivo diffusion to contrast enhanced imaging and investigate the link of microstructural and functional changes in the acute and chronically infarcted heart. METHODS CMR was performed on five myocardial infarction pigs and four healthy controls. In the infarction group, measurements were obtained 2 weeks before 90 min occlusion of the left circumflex artery, 6 days after ischemia and at 5 as well as 9 weeks as chronic follow-up. The timing of measurements was replicated in the control cohort. Imaging consisted of functional cine imaging, 3D tagging, T2 mapping, native as well as gadolinium enhanced T1 mapping, cardiac diffusion tensor imaging, and late gadolinium enhancement imaging. RESULTS Native T1, extracellular volume (ECV) and mean diffusivity (MD) were significantly elevated in the infarcted region while fractional anisotropy (FA) was significantly reduced. During the transition from acute to chronic stages, native T1 presented minor changes (< 3%). ECV as well as MD increased from acute to the chronic stages compared to baseline: ECV: 125 ± 24% (day 6) 157 ± 24% (week 5) 146 ± 60% (week 9), MD: 17 ± 7% (day 6) 33 ± 14% (week 5) 29 ± 15% (week 9) and FA was further reduced: - 31 ± 10% (day 6) - 38 ± 8% (week 5) - 36 ± 14% (week 9). T2 as marker for myocardial edema was significantly increased in the ischemic area only during the acute stage (83 ± 3 ms infarction vs. 58 ± 2 ms control p < 0.001 and 61 ± 2 ms in the remote area p < 0.001). The analysis of functional imaging revealed reduced left ventricular ejection fraction, global longitudinal strain and torsion in the infarct group. At the same time the transmural helix angle (HA) gradient was steeper in the chronic follow-up and a correlation between longitudinal strain and transmural HA gradient was detected (r = 0.59 with p < 0.05). Comparing non-gadolinium enhanced data T2 mapping showed the largest relative change between infarct and remote during the acute stage (+ 33 ± 4% day 6, with p = 0.013 T2 vs. MD, p = 0.009 T2 vs. FA and p = 0.01 T2 vs. T1) while FA exhibited the largest relative change between infarct and remote during the chronic follow-up (+ 31 ± 2% week 5, with p = N.S. FA vs. MD, p = 0.03 FA vs. T2 and p = 0.003 FA vs. T1). Overall, diffusion parameters provided a higher contrast (> 23% for MD and > 27% for FA) during follow-up compared to relaxometry (T1 17-18%/T2 10-20%). CONCLUSION During chronic follow-up after myocardial infarction, cardiac diffusion tensor imaging provides a higher sensitivity for mapping microstructural alterations when compared to non-contrast enhanced relaxometry with the added benefit of providing directional tensor information to assess remodelling of myocyte aggregate orientations, which cannot be otherwise assessed.
Collapse
Affiliation(s)
- Christian T. Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
- Division of Surgical Research, University Hospital Zurich, Zurich, Switzerland
| | - Constantin von Deuster
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Maximilian Fuetterer
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Malgorzata Polacin
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Conny F. Waschkies
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
- Division of Surgical Research, University Hospital Zurich, Zurich, Switzerland
| | - Robbert J. H. van Gorkum
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Mareike Kron
- Division of Surgical Research, University Hospital Zurich, Zurich, Switzerland
| | - Thea Fleischmann
- Division of Surgical Research, University Hospital Zurich, Zurich, Switzerland
| | - Nikola Cesarovic
- Division of Surgical Research, University Hospital Zurich, Zurich, Switzerland
- Institute of Translational Cardiovascular Technologies, ETH Zurich, Zurich, Switzerland
| | - Miriam Weisskopf
- Division of Surgical Research, University Hospital Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| |
Collapse
|
23
|
Paddock S, Tsampasian V, Assadi H, Mota BC, Swift AJ, Chowdhary A, Swoboda P, Levelt E, Sammut E, Dastidar A, Broncano Cabrero J, Del Val JR, Malcolm P, Sun J, Ryding A, Sawh C, Greenwood R, Hewson D, Vassiliou V, Garg P. Clinical Translation of Three-Dimensional Scar, Diffusion Tensor Imaging, Four-Dimensional Flow, and Quantitative Perfusion in Cardiac MRI: A Comprehensive Review. Front Cardiovasc Med 2021; 8:682027. [PMID: 34307496 PMCID: PMC8292630 DOI: 10.3389/fcvm.2021.682027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/04/2021] [Indexed: 01/05/2023] Open
Abstract
Cardiovascular magnetic resonance (CMR) imaging is a versatile tool that has established itself as the reference method for functional assessment and tissue characterisation. CMR helps to diagnose, monitor disease course and sub-phenotype disease states. Several emerging CMR methods have the potential to offer a personalised medicine approach to treatment. CMR tissue characterisation is used to assess myocardial oedema, inflammation or thrombus in various disease conditions. CMR derived scar maps have the potential to inform ablation therapy—both in atrial and ventricular arrhythmias. Quantitative CMR is pushing boundaries with motion corrections in tissue characterisation and first-pass perfusion. Advanced tissue characterisation by imaging the myocardial fibre orientation using diffusion tensor imaging (DTI), has also demonstrated novel insights in patients with cardiomyopathies. Enhanced flow assessment using four-dimensional flow (4D flow) CMR, where time is the fourth dimension, allows quantification of transvalvular flow to a high degree of accuracy for all four-valves within the same cardiac cycle. This review discusses these emerging methods and others in detail and gives the reader a foresight of how CMR will evolve into a powerful clinical tool in offering a precision medicine approach to treatment, diagnosis, and detection of disease.
Collapse
Affiliation(s)
- Sophie Paddock
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom.,Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Vasiliki Tsampasian
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Hosamadin Assadi
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Bruno Calife Mota
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Andrew J Swift
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Amrit Chowdhary
- Multidisciplinary Cardiovascular Research Centre & Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Peter Swoboda
- Multidisciplinary Cardiovascular Research Centre & Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Eylem Levelt
- Multidisciplinary Cardiovascular Research Centre & Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Eva Sammut
- Bristol Heart Institute and Translational Biomedical Research Centre, Faculty of Health Science, University of Bristol, Bristol, United Kingdom
| | - Amardeep Dastidar
- Bristol Heart Institute and Translational Biomedical Research Centre, Faculty of Health Science, University of Bristol, Bristol, United Kingdom
| | - Jordi Broncano Cabrero
- Cardiothoracic Imaging Unit, Hospital San Juan De Dios, Ressalta, HT Medica, Córdoba, Spain
| | - Javier Royuela Del Val
- Cardiothoracic Imaging Unit, Hospital San Juan De Dios, Ressalta, HT Medica, Córdoba, Spain
| | - Paul Malcolm
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Julia Sun
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Alisdair Ryding
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Chris Sawh
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Richard Greenwood
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - David Hewson
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Vassilios Vassiliou
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Pankaj Garg
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
24
|
Nguyen CT, Christodoulou AG, Coll-Font J, Ma S, Xie Y, Reese TG, Mekkaoui C, Lewis GD, Bi X, Sosnovik DE, Li D. Free-breathing diffusion tensor MRI of the whole left ventricle using second-order motion compensation and multitasking respiratory motion correction. Magn Reson Med 2021; 85:2634-2648. [PMID: 33252140 PMCID: PMC7902339 DOI: 10.1002/mrm.28611] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE We aimed to develop a novel free-breathing cardiac diffusion tensor MRI (DT-MRI) approach, M2-MT-MOCO, capable of whole left ventricular coverage that leverages second-order motion compensation (M2) diffusion encoding and multitasking (MT) framework to efficiently correct for respiratory motion (MOCO). METHODS Imaging was performed in 16 healthy volunteers and 3 heart failure patients with symptomatic dyspnea. The healthy volunteers were scanned to compare the accuracy of interleaved multislice coverage of the entire left ventricle with a single-slice acquisition and the accuracy of the free-breathing conventional MOCO and MT-MOCO approaches with reference breath-hold DT-MRI. Mean diffusivity (MD), fractional anisotropy (FA), helix angle transmurality (HAT), and intrascan repeatability were quantified and compared. RESULTS In all subjects, free-breathing M2-MT-MOCO DT-MRI yielded DWI of the entire left ventricle without bulk motion-induced signal loss. No significant differences were seen in the global values of MD, FA, and HAT in the multislice and single-slice acquisitions. Furthermore, global quantification of MD, FA, and HAT were also not significantly different between the MT-MOCO and breath-hold, whereas conventional MOCO yielded significant differences in MD, FA, and HAT with MT-MOCO and FA with breath-hold. In heart failure patients, M2-MT-MOCO DT-MRI was feasible yielding higher MD, lower FA, and lower HAT compared with healthy volunteers. Substantial agreement was found between repeated scans across all subjects for MT-MOCO. CONCLUSION M2-MT-MOCO enables free-breathing DT-MRI of the entire left ventricle in 10 min, while preserving quantification of myocardial microstructure compared to breath-held and single-slice acquisitions and is feasible in heart failure patients.
Collapse
Affiliation(s)
- Christopher T. Nguyen
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
| | - Anthony G. Christodoulou
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA
| | - Jaume Coll-Font
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
| | - Sen Ma
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA
| | - Yibin Xie
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Timothy G. Reese
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
- Department of Radiology, Harvard Medical School, Boston, MA
| | - Choukri Mekkaoui
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
- Department of Radiology, Harvard Medical School, Boston, MA
| | - Gregory D. Lewis
- Department of Medicine, Harvard Medical School, Boston, MA
- Heart Failure Section, Cardiology Division, Massachusetts General Hospital, Boston, MA
| | - Xiaoming Bi
- Siemens Medical Solutions USA, Inc., Los Angeles, CA
| | - David E. Sosnovik
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
25
|
Chowdhary A, Garg P, Das A, Nazir MS, Plein S. Cardiovascular magnetic resonance imaging: emerging techniques and applications. Heart 2021; 107:697-704. [PMID: 33402364 PMCID: PMC7611390 DOI: 10.1136/heartjnl-2019-315669] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/02/2020] [Accepted: 11/23/2020] [Indexed: 01/15/2023] Open
Abstract
This review gives examples of emerging cardiovascular magnetic resonance (CMR) techniques and applications that have the potential to transition from research to clinical application in the near future. Four-dimensional flow CMR (4D-flow CMR) allows time-resolved three-directional, three-dimensional (3D) velocity-encoded phase-contrast imaging for 3D visualisation and quantification of valvular or intracavity flow. Acquisition times of under 10 min are achievable for a whole heart multidirectional data set and commercial software packages are now available for data analysis, making 4D-flow CMR feasible for inclusion in clinical imaging protocols. Diffusion tensor imaging (DTI) is based on the measurement of molecular water diffusion and uses contrasting behaviour in the presence and absence of boundaries to infer tissue structure. Cardiac DTI is capable of non-invasively phenotyping the 3D micro-architecture within a few minutes, facilitating transition of the method to clinical protocols. Hybrid positron emission tomography-magnetic resonance (PET-MR) provides quantitative PET measures of biological and pathological processes of the heart combined with anatomical, morphological and functional CMR imaging. Cardiac PET-MR offers opportunities in ischaemic, inflammatory and infiltrative heart disease.
Collapse
Affiliation(s)
- Amrit Chowdhary
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, West Yorkshire, UK
| | - Pankaj Garg
- Cardiovascular and Metabolic Medicine Group, University of East Anglia, Norwich, UK
| | - Arka Das
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, West Yorkshire, UK
| | - Muhummad Sohaib Nazir
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Sven Plein
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, West Yorkshire, UK
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
26
|
Probing cardiomyocyte mobility with multi-phase cardiac diffusion tensor MRI. PLoS One 2020; 15:e0241996. [PMID: 33180823 PMCID: PMC7660468 DOI: 10.1371/journal.pone.0241996] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/24/2020] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Cardiomyocyte organization and performance underlie cardiac function, but the in vivo mobility of these cells during contraction and filling remains difficult to probe. Herein, a novel trigger delay (TD) scout sequence was used to acquire high in-plane resolution (1.6 mm) Spin-Echo (SE) cardiac diffusion tensor imaging (cDTI) at three distinct cardiac phases. The objective was to characterize cardiomyocyte organization and mobility throughout the cardiac cycle in healthy volunteers. MATERIALS AND METHODS Nine healthy volunteers were imaged with cDTI at three distinct cardiac phases (early systole, late systole, and diastasis). The sequence used a free-breathing Spin-Echo (SE) cDTI protocol (b-values = 350s/mm2, twelve diffusion encoding directions, eight repetitions) to acquire high-resolution images (1.6x1.6x8mm3) at 3T in ~7 minutes/cardiac phase. Helix Angle (HA), Helix Angle Range (HAR), E2 angle (E2A), Transverse Angle (TA), Mean Diffusivity (MD), diffusion tensor eigenvalues (λ1-2-3), and Fractional Anisotropy (FA) in the left ventricle (LV) were characterized. RESULTS Images from the patient-specific TD scout sequence demonstrated that SE cDTI acquisition was possible at early systole, late systole, and diastasis in 78%, 100% and 67% of the cases, respectively. At the mid-ventricular level, mobility (reported as median [IQR]) was observed in HAR between early systole and late systole (76.9 [72.6, 80.5]° vs 96.6 [85.9, 100.3]°, p<0.001). E2A also changed significantly between early systole, late systole, and diastasis (27.7 [20.8, 35.1]° vs 45.2 [42.1, 49]° vs 20.7 [16.6, 26.4]°, p<0.001). CONCLUSION We demonstrate that it is possible to probe cardiomyocyte mobility using multi-phase and high resolution cDTI. In healthy volunteers, aggregate cardiomyocytes re-orient themselves more longitudinally during contraction, while cardiomyocyte sheetlets tilt radially during wall thickening. These observations provide new insights into the three-dimensional mobility of myocardial microstructure during systolic contraction.
Collapse
|
27
|
Abstract
Advances in technology have made it possible to image the microstructure of the heart with diffusion-weighted magnetic resonance. The technique provides unique insights into the cellular architecture of the myocardium and how this is perturbed in a range of disease contexts. In this review, the physical basis of diffusion MRI and the challenges of implementing it in the beating heart are discussed. Cutting edge acquisition and analysis techniques, as well as the results of initial clinical studies, are reported.
Collapse
Affiliation(s)
- David E Sosnovik
- Cardiology Division, Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Division of Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
28
|
Lohr D, Terekhov M, Veit F, Schreiber LM. Longitudinal assessment of tissue properties and cardiac diffusion metrics of the ex vivo porcine heart at 7 T: Impact of continuous tissue fixation using formalin. NMR IN BIOMEDICINE 2020; 33:e4298. [PMID: 32207190 DOI: 10.1002/nbm.4298] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/18/2020] [Accepted: 03/05/2020] [Indexed: 05/12/2023]
Abstract
In this study we aimed to assess the effects of continuous formalin fixation on diffusion and relaxation metrics of the ex vivo porcine heart at 7 T. Magnetic resonance imaging was performed on eight piglet hearts using a 7 T whole body system. Hearts were measured fresh within 3 hours of cardiac arrest followed by immersion in 10% neutral buffered formalin. T2* and T2 were assessed using a gradient multi-echo and multi-echo spin echo sequence, respectively. A spin echo and a custom stimulated echo sequence were employed to assess diffusion time-dependent changes in metrics of cardiac diffusion tensor imaging. SNR was determined for b = 0 images. Scans were performed for 5 mm thick apical, midcavity and basal slices (in-plane resolution: 1 mm) and repeated 7, 15, 50, 100 and 200 days postfixation. Eigenvalues of the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) decreased significantly (P < 0.05) following fixation. Relative to fresh hearts, FA values 7 and 200 days postfixation were 90% and 80%, while respective relative ADC values at those fixation stages were 78% and 92%. Statistical helix and sheetlet angle distributions as well as respective mean and median values showed no systematic influence of continuous formalin fixation. Similar to changes in the ADC, values for T2 , T2* and SNR dropped initially postfixation. Respective relative values compared with fresh hearts at day 7 were 64%, 79% and 68%, whereas continuous fixation restored T2 , T2* and SNR leading to relative values of 74%, 100%, and 81% at day 200, respectively. Relaxation parameters and diffusion metrics are significantly altered by continuous formalin fixation. The preservation of microstructure metrics following prolonged fixation is a key finding that may enable future studies of ventricular remodeling in cardiac pathologies.
Collapse
Affiliation(s)
- David Lohr
- Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Maxim Terekhov
- Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Franziska Veit
- Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Laura Maria Schreiber
- Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
29
|
Analysis and correction of off‐resonance artifacts in echo‐planar cardiac diffusion tensor imaging. Magn Reson Med 2020; 84:2561-2576. [DOI: 10.1002/mrm.28318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 01/19/2023]
|
30
|
Khalique Z, Ferreira PF, Scott AD, Nielles-Vallespin S, Firmin DN, Pennell DJ. Diffusion Tensor Cardiovascular Magnetic Resonance Imaging. JACC Cardiovasc Imaging 2020; 13:1235-1255. [DOI: 10.1016/j.jcmg.2019.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/15/2022]
|
31
|
Diffusion tensor cardiovascular magnetic resonance in hypertrophic cardiomyopathy: a comparison of motion-compensated spin echo and stimulated echo techniques. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 33:331-342. [PMID: 31758419 PMCID: PMC7230046 DOI: 10.1007/s10334-019-00799-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/15/2019] [Accepted: 11/07/2019] [Indexed: 11/18/2022]
Abstract
Objectives Diffusion tensor cardiovascular magnetic resonance (DT-CMR) interrogates myocardial microstructure. Two frequently used in vivo DT-CMR techniques are motion-compensated spin echo (M2-SE) and stimulated echo acquisition mode (STEAM). Whilst M2-SE is strain-insensitive and signal to noise ratio efficient, STEAM has a longer diffusion time and motion compensation is unnecessary. Here we compare STEAM and M2-SE DT-CMR in patients. Materials and methods Biphasic DT-CMR using STEAM and M2-SE, late gadolinium imaging and pre/post gadolinium T1-mapping were performed in a mid-ventricular short-axis slice, in ten hypertrophic cardiomyopathy (HCM) patients at 3 T. Results Adequate quality data were obtained from all STEAM, but only 7/10 (systole) and 4/10 (diastole) M2-SE acquisitions. Compared with STEAM, M2-SE yielded higher systolic mean diffusivity (MD) (p = 0.02) and lower fractional anisotropy (FA) (p = 0.02, systole). Compared with segments with neither hypertrophy nor late gadolinium, segments with both had lower systolic FA using M2-SE (p = 0.02) and trend toward higher MD (p = 0.1). The negative correlation between FA and extracellular volume fraction was stronger with STEAM than M2-SE (r2 = 0.29, p < 0.001 STEAM vs. r2 = 0.10, p = 0.003 M2-SE). Discussion In HCM, only STEAM reliably assesses biphasic myocardial microstructure. Higher MD and lower FA from M2-SE reflect the shorter diffusion times. Further work will relate DT-CMR parameters and microstructural changes in disease. Electronic supplementary material The online version of this article (10.1007/s10334-019-00799-3) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Gotschy A, von Deuster C, van Gorkum RJH, Gastl M, Vintschger E, Schwotzer R, Flammer AJ, Manka R, Stoeck CT, Kozerke S. Characterizing cardiac involvement in amyloidosis using cardiovascular magnetic resonance diffusion tensor imaging. J Cardiovasc Magn Reson 2019; 21:56. [PMID: 31484544 PMCID: PMC6727537 DOI: 10.1186/s12968-019-0563-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/15/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND In-vivo cardiovascular magnetic resonance (CMR) diffusion tensor imaging (DTI) allows imaging of alterations of cardiac fiber architecture in diseased hearts. Cardiac amyloidosis (CA) causes myocardial infiltration of misfolded proteins with unknown consequences for myocardial microstructure. This study applied CMR DTI in CA to assess microstructural alterations and their consequences for myocardial function compared to healthy controls. METHODS Ten patients with CA (8 AL, 2 ATTR) and ten healthy controls were studied using a diffusion-weighed second-order motion-compensated spin-echo sequence at 1.5 T. Additionally, left ventricular morphology, ejection fraction, strain and native T1 values were obtained in all subjects. In CA patients, T1 mapping was repeated after the administration of gadolinium for extracellular volume fraction (ECV) calculation. CMR DTI analysis was performed to yield the scalar diffusion metrics mean diffusivity (MD) and fractional anisotropy (FA) as well as the characteristics of myofiber orientation including helix, transverse and E2A sheet angle (HA, TA, E2A). RESULTS MD and FA were found to be significantly different between CA patients and healthy controls (MD 1.77 ± 0.17 10- 3 vs 1.41 ± 0.07 10- 3 mm2/s, p < 0.001; FA 0.25 ± 0.04 vs 0.35 ± 0.03, p < 0.001). MD demonstrated an excellent correlation with native T1 (r = 0.908, p < 0.001) while FA showed a significant correlation with ECV in the CA population (r = - 0.851, p < 0.002). HA exhibited a more circumferential orientation of myofibers in CA patients, in conjunction with a higher TA standard deviation and a higher absolute E2A sheet angle. The transmural HA slope was found to be strongly correlated with the global longitudinal strain (r = 0.921, p < 0.001). CONCLUSION CMR DTI reveals significant alterations of scalar diffusion metrics in CA patients versus healthy controls. Elevated MD and lower FA values indicate myocardial disarray with higher diffusion in CA that correlates well with native T1 and ECV measures. In CA patients, CMR DTI showed pronounced circumferential orientation of the myofibers, which may provide the rationale for the reduction of global longitudinal strain that occurs in amyloidosis patients. Accordingly, CMR DTI captures specific features of amyloid infiltration, which provides a deeper understanding of the microstructural consequences of CA.
Collapse
Affiliation(s)
- Alexander Gotschy
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, Zurich, 8092 Switzerland
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Constantin von Deuster
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, Zurich, 8092 Switzerland
| | - Robbert J. H. van Gorkum
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, Zurich, 8092 Switzerland
| | - Mareike Gastl
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, Zurich, 8092 Switzerland
| | - Ella Vintschger
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, Zurich, 8092 Switzerland
| | - Rahel Schwotzer
- Division of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Andreas J. Flammer
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Robert Manka
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Christian T. Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, Zurich, 8092 Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, Zurich, 8092 Switzerland
| |
Collapse
|
33
|
Nielles-Vallespin S, Scott A, Ferreira P, Khalique Z, Pennell D, Firmin D. Cardiac Diffusion: Technique and Practical Applications. J Magn Reson Imaging 2019; 52:348-368. [PMID: 31482620 DOI: 10.1002/jmri.26912] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022] Open
Abstract
The 3D microarchitecture of the cardiac muscle underlies the mechanical and electrical properties of the heart. Cardiomyocytes are arranged helically through the depth of the wall, and their shortening leads to macroscopic torsion, twist, and shortening during cardiac contraction. Furthermore, cardiomyocytes are organized in sheetlets separated by shear layers, which reorientate, slip, and shear during macroscopic left ventricle (LV) wall thickening. Cardiac diffusion provides a means for noninvasive interrogation of the 3D microarchitecture of the myocardium. The fundamental principle of MR diffusion is that an MRI signal is attenuated by the self-diffusion of water in the presence of large diffusion-encoding gradients. Since water molecules are constrained by the boundaries in biological tissue (cell membranes, collagen layers, etc.), depicting their diffusion behavior elucidates the shape of the myocardial microarchitecture they are embedded in. Cardiac diffusion therefore provides a noninvasive means to understand not only the dynamic changes in cardiac microstructure of healthy myocardium during cardiac contraction but also the pathophysiological changes in the presence of disease. This unique and innovative technology offers tremendous potential to enable improved clinical diagnosis through novel microstructural and functional assessment. in vivo cardiac diffusion methods are immediately translatable to patients, opening new avenues for diagnostic investigation and treatment evaluation in a range of clinically important cardiac pathologies. This review article describes the 3D microstructure of the LV, explains in vivo and ex vivo cardiac MR diffusion acquisition and postprocessing techniques, as well as clinical applications to date. Level of Evidence: 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;52:348-368.
Collapse
Affiliation(s)
- Sonia Nielles-Vallespin
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Andrew Scott
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Pedro Ferreira
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Zohya Khalique
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Dudley Pennell
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - David Firmin
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| |
Collapse
|
34
|
Milne ML, Schick BM, Alkhazal T, Chung CS. Myocardial Fiber Mapping of Rat Hearts, Using Apparent Backscatter, with Histologic Validation. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:2075-2085. [PMID: 31155403 PMCID: PMC6615029 DOI: 10.1016/j.ultrasmedbio.2019.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/26/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Myocardial fiber architecture is a physiologically important regulator of ejection fraction, strain and pressure development. Apparent ultrasonic backscatter has been shown to be a useful method for recreating the myocardial fiber architecture in human-sized sheep hearts because of the dependence of its amplitude on the relative orientation of a myofiber to the angle of ultrasonic insonification. Thus, the anisotropy of the backscatter signal is linked to and provides information about the fiber orientation. In this study, we sought to determine whether apparent backscatter could be used to measure myofiber orientation in rodent hearts. Fixed adult-rat hearts were imaged intact, and both a transmural cylindrical core and transmural wedge of the left ventricular free wall were imaged. Cylindrical core samples confirmed that backscatter anisotropy could be measured in rat hearts. Ultrasound and histologic analysis of transmural myocardial wedge samples confirmed that the apparent backscatter could be reproducibly mapped to fiber orientation (angle of the fiber relative to the direction of insonification). These data provided a quantitative relationship between the apparent backscatter and fiber angle that was applied to whole-heart images. Myocardial fiber architecture was successfully measured in rat hearts. Quantifying myocardial fiber architecture, using apparent backscatter, provides a number of advantages, including its scalable use from rodents to man, its rapid low-cost acquisition and minimal contraindications. The method outlined in this study provides a method for investigators to begin detailed assessments of how the myocardial fiber architecture changes in preclinical disease models, which can be immediately translated into the clinic.
Collapse
Affiliation(s)
- Michelle L Milne
- Department of Physics, St. Mary's College of Maryland, St. Mary's City, MD, USA
| | - Brianna M Schick
- Department of Physiology, Wayne State University, Detroit, MI, USA
| | - Thamer Alkhazal
- Department of Physiology, Wayne State University, Detroit, MI, USA
| | - Charles S Chung
- Department of Physiology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
35
|
Beyhoff N, Lohr D, Foryst-Ludwig A, Klopfleisch R, Brix S, Grune J, Thiele A, Erfinanda L, Tabuchi A, Kuebler WM, Pieske B, Schreiber LM, Kintscher U. Characterization of Myocardial Microstructure and Function in an Experimental Model of Isolated Subendocardial Damage. Hypertension 2019; 74:295-304. [PMID: 31291149 PMCID: PMC6635061 DOI: 10.1161/hypertensionaha.119.12956] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Subendocardial damage is among the first cardiac manifestations of hypertension and is already present in asymptomatic disease states. Accordingly, markers of subendocardial impairment may facilitate early detection of cardiac damages and risk stratification under these conditions. This study aimed to investigate the impact of subendocardial damage on myocardial microstructure and function to elucidate early pathophysiologic processes and to identify corresponding diagnostic measures. Mice (n=38) were injected with isoproterenol to induce isolated subendocardial scarring or saline as corresponding control. Cardiac function and myocardial deformation were determined by high-frequency echocardiography. The cardiac stress response was assessed in a graded exercise test and during dobutamine stress echocardiography. Myocardial microstructure was studied ex vivo by 7 T diffusion tensor magnetic resonance imaging at a spatial resolution of 100×100×100 µm 3 . Results were correlated with histology and biomarker expression. Subendocardial fibrosis was accompanied by diastolic dysfunction, impaired longitudinal deformation (global peak longitudinal strain [LS]: -12.5±0.5% versus -15.6±0.5%; P<0.001) and elevated biomarker expression (ANP [atrial natriuretic peptide], Galectin-3, and ST2). Systolic function and cardiac stress response remained preserved. Diffusion tensor magnetic resonance imaging revealed a left-shift in helix angle towards lower values in isoproterenol-treated animals, which was mainly determined by subepicardial myofibers (mean helix angle: 2.2±0.8° versus 5.9±1.0°; P<0.01). Longitudinal strain and subepicardial helix angle were highly predictive for subendocardial fibrosis (sensitivity, 82%-92% and specificity, 89%-90%). The results indicate that circumscribed subendocardial damage alone can cause several hallmarks observed in cardiovascular high-risk patients. Microstructural remodeling under these conditions involves also remote regions, and corresponding changes in longitudinal strain and helix angle might serve as diagnostic markers.
Collapse
Affiliation(s)
- Niklas Beyhoff
- From the Charité-Universitätsmedizin Berlin, corporate member of Freie Universitaät Berlin, Humboldt-Universitaät zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research, Berlin, Germany (N.B., A.F.-L., S.B., J.G., Arne Thiele, U.K.).,DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Germany (N.B., A.F.-L., S.B., J.G., Arne Thiele, L.E., Arata Tabuchi, W.M.K., B.P., U.K.)
| | - David Lohr
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Germany (D.L., L.M.S.)
| | - Anna Foryst-Ludwig
- From the Charité-Universitätsmedizin Berlin, corporate member of Freie Universitaät Berlin, Humboldt-Universitaät zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research, Berlin, Germany (N.B., A.F.-L., S.B., J.G., Arne Thiele, U.K.).,DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Germany (N.B., A.F.-L., S.B., J.G., Arne Thiele, L.E., Arata Tabuchi, W.M.K., B.P., U.K.)
| | - Robert Klopfleisch
- Department of Veterinary Pathology, College of Veterinary Medicine, Freie Universität Berlin, Germany (R.K.)
| | - Sarah Brix
- From the Charité-Universitätsmedizin Berlin, corporate member of Freie Universitaät Berlin, Humboldt-Universitaät zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research, Berlin, Germany (N.B., A.F.-L., S.B., J.G., Arne Thiele, U.K.).,DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Germany (N.B., A.F.-L., S.B., J.G., Arne Thiele, L.E., Arata Tabuchi, W.M.K., B.P., U.K.)
| | - Jana Grune
- From the Charité-Universitätsmedizin Berlin, corporate member of Freie Universitaät Berlin, Humboldt-Universitaät zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research, Berlin, Germany (N.B., A.F.-L., S.B., J.G., Arne Thiele, U.K.).,DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Germany (N.B., A.F.-L., S.B., J.G., Arne Thiele, L.E., Arata Tabuchi, W.M.K., B.P., U.K.).,Charité-Universitaätsmedizin Berlin, corporate member of Freie Universitaät Berlin, Humboldt-Universitaät zu Berlin, and Berlin Institute of Health, Institute of Physiology, Berlin, Germany (J.G., L.E., Arata Tabuchi, W.M.K.)
| | - Arne Thiele
- From the Charité-Universitätsmedizin Berlin, corporate member of Freie Universitaät Berlin, Humboldt-Universitaät zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research, Berlin, Germany (N.B., A.F.-L., S.B., J.G., Arne Thiele, U.K.).,DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Germany (N.B., A.F.-L., S.B., J.G., Arne Thiele, L.E., Arata Tabuchi, W.M.K., B.P., U.K.)
| | - Lasti Erfinanda
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Germany (N.B., A.F.-L., S.B., J.G., Arne Thiele, L.E., Arata Tabuchi, W.M.K., B.P., U.K.).,Charité-Universitaätsmedizin Berlin, corporate member of Freie Universitaät Berlin, Humboldt-Universitaät zu Berlin, and Berlin Institute of Health, Institute of Physiology, Berlin, Germany (J.G., L.E., Arata Tabuchi, W.M.K.)
| | - Arata Tabuchi
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Germany (N.B., A.F.-L., S.B., J.G., Arne Thiele, L.E., Arata Tabuchi, W.M.K., B.P., U.K.).,Charité-Universitaätsmedizin Berlin, corporate member of Freie Universitaät Berlin, Humboldt-Universitaät zu Berlin, and Berlin Institute of Health, Institute of Physiology, Berlin, Germany (J.G., L.E., Arata Tabuchi, W.M.K.)
| | - Wolfgang M Kuebler
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Germany (N.B., A.F.-L., S.B., J.G., Arne Thiele, L.E., Arata Tabuchi, W.M.K., B.P., U.K.).,Charité-Universitaätsmedizin Berlin, corporate member of Freie Universitaät Berlin, Humboldt-Universitaät zu Berlin, and Berlin Institute of Health, Institute of Physiology, Berlin, Germany (J.G., L.E., Arata Tabuchi, W.M.K.)
| | - Burkert Pieske
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Germany (N.B., A.F.-L., S.B., J.G., Arne Thiele, L.E., Arata Tabuchi, W.M.K., B.P., U.K.).,Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin and Deutsches Herzzentrum Berlin (DHZB), Department of Cardiology, Berlin, Germany (B.P.)
| | - Laura M Schreiber
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Germany (D.L., L.M.S.)
| | - Ulrich Kintscher
- From the Charité-Universitätsmedizin Berlin, corporate member of Freie Universitaät Berlin, Humboldt-Universitaät zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research, Berlin, Germany (N.B., A.F.-L., S.B., J.G., Arne Thiele, U.K.).,DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Germany (N.B., A.F.-L., S.B., J.G., Arne Thiele, L.E., Arata Tabuchi, W.M.K., B.P., U.K.)
| |
Collapse
|
36
|
Khalique Z, Pennell D. Diffusion tensor cardiovascular magnetic resonance. Postgrad Med J 2019; 95:433-438. [DOI: 10.1136/postgradmedj-2019-136429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/16/2019] [Accepted: 04/28/2019] [Indexed: 11/03/2022]
Abstract
Cardiac structure and function are complex and inter-related. Current in vivo techniques assess the heart on a macroscopic scale, but a novel technique called diffusion tensor cardiovascular magnetic resonance (DT-CMR) can now assess the cardiac microstructure non-invasively. It provides information on the helical arrangement of cardiomyocytes that drives torsion and offers dynamic assessment of the sheetlets (aggregated cardiomyocytes) that rotate through the cardiac cycle to facilitate wall thickening. Through diffusion biomarkers, the expansion and organisation of the underlying myocardium can be described. DT-CMR has already identified novel microstructural abnormalities in cardiomyopathy, and ischaemic and congenital heart disease. This new knowledge supports the potential of DT-CMR to improve diagnostics and prognostication in various cardiac diseases.
Collapse
|
37
|
Abstract
Postmortem imaging is increasingly used in forensic practice as good complementary tool to conventional autopsy investigations. Over the last decade, postmortem cardiac magnetic resonance (PMCMR) imaging was introduced in forensic investigations of natural deaths related to cardiovascular diseases, which represent the most common causes of death in developed countries. Postmortem CMR application has yielded interesting results in ischemic myocardium injury investigations and in visualizing other pathological findings in the heart. This review presents the actual state of postmortem imaging for cardiovascular pathologies in cases of sudden cardiac death (SCD), taking into consideration both the advantages and limitations of PMCMR application.
Collapse
|
38
|
Rady M, Ulbrich S, Heidrich F, Jellinghaus S, Ibrahim K, Linke A, Sveric KM. Left Ventricular Torsion ― A New Echocardiographic Prognosticator in Patients With Non-Ischemic Dilated Cardiomyopathy ―. Circ J 2019; 83:595-603. [DOI: 10.1253/circj.cj-18-0986] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mohamed Rady
- Department for Internal Medicine and Cardiology, Herzzentrum Dresden, Technische Universität Dresden
| | - Stefan Ulbrich
- Department for Internal Medicine and Cardiology, Herzzentrum Dresden, Technische Universität Dresden
| | - Felix Heidrich
- Department for Internal Medicine and Cardiology, Herzzentrum Dresden, Technische Universität Dresden
| | - Stefanie Jellinghaus
- Department for Internal Medicine and Cardiology, Herzzentrum Dresden, Technische Universität Dresden
| | - Karim Ibrahim
- Department for Internal Medicine and Cardiology, Herzzentrum Dresden, Technische Universität Dresden
| | - Axel Linke
- Department for Internal Medicine and Cardiology, Herzzentrum Dresden, Technische Universität Dresden
| | - Krunoslav Michael Sveric
- Department for Internal Medicine and Cardiology, Herzzentrum Dresden, Technische Universität Dresden
| |
Collapse
|
39
|
Rose JN, Nielles-Vallespin S, Ferreira PF, Firmin DN, Scott AD, Doorly DJ. Novel insights into in-vivo diffusion tensor cardiovascular magnetic resonance using computational modeling and a histology-based virtual microstructure. Magn Reson Med 2018; 81:2759-2773. [PMID: 30350880 PMCID: PMC6637383 DOI: 10.1002/mrm.27561] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Abstract
Purpose To develop histology‐informed simulations of diffusion tensor cardiovascular magnetic resonance (DT‐CMR) for typical in‐vivo pulse sequences and determine their sensitivity to changes in extra‐cellular space (ECS) and other microstructural parameters. Methods We synthesised the DT‐CMR signal from Monte Carlo random walk simulations. The virtual tissue was based on porcine histology. The cells were thickened and then shrunk to modify ECS. We also created idealised geometries using cuboids in regular arrangement, matching the extra‐cellular volume fraction (ECV) of 16–40%. The simulated voxel size was 2.8 × 2.8 × 8.0 mm3 for pulse sequences covering short and long diffusion times: Stejskal–Tanner pulsed‐gradient spin echo, second‐order motion‐compensated spin echo, and stimulated echo acquisition mode (STEAM), with clinically available gradient strengths. Results The primary diffusion tensor eigenvalue increases linearly with ECV at a similar rate for all simulated geometries. Mean diffusivity (MD) varies linearly, too, but is higher for the substrates with more uniformly distributed ECS. Fractional anisotropy (FA) for the histology‐based geometry is higher than the idealised geometry with low sensitivity to ECV, except for the long mixing time of the STEAM sequence. Varying the intra‐cellular diffusivity (DIC) results in large changes of MD and FA. Varying extra‐cellular diffusivity or using stronger gradients has minor effects on FA. Uncertainties of the primary eigenvector orientation are reduced using STEAM. Conclusions We found that the distribution of ECS has a measurable impact on DT‐CMR parameters. The observed sensitivity of MD and FA to ECV and DIC has potentially interesting applications for interpreting in‐vivo DT‐CMR parameters.
Collapse
Affiliation(s)
- Jan N Rose
- Department of Aeronautics, Imperial College London, London, United Kingdom
| | - Sonia Nielles-Vallespin
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Pedro F Ferreira
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - David N Firmin
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Andrew D Scott
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Denis J Doorly
- Department of Aeronautics, Imperial College London, London, United Kingdom
| |
Collapse
|
40
|
Nguyen CT, Buckberg G, Li D. Magnetic Resonance Diffusion Tensor Imaging Provides New Insights Into the Microstructural Alterations in Dilated Cardiomyopathy. Circ Cardiovasc Imaging 2018; 9:CIRCIMAGING.116.005593. [PMID: 27729369 DOI: 10.1161/circimaging.116.005593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Christopher T Nguyen
- From the Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (C.T.N., D.L.); Departments of Cardiac Surgery (G.B.) and Medicine (D.L.), David Geffen School of Medicine at University of California, Los Angeles; and Department of Bioengineering, University of California, Los Angeles (D.L.)
| | - Gerald Buckberg
- From the Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (C.T.N., D.L.); Departments of Cardiac Surgery (G.B.) and Medicine (D.L.), David Geffen School of Medicine at University of California, Los Angeles; and Department of Bioengineering, University of California, Los Angeles (D.L.)
| | - Debiao Li
- From the Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (C.T.N., D.L.); Departments of Cardiac Surgery (G.B.) and Medicine (D.L.), David Geffen School of Medicine at University of California, Los Angeles; and Department of Bioengineering, University of California, Los Angeles (D.L.).
| |
Collapse
|
41
|
Wang ZJ, Wang VY, Bradley CP, Nash MP, Young AA, Cao JJ. Left Ventricular Diastolic Myocardial Stiffness and End-Diastolic Myofibre Stress in Human Heart Failure Using Personalised Biomechanical Analysis. J Cardiovasc Transl Res 2018; 11:346-356. [PMID: 29998358 DOI: 10.1007/s12265-018-9816-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/26/2018] [Indexed: 01/08/2023]
Abstract
Understanding the aetiology of heart failure with preserved (HFpEF) and reduced (HFrEF) ejection fraction requires knowledge of biomechanical factors such as diastolic myocardial stiffness and stress. Cine CMR images and intra-ventricular pressure recordings were acquired in 8 HFrEF, 11 HFpEF and 5 control subjects. Diastolic myocardial stiffness was estimated using biomechanical models and found to be greater in HFrEF (6.4 ± 1.2 kPa) than HFpEF (2.7 ± 0.6 kPa, p < 0.05) and also greater than control (1.2 ± 0.4 kPa, p < 0.005). End-diastolic mid-ventricular myofibre stress derived from the personalised biomechanics model was higher in HFrEF (2.9 ± 0.3 kPa) than control (0.9 ± 0.3 kPa, p < 0.01). Chamber stiffness, measured from the slope of the diastolic pressure-volume relationship, is determined by the intrinsic tissue properties as well as the size and shape of the heart, and was unable to distinguish between any of the three groups (p > 0.05). Personalised biomechanical analysis may provide more specific information about myocardial mechanical behaviour than global chamber indices, which are confounded by variations in ventricular geometry.
Collapse
Affiliation(s)
- Zhinuo J Wang
- Auckland Bioengineering Institute, University of Auckland, Level 6 Reception, 70 Symonds Street, Grafton, Auckland, 1010, New Zealand
| | - Vicky Y Wang
- Auckland Bioengineering Institute, University of Auckland, Level 6 Reception, 70 Symonds Street, Grafton, Auckland, 1010, New Zealand
| | - Chris P Bradley
- Auckland Bioengineering Institute, University of Auckland, Level 6 Reception, 70 Symonds Street, Grafton, Auckland, 1010, New Zealand
| | - Martyn P Nash
- Auckland Bioengineering Institute, University of Auckland, Level 6 Reception, 70 Symonds Street, Grafton, Auckland, 1010, New Zealand. .,Department of Engineering Science, University of Auckland, Auckland, New Zealand.
| | - Alistair A Young
- Auckland Bioengineering Institute, University of Auckland, Level 6 Reception, 70 Symonds Street, Grafton, Auckland, 1010, New Zealand.,Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - J Jane Cao
- The Heart Center, St Francis Hospital, Roslyn, NY, USA
| |
Collapse
|
42
|
Aliotta E, Moulin K, Magrath P, Ennis DB. Quantifying precision in cardiac diffusion tensor imaging with second-order motion-compensated convex optimized diffusion encoding. Magn Reson Med 2018; 80:1074-1087. [PMID: 29427349 DOI: 10.1002/mrm.27107] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Eric Aliotta
- Department of Radiological Sciences, University of California, Los Angeles, California.,Biomedical Physics Interdepartmental Program, University of California, Los Angeles, California
| | - Kévin Moulin
- Department of Radiological Sciences, University of California, Los Angeles, California
| | - Patrick Magrath
- Department of Bioengineering, University of California, Los Angeles, California
| | - Daniel B Ennis
- Department of Radiological Sciences, University of California, Los Angeles, California.,Biomedical Physics Interdepartmental Program, University of California, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, California
| |
Collapse
|
43
|
Mekkaoui C, Jackowski MP, Kostis WJ, Stoeck CT, Thiagalingam A, Reese TG, Reddy VY, Ruskin JN, Kozerke S, Sosnovik DE. Myocardial Scar Delineation Using Diffusion Tensor Magnetic Resonance Tractography. J Am Heart Assoc 2018; 7:JAHA.117.007834. [PMID: 29420216 PMCID: PMC5850260 DOI: 10.1161/jaha.117.007834] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Late gadolinium enhancement (LGE) is the current standard for myocardial scar delineation. In this study, we introduce the tractographic propagation angle (PA), a metric of myofiber curvature (degrees/unit distance) derived from diffusion tensor imaging (DTI), and compare its use to LGE and invasive scar assessment by endocardial voltage mapping. Methods and Results DTI was performed on 7 healthy human volunteers, 5 patients with myocardial infarction, 6 normal mice, and 7 mice with myocardial infarction. LGE to delineate the infarct and border zones was performed with a 2‐dimensional inversion recovery gradient‐echo sequence. Ex vivo DTI was performed on 5 normal human and 5 normal sheep hearts. Endocardial electroanatomic mapping and subsequent ex vivo DTI was performed on 5 infarcted sheep hearts. PA in the normal human hearts varied smoothly and was generally <4. The mean PA in the infarct zone was significantly elevated (10.34±1.02 versus 4.05±0.45, P<0.05). Regions with a PA ≤4 consistently had a bipolar voltage ≥1.5 mV, whereas those with PA values between 4 and 10 had voltages between 0.5 and 1.5 mV. A PA threshold >4 was the most accurate DTI‐derived measure of infarct size and demonstrated the greatest correlation with LGE (r=0.95). Conclusions We found a strong correlation between infarct size by PA and LGE in both mice and humans. There was also an inverse relationship between PA values and endocardial voltage. The use of PA may enable myocardial scar delineation and characterization of arrhythmogenic substrate without the need for exogenous contrast agents.
Collapse
Affiliation(s)
- Choukri Mekkaoui
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Harvard Medical School, Boston, MA
| | - Marcel P Jackowski
- Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, Brazil
| | - William J Kostis
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Harvard Medical School, Boston, MA.,Cardiovascular Institute, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Christian T Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | | | - Timothy G Reese
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Harvard Medical School, Boston, MA
| | - Vivek Y Reddy
- Cardiac Arrhythmia Service, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jeremy N Ruskin
- Cardiac Arrhythmia Service, Department of Medicine, Massachusetts General Hospital Harvard Medical School, Boston, MA
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - David E Sosnovik
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Harvard Medical School, Boston, MA.,Cardiology Division, Cardiovascular Research Center, Massachusetts General Hospital Harvard Medical School, Boston, MA
| |
Collapse
|
44
|
Scott AD, Nielles-Vallespin S, Ferreira PF, Khalique Z, Gatehouse PD, Kilner P, Pennell DJ, Firmin DN. An in-vivo comparison of stimulated-echo and motion compensated spin-echo sequences for 3 T diffusion tensor cardiovascular magnetic resonance at multiple cardiac phases. J Cardiovasc Magn Reson 2018; 20:1. [PMID: 29298692 PMCID: PMC5753538 DOI: 10.1186/s12968-017-0425-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/18/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Stimulated-echo (STEAM) and, more recently, motion-compensated spin-echo (M2-SE) techniques have been used for in-vivo diffusion tensor cardiovascular magnetic resonance (DT-CMR) assessment of cardiac microstructure. The two techniques differ in the length scales of diffusion interrogated, their signal-to-noise ratio efficiency and sensitivity to both motion and strain. Previous comparisons of the techniques have used high performance gradients at 1.5 T in a single cardiac phase. However, recent work using STEAM has demonstrated novel findings of microscopic dysfunction in cardiomyopathy patients, when DT-CMR was performed at multiple cardiac phases. We compare STEAM and M2-SE using a clinical 3 T scanner in three potentially clinically interesting cardiac phases. METHODS Breath hold mid-ventricular short-axis DT-CMR was performed in 15 subjects using M2-SE and STEAM at end-systole, systolic sweet-spot and diastasis. Success was defined by ≥50% of the myocardium demonstrating normal helix angles. From successful acquisitions DT-CMR results relating to tensor orientation, size and shape were compared between sequences and cardiac phases using non-parametric statistics. Strain information was obtained using cine spiral displacement encoding with stimulated echoes for comparison with DT-CMR results. RESULTS Acquisitions were successful in 98% of STEAM and 76% of M2-SE cases and visual helix angle (HA) map scores were higher for STEAM at the sweet-spot and diastasis. There were significant differences between sequences (p < 0.05) in mean diffusivity (MD), fractional anisotropy (FA), tensor mode, transmural HA gradient and absolute second eigenvector angle (E2A). Differences in E2A between systole and diastole correlated with peak radial strain for both sequences (p ≤ 0.01). CONCLUSION M2-SE and STEAM can be performed equally well at peak systole at 3 T using standard gradients, but at the sweet-spot and diastole STEAM is more reliable and image quality scores are higher. Differences in DT-CMR results are potentially due to differences in motion sensitivity and the longer diffusion time of STEAM, although the latter appears to be the dominant factor. The benefits of both sequences should be considered when planning future studies and sequence and cardiac phase specific normal ranges should be used for comparison.
Collapse
Affiliation(s)
- Andrew D. Scott
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, Sydney Street, London, UK
- National Heart and Lung Institute, Imperial College London, Sydney Street, London, UK
| | - Sonia Nielles-Vallespin
- National Heart and Lung Institute, Imperial College London, Sydney Street, London, UK
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Pedro F. Ferreira
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, Sydney Street, London, UK
- National Heart and Lung Institute, Imperial College London, Sydney Street, London, UK
| | - Zohya Khalique
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, Sydney Street, London, UK
| | - Peter D. Gatehouse
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, Sydney Street, London, UK
- National Heart and Lung Institute, Imperial College London, Sydney Street, London, UK
| | - Philip Kilner
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, Sydney Street, London, UK
- National Heart and Lung Institute, Imperial College London, Sydney Street, London, UK
| | - Dudley J. Pennell
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, Sydney Street, London, UK
- National Heart and Lung Institute, Imperial College London, Sydney Street, London, UK
| | - David N. Firmin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, Sydney Street, London, UK
- National Heart and Lung Institute, Imperial College London, Sydney Street, London, UK
| |
Collapse
|
45
|
Stochastic Deep Compressive Sensing for the Reconstruction of Diffusion Tensor Cardiac MRI. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION – MICCAI 2018 2018. [DOI: 10.1007/978-3-030-00928-1_34] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Gorodezky M, Scott AD, Ferreira PF, Nielles-Vallespin S, Pennell DJ, Firmin DN. Diffusion tensor cardiovascular magnetic resonance with a spiral trajectory: An in vivo comparison of echo planar and spiral stimulated echo sequences. Magn Reson Med 2017; 80:648-654. [PMID: 29266435 DOI: 10.1002/mrm.27051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE Diffusion tensor cardiovascular MR (DT-CMR) using stimulated echo acquisition mode (STEAM) with echo-planar-imaging (EPI) readouts is a low signal-to-noise-ratio (SNR) technique and therefore typically has a low spatial resolution. Spiral trajectories are more efficient than EPI, and could increase the SNR. The purpose of this study was to compare the performance of a novel STEAM spiral DT-CMR sequence with an equivalent established EPI technique. METHODS A STEAM DT-CMR sequence was implemented with a spiral readout and a reduced field of view. An in vivo comparison of DT-CMR parameters and data quality between EPI and spiral was performed in 11 healthy volunteers imaged in peak systole and diastasis at 3 T. The SNR was compared in a phantom and in vivo. RESULTS There was a greater than 49% increase in the SNR in vivo and in the phantom measurements (in vivo septum, systole: SNREPI = 8.0 ± 2.2, SNRspiral = 12.0 ± 2.7; diastasis: SNREPI = 8.1 ± 1.6, SNRspiral = 12.0 ± 3.7). There were no significant differences in helix angle gradient (HAG) (systole: HAGEPI = -0.79 ± 0.07 °/%; HAGspiral = -0.74 ± 0.16 °/%; P = 0.11; diastasis: HAGEPI = -0.63 ± 0.05 °/%; HAGspiral = -0.56 ± 0.14 °/%; P = 0.20), mean diffusivity (MD) in systole (MDEPI = 0.99 ± 0.06 × 10-3 mm2 /s, MDspiral = 1.00 ± 0.09 × 10-3 mm2 /s, P = 0.23) and secondary eigenvector angulation (E2A) (systole: E2AEPI = 61 ± 10 °; E2Aspiral = 63 ± 10 °; P = 0.77; diastasis: E2AEPI = 18 ± 11 °; E2Aspiral = 15 ± 8 °; P = 0.20) between the sequences. There was a small difference (≈ 20%) in fractional anisotropy (FA) (systole: FAEPI = 0.49 ± 0.03, FAspiral = 0.41 ± 0.04; P < 0.01; diastasis: FAEPI = 0.66 ± 0.05, FAspiral = 0.55 ± 0.03; P < 0.01) and mean diffusivity in diastasis (10%; MDEPI = 1.00 ± 0.12 × 10-3 mm2 /s, MDspiral = 1.10 ± 0.09 × 10-3 mm2 /s, P = 0.02). CONCLUSION This is the first study to demonstrate DT-CMR STEAM using a spiral trajectory. The SNR was increased by using a spiral rather than the more established EPI readout, and the DT-CMR parameters were largely similar between the two sequences. Magn Reson Med 80:648-654, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Margarita Gorodezky
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, United Kingdom.,National Heart and Lung Institute, Imperial College, Sydney Street, London, SW3 6NP, United Kingdom
| | - Andrew D Scott
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, United Kingdom.,National Heart and Lung Institute, Imperial College, Sydney Street, London, SW3 6NP, United Kingdom
| | - Pedro F Ferreira
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, United Kingdom.,National Heart and Lung Institute, Imperial College, Sydney Street, London, SW3 6NP, United Kingdom
| | - Sonia Nielles-Vallespin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, United Kingdom.,National Heart and Lung Institute, Imperial College, Sydney Street, London, SW3 6NP, United Kingdom.,National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Dudley J Pennell
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, United Kingdom.,National Heart and Lung Institute, Imperial College, Sydney Street, London, SW3 6NP, United Kingdom
| | - David N Firmin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, United Kingdom.,National Heart and Lung Institute, Imperial College, Sydney Street, London, SW3 6NP, United Kingdom
| |
Collapse
|
47
|
Agger P, Ilkjær C, Laustsen C, Smerup M, Frandsen JR, Ringgaard S, Pedersen M, Partridge JB, Anderson RH, Hjortdal V. Changes in overall ventricular myocardial architecture in the setting of a porcine animal model of right ventricular dilation. J Cardiovasc Magn Reson 2017; 19:93. [PMID: 29178894 PMCID: PMC5702974 DOI: 10.1186/s12968-017-0404-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/18/2017] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Chronic pulmonary regurgitation often leads to myocardial dysfunction and heart failure. It is not fully known why secondary hypertrophy cannot fully protect against the increase in wall stress brought about by the increased end-diastolic volume in ventricular dilation. It has been assumed that mural architecture is not deranged in this situation, but we hypothesised that there might be a change in the pattern of orientation of the aggregations of cardiomyocytes, which would contribute to contractile impairment. METHODS We created pulmonary valvular regurgitation by open chest, surgical suturing of its leaflets in seven piglets, performing sham operations in seven control animals. Using cardiovascular magnetic resonance imaging after 12 weeks of recovery, we demonstrated significantly increased right ventricular volumes in the test group. After sacrifice, diffusion tensor imaging of their hearts permitted measurement of the orientation of the cardiomyocytes. RESULTS The helical angles in the right ventricle approached a more circumferential orientation in the setting of right ventricular RV dilation (p = 0.007), with an increased proportion of surface-parallel cardiomyocytes. In contrast, this proportion decreased in the left ventricle. Also in the left ventricle a higher proportion of E3 angles with a value around zero was found, and conversely a lower proportion of angles was found with a numerical higher value. In the dilated right ventricle the proportion of E3 angles around -90° is increased, while the proportion around 90° is decreased. CONCLUSION Contrary to traditional views, there is a change in the orientation of both the left ventricular and right ventricular cardiomyocytes subsequent to right ventricular dilation. This will change their direction of contraction and hinder the achievement of normalisation of cardiomyocytic strain, affecting overall contractility. We suggest that the aetiology of the cardiac failure induced by right vetricular dilation may be partly explained by morphological changes in the myocardium itself.
Collapse
Affiliation(s)
- Peter Agger
- Department of Cardiothoracic & Vascular Surgery, Aarhus University Hospital, Skejby, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christine Ilkjær
- Department of Cardiothoracic & Vascular Surgery, Aarhus University Hospital, Skejby, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christoffer Laustsen
- MR Research Center, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Morten Smerup
- Department of Cardiothoracic Surgery, Rigshospitalet, Copenhagen, Denmark
| | - Jesper R. Frandsen
- Center for Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Steffen Ringgaard
- MR Research Center, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michael Pedersen
- Comparative Medicine Lab, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - John B. Partridge
- Eurobodalla Unit, Rural Clinical School of the ANU College of Medicine, Biology & Environment, Batemans Bay, NSW Australia
| | - Robert H. Anderson
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Vibeke Hjortdal
- Department of Cardiothoracic & Vascular Surgery, Aarhus University Hospital, Skejby, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
48
|
Stoeck CT, von Deuster C, Fleischmann T, Lipiski M, Cesarovic N, Kozerke S. Direct comparison of in vivo versus postmortem second‐order motion‐compensated cardiac diffusion tensor imaging. Magn Reson Med 2017; 79:2265-2276. [DOI: 10.1002/mrm.26871] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Christian T. Stoeck
- Institute for Biomedical EngineeringUniversity and ETH ZurichZurich Switzerland
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondon United Kingdom
| | - Constantin von Deuster
- Institute for Biomedical EngineeringUniversity and ETH ZurichZurich Switzerland
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondon United Kingdom
| | - Thea Fleischmann
- Division of Surgical ResearchUniversity Hospital Zurich, University of ZurichZurich Switzerland
| | - Miriam Lipiski
- Division of Surgical ResearchUniversity Hospital Zurich, University of ZurichZurich Switzerland
| | - Nikola Cesarovic
- Division of Surgical ResearchUniversity Hospital Zurich, University of ZurichZurich Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical EngineeringUniversity and ETH ZurichZurich Switzerland
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondon United Kingdom
| |
Collapse
|