1
|
Alao DO, Abraham SM, Mohammed N, Oduro GD, Farid MA, Roby RM, Oppong C, Cevik AA. Do-not-attempt resuscitation policy reduced in-hospital cardiac arrest rate and the cost of care in a developing country. Libyan J Med 2024; 19:2321671. [PMID: 38404044 PMCID: PMC10898264 DOI: 10.1080/19932820.2024.2321671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/16/2024] [Indexed: 02/27/2024] Open
Abstract
We aim to study the characteristics and outcomes of patients with a Do-Not-Attempt Resuscitation and to determine its impact on the Cost of In-Hospital Cardiac Arrest. A retrospective study of all adult patients admitted to the hospital from June 2021 to May 2022 who had a Do-Not-Resuscitate order. We abstracted patients' socio-demographics, physiologic parameters, primary diagnosis, and comorbidities from the electronic medical records. We calculated the potential economic cost using the median ICU length of stay for the admitted IHCA patients during the study period. There were 28,866 acute admissions over the study period, and 788 patients had DNR orders. The median (IQR) age was 71 (55-82) years, and 50.3% were males. The most prevalent primary diagnosis was sepsis, 426 (54.3%), and cancer was the most common comorbidity. More than one comorbidities were present in 642 (80%) of the cohort. Of the DNR patients, 492 (62.4%) died, while 296 (37.6%) survived to discharge. Cancer was the primary diagnosis in 65 (22.2%) of those who survived, compared with 154 (31.3%) of those who died (P = 0.002). Over the study period, 153 patients had IHCA and underwent CPR, with an IHCA rate of 5.3 per 1,000 hospital admissions. Without a DNR policy, an additional 492 patients with cardiac arrest would have had CPR, resulting in an IHCA rate of 22.3 per 1000 hospital admissions. Most DNR patients in our setting had sepsis complicated by multiple comorbidities. The DNR policy reduced our IHCA incidence by 76% and prevented unnecessary post-resuscitation ICU care.
Collapse
Affiliation(s)
- David O. Alao
- Department of Internal Medicine, College of Medicine and Health Sciences, UAE University, Al-Ain, United Arab Emirates
- Emergency Department, Tawam Hospital, Al Ain, United Arab Emirates
| | - Snaha M. Abraham
- Emergency Department, Tawam Hospital, Al Ain, United Arab Emirates
| | - Nada Mohammed
- Emergency Department, Tawam Hospital, Al Ain, United Arab Emirates
| | - George D. Oduro
- Emergency Department, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | | | - Roxanne M. Roby
- Emergency Department, Tawam Hospital, Al Ain, United Arab Emirates
| | - Chris Oppong
- Emergency Department, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Arif A. Cevik
- Department of Internal Medicine, College of Medicine and Health Sciences, UAE University, Al-Ain, United Arab Emirates
- Emergency Department, Tawam Hospital, Al Ain, United Arab Emirates
| |
Collapse
|
2
|
Bruchfeld S, Ullemark E, Riva G, Ohm J, Rawshani A, Djärv T. Aetiology and predictors of outcome in non-shockable in-hospital cardiac arrest: A retrospective cohort study from the Swedish Registry for Cardiopulmonary Resuscitation. Acta Anaesthesiol Scand 2024; 68:1504-1514. [PMID: 38992934 DOI: 10.1111/aas.14496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Non-shockable in-hospital cardiac arrest (IHCA) is a condition with diverse aetiology, predictive factors, and outcome. This study aimed to compare IHCA with initial asystole or pulseless electrical activity (PEA), focusing specifically on their aetiologies and the significance of predictive factors. METHODS Using the Swedish Registry of Cardiopulmonary Resuscitation, adult non-shockable IHCA cases from 2018 to 2022 (n = 5788) were analysed. Exposure was initial rhythm, while survival to hospital discharge was the primary outcome. A random forest model with 28 variables was used to generate permutation-based variable importance for outcome prediction. RESULTS Overall, 60% of patients (n = 3486) were male and the median age was 75 years (IQR 67-81). The most frequent arrest location (46%) was on general wards. Comorbidities were present in 79% of cases and the most prevalent comorbidity was heart failure (33%). Initial rhythm was PEA in 47% (n = 2702) of patients, and asystole in 53% (n = 3086). The most frequent aetiologies in both PEA and asystole were cardiac ischemia (24% vs. 19%, absolute difference [AD]: 5.4%; 95% confidence interval [CI] 3.0% to 7.7%), and respiratory failure (14% vs. 13%, no significant difference). Survival was higher in asystole (24%) than in PEA (17%) (AD: 7.3%; 95% CI 5.2% to 9.4%). Cardiopulmonary resuscitation (CPR) durations were longer in PEA, 18 vs 15 min (AD 4.9 min, 95% CI 4.0-5.9 min). The duration of CPR was the single most important predictor of survival across all subgroup and sensitivity analyses. Aetiology ranked as the second most important predictor in most analyses, except in the asystole subgroup where responsiveness at cardiac arrest team arrival took precedence. CONCLUSIONS In this nationwide registry study of non-shockable IHCA comparing asystole to PEA, cardiac ischemia and respiratory failure were the predominant aetiologies. Duration of CPR was the most important predictor of survival, followed by aetiology. Asystole was associated with higher survival compared to PEA, possibly due to shorter CPR durations and a larger proportion of reversible aetiologies.
Collapse
Affiliation(s)
- Samuel Bruchfeld
- Department of Acute and Reparative Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Resuscitation Science, Department of Clinical Science and Education KI/SÖS, Karolinska Institutet, Stockholm, Sweden
| | - Erik Ullemark
- Department of Cardiology, Skaraborgs Hospital, Skövde, Sweden
| | - Gabriel Riva
- Center for Resuscitation Science, Department of Clinical Science and Education KI/SÖS, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, S:t Görans Hospital, Stockholm, Sweden
| | - Joel Ohm
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Coagulation Unit, Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Araz Rawshani
- Institute of Medicine, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Therese Djärv
- Department of Acute and Reparative Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Resuscitation Science, Department of Clinical Science and Education KI/SÖS, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Jurd C, Barr J. Leadership factors for cardiopulmonary resuscitation for clinicians in-hospital; behaviours, skills and strategies: A systematic review and synthesis without meta-analysis. J Clin Nurs 2024; 33:3844-3853. [PMID: 38757400 DOI: 10.1111/jocn.17215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/11/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
AIM To identify leadership factors for clinicians during in-hospital cardiopulmonary resuscitation. DESIGN Systematic review with synthesis without meta-analysis. METHODS The review was guided by SWiM, assessed for quality using CASP and reported with PRISMA. DATA SOURCES Cochrane, EMBASE, PubMed, Medline, Scopus and CINAHL (years of 2013-2023) and a manual reference list search of all included studies. RESULTS A total of 60 papers were identified with three major themes of useful resuscitation leadership; 'social skills', 'cognitive skills and behaviour' and 'leadership development skills' were identified. Main factors included delegating effectively, while being situationally aware of team members' ability and progress during resuscitation, and being empathetic and supportive, yet 'controlling the room' using a hands-off style. Shared decision-making to reduce cognitive load for one leader was shown to improve effective teamwork. Findings were limited by heterogeneity of studies and inconsistently applied tools to measure leadership. CONCLUSION Traditional authoritarian leadership styles are not wanted by team members with preference for shared leadership and collaboration. Balancing this with the need for team members to see leaders in 'control of the room' brings new challenges for leaders and trainers of resuscitation. IMPLICATIONS FOR NURSING PROFESSION All clinicians need effective leadership skills for cardiopulmonary resuscitation in-hospital. Nurses provide first response and ongoing leadership for cardiopulmonary resuscitation. Nurses typically display suitable skills that align with useful resuscitation leader factors. IMPACT What were the main findings? Collaboration rather than an authoritarian approach to leadership is preferred by team members. Nurses are suitable to 'control the room'. Restricting resuscitation team size will manage disruptive behaviour of team members. TRIAL REGISTRATION PROSPERO Registration: CRD42022385630. PATIENT OF PUBLIC CONTRIBUTION No patient of public contribution.
Collapse
Affiliation(s)
- Catherine Jurd
- Darling Downs Hospital and Health Service, Kingaroy Hospital, Kingaroy, Queensland, Australia
- Charles Darwin University, Casuarine, Brinkin, Northern Territory, Australia
| | - Jennieffer Barr
- Charles Darwin University, Casuarine, Brinkin, Northern Territory, Australia
| |
Collapse
|
4
|
Toy J, Friend L, Wilhelm K, Kim M, Gahm C, Panchal AR, Dillon D, Donofrio‐Odmann J, Montroy JC, Gausche‐Hill M, Bosson N, Coute R, Schlesinger S, Menegazzi J. Evaluating the current breadth of randomized control trials on cardiac arrest: A scoping review. J Am Coll Emerg Physicians Open 2024; 5:e13334. [PMID: 39430662 PMCID: PMC11486800 DOI: 10.1002/emp2.13334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/23/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Objectives Despite the significant disease burden due to cardiac arrest, there is a relative paucity of randomized controlled trials (RCTs) to inform definitive management. We aimed to evaluate the current scope of cardiac arrest RCTs published between 2015 and 2022. Methods We conducted a search in October 2023 of MEDLINE, Embase, and Web of Science for cardiac arrest RCTs. We included trials published between 2015 and 2022 enrolling human subjects suffering from non-traumatic cardiac arrest. Descriptive statistics were reported and the Mann Kendall test was used to evaluate for temporal trends in the number of trials published annually. Results We identified 1764 unique publications, 87 RCTs were included after title/abstract and full-text review. We found no significant increase in trials published annually (eight in 2015 and 16 in 2022, p = 1.0). Geographic analysis of study centers found 31 countries represented; Denmark (n = 13, 15%) and the United States (n = 9, 10%) conducted the majority of trials. Nearly all trials included adults (n = 84, 97%) and few included children (n = 9, 10%). The majority of trials focused on out-of-hospital cardiac arrest (n = 62, 71%). Thirty-eight (44%) trials used an intervention characterized as a process improvement; 28 (32%) interventions were characterized as a drug and 20 (23%) as a device. Interventions were implemented with similar frequency in the prehospital (33%) and intensive care unit (38%) setting, as well as similarly between the intra-arrest (53%) and post-arrest (46%) periods. Twenty (27%) trials selected a primary outcome of survival at ≥ 28 days. Conclusions Publication of cardiac arrest RCTs remained constant between 2015 and 2022. We identified significant gaps including a lack of trials examining in-hospital cardiac arrest and pediatric patients.
Collapse
Affiliation(s)
- Jake Toy
- Los Angeles County EMS AgencySanta Fe SpringsCaliforniaUSA
- Department of Emergency MedicineHarbor‐UCLA Medical CenterTorranceCaliforniaUSA
- The Lundquist Institute for Biomedical InnovationTorranceCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Lauren Friend
- Department of Emergency MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Kelsey Wilhelm
- Department of Emergency MedicineHarbor‐UCLA Medical CenterTorranceCaliforniaUSA
- The Lundquist Institute for Biomedical InnovationTorranceCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Michael Kim
- Los Angeles County EMS AgencySanta Fe SpringsCaliforniaUSA
- Department of Emergency MedicineHarbor‐UCLA Medical CenterTorranceCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Claire Gahm
- Department of Emergency MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Ashish R. Panchal
- Department of Emergency MedicineThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - David Dillon
- Department of Emergency MedicineUniversity of California DavisSacramentoCaliforniaUSA
| | | | - Juan Carlos Montroy
- Department of Emergency MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Marianne Gausche‐Hill
- Department of Emergency MedicineHarbor‐UCLA Medical CenterTorranceCaliforniaUSA
- The Lundquist Institute for Biomedical InnovationTorranceCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Nichole Bosson
- Los Angeles County EMS AgencySanta Fe SpringsCaliforniaUSA
- Department of Emergency MedicineHarbor‐UCLA Medical CenterTorranceCaliforniaUSA
- The Lundquist Institute for Biomedical InnovationTorranceCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Ryan Coute
- Department of Emergency MedicineUniversity of AlabamaBirminghamAlabamaUSA
| | - Shira Schlesinger
- Los Angeles County EMS AgencySanta Fe SpringsCaliforniaUSA
- Department of Emergency MedicineHarbor‐UCLA Medical CenterTorranceCaliforniaUSA
- The Lundquist Institute for Biomedical InnovationTorranceCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - James Menegazzi
- School of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
5
|
Zhang Y, Yu Y, Qing P, Liu X, Ding Y, Wang J, Ao H. In-hospital cardiac arrest characteristics, causes and outcomes in patients with cardiovascular disease across different departments: a retrospective study. BMC Cardiovasc Disord 2024; 24:475. [PMID: 39243041 PMCID: PMC11378364 DOI: 10.1186/s12872-024-04152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Cardiac etiologies arrest accounts for almost half of all in-hospital cardiac arrest (IHCA), and previous studies have shown that the location of IHCA is an important factor affecting patient outcomes. The aim was to compare the characteristics, causes and outcomes of cardiovascular disease in patients suffering IHCA from different departments of Fuwai hospital in Beijing, China. METHODS We included patients who were resuscitated after IHCA at Fuwai hospital between March 2017 and August 2022. We categorized the departments where cardiac arrest occurred as cardiac surgical or non-surgical units. Independent predictors of in-hospital survival were assessed by logistic regression. RESULTS A total of 119 patients with IHCA were analysed, 58 (48.7%) patients with cardiac arrest were in non-surgical units, and 61 (51.3%) were in cardiac surgical units. In non-surgical units, acute myocardial infarction/cardiogenic shock (48.3%) was the main cause of IHCA. Cardiac arrest in cardiac surgical units occurred mainly in patients who were planning or had undergone complex aortic replacement (32.8%). Shockable rhythms (ventricular fibrillation/ventricular tachycardia) were observed in approximately one-third of all initial rhythms in both units. Patients who suffered cardiac arrest in cardiac surgical units were more likely to return to spontaneous circulation (59.0% vs. 24.1%) and survive to hospital discharge (40.0% vs. 10.2%). On multivariable regression analysis, IHCA in cardiac surgical units (OR 5.39, 95% CI 1.90-15.26) and a shorter duration of resuscitation efforts (≤ 30 min) (OR 6.76, 95% CI 2.27-20.09) were associated with greater survival rate at discharge. CONCLUSION IHCA occurring in cardiac surgical units and a duration of resuscitation efforts less than 30 min were associated with potentially increased rates of survival to discharge.
Collapse
Affiliation(s)
- Ya Zhang
- Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, China
| | - Yang Yu
- Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, China
| | - Ping Qing
- Department of Medical Intensive Care Units, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, China.
| | - Xiaojie Liu
- Department of Anesthesiology, The Affliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, Shandong Province, China
| | - Yao Ding
- Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, China
| | - Jingcan Wang
- Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, China
| | - Hushan Ao
- Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, China.
| |
Collapse
|
6
|
Xiao L, Li F, Sheng Y, Hou X, Liao X, Zhou P, Qin Y, Chen X, Liu J, Luo Y, Peng D, Xu S, Zhang D. Predictive value analysis of albumin-related inflammatory markers for short-term outcomes in patients with In-hospital cardiac arrest. Expert Rev Clin Immunol 2024:1-9. [PMID: 39223971 DOI: 10.1080/1744666x.2024.2399700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE This study investigated the predictive value of albumin-related inflammatory markers for short-term outcomes in in-hospital cardiac arrest (IHCA) patients. METHODS A linear mixed model investigated the dynamic changes of markers within 72 hours after return of spontaneous circulation (ROSC). Time-Dependent COX regression explored the predictive value. Mediation analysis quantified the association of markers with organ dysfunctions and adverse outcomes. RESULTS Prognostic Nutritional Index (PNI) and RDW-Albumin Ratio (RAR) slightly changed (p > 0.05). Procalcitonin-Albumin Ratio (PAR1) initially increased and then slowly decreased. Neutrophil-Albumin Ratio (NAR) and Platelet-Albumin Ratio (PAR2) decreased slightly during 24-48 hours (all p<0.05). PNI (HR = 1.646, 95%CI (1.033,2.623)), PAR1 (HR = 1.69, 95%CI (1.057,2.701)), RAR (HR = 1.752,95%CI (1.103,2.783)) and NAR (HR = 1.724,95%CI (1.078,2.759)) were independently associated with in-hospital mortality. PNI (PM = 45.64%, 95%CI (17.05%,87.02%)), RAR (PM = 45.07%,95%CI (14.59%,93.70%)) and NAR (PM = 46.23%,95%CI (14.59%,93.70%)) indirectly influenced in-hospital mortality by increasing SOFA (central) scores. PNI (PM = 21.75%, 95%CI(0.67%,67.75%)) may also indirectly influenced outcome by increasing SOFA (renal) scores (all p < 0.05). CONCLUSIONS Within 72 hours after ROSC, albumin-related inflammatory markers (PNI, PAR1, RAR, and NAR) were identified as potential predictors of short-term prognosis in IHCA patients. They may mediate the adverse outcomes of patients by causing damages to the central nervous system and renal function.
Collapse
Affiliation(s)
- Linlin Xiao
- Department of Critical Care Medicine & Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Feng Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yuanhui Sheng
- Chongqing Medical University, Chongqing, People's Republic of China
| | - Xueping Hou
- Department of Critical Care Medicine & Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xixi Liao
- Department of Critical Care Medicine & Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Pengfei Zhou
- Department of Critical Care Medicine & Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yuping Qin
- Department of Critical Care Medicine & Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiaoying Chen
- Department of Critical Care Medicine & Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jinglun Liu
- Department of Critical Care Medicine & Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yetao Luo
- Department of Nosocomial Infection Control, Second Affiliated Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Dong Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Shan Xu
- Department of Emergency, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Dan Zhang
- Department of Critical Care Medicine & Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
7
|
Andrea L, Herman NS, Vine J, Berg KM, Choudhury S, Vaena M, Nogle JE, Halablab SM, Kaviyarasu A, Elmer J, Wardi G, Pearce AK, Crowley C, Long MT, Herbert JT, Shipley K, Bissell Turpin BD, Lanspa MJ, Green A, Ghamande SA, Khan A, Dugar S, Joffe AM, Baram M, March C, Johnson NJ, Reyes A, Denchev K, Loewe M, Moskowitz A. The Discover In-Hospital Cardiac Arrest (Discover IHCA) Study: An Investigation of Hospital Practices After In-Hospital Cardiac Arrest. Crit Care Explor 2024; 6:e1149. [PMID: 39258957 PMCID: PMC11392493 DOI: 10.1097/cce.0000000000001149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
IMPORTANCE In-hospital cardiac arrest (IHCA) is a significant public health burden. Rates of return of spontaneous circulation (ROSC) have been improving, but the best way to care for patients after the initial resuscitation remains poorly understood, and improvements in survival to discharge are stagnant. Existing North American cardiac arrest databases lack comprehensive data on the post-resuscitation period, and we do not know current post-IHCA practice patterns. To address this gap, we developed the Discover In-Hospital Cardiac Arrest (Discover IHCA) study, which will thoroughly evaluate current post-IHCA care practices across a diverse cohort. OBJECTIVES Our study collects granular data on post-IHCA treatment practices, focusing on temperature control and prognostication, with the objective of describing variation in current post-IHCA practice. DESIGN, SETTING, AND PARTICIPANTS This is a multicenter, prospectively collected, observational cohort study of patients who have suffered IHCA and have been successfully resuscitated (achieved ROSC). There are 24 enrolling hospital systems (23 in the United States) with 69 individual enrolling hospitals (39 in the United States). We developed a standardized data dictionary, and data collection began in October 2023, with a projected 1000 total enrollments. Discover IHCA is endorsed by the Society of Critical Care Medicine. INTERVENTIONS, OUTCOMES, AND ANALYSIS The study collects data on patient characteristics including pre-arrest frailty, arrest characteristics, and detailed information on post-arrest practices and outcomes. Data collection on post-IHCA practice was structured around current American Heart Association and European Resuscitation Council guidelines. Among other data elements, the study captures post-arrest temperature control interventions and post-arrest prognostication methods. Analysis will evaluate variations in practice and their association with mortality and neurologic function. CONCLUSIONS We expect this study, Discover IHCA, to identify variability in practice and outcomes following IHCA, and be a vital resource for future investigations into best-practice for managing patients after IHCA.
Collapse
Affiliation(s)
- Luke Andrea
- Bronx Center for Critical Care Outcomes and Resuscitation Research, Division of Critical Care Medicine, Montefiore Medical Center, Bronx, NY
| | - Nathaniel S. Herman
- Bronx Center for Critical Care Outcomes and Resuscitation Research, Division of Critical Care Medicine, Montefiore Medical Center, Bronx, NY
| | - Jacob Vine
- Center for Resuscitation Science, Beth Israel Deaconess Medical Center, Boston, MA
| | - Katherine M. Berg
- Center for Resuscitation Science, Beth Israel Deaconess Medical Center, Boston, MA
- Division of Pulmonary and Critical Care, Beth Israel Deaconess Medical Center, Boston, MA
| | - Saiara Choudhury
- Division of Pulmonary, Allergy, and Critical Care Medicine, Hennepin County Medical Center, Minneapolis, MN
| | - Mariana Vaena
- Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Jordan E. Nogle
- Department of Emergency Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Saleem M. Halablab
- Center for Resuscitation Science, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA
| | - Aarthi Kaviyarasu
- Center for Resuscitation Science, Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jonathan Elmer
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Gabriel Wardi
- Department of Emergency Medicine, University of California San Diego, La Jolla, CA
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, University of California San Diego, La Jolla, CA
| | - Alex K. Pearce
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, University of California San Diego, La Jolla, CA
| | - Conor Crowley
- Division of Pulmonary and Critical Care Medicine, Lahey Hospital and Medical Center, Burlington, MA
| | - Micah T. Long
- Department of Anesthesiology, Division of Critical Care, University of Wisconsin School of Medicine & Public Health, Madison, WI
| | - J. Taylor Herbert
- Division of Critical Care Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC
| | - Kipp Shipley
- Critical Care Outreach Team, Vanderbilt University Medical Center, Nashville, TN
| | - Brittany D. Bissell Turpin
- Department of Pharmacy, University of Kentucky, Lexington, KY
- Department of Pharmacy, Ephraim McDowell Regional Medical Center, Danville, KY
| | - Michael J. Lanspa
- Pulmonary Division, Department of Medicine, Intermountain Medical Center, Murray, UT
| | - Adam Green
- Division of Critical Care, Cooper University Health Care, Camden, NJ
- Cooper Medical School of Rowan University, Camden, NJ
| | - Shekhar A. Ghamande
- Division of Pulmonary, Critical Care and Sleep Medicine, Baylor Scott and White Medical Center, Baylor College of Medicine, Temple, TX
| | - Akram Khan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University School of Medicine, Portland, OR
| | - Siddharth Dugar
- Department of Critical Care, Respiratory Institute, Cleveland Clinic, Cleveland, OH
| | - Aaron M. Joffe
- Department of Anesthesiology, Valleywise Health Medical Center, Creighton University School of Medicine, Phoenix, AZ
| | - Michael Baram
- Korman Lung Center, Thomas Jefferson University, Philadelphia, PA
| | - Cooper March
- Department of Emergency Medicine, University of Washington, Seattle, WA
| | - Nicholas J. Johnson
- Department of Emergency Medicine, University of Washington, Seattle, WA
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, WA
| | | | | | - Michael Loewe
- Our Lady of the Lake Regional Medical Center, Baton Rouge, LA
- Louisiana State University Health Sciences Center, Emergency Medicine Residency Program, Baton Rouge Campus, Baton Rouge, LA
| | - Ari Moskowitz
- Bronx Center for Critical Care Outcomes and Resuscitation Research, Division of Critical Care Medicine, Montefiore Medical Center, Bronx, NY
| |
Collapse
|
8
|
Marquez AM, Kosmopoulos M, Kalra R, Goslar T, Jaeger D, Gaisendrees C, Gutierrez A, Carlisle G, Alexy T, Gurevich S, Elliott AM, Steiner ME, Bartos JA, Seelig D, Yannopoulos D. Mild (34 °C) versus moderate hypothermia (24 °C) in a swine model of extracorporeal cardiopulmonary resuscitation. Resusc Plus 2024; 19:100745. [PMID: 39246406 PMCID: PMC11378253 DOI: 10.1016/j.resplu.2024.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/12/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
Background The role of hypothermia in post-arrest neuroprotection is controversial. Animal studies suggest potential benefits with lower temperatures, but high-fidelity ECPR models evaluating temperatures below 30 °C are lacking. Objectives To determine whether rapid cooling to 24 °C initiated upon reperfusion reduces brain injury compared to 34 °C in a swine model of ECPR. Methods Twenty-four female pigs had electrically induced VF and mechanical CPR for 30 min. Animals were cannulated for VA-ECMO and cooled to either 34 °C for 4 h (n = 8), 24 °C for 1 h with rewarming to 34 °C over 3 h (n = 7), or 24 °C for 4 h without rewarming (n = 9). Cooling was initiated upon VA-ECMO reperfusion by circulating ice water through the oxygenator. Brain temperature and cerebral and systemic hemodynamics were continuously monitored. After four hours on VA-ECMO, brain tissue was obtained for examination. Results Target brain temperature was achieved within 30 min of reperfusion (p = 0.74). Carotid blood flow was higher in the 24 °C without rewarming group throughout the VA-ECMO period compared to 34 °C and 24 °C with rewarming (p < 0.001). Vasopressin requirement was higher in animals treated with 24 °C without rewarming (p = 0.07). Compared to 34 °C, animals treated with 24 °C with rewarming were less coagulopathic and had less immunohistochemistry-detected neurologic injury. There were no differences in global brain injury score. Conclusions Despite improvement in carotid blood flow and immunohistochemistry detected neurologic injury, reperfusion at 24 °C with or without rewarming did not reduce early global brain injury compared to 34 °C in a swine model of ECPR.
Collapse
Affiliation(s)
- Alexandra M Marquez
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Marinos Kosmopoulos
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rajat Kalra
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Tomaz Goslar
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Deborah Jaeger
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Christopher Gaisendrees
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Alejandra Gutierrez
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Gregory Carlisle
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Tamas Alexy
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Sergey Gurevich
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Andrea M Elliott
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Marie E Steiner
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Jason A Bartos
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Davis Seelig
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Demetris Yannopoulos
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
9
|
Liu R, Majumdar T, Gardner MM, Burnett R, Graham K, Beaulieu F, Sutton RM, Nadkarni VM, Berg RA, Morgan RW, Topjian AA, Kirschen MP. Association of Postarrest Hypotension Burden With Unfavorable Neurologic Outcome After Pediatric Cardiac Arrest. Crit Care Med 2024; 52:1402-1413. [PMID: 38832829 PMCID: PMC11326994 DOI: 10.1097/ccm.0000000000006339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
OBJECTIVE Quantify hypotension burden using high-resolution continuous arterial blood pressure (ABP) data and determine its association with outcome after pediatric cardiac arrest. DESIGN Retrospective observational study. SETTING Academic PICU. PATIENTS Children 18 years old or younger admitted with in-of-hospital or out-of-hospital cardiac arrest who had invasive ABP monitoring during postcardiac arrest care. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS High-resolution continuous ABP was analyzed up to 24 hours after the return of circulation (ROC). Hypotension burden was the time-normalized integral area between mean arterial pressure (MAP) and fifth percentile MAP for age. The primary outcome was unfavorable neurologic status (pediatric cerebral performance category ≥ 3 with change from baseline) at hospital discharge. Mann-Whitney U tests compared hypotension burden, duration, and magnitude between favorable and unfavorable patients. Multivariable logistic regression determined the association of unfavorable outcomes with hypotension burden, duration, and magnitude at various percentile thresholds from the 5th through 50th percentile for age. Of 140 patients (median age 53 [interquartile range 11-146] mo, 61% male); 63% had unfavorable outcomes. Monitoring duration was 21 (7-24) hours. Using a MAP threshold at the fifth percentile for age, the median hypotension burden was 0.01 (0-0.11) mm Hg-hours per hour, greater for patients with unfavorable compared with favorable outcomes (0 [0-0.02] vs. 0.02 [0-0.27] mm Hg-hr per hour, p < 0.001). Hypotension duration and magnitude were greater for unfavorable compared with favorable patients (0.03 [0-0.77] vs. 0.71 [0-5.01]%, p = 0.003; and 0.16 [0-1.99] vs. 2 [0-4.02] mm Hg, p = 0.001). On logistic regression, a 1-point increase in hypotension burden below the fifth percentile for age (equivalent to 1 mm Hg-hr of burden per hour of recording) was associated with increased odds of unfavorable outcome (adjusted odds ratio [aOR] 14.8; 95% CI, 1.1-200; p = 0.040). At MAP thresholds of 10th-50th percentiles for age, MAP burden below the threshold was greater in unfavorable compared with favorable patients in a dose-dependent manner. CONCLUSIONS High-resolution continuous ABP data can be used to quantify hypotension burden after pediatric cardiac arrest. The burden, duration, and magnitude of hypotension are associated with unfavorable neurologic outcomes.
Collapse
Affiliation(s)
- Raymond Liu
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Tanmay Majumdar
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA
| | - Monique M Gardner
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Ryan Burnett
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Kathryn Graham
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Forrest Beaulieu
- Department of Anesthesiology, Hospital of the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Robert M Sutton
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Vinay M Nadkarni
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Robert A Berg
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Ryan W Morgan
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Alexis A Topjian
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Matthew P Kirschen
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Department of Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
10
|
Khera R, Aminorroaya A, Kennedy KF, Chan PS. Correlation between hospital rates of survival to discharge and long-term survival for in-hospital cardiac arrest: Insights from Get With The Guidelines®-Resuscitation registry. Resuscitation 2024; 202:110322. [PMID: 39029583 PMCID: PMC11390317 DOI: 10.1016/j.resuscitation.2024.110322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024]
Abstract
AIM Given challenges in collecting long-term outcomes for survivors of in-hospital cardiac arrest (IHCA), most studies have focused on in-hospital survival. We evaluated the correlation between a hospital's risk-standardized survival rate (RSSR) at hospital discharge for IHCA with its RSSR for long-term survival. METHODS We identified patients ≥65 years of age with IHCA at 472 hospitals in Get With The Guidelines®-Resuscitation registry during 2000-2012, who could be linked to Medicare files to obtain post-discharge survival data. We constructed hierarchical logistic regression models to compute RSSR at discharge, and 30-day, 1-year, and 3-year RSSRs for each hospital. The association between in-hospital and long-term RSSR was evaluated with weighted Kappa coefficients. RESULTS Among 56,231 Medicare beneficiaries (age 77.2 ± 7.5 years and 25,206 [44.8%] women), 10,536 (18.7%) survived to discharge and 8,485 (15.1%) survived to 30 days after discharge. Median in-hospital, 30-day, 1-year, and 3-year RSSRs were 18.6% (IQR, 16.7-20.4%), 14.9% (13.2-16.7%), 10.3% (9.1-12.1%), and 7.6% (6.8-8.8%), respectively. The weighted Kappa coefficient for the association between a hospital's RSSR at discharge with its 30-day, 1-year, and 3-year RSSRs were 0.72 (95% CI, 0.68-0.76), 0.56 (0.50-0.61), and 0.47 (0.41-0.53), respectively. CONCLUSIONS There was a strong correlation between a hospital's RSSR at discharge and its 30-day RSSR for IHCA, although this correlation weakens over time. Our findings suggest that a hospital's RSSR at discharge for IHCA may be a reasonable surrogate of its 30-day post-discharge survival and could be used by Medicare to benchmark hospital performance for this condition without collecting 30-day survival data.
Collapse
Affiliation(s)
- Rohan Khera
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA; Section of Health Informatics, Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA; Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT, USA
| | - Arya Aminorroaya
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Kevin F Kennedy
- Saint Luke's Mid America Heart Institute, Kansas City, MO, USA
| | - Paul S Chan
- Saint Luke's Mid America Heart Institute, Kansas City, MO, USA; University of Missouri-Kansas City, Kansas City, MO, USA.
| |
Collapse
|
11
|
Ramzan NUH, Dhillon RA, Anwer MU, Hashmat MB, Shahjahan K, Asif T, Khalid AS, Saleem F. Targeted Temperature Management for Out-of-Hospital Cardiac Arrest Survivors. Cureus 2024; 16:e69204. [PMID: 39268021 PMCID: PMC11392523 DOI: 10.7759/cureus.69204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024] Open
Abstract
Targeted temperature management (TTM), specifically therapeutic hypothermia, has been proposed to provide neuroprotective and mortality benefits for out-of-hospital cardiac arrest (OHCA) survivors. This proposition was based on small-scale trials from the early 2000s, leading to its incorporation into various international guidelines. The proposed neuroprotective mechanisms include reducing cerebral metabolic rate, stabilizing the blood-brain barrier, reducing the release of excitatory neurotransmitters, and suppressing apoptotic pathways. However, these early trials have been criticized for their high risk of bias and lack of standardized protocols. Recent evidence from more rigorously controlled randomized trials indicates no significant association between hypothermia and improved neurological outcomes or survival rates. This review explores the latest clinical evidence on TTM for OHCA patients, discussing the pathophysiology, evaluating the effectiveness of hypothermia through various clinical trials, and providing recommendations for future research and clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | - Talha Asif
- Medicine, Allied Hospital, Faisalabad, PAK
| | | | | |
Collapse
|
12
|
Kienzle MF, Morgan RW, Reeder RW, Ahmed T, Berg RA, Bishop R, Bochkoris M, Carcillo JA, Carpenter TC, Cooper KK, Diddle JW, Federman M, Fernandez R, Franzon D, Frazier AH, Friess SH, Frizzola M, Graham K, Hall M, Horvat C, Huard LL, Maa T, Manga A, McQuillen PS, Meert KL, Mourani PM, Nadkarni VM, Naim MY, Pollack MM, Sapru A, Schneiter C, Sharron MP, Tabbutt S, Viteri S, Wolfe HA, Sutton RM. Epinephrine Dosing Intervals Are Associated With Pediatric In-Hospital Cardiac Arrest Outcomes: A Multicenter Study. Crit Care Med 2024; 52:1344-1355. [PMID: 38833560 PMCID: PMC11326980 DOI: 10.1097/ccm.0000000000006334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
OBJECTIVES Data to support epinephrine dosing intervals during cardiopulmonary resuscitation (CPR) are conflicting. The objective of this study was to evaluate the association between epinephrine dosing intervals and outcomes. We hypothesized that dosing intervals less than 3 minutes would be associated with improved neurologic survival compared with greater than or equal to 3 minutes. DESIGN This study is a secondary analysis of The ICU-RESUScitation Project (NCT028374497), a multicenter trial of a quality improvement bundle of physiology-directed CPR training and post-cardiac arrest debriefing. SETTING Eighteen PICUs and pediatric cardiac ICUs in the United States. PATIENTS Subjects were 18 years young or younger and 37 weeks old or older corrected gestational age who had an index cardiac arrest. Patients who received less than two doses of epinephrine, received extracorporeal CPR, or had dosing intervals greater than 8 minutes were excluded. INTERVENTIONS The primary exposure was an epinephrine dosing interval of less than 3 vs. greater than or equal to 3 minutes. MEASUREMENTS AND MAIN RESULTS The primary outcome was survival to discharge with a favorable neurologic outcome defined as a Pediatric Cerebral Performance Category score of 1-2 or no change from baseline. Regression models evaluated the association between dosing intervals and: 1) survival outcomes and 2) CPR duration. Among 382 patients meeting inclusion and exclusion criteria, median age was 0.9 years (interquartile range 0.3-7.6 yr) and 45% were female. After adjustment for confounders, dosing intervals less than 3 minutes were not associated with survival with favorable neurologic outcome (adjusted relative risk [aRR], 1.10; 95% CI, 0.84-1.46; p = 0.48) but were associated with improved sustained return of spontaneous circulation (ROSC) (aRR, 1.21; 95% CI, 1.07-1.37; p < 0.01) and shorter CPR duration (adjusted effect estimate, -9.5 min; 95% CI, -14.4 to -4.84 min; p < 0.01). CONCLUSIONS In patients receiving at least two doses of epinephrine, dosing intervals less than 3 minutes were not associated with neurologic outcome but were associated with sustained ROSC and shorter CPR duration.
Collapse
Affiliation(s)
- Martha F Kienzle
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Ryan W Morgan
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Ron W Reeder
- Department of Pediatrics, University of Utah, Salt Lake City, UT
| | - Tageldin Ahmed
- Department of Pediatrics, Children's Hospital of Michigan, Central Michigan University, Detroit, MI
| | - Robert A Berg
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Robert Bishop
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - Matthew Bochkoris
- Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA
| | - Joseph A Carcillo
- Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA
| | - Todd C Carpenter
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - Kellimarie K Cooper
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - J Wesley Diddle
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Myke Federman
- Department of Pediatrics, Mattel Children's Hospital, University of California Los Angeles, Los Angeles, CA
| | - Richard Fernandez
- Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, OH
| | - Deborah Franzon
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA
| | - Aisha H Frazier
- Department of Pediatrics, Nemours Children's Health, Delaware and Thomas Jefferson University, Wilmington, DE
| | - Stuart H Friess
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Meg Frizzola
- Department of Pediatrics, Nemours Children's Health, Delaware and Thomas Jefferson University, Wilmington, DE
| | - Kathryn Graham
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Mark Hall
- Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, OH
| | - Christopher Horvat
- Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA
| | - Leanna L Huard
- Department of Pediatrics, Mattel Children's Hospital, University of California Los Angeles, Los Angeles, CA
| | - Tensing Maa
- Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, OH
| | - Arushi Manga
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Patrick S McQuillen
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA
| | - Kathleen L Meert
- Department of Pediatrics, Children's Hospital of Michigan, Central Michigan University, Detroit, MI
| | - Peter M Mourani
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - Vinay M Nadkarni
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Maryam Y Naim
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Murray M Pollack
- Department of Pediatrics, Children's National Hospital, George Washington University School of Medicine, Washington, DC
| | - Anil Sapru
- Department of Pediatrics, Mattel Children's Hospital, University of California Los Angeles, Los Angeles, CA
| | - Carleen Schneiter
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - Matthew P Sharron
- Department of Pediatrics, Children's National Hospital, George Washington University School of Medicine, Washington, DC
| | - Sarah Tabbutt
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA
| | - Shirley Viteri
- Department of Pediatrics, Nemours Children's Health, Delaware and Thomas Jefferson University, Wilmington, DE
| | - Heather A Wolfe
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Robert M Sutton
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
13
|
Ueno R, Chan R, Reddy MP, Jones D, Pilcher D, Subramaniam A. Long-term survival comparison of patients admitted to the intensive care unit following in-hospital cardiac arrest in perioperative and ward settings. A multicentre retrospective cohort study. Intensive Care Med 2024; 50:1496-1505. [PMID: 39115566 PMCID: PMC11377547 DOI: 10.1007/s00134-024-07570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/23/2024] [Indexed: 09/06/2024]
Abstract
PURPOSE Perioperative in-hospital cardiac arrests (Perioperative IHCAs) may have better outcomes than IHCAs in the ward (Ward IHCAs), due to enhanced monitoring and faster response. However, quantitative comparisons of their long-term outcomes are lacking, posing challenges for prognostication. METHODS This retrospective multicentre study included adult intensive care unit (ICU) admissions from theatre/recovery or wards with a diagnosis of cardiac arrest between January 2018 and March 2022. We used data from 175 ICUs in the ANZICS adult patient database. The primary outcome was a survival time of up to 4 years. We used the Cox proportional hazards model adjusted for Sequential Organ Failure Assessment (SOFA) score, age, sex, comorbidities, hospital type, treatment limitation on admission to the ICU, and ICU treatments. Subgroup analyses examined age (≥ 65 years), intubation within the first 24 h, elective vs. emergency admission, and survival on discharge. RESULTS Of 702,675 ICU admissions, 5,659 IHCAs were included (Perioperative IHCA 38%; Ward IHCA 62%). Perioperative IHCA group were younger, less frail, and less comorbid. Perioperative IHCA were most frequent in patients admitted to ICU after cardiovascular, gastrointestinal, or trauma surgeries. Perioperative IHCA group had longer 4-year survival (59.9% vs. 33.0%, p < 0.001) than the Ward IHCA group, even after adjustments (adjusted hazard ratio [HR]: 0.63, 95% confidence interval [CI] 0.57-0.69). This was concordant across all subgroups. Of note, older patients with Perioperative IHCA survived longer than both younger and older patients with Ward IHCA. CONCLUSION Patients admitted to the ICU following Perioperative IHCA had longer survival than Ward IHCA. Future studies on IHCA should distinguish these patients.
Collapse
Affiliation(s)
- Ryo Ueno
- Department of Intensive Care, Box Hill Hospital, Eastern Health, Box Hill, VIC, Australia.
- Department of Epidemiology and Preventive Medicine, Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia.
- Department of Intensive Care, Austin Health, Heidelberg, VIC, Australia.
| | - Rachel Chan
- Department of Anaesthesia and Pain Medicine, The Canberra Hospital, Canberra, Australia
| | - Mallikarjuna Ponnapa Reddy
- Department of Anaesthesia and Pain Medicine, Nepean Hospital, Sydney, NSW, Australia
- Department of Intensive Care, Peninsula Health, Frankston, VIC, Australia
- Department of Intensive Care, North Canberra Hospital, Canberra, Australia
| | - Daryl Jones
- Department of Epidemiology and Preventive Medicine, Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia
- Department of Intensive Care, Austin Health, Heidelberg, VIC, Australia
- University of Melbourne, Parkville, VIC, Australia
| | - David Pilcher
- Department of Epidemiology and Preventive Medicine, Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia
- Centre for Outcome and Resource Evaluation, Australian and New Zealand Intensive Care Society, Melbourne, VIC, Australia
- Department of Intensive Care, Alfred Hospital, Melbourne, VIC, Australia
| | - Ashwin Subramaniam
- Department of Epidemiology and Preventive Medicine, Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia
- Department of Intensive Care, Peninsula Health, Frankston, VIC, Australia
- Department of Intensive Care, Dandenong Hospital, Dandenong, VIC, Australia
- Peninsula Clinical School, Monash University, Frankston, VIC, Australia
| |
Collapse
|
14
|
Northrop D, Decker V, Woody A. Responding to In-hospital Cardiac Arrests During Times of System-wide Strain: A Code Refresher Training. J Contin Educ Nurs 2024; 55:442-448. [PMID: 38916524 DOI: 10.3928/00220124-20240617-03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
BACKGROUND Pandemic conditions of system-wide strain are associated with increased rates of in-hospital cardiac arrest (IHCA). During normal times, medical-surgical nurses may forget cardiopulmonary resuscitation (CPR) skills as soon as 3 months after training, leaving them unprepared and anxious about managing cardiac arrests. During pandemic surges, heightened anxiety can also impact concentration and confidence. METHOD Clinicians offered a 45-minute mock code training refresher for medical-surgical nurses to improve confidence performing CPR while adhering to pandemic-related safety procedures. In this pre-post clinical education project, nurses' confidence was measured with the Nursing Anxiety and Self-Confidence with Clinical Decision Making© Scale. RESULTS Although the results were not statistically significant, participants verbally reported increased confidence to initiate resuscitation, collaborate with team members, and use personal protective equipment during the posttraining debrief. CONCLUSION A high percentage of RNs do not have adequate confidence and/or competence in performing CPR, particularly during times of system-wide strain, and this brief, inexpensive refresher training warrants further study. [J Contin Educ Nurs. 2024;55(9):442-448.].
Collapse
|
15
|
Senthil K, Ranganathan A, Piel S, Hefti MM, Reeder RW, Kirschen MP, Starr J, Morton S, Gaudio HA, Slovis JC, Herrmann JR, Berg RA, Kilbaugh TJ, Morgan RW. Elevated serum neurologic biomarker profiles after cardiac arrest in a porcine model. Resusc Plus 2024; 19:100726. [PMID: 39149222 PMCID: PMC11325790 DOI: 10.1016/j.resplu.2024.100726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction Swine exhibit cerebral cortex mitochondrial dysfunction and neuropathologic injury after hypoxic cardiac arrest treated with hemodynamic-directed CPR (HD-CPR) despite normal Cerebral Performance Category scores. We analyzed the temporal evolution of plasma protein biomarkers of brain injury and inflammatory cytokines, as well as cerebral cortical mitochondrial injury and neuropathology for five days following pediatric asphyxia-associated cardiac arrest treated with HD-CPR. Methods One-month-old swine underwent asphyxia associated cardiac arrest, 10-20 min of HD-CPR (goal SBP 90 mmHg, coronary perfusion pressure 20 mmHg), and randomization to post-ROSC survival duration (24, 48, 72, 96, 120 h; n = 3 per group) with standardized post-resuscitation care. Plasma neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), and cytokine levels were collected pre-injury and 1, 6, 24, 48, 72, 96, and 120 h post-ROSC. Cerebral cortical tissue was assessed for: mitochondrial respirometry, mass, and dynamic proteins; oxidative injury; and neuropathology. Results Relative to pre-arrest baseline (9.4 pg/ml [6.7-12.6]), plasma NfL was increased at all post-ROSC time points. Each sequential NfL measurement through 48 h was greater than the previous value {1 h (12.7 pg/ml [8.4-14.6], p = 0.01), 6 h (30.9 pg/ml [17.7-44.0], p = 0.0004), 24 h (59.4 pg/ml [50.8-96.1], p = 0.0003) and 48 h (85.7 pg/ml [61.9-118.7], p = 0.046)}. Plasma GFAP, inflammatory cytokines or cerebral cortical tissue measurements were not demonstrably different between time points. Conclusions In a swine model of pediatric cardiac arrest, plasma NfL had an upward trajectory until 48 h post-ROSC after which it remained elevated through five days, suggesting it may be a sensitive marker of neurologic injury following pediatric cardiac arrest.
Collapse
Affiliation(s)
- Kumaran Senthil
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, USA
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
| | - Abhay Ranganathan
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
| | - Sarah Piel
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
- University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Department of Cardiology, Pulmonology and Vascular Medicine, Germany
- University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Cardiovascular Research Institute, Germany
| | | | - Ron W Reeder
- University of Utah, Department of Pediatrics, USA
| | - Matthew P Kirschen
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, USA
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
| | - Jonathan Starr
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
| | - Sarah Morton
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
| | - Hunter A Gaudio
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
| | - Julia C Slovis
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, USA
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
| | - Jeremy R Herrmann
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, USA
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
| | - Robert A Berg
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, USA
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
| | - Todd J Kilbaugh
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, USA
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
| | - Ryan W Morgan
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, USA
- Children's Hospital of Philadelphia, Resuscitation Science Center, USA
| |
Collapse
|
16
|
Herrmann JR, Morgan RW, Berg RA. No to iNO? Not so fast. Resuscitation 2024; 202:110364. [PMID: 39168233 DOI: 10.1016/j.resuscitation.2024.110364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Affiliation(s)
- Jeremy R Herrmann
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States; Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, United States
| | - Ryan W Morgan
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States; Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, United States
| | - Robert A Berg
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States; Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, United States.
| |
Collapse
|
17
|
Coelho LP, Farhat SCL, Severini RDSG, Souza ACA, Rodrigues KR, Bello FPS, Schvartsman C, Couto TB. Rapid cycle deliberate practice versus postsimulation debriefing in pediatric cardiopulmonary resuscitation training: a randomized controlled study. EINSTEIN-SAO PAULO 2024; 22:eAO0825. [PMID: 39140575 PMCID: PMC11319027 DOI: 10.31744/einstein_journal/2024ao0825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/04/2024] [Indexed: 08/15/2024] Open
Abstract
OBJECTIVE Simulation plays an important role in cardiopulmonary resuscitation training. Comparing postsimulation debriefing with rapid cycle deliberate practice could help determine the best simulation strategy for pediatric cardiopulmonary resuscitation training among pediatric residents. METHODS This is a single-blind, prospective, randomized controlled study. First- and second year pediatric residents were enrolled and randomized into two groups (1:1 ratio): rapid cycle deliberate practice group (intervention) or postsimulation debriefing group (control). They participated in two rounds of simulated pediatric cardiopulmonary arrest to assess the simulated pediatric cardiopulmonary resuscitation performance gain (round 1) and retention after a 5-6 week washout period (round 2). Scenarios were video-recorded and analyzed by blinded evaluators. The main outcome was the time to initiation of chest compressions. Secondary outcomes included time to recognize a cardiopulmonary arrest, time to recognize a shockable rhythm, time to defibrillation, time to initiation of chest compressions after defibrillation, and chest compression fraction. RESULTS Sixteen groups participated in the first round and fifteen groups in the second one. Time to intiation of chest compressions decreased from preintervention scenario to the round 1 testing scenario and increased from round 1 to round 2 testing scenario. However, no interaction effects nor group effects were observed (p=0.885 and p=0.329, respectively). There were no significant differences between the two groups regarding the secondary outcomes. CONCLUSION Despite an overall improvement in simulated pediatric cardiopulmonary resuscitation performance, we did not observe significant differences between the two groups regarding the analyzed variables. The decline in simulated pediatric cardiopulmonary resuscitation performance after 5 weeks suggests the need for shorter time intervals between training sessions.
Collapse
Affiliation(s)
- Laila Pinto Coelho
- Faculdade de MedicinaUniversidade de São PauloSão PauloSPBrazil Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Sylvia Costa Lima Farhat
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrazil Instituto da Criança (ICr), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Rafael da Silva Giannasi Severini
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrazil Instituto da Criança (ICr), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil.
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Ana Carolina Amarante Souza
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrazil Instituto da Criança (ICr), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil.
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Katharina Reichmann Rodrigues
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrazil Instituto da Criança (ICr), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil.
- Faculdade Israelita de Ciências da Saúde Albert EinsteinHospital Israelita Albert EinsteinSão PauloSPBrazil Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Fernanda Paixão Silveira Bello
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrazil Instituto da Criança (ICr), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Claudio Schvartsman
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrazil Instituto da Criança (ICr), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Thomaz Bittencourt Couto
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrazil Instituto da Criança (ICr), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil.
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
- Faculdade Israelita de Ciências da Saúde Albert EinsteinHospital Israelita Albert EinsteinSão PauloSPBrazil Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| |
Collapse
|
18
|
Boyd W, Young W, Yildiz M, Henry TD, Gorder K. In-hospital cardiac arrest after STEMI: prevention strategies and post-arrest care. Expert Rev Cardiovasc Ther 2024; 22:379-389. [PMID: 39076105 DOI: 10.1080/14779072.2024.2383648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/19/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION In-Hospital Cardiac Arrest (IHCA) after ST-segment Elevation Myocardial Infarction (STEMI) is a subset of IHCA with high morbidity. While information on this selected group of patients is limited, closer inspection reveals that this is a challenging patient population with certain risk factors for IHCA following treatment of STEMI. AREAS COVERED In this review article, strategies for prevention of IHCA post STEMI are reviewed, as well as best-practices for the care of STEMI patients post-IHCA. EXPERT OPINION Early and successful reperfusion is key for the prevention of IHCA and has a significant impact on in-hospital mortality. A number of pharmacological treatments have also been studied that can impact the progression to IHCA. Development of cardiogenic shock post-STEMI increases mortality and raises the risk of cardiac arrest. The treatment of IHCA follows the ACLS algorithm with some notable exceptions.
Collapse
Affiliation(s)
- Walker Boyd
- Heart and Vascular Institute, The Christ Hospital, Cincinnati, Ohio, USA
| | - Wesley Young
- Heart and Vascular Institute, The Christ Hospital, Cincinnati, Ohio, USA
| | - Mehmet Yildiz
- Heart and Vascular Institute, The Christ Hospital, Cincinnati, Ohio, USA
| | - Timothy D Henry
- Heart and Vascular Institute, The Christ Hospital, Cincinnati, Ohio, USA
- The Carl and Edyth Lindner Research Center at The Christ Hospital, Cincinnati, Ohio, USA
| | - Kari Gorder
- Heart and Vascular Institute, The Christ Hospital, Cincinnati, Ohio, USA
| |
Collapse
|
19
|
Lee HY, Kuo PC, Qian F, Li CH, Hu JR, Hsu WT, Jhou HJ, Chen PH, Lee CH, Su CH, Liao PC, Wu IJ, Lee CC. Prediction of In-Hospital Cardiac Arrest in the Intensive Care Unit: Machine Learning-Based Multimodal Approach. JMIR Med Inform 2024; 12:e49142. [PMID: 39051152 PMCID: PMC11287234 DOI: 10.2196/49142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 02/11/2024] [Accepted: 04/23/2024] [Indexed: 07/27/2024] Open
Abstract
Background Early identification of impending in-hospital cardiac arrest (IHCA) improves clinical outcomes but remains elusive for practicing clinicians. Objective We aimed to develop a multimodal machine learning algorithm based on ensemble techniques to predict the occurrence of IHCA. Methods Our model was developed by the Multiparameter Intelligent Monitoring of Intensive Care (MIMIC)-IV database and validated in the Electronic Intensive Care Unit Collaborative Research Database (eICU-CRD). Baseline features consisting of patient demographics, presenting illness, and comorbidities were collected to train a random forest model. Next, vital signs were extracted to train a long short-term memory model. A support vector machine algorithm then stacked the results to form the final prediction model. Results Of 23,909 patients in the MIMIC-IV database and 10,049 patients in the eICU-CRD database, 452 and 85 patients, respectively, had IHCA. At 13 hours in advance of an IHCA event, our algorithm had already demonstrated an area under the receiver operating characteristic curve of 0.85 (95% CI 0.815-0.885) in the MIMIC-IV database. External validation with the eICU-CRD and National Taiwan University Hospital databases also presented satisfactory results, showing area under the receiver operating characteristic curve values of 0.81 (95% CI 0.763-0.851) and 0.945 (95% CI 0.934-0.956), respectively. Conclusions Using only vital signs and information available in the electronic medical record, our model demonstrates it is possible to detect a trajectory of clinical deterioration up to 13 hours in advance. This predictive tool, which has undergone external validation, could forewarn and help clinicians identify patients in need of assessment to improve their overall prognosis.
Collapse
Affiliation(s)
- Hsin-Ying Lee
- Department of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Chih Kuo
- Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Frank Qian
- Section of Cardiovascular Medicine, Boston Medical Center, Boston, MA, United States
- Section of Cardiovascular Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Chien-Hung Li
- Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Jiun-Ruey Hu
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Wan-Ting Hsu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Hong-Jie Jhou
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Po-Huang Chen
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cho-Hao Lee
- Division of Hematology and Oncology Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chin-Hua Su
- Department of Emergency Medicine, National Taiwan University Hospital, No. 7, Zhongshan S Rd, Zhongzheng District, Taipei, 100886 0223123456, Taiwan
| | - Po-Chun Liao
- Department of Emergency Medicine, National Taiwan University Hospital, No. 7, Zhongshan S Rd, Zhongzheng District, Taipei, 100886 0223123456, Taiwan
| | - I-Ju Wu
- Department of Emergency Medicine, National Taiwan University Hospital, No. 7, Zhongshan S Rd, Zhongzheng District, Taipei, 100886 0223123456, Taiwan
| | - Chien-Chang Lee
- Department of Emergency Medicine, National Taiwan University Hospital, No. 7, Zhongshan S Rd, Zhongzheng District, Taipei, 100886 0223123456, Taiwan
- Department of Information Management, Ministry of Health and Welfare, Taipei, Taiwan
| |
Collapse
|
20
|
O’Halloran A, Morgan RW, Kennedy K, Berg RA, Gathers CA, Naim MY, Nadkarni V, Reeder R, Topjian A, Wolfe H, Kleinman M, Chan PS, Sutton RM. Characteristics of Pediatric In-Hospital Cardiac Arrests and Resuscitation Duration. JAMA Netw Open 2024; 7:e2424670. [PMID: 39078626 PMCID: PMC11289702 DOI: 10.1001/jamanetworkopen.2024.24670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/30/2024] [Indexed: 07/31/2024] Open
Abstract
Importance Cardiopulmonary resuscitation (CPR) duration is associated with cardiac arrest survival. Objectives To describe characteristics associated with CPR duration among hospitalized children without return of circulation (ROC) (patient-level analysis) and determine whether hospital median CPR duration in patients without ROC is associated with survival (hospital-level analysis). Design, Setting, and Participants This retrospective cohort study of patients undergoing pediatric in-hospital CPR between January 1, 2000, and December 31, 2021, used data from the Get With the Guidelines-Resuscitation registry. Children receiving chest compressions for at least 2 minutes and/or defibrillation were included in the patient-level analysis. For the hospital-level analysis, sites with at least 20 total events and at least 5 events without ROC were included. Data were analyzed from December 1, 2022, to November 15, 2023. Exposures For the patient-level analysis, the exposure was CPR duration in patients without ROC. For the hospital-level analysis, the exposure was quartile of median CPR duration in events without ROC at each hospital. Main Outcomes and Measures For the patient-level analysis, outcomes were patient and event factors, including race and ethnicity and event location; we used a multivariable hierarchical linear regression model to assess factors associated with CPR duration in patients without ROC. For the hospital-level analysis, the main outcome was survival to discharge among all site events; we used a random intercept multivariable hierarchical logistic regression model to examine the association between hospital quartile of CPR duration and survival to discharge. Results Of 13 899 events, 3859 patients did not have ROC (median age, 7 months [IQR, 0 months to 7 years]; 2175 boys [56%]). Among event nonsurvivors, median CPR duration was longer in those with initial rhythms of bradycardia with poor perfusion (8.37 [95% CI, 5.70-11.03] minutes; P < .001), pulseless electrical activity (8.22 [95% CI, 5.44-11.00] minutes; P < .001), and pulseless ventricular tachycardia (6.17 [95% CI, 0.09-12.26] minutes; P = .047) (vs asystole). Shorter median CPR duration was associated with neonates compared with older children (-4.86 [95% CI, -8.88 to -0.84] minutes; P = .02), emergency department compared with pediatric intensive car7 e unit location (-4.02 [95% CI, -7.48 to -0.57] minutes; P = .02), and members of racial or ethnic minority groups compared with White patients (-3.67 [95% CI, -6.18 to -1.17]; P = .004). Among all CPR events, the adjusted odds of survival to discharge differed based on hospital quartile of median CPR duration among events without ROC; compared with quartile 1 (15.0-25.9 minutes), the adjusted odds ratio for quartile 2 (26.0-29.4 minutes) was 1.22 (95% CI, 1.09-1.36; P < .001); for quartile 3 (29.5-32.9 minutes), 1.23 (95% CI, 1.08-1.39; P = .002); and for quartile 4 (33.0-53.0 minutes), 1.04 (95% CI, 0.91-1.19; P = .58). Conclusions and Relevance In this retrospective cohort study of pediatric in-hospital CPR, several factors, including age and event location, were associated with CPR duration in event nonsurvivors. The odds of survival to discharge were lower for patients at hospitals with the shortest and longest median CPR durations among events without ROC. Further studies are needed to determine the optimal duration of CPR during pediatric in-hospital cardiac arrest and to provide training guidelines for resuscitation teams to eliminate disparities in resuscitation care.
Collapse
Affiliation(s)
- Amanda O’Halloran
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine and Children’s Hospital of Philadelphia, Philadelphia
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia
| | - Ryan W. Morgan
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine and Children’s Hospital of Philadelphia, Philadelphia
| | - Kevin Kennedy
- Saint Luke’s Mid America Heart Institute, Kansas City, Missouri
| | - Robert A. Berg
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine and Children’s Hospital of Philadelphia, Philadelphia
| | - Cody-Aaron Gathers
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine and Children’s Hospital of Philadelphia, Philadelphia
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia
| | - Maryam Y. Naim
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine and Children’s Hospital of Philadelphia, Philadelphia
| | - Vinay Nadkarni
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine and Children’s Hospital of Philadelphia, Philadelphia
| | - Ron Reeder
- Department of Pediatrics, University of Utah, Salt Lake City
| | - Alexis Topjian
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine and Children’s Hospital of Philadelphia, Philadelphia
| | - Heather Wolfe
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine and Children’s Hospital of Philadelphia, Philadelphia
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia
| | - Monica Kleinman
- Department of Anesthesiology, Critical Care and Pain Medicine, Harvard Medical School and Boston Children’s Hospital, Boston, Massachusetts
| | - Paul S. Chan
- Saint Luke’s Mid America Heart Institute, Kansas City, Missouri
| | - Robert M. Sutton
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine and Children’s Hospital of Philadelphia, Philadelphia
| |
Collapse
|
21
|
Yu S, Xu J, Wu C, Zhu Y, Diao M, Hu W. Multi-omics Study of Hypoxic-Ischemic Brain Injury After Cardiopulmonary Resuscitation in Swine. Neurocrit Care 2024:10.1007/s12028-024-02038-7. [PMID: 38937417 DOI: 10.1007/s12028-024-02038-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Hypoxic-ischemic brain injury is a common cause of mortality after cardiac arrest (CA) and cardiopulmonary resuscitation; however, the specific underlying mechanisms are unclear. This study aimed to explore postresuscitation changes based on multi-omics profiling. METHODS A CA swine model was established, and the neurological function was assessed at 24 h after resuscitation, followed by euthanizing animals. Their fecal, blood, and hippocampus samples were collected to analyze gut microbiota, metabolomics, and transcriptomics. RESULTS The 16S ribosomal DNA sequencing showed that the microbiota composition and diversity changed after resuscitation, in which the abundance of Akkermansia and Muribaculaceae_unclassified increased while the abundance of Bifidobacterium and Romboutsia decreased. A relationship was observed between CA-related microbes and metabolites via integrated analysis of gut microbiota and metabolomics, in which Escherichia-Shigella was positively correlated with glycine. Combined metabolomics and transcriptomics analysis showed that glycine was positively correlated with genes involved in apoptosis, interleukin-17, mitogen-activated protein kinases, nuclear factor kappa B, and Toll-like receptor signal pathways. CONCLUSIONS Our results provided novel insight into the mechanism of hypoxic-ischemic brain injury after resuscitation, which is envisaged to help identify potential diagnostic and therapeutic markers.
Collapse
Affiliation(s)
- Shuhang Yu
- Department of Critical Care Medicine, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiefeng Xu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenghao Wu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Zhu
- Department of Critical Care Medicine, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengyuan Diao
- Department of Critical Care Medicine, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Wei Hu
- Department of Critical Care Medicine, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
22
|
Hou HX, Pang L, Zhao L, Xing J. Ferroptosis-related gene MAPK3 is associated with the neurological outcome after cardiac arrest. PLoS One 2024; 19:e0301647. [PMID: 38885209 PMCID: PMC11182507 DOI: 10.1371/journal.pone.0301647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/19/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Neuronal ferroptosis is closely related to the disease of the nervous system, and the objective of the present study was to recognize and verify the potential ferroptosis-related genes to forecast the neurological outcome after cardiac arrest. METHODS Cardiac Arrest-related microarray datasets GSE29540 and GSE92696 were downloaded from GEO and batch normalization of the expression data was performed using "sva" of the R package. GSE29540 was analyzed to identify DEGs. Venn diagram was applied to recognize ferroptosis-related DEGs from the DEGs. Subsequently, The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed, and PPI network was applied to screen hub genes. Receiver operating characteristic (ROC) curves were adopted to determine the predictive value of the biomarkers, and the GSE92696 dataset was applied to further evaluate the diagnostic efficacy of the biomarkers. We explore transcription factors and miRNAs associated with hub genes. The "CIBERSORT" package of R was utilized to analyse the proportion infiltrating immune cells. Finally, validated by a series of experiments at the cellular level. RESULTS 112 overlapping ferroptosis-related DEGs were further obtained via intersecting these DEGs and ferroptosis-related genes. The GO and KEGG analysis demonstrate that ferroptosis-related DEGs are mainly involved in response to oxidative stress, ferroptosis, apoptosis, IL-17 signalling pathway, autophagy, toll-like receptor signalling pathway. The top 10 hub genes were selected, including HIF1A, MAPK3, PPARA, IL1B, PTGS2, RELA, TLR4, KEAP1, SREBF1, SIRT6. Only MAPK3 was upregulated in both GSE29540 and GAE92696. The AUC values of the MAPK3 are 0.654 and 0.850 in GSE29540 and GSE92696 respectively. The result of miRNAs associated with hub genes indicates that hsa-miR-214-3p and hsa-miR-483-5p can regulate the expression of MAPK3. MAPK3 was positively correlated with naive B cells, macrophages M0, activated dendritic cells and negatively correlated with activated CD4 memory T cells, CD8 T cells, and memory B cells. Compared to the OGD4/R24 group, the OGD4/R12 group had higher MAPK3 expression at both mRNA and protein levels and more severe ferroptosis. CONCLUSION In summary, the MAPK3 ferroptosis-related gene could be used as a biomarker to predict the neurological outcome after cardiac arrest. Potential biological pathways provide novel insights into the pathogenesis of cardiac arrest.
Collapse
Affiliation(s)
- Hong xiang Hou
- Department of Emergency, The First Hospital of Jilin University, Changchun, China
| | - Li Pang
- Department of Emergency, The First Hospital of Jilin University, Changchun, China
| | - Liang Zhao
- Rehabilitation Department, The First Hospital of Jilin University, Changchun, China
| | - Jihong Xing
- Department of Emergency, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
Piel S, McManus MJ, Heye KN, Beaulieu F, Fazelinia H, Janowska JI, MacTurk B, Starr J, Gaudio H, Patel N, Hefti MM, Smalley ME, Hook JN, Kohli NV, Bruton J, Hallowell T, Delso N, Roberts A, Lin Y, Ehinger JK, Karlsson M, Berg RA, Morgan RW, Kilbaugh TJ. Effect of dimethyl fumarate on mitochondrial metabolism in a pediatric porcine model of asphyxia-induced in-hospital cardiac arrest. Sci Rep 2024; 14:13852. [PMID: 38879681 PMCID: PMC11180202 DOI: 10.1038/s41598-024-64317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/07/2024] [Indexed: 06/19/2024] Open
Abstract
Neurological and cardiac injuries are significant contributors to morbidity and mortality following pediatric in-hospital cardiac arrest (IHCA). Preservation of mitochondrial function may be critical for reducing these injuries. Dimethyl fumarate (DMF) has shown potential to enhance mitochondrial content and reduce oxidative damage. To investigate the efficacy of DMF in mitigating mitochondrial injury in a pediatric porcine model of IHCA, toddler-aged piglets were subjected to asphyxia-induced CA, followed by ventricular fibrillation, high-quality cardiopulmonary resuscitation, and random assignment to receive either DMF (30 mg/kg) or placebo for four days. Sham animals underwent similar anesthesia protocols without CA. After four days, tissues were analyzed for mitochondrial markers. In the brain, untreated CA animals exhibited a reduced expression of proteins of the oxidative phosphorylation system (CI, CIV, CV) and decreased mitochondrial respiration (p < 0.001). Despite alterations in mitochondrial content and morphology in the myocardium, as assessed per transmission electron microscopy, mitochondrial function was unchanged. DMF treatment counteracted 25% of the proteomic changes induced by CA in the brain, and preserved mitochondrial structure in the myocardium. DMF demonstrates a potential therapeutic benefit in preserving mitochondrial integrity following asphyxia-induced IHCA. Further investigation is warranted to fully elucidate DMF's protective mechanisms and optimize its therapeutic application in post-arrest care.
Collapse
Affiliation(s)
- Sarah Piel
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA.
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany.
| | - Meagan J McManus
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Kristina N Heye
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Forrest Beaulieu
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Hossein Fazelinia
- Proteomics Core Facility, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Joanna I Janowska
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Bryce MacTurk
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Jonathan Starr
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Hunter Gaudio
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Nisha Patel
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Marco M Hefti
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Martin E Smalley
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Jordan N Hook
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Neha V Kohli
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - James Bruton
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Thomas Hallowell
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Nile Delso
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Anna Roberts
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Yuxi Lin
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Johannes K Ehinger
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Otorhinolaryngology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Otorhinolaryngology, Head and Neck Surgery, Skåne University Hospital, Lund, Sweden
| | | | - Robert A Berg
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Ryan W Morgan
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Todd J Kilbaugh
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| |
Collapse
|
24
|
Easter JS, Rose E. Advances in pediatric emergency from 2023. Am J Emerg Med 2024; 80:77-86. [PMID: 38518545 DOI: 10.1016/j.ajem.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024] Open
Abstract
Most children receive emergency care by general emergency physicians and not in designated children's hospitals. There are unique considerations in the care of children that differ from the care of adults. Many management principles can be extrapolated from adult studies, but the unique pathophysiology of pediatric disease requires specialized attention and management updates. This article highlights ten impactful articles from the year 2023 whose findings can improve the care of children in the Emergency Department (ED). These studies address pediatric resuscitation, traumatic arrest, septic shock, airway management, nailbed injuries, bronchiolitis, infant fever, cervical spine injuries, and cancer risk from radiation (Table 1). The findings in these articles have the potential to impact the evaluation and management of children (Table 2).
Collapse
Affiliation(s)
- Joshua S Easter
- Emergency Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - Emily Rose
- Emergency Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
25
|
Frazier AH, Topjian AA, Reeder RW, Morgan RW, Fink EL, Franzon D, Graham K, Harding ML, Mourani PM, Nadkarni VM, Wolfe HA, Ahmed T, Bell MJ, Burns C, Carcillo JA, Carpenter TC, Diddle JW, Federman M, Friess SH, Hall M, Hehir DA, Horvat CM, Huard LL, Maa T, Meert KL, Naim MY, Notterman D, Pollack MM, Schneiter C, Sharron MP, Srivastava N, Viteri S, Wessel D, Yates AR, Sutton RM, Berg RA. Association of Pediatric Postcardiac Arrest Ventilation and Oxygenation with Survival Outcomes. Ann Am Thorac Soc 2024; 21:895-906. [PMID: 38507645 PMCID: PMC11160133 DOI: 10.1513/annalsats.202311-948oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/18/2024] [Indexed: 03/22/2024] Open
Abstract
Rationale: Adult and pediatric studies provide conflicting data regarding whether post-cardiac arrest hypoxemia, hyperoxemia, hypercapnia, and/or hypocapnia are associated with worse outcomes. Objectives: We sought to determine whether postarrest hypoxemia or postarrest hyperoxemia is associated with lower rates of survival to hospital discharge, compared with postarrest normoxemia, and whether postarrest hypocapnia or hypercapnia is associated with lower rates of survival, compared with postarrest normocapnia. Methods: An embedded prospective observational study during a multicenter interventional cardiopulmonary resuscitation trial was conducted from 2016 to 2021. Patients ⩽18 years old and with a corrected gestational age of ≥37 weeks who received chest compressions for cardiac arrest in one of the 18 intensive care units were included. Exposures during the first 24 hours postarrest were hypoxemia, hyperoxemia, or normoxemia-defined as lowest arterial oxygen tension/pressure (PaO2) <60 mm Hg, highest PaO2 ⩾200 mm Hg, or every PaO2 60-199 mm Hg, respectively-and hypocapnia, hypercapnia, or normocapnia, defined as lowest arterial carbon dioxide tension/pressure (PaCO2) <30 mm Hg, highest PaCO2 ⩾50 mm Hg, or every PaCO2 30-49 mm Hg, respectively. Associations of oxygenation and carbon dioxide group with survival to hospital discharge were assessed using Poisson regression with robust error estimates. Results: The hypoxemia group was less likely to survive to hospital discharge, compared with the normoxemia group (adjusted relative risk [aRR] = 0.71; 95% confidence interval [CI] = 0.58-0.87), whereas survival in the hyperoxemia group did not differ from that in the normoxemia group (aRR = 1.0; 95% CI = 0.87-1.15). The hypercapnia group was less likely to survive to hospital discharge, compared with the normocapnia group (aRR = 0.74; 95% CI = 0.64-0.84), whereas survival in the hypocapnia group did not differ from that in the normocapnia group (aRR = 0.91; 95% CI = 0.74-1.12). Conclusions: Postarrest hypoxemia and hypercapnia were each associated with lower rates of survival to hospital discharge.
Collapse
Affiliation(s)
- Aisha H. Frazier
- Nemours Cardiac Center, and
- Department of Pediatrics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Alexis A. Topjian
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ron W. Reeder
- Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Ryan W. Morgan
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ericka L. Fink
- Department of Critical Care Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Deborah Franzon
- Department of Pediatrics, Benioff Children’s Hospital, University of California, San Francisco, San Francisco, California
| | - Kathryn Graham
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Peter M. Mourani
- Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, Colorado
| | - Vinay M. Nadkarni
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Heather A. Wolfe
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tageldin Ahmed
- Department of Pediatrics, Children’s Hospital of Michigan, Central Michigan University, Detroit, Michigan
| | - Michael J. Bell
- Department of Pediatrics, Children’s National Hospital, George Washington University School of Medicine, Washington, DC
| | - Candice Burns
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Joseph A. Carcillo
- Department of Critical Care Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Todd C. Carpenter
- Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, Colorado
| | - J. Wesley Diddle
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Myke Federman
- Department of Pediatrics, Mattel Children’s Hospital, University of California Los Angeles, Los Angeles, California
| | - Stuart H. Friess
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Mark Hall
- Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University, Columbus, Ohio; and
| | - David A. Hehir
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christopher M. Horvat
- Department of Critical Care Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Leanna L. Huard
- Department of Pediatrics, Mattel Children’s Hospital, University of California Los Angeles, Los Angeles, California
| | - Tensing Maa
- Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University, Columbus, Ohio; and
| | - Kathleen L. Meert
- Department of Pediatrics, Children’s Hospital of Michigan, Central Michigan University, Detroit, Michigan
| | - Maryam Y. Naim
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel Notterman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Murray M. Pollack
- Department of Pediatrics, Children’s National Hospital, George Washington University School of Medicine, Washington, DC
| | - Carleen Schneiter
- Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, Colorado
| | - Matthew P. Sharron
- Department of Pediatrics, Children’s National Hospital, George Washington University School of Medicine, Washington, DC
| | - Neeraj Srivastava
- Department of Pediatrics, Mattel Children’s Hospital, University of California Los Angeles, Los Angeles, California
| | - Shirley Viteri
- Department of Pediatrics, Nemours Children’s Health, Wilmington, Delaware
- Department of Pediatrics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - David Wessel
- Department of Pediatrics, Children’s National Hospital, George Washington University School of Medicine, Washington, DC
| | - Andrew R. Yates
- Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University, Columbus, Ohio; and
| | - Robert M. Sutton
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert A. Berg
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
26
|
Ehsanian R, To J, Mork D, Owens M, Gensler WF, Dutton R, Sloan JH. Improvement of the rapid response system at an acute rehabilitation hospital in New Mexico. Future Sci OA 2024; 10:FSO950. [PMID: 38841184 PMCID: PMC11152583 DOI: 10.2144/fsoa-2023-0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/05/2023] [Indexed: 06/07/2024] Open
Abstract
Aim: Enhance the Rapid Response System (RRS) in a free-standing acute rehabilitation hospital (ARH) by improving announcements, crash cart standardization and role assignments. Materials & methods: Pre-intervention (PreIQ) and post-intervention questionnaires (PostIQ), conducted in English and utilizing a Likert scale, were distributed in-person to clinical staff, yielding a 100% response rate. The questionnaire underwent no prior testing. The PreIQ were disseminated in February 2021, and PostIQ in December 2022. Results: PostIQ illustrated the improvement of audibility and improved the clarity of roles. The training positively impacted the RRS in the ARH. Conclusion: This study highlights the value of continuous RRS improvement in ARHs. Interventions led to notable enhancements, emphasizing the need for sustained efforts and future research on broader implementation.
Collapse
Affiliation(s)
- Reza Ehsanian
- Division of Pain Medicine, Department of Anesthesiology & Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Jimmy To
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - David Mork
- Lovelace UNM Rehabilitation Hospital, Albuquerque, NM, USA
| | - Melissa Owens
- Lovelace UNM Rehabilitation Hospital, Albuquerque, NM, USA
| | - William F Gensler
- Division of Physical Medicine & Rehabilitation, Department of Orthopaedics & Rehabilitation, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Rebecca Dutton
- Division of Physical Medicine & Rehabilitation, Department of Orthopaedics & Rehabilitation, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - John Henry Sloan
- Division of Physical Medicine & Rehabilitation, Department of Orthopaedics & Rehabilitation, University of New Mexico School of Medicine, Albuquerque, NM, USA
- Manzano Medical Group, Albuquerque, NM, USA
| |
Collapse
|
27
|
Lauridsen KG, Morgan RW, Berg RA, Niles DE, Kleinman ME, Zhang X, Griffis H, Del Castillo J, Skellett S, Lasa JJ, Raymond TT, Sutton RM, Nadkarni VM. Association Between Chest Compression Pause Duration and Survival After Pediatric In-Hospital Cardiac Arrest. Circulation 2024; 149:1493-1500. [PMID: 38563137 PMCID: PMC11073898 DOI: 10.1161/circulationaha.123.066882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 02/21/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND The association between chest compression (CC) pause duration and pediatric in-hospital cardiac arrest survival outcomes is unknown. The American Heart Association has recommended minimizing pauses in CC in children to <10 seconds, without supportive evidence. We hypothesized that longer maximum CC pause durations are associated with worse survival and neurological outcomes. METHODS In this cohort study of index pediatric in-hospital cardiac arrests reported in pediRES-Q (Quality of Pediatric Resuscitation in a Multicenter Collaborative) from July of 2015 through December of 2021, we analyzed the association in 5-second increments of the longest CC pause duration for each event with survival and favorable neurological outcome (Pediatric Cerebral Performance Category ≤3 or no change from baseline). Secondary exposures included having any pause >10 seconds or >20 seconds and number of pauses >10 seconds and >20 seconds per 2 minutes. RESULTS We identified 562 index in-hospital cardiac arrests (median [Q1, Q3] age 2.9 years [0.6, 10.0], 43% female, 13% shockable rhythm). Median length of the longest CC pause for each event was 29.8 seconds (11.5, 63.1). After adjustment for confounders, each 5-second increment in the longest CC pause duration was associated with a 3% lower relative risk of survival with favorable neurological outcome (adjusted risk ratio, 0.97 [95% CI, 0.95-0.99]; P=0.02). Longest CC pause duration was also associated with survival to hospital discharge (adjusted risk ratio, 0.98 [95% CI, 0.96-0.99]; P=0.01) and return of spontaneous circulation (adjusted risk ratio, 0.93 [95% CI, 0.91-0.94]; P<0.001). Secondary outcomes of any pause >10 seconds or >20 seconds and number of CC pauses >10 seconds and >20 seconds were each significantly associated with adjusted risk ratio of return of spontaneous circulation, but not survival or neurological outcomes. CONCLUSIONS Each 5-second increment in longest CC pause duration during pediatric in-hospital cardiac arrest was associated with lower chance of survival with favorable neurological outcome, survival to hospital discharge, and return of spontaneous circulation. Any CC pause >10 seconds or >20 seconds and number of pauses >10 seconds and >20 seconds were significantly associated with lower adjusted probability of return of spontaneous circulation, but not survival or neurological outcomes.
Collapse
Affiliation(s)
- Kasper G Lauridsen
- Research Center for Emergency Medicine, Aarhus University, Denmark (K.G.L.)
- Department of Anesthesiology and Critical Care Medicine, Randers Regional Hospital, Denmark (K.G.L.)
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine (K.G.L., R.W.M., R.A.B., D.E.N., R.M.S., V.M.N.)
| | - Ryan W Morgan
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine (K.G.L., R.W.M., R.A.B., D.E.N., R.M.S., V.M.N.)
| | - Robert A Berg
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine (K.G.L., R.W.M., R.A.B., D.E.N., R.M.S., V.M.N.)
| | - Dana E Niles
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine (K.G.L., R.W.M., R.A.B., D.E.N., R.M.S., V.M.N.)
| | - Monica E Kleinman
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, MA (M.E.K.)
| | - Xuemei Zhang
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, PA (X.Z., H.G.)
| | - Heather Griffis
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, PA (X.Z., H.G.)
| | - Jimena Del Castillo
- Department of Pediatric Intensive Care, Hospital Maternoinfantil Gregorio Marañón, Madrid, Spain (J.D.C.)
| | - Sophie Skellett
- Department of Critical Care Medicine, Great Ormond Street Hospital for Children, London, England (S.S.)
| | - Javier J Lasa
- Divisions of Cardiology and Critical Care Medicine, Children's Medical Center, UT Southwestern Medical Center, Dallas, TX (J.J.L.)
| | - Tia T Raymond
- Department of Pediatrics, Cardiac Intensive Care, Medical City Children's Hospital, Dallas, TX (T.T.R.)
| | - Robert M Sutton
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine (K.G.L., R.W.M., R.A.B., D.E.N., R.M.S., V.M.N.)
| | - Vinay M Nadkarni
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine (K.G.L., R.W.M., R.A.B., D.E.N., R.M.S., V.M.N.)
| |
Collapse
|
28
|
Beekman R, Gilmore EJ. Cerebral edema following cardiac arrest: Are all shades of gray equal? Resuscitation 2024; 198:110213. [PMID: 38636600 DOI: 10.1016/j.resuscitation.2024.110213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Affiliation(s)
- Rachel Beekman
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States.
| | - Emily J Gilmore
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
29
|
Haskell SE, Hoyme D, Zimmerman MB, Reeder R, Girotra S, Raymond TT, Samson RA, Berg M, Berg RA, Nadkarni V, Atkins DL. Association between survival and number of shocks for pulseless ventricular arrhythmias during pediatric in-hospital cardiac arrest in a national registry. Resuscitation 2024; 198:110200. [PMID: 38582444 DOI: 10.1016/j.resuscitation.2024.110200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/13/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Annually 15,200 children suffer an in-hospital cardiac arrest (IHCA) in the US. Ventricular fibrillation or pulseless ventricular tachycardia (VF/pVT) is the initial rhythm in 10-15% of these arrests. We sought to evaluate the association of number of shocks and early dose escalation with survival for initial VF/pVT in pediatric IHCA. METHODS Using 2000-2020 data from the American Heart Association's (AHA) Get with the Guidelines®-Resuscitation (GWTG-R) registry, we identified children >48 hours of life and ≤18 years who had an IHCA from initial VF/pVT and received defibrillation. RESULTS There were 251 subjects (37.7%) who received a single shock and 415 subjects (62.3%) who received multiple shocks. Baseline and cardiac arrest characteristics did not differ between those who received a single shock versus multiple shocks except for duration of arrest and calendar year. The median first shock dose was consistent with AHA dosing recommendations and not different between those who received a single shock versus multiple shocks. Survival was improved for those who received a single shock compared to multiple shocks. However, no difference in survival was noted between those who received 2, 3, or ≥4 shocks. Of those receiving multiple shocks, no difference was observed with early dose escalation. CONCLUSIONS In pediatric IHCA, most patients with initial VF/pVT require more than one shock. No distinctions in patient or pre-arrest characteristics were identified between those who received a single shock versus multiple shocks. Subjects who received a single shock were more likely to survive to hospital discharge even after adjusting for duration of resuscitation.
Collapse
Affiliation(s)
- Sarah E Haskell
- University of Iowa Carver College of Medicine, Iowa City, IA, United States.
| | - Derek Hoyme
- University of Wisconsin Madison School of Medicine, Madison, WI, United States
| | | | - Ron Reeder
- University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Saket Girotra
- UT Southwestern Medical Center, Dallas, TX, United States
| | - Tia T Raymond
- Medical City Children's Hospital, Dallas, TX, United States
| | | | - Marc Berg
- Stanford School of Medicine, Palo Alto, CA, United States
| | - Robert A Berg
- Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Vinay Nadkarni
- Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Dianne L Atkins
- University of Iowa Carver College of Medicine, Iowa City, IA, United States
| |
Collapse
|
30
|
Raymond TT, Esangbedo ID, Rajapreyar P, Je S, Zhang X, Griffis HM, Wakeham MK, Petersen TL, Kirschen MP, Topjian AA, Lasa JJ, Francoeur CI, Nadkarni VM. Cerebral Oximetry During Pediatric In-Hospital Cardiac Arrest: A Multicenter Study of Survival and Neurologic Outcome. Crit Care Med 2024; 52:775-785. [PMID: 38180092 PMCID: PMC11024591 DOI: 10.1097/ccm.0000000000006186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
OBJECTIVES To determine if near-infrared spectroscopy measuring cerebral regional oxygen saturation (crS o2 ) during cardiopulmonary resuscitation is associated with return of spontaneous circulation (ROSC) and survival to hospital discharge (SHD) in children. DESIGN Multicenter, observational study. SETTING Three hospitals in the pediatric Resuscitation Quality (pediRES-Q) collaborative from 2015 to 2022. PATIENTS Children younger than 18 years, gestational age 37 weeks old or older with in-hospital cardiac arrest (IHCA) receiving cardiopulmonary resuscitation greater than or equal to 1 minute and intra-arrest crS o2 monitoring. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Primary outcome was ROSC greater than or equal to 20 minutes without extracorporeal membrane oxygenation. Secondary outcomes included SHD and favorable neurologic outcome (FNO) (Pediatric Cerebral Performance Category 1-2 or no change from prearrest). Among 3212 IHCA events (index and nonindex), 123 met inclusion criteria in 93 patients. Median age was 0.3 years (0.1-1.4 yr) and 31% (38/123) of the cardiopulmonary resuscitation events occurred in patients with cyanotic heart disease. Median cardiopulmonary resuscitation duration was 8 minutes (3-28 min) and ROSC was achieved in 65% (80/123). For index events, SHD was achieved in 59% (54/91) and FNO in 41% (37/91). We determined the association of median intra-arrest crS o2 and percent of crS o2 values above a priori thresholds during the: 1) entire cardiopulmonary resuscitation event, 2) first 5 minutes, and 3) last 5 minutes with ROSC, SHD, and FNO. Higher crS o2 for the entire cardiopulmonary resuscitation event, first 5 minutes, and last 5 minutes were associated with higher likelihood of ROSC, SHD, and FNO. In multivariable analysis of the infant group (age < 1 yr), higher crS o2 was associated with ROSC (odds ratio [OR], 1.06; 95% CI, 1.03-1.10), SHD (OR, 1.04; 95% CI, 1.01-1.07), and FNO (OR, 1.05; 95% CI, 1.02-1.08) after adjusting for presence of cyanotic heart disease. CONCLUSIONS Higher crS o2 during pediatric IHCA was associated with increased rate of ROSC, SHD, and FNO. Intra-arrest crS o2 may have a role as a real-time, noninvasive predictor of ROSC.
Collapse
Affiliation(s)
- Tia T Raymond
- Department of Pediatrics, Cardiac Intensive Care, Medical City Children's Hospital, Dallas, TX
| | - Ivie D Esangbedo
- Department of Pediatrics, Division of Cardiac Critical Care Medicine, University of Washington, Seattle, WA
| | - Prakadeshwari Rajapreyar
- Department of Pediatrics, Division of Critical Care, Children's Healthcare of Atlanta, Atlanta, GA
| | - Sangmo Je
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Xuemei Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Heather M Griffis
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Martin K Wakeham
- Division of Pediatric Critical Care, Department of Pediatrics, Medical College of Wisconsin, Children's Wisconsin, Milwaukee, WI
| | - Tara L Petersen
- Division of Pediatric Critical Care, Department of Pediatrics, Medical College of Wisconsin, Children's Wisconsin, Milwaukee, WI
| | - Matthew P Kirschen
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Alexis A Topjian
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Javier J Lasa
- Divisions of Cardiology and Critical Care, Children's Medical Center, UT Southwestern Medical Center, Dallas, TX
| | - Conall I Francoeur
- Division of Pediatric Critical Care, Montreal Children's Hospital, McGill University Health Center, Montreal, QC, Canada
| | - Vinay M Nadkarni
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
31
|
Edgar R, Bonnes JL. Together we save: Uniting forces in manual and mechanical CPR. Resuscitation 2024; 198:110180. [PMID: 38492717 DOI: 10.1016/j.resuscitation.2024.110180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Affiliation(s)
- Roos Edgar
- Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Judith L Bonnes
- Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
32
|
Du J, Liu X, Marasini S, Wang Z, Dammen-Brower K, Yarema KJ, Jia X. Metabolically Glycoengineered Neural Stem Cells Boost Neural Repair After Cardiac Arrest. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2309866. [PMID: 39071865 PMCID: PMC11281434 DOI: 10.1002/adfm.202309866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Indexed: 07/30/2024]
Abstract
Cardiac arrest (CA)-induced cerebral ischemia remains challenging with high mortality and disability. Neural stem cell (NSC) engrafting is an emerging therapeutic strategy with considerable promise that, unfortunately, is severely compromised by limited cell functionality after in vivo transplantation. This groundbreaking report demonstrates that metabolic glycoengineering (MGE) using the "Ac5ManNTProp (TProp)" monosaccharide analog stimulates the Wnt/β-catenin pathway, improves cell adhesion, and enhances neuronal differentiation in human NSCs in vitro thereby substantially increasing the therapeutic potential of these cells. For the first time, MGE significantly enhances NSC efficacy for treating ischemic brain injury after asphyxia CA in rats. In particular, neurological deficit scores and neurobehavioral tests experience greater improvements when the therapeutic cells are pretreated with TProp than with "stand-alone" NSC therapy. Notably, the TProp-NSC group exhibits significantly stronger neuroprotective functions including enhanced differentiation, synaptic plasticity, and reduced microglia recruitment; furthermore, Wnt pathway agonists and inhibitors demonstrate a pivotal role for Wnt signaling in the process. These findings help establish MGE as a promising avenue for addressing current limitations associated with NSC transplantation via beneficially influencing neural regeneration and synaptic plasticity, thereby offering enhanced therapeutic options to boost brain recovery following global ischemia.
Collapse
Affiliation(s)
- Jian Du
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Xiao Liu
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Subash Marasini
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Zhuoran Wang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Kris Dammen-Brower
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, 21205
- Translational Cell and Tissue Engineering Center, The Johns Hopkins School of Medicine, Baltimore, MD, 21231
| | - Kevin J. Yarema
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, 21205
- Translational Cell and Tissue Engineering Center, The Johns Hopkins School of Medicine, Baltimore, MD, 21231
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, 21205
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
33
|
Loaec M, Himebauch AS, Reeder R, Alvey JS, Race JA, Su L, Lasa JJ, Slovis JC, Raymond TT, Coleman R, Barney BJ, Kilbaugh TJ, Topjian AA, Sutton RM, Morgan RW. Outcomes of Extracorporeal Cardiopulmonary Resuscitation for In-Hospital Cardiac Arrest Among Children With Noncardiac Illness Categories. Crit Care Med 2024; 52:551-562. [PMID: 38156912 DOI: 10.1097/ccm.0000000000006153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
OBJECTIVES The objective of this study was to determine the association of the use of extracorporeal cardiopulmonary resuscitation (ECPR) with survival to hospital discharge in pediatric patients with a noncardiac illness category. A secondary objective was to report on trends in ECPR usage in this population for 20 years. DESIGN Retrospective multicenter cohort study. SETTING Hospitals contributing data to the American Heart Association's Get With The Guidelines-Resuscitation registry between 2000 and 2021. PATIENTS Children (<18 yr) with noncardiac illness category who received greater than or equal to 30 minutes of cardiopulmonary resuscitation (CPR) for in-hospital cardiac arrest. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Propensity score weighting balanced ECPR and conventional CPR (CCPR) groups on hospital and patient characteristics. Multivariable logistic regression incorporating these scores tested the association of ECPR with survival to discharge. A Bayesian logistic regression model estimated the probability of a positive effect from ECPR. A secondary analysis explored temporal trends in ECPR utilization. Of 875 patients, 159 received ECPR and 716 received CCPR. The median age was 1.0 [interquartile range: 0.2-7.0] year. Most patients (597/875; 68%) had a primary diagnosis of respiratory insufficiency. Median CPR duration was 45 [35-63] minutes. ECPR use increased over time ( p < 0.001). We did not identify differences in survival to discharge between the ECPR group (21.4%) and the CCPR group (16.2%) in univariable analysis ( p = 0.13) or propensity-weighted multivariable logistic regression (adjusted odds ratio 1.42 [95% CI, 0.84-2.40; p = 0.19]). The Bayesian model estimated an 85.1% posterior probability of a positive effect of ECPR on survival to discharge. CONCLUSIONS ECPR usage increased substantially for the last 20 years. We failed to identify a significant association between ECPR and survival to hospital discharge, although a post hoc Bayesian analysis suggested a survival benefit (85% posterior probability).
Collapse
Affiliation(s)
- Morgann Loaec
- Division of Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
- Resuscitation Science Center, CHOP Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Adam S Himebauch
- Division of Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
- Resuscitation Science Center, CHOP Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Ron Reeder
- Department of Pediatrics, University of Utah, Salt Lake City, UT
| | - Jessica S Alvey
- Department of Pediatrics, University of Utah, Salt Lake City, UT
| | - Jonathan A Race
- Department of Pediatrics, University of Utah, Salt Lake City, UT
| | - Lillian Su
- Division of Cardiac Intensive Care, Department of Pediatrics, Phoenix Children's Hospital, Phoenix, AZ
| | - Javier J Lasa
- Division of Cardiology and Critical Care, Department of Pediatrics, UT Southwestern Medical Center, Dallas TX
| | - Julia C Slovis
- Division of Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
- Resuscitation Science Center, CHOP Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Tia T Raymond
- Department of Pediatrics, Cardiac Critical Care Medicine, Medical City Children's Hospital, Dallas TX
| | - Ryan Coleman
- Section of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston TX
| | - Bradley J Barney
- Department of Pediatrics, University of Utah, Salt Lake City, UT
| | - Todd J Kilbaugh
- Division of Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
- Resuscitation Science Center, CHOP Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Alexis A Topjian
- Division of Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
- Resuscitation Science Center, CHOP Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Robert M Sutton
- Division of Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
- Resuscitation Science Center, CHOP Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Ryan W Morgan
- Division of Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
- Resuscitation Science Center, CHOP Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
34
|
Geva S, Hoskote A, Saini M, Clark CA, Banks T, Chong WKK, Baldeweg T, de Haan M, Vargha-Khadem F. Cognitive outcome and its neural correlates after cardiorespiratory arrest in childhood. Dev Sci 2024:e13501. [PMID: 38558493 DOI: 10.1111/desc.13501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024]
Abstract
Hypoxia-ischaemia (HI) can result in structural brain abnormalities, which in turn can lead to behavioural deficits in various cognitive and motor domains, in both adult and paediatric populations. Cardiorespiratory arrest (CA) is a major cause of hypoxia-ischaemia in adults, but it is relatively rare in infants and children. While the effects of adult CA on brain and cognition have been widely studied, to date, there are no studies examining the neurodevelopmental outcome of children who suffered CA early in life. Here, we studied the long-term outcome of 28 children who suffered early CA (i.e., before age 16). They were compared to a group of control participants (n = 28) matched for age, sex and socio-economic status. The patient group had impairments in the domains of memory, language and academic attainment (measured using standardised tests). Individual scores within the impaired range were most commonly found within the memory domain (79%), followed by academic attainment (50%), and language (36%). The patient group also had reduced whole brain grey matter volume, and reduced volume and fractional anisotropy of the white matter. In addition, lower performance on memory tests was correlated with bilaterally reduced volume of the hippocampi, thalami, and striatum, while lower attainment scores were correlated with bilateral reduction of fractional anisotropy in the superior cerebellar peduncle, the main output tract of the cerebellum. We conclude that patients who suffered early CA are at risk of developing specific cognitive deficits associated with structural brain abnormalities. RESEARCH HIGHLIGHTS: Our data shed light on the long-term outcome and associated neural mechanisms after paediatric hypoxia-ischaemia as a result of cardiorespiratory arrest. Patients had impaired scores on memory, language and academic attainment. Memory impairments were associated with smaller hippocampi, thalami, and striatum. Lower academic attainment correlated with reduced fractional anisotropy of the superior cerebellar peduncle.
Collapse
Affiliation(s)
- Sharon Geva
- Department of Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, United Kingdom of Great Britain and Northern Ireland
| | - Aparna Hoskote
- Heart and Lung Division, Institute of Cardiovascular Science, Great Ormond Street Hospital, London, United Kingdom of Great Britain and Northern Ireland
| | - Maneet Saini
- Department of Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, United Kingdom of Great Britain and Northern Ireland
| | - Christopher A Clark
- Department of Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, United Kingdom of Great Britain and Northern Ireland
| | - Tina Banks
- Department of Radiology, Great Ormond Street Hospital, London, United Kingdom of Great Britain and Northern Ireland
| | - W K Kling Chong
- Department of Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, United Kingdom of Great Britain and Northern Ireland
| | - Torsten Baldeweg
- Department of Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, United Kingdom of Great Britain and Northern Ireland
| | - Michelle de Haan
- Department of Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, United Kingdom of Great Britain and Northern Ireland
| | - Faraneh Vargha-Khadem
- Department of Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, United Kingdom of Great Britain and Northern Ireland
- Neuropsychology Service, Great Ormond Street Hospital, London, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
35
|
Bach AM, Kirschen MP, Fung FW, Abend NS, Ampah S, Mondal A, Huh JW, Chen SSL, Yuan I, Graham K, Berman JI, Vossough A, Topjian A. Association of EEG Background With Diffusion-Weighted Magnetic Resonance Neuroimaging and Short-Term Outcomes After Pediatric Cardiac Arrest. Neurology 2024; 102:e209134. [PMID: 38350044 PMCID: PMC11384654 DOI: 10.1212/wnl.0000000000209134] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/16/2023] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND AND OBJECTIVES EEG and MRI features are independently associated with pediatric cardiac arrest (CA) outcomes, but it is unclear whether their combination improves outcome prediction. We aimed to assess the association of early EEG background category with MRI ischemia after pediatric CA and determine whether addition of MRI ischemia to EEG background features and clinical variables improves short-term outcome prediction. METHODS This was a single-center retrospective cohort study of pediatric CA with EEG initiated ≤24 hours and MRI obtained ≤7 days of return of spontaneous circulation. Initial EEG background was categorized as normal, slow/disorganized, discontinuous/burst-suppression, or attenuated-featureless. MRI ischemia was defined as percentage of brain tissue with apparent diffusion coefficient (ADC) <650 × 10-6 mm2/s and categorized as high (≥10%) or low (<10%). Outcomes were mortality and unfavorable neurologic outcome (Pediatric Cerebral Performance Category increase ≥1 from baseline resulting in ICU discharge score ≥3). The Kruskal-Wallis test evaluated the association of EEG with MRI. Area under the receiver operating characteristic (AUROC) curve evaluated predictive accuracy. Logistic regression and likelihood ratio tests assessed multivariable outcome prediction. RESULTS We evaluated 90 individuals. EEG background was normal in 16 (18%), slow/disorganized in 42 (47%), discontinuous/burst-suppressed in 12 (13%), and attenuated-featureless in 20 (22%) individuals. The median percentage of MRI ischemia was 5% (interquartile range 1-18); 32 (36%) individuals had high MRI ischemia burden. Twenty-eight (31%) individuals died, and 58 (64%) had unfavorable neurologic outcome. Worse EEG background category was associated with more MRI ischemia (p < 0.001). The combination of EEG background and MRI ischemia burden had higher predictive accuracy than EEG alone (AUROC: mortality: 0.92 vs 0.87, p = 0.03) or MRI alone (AUROC: mortality: 0.92 vs 0.84, p = 0.02; unfavorable: 0.83 vs 0.73, p < 0.01). Addition of percentage of MRI ischemia to clinical variables and EEG background category improved prediction for mortality (χ2 = 19.1, p < 0.001) and unfavorable neurologic outcome (χ2 = 4.8, p = 0.03) and achieved high predictive accuracy (AUROC: mortality: 0.97; unfavorable: 0.92). DISCUSSION Early EEG background category was associated with MRI ischemia after pediatric CA. Combining EEG and MRI data yielded higher outcome predictive accuracy than either modality alone. The addition of MRI ischemia to clinical variables and EEG background improved short-term outcome prediction.
Collapse
Affiliation(s)
- Ashley M Bach
- From the Department of Neurology (A.M.B., M.P.K., F.W.F., N.S.A.), Departments of Anesthesia and Critical Care Medicine (M.P.K., N.S.A., J.W.H., I.Y., K.G., A.T.), Department of Pediatrics (M.P.K., N.S.A., J.W.H., A.T.), Department of Biomedical and Health Informatics (S.A., A.M.), Department of Neurosurgery (S.-S.L.C.), and Department of Radiology (J.I.B., A.V.), Children's Hospital of Philadelphia, PA
| | - Matthew P Kirschen
- From the Department of Neurology (A.M.B., M.P.K., F.W.F., N.S.A.), Departments of Anesthesia and Critical Care Medicine (M.P.K., N.S.A., J.W.H., I.Y., K.G., A.T.), Department of Pediatrics (M.P.K., N.S.A., J.W.H., A.T.), Department of Biomedical and Health Informatics (S.A., A.M.), Department of Neurosurgery (S.-S.L.C.), and Department of Radiology (J.I.B., A.V.), Children's Hospital of Philadelphia, PA
| | - France W Fung
- From the Department of Neurology (A.M.B., M.P.K., F.W.F., N.S.A.), Departments of Anesthesia and Critical Care Medicine (M.P.K., N.S.A., J.W.H., I.Y., K.G., A.T.), Department of Pediatrics (M.P.K., N.S.A., J.W.H., A.T.), Department of Biomedical and Health Informatics (S.A., A.M.), Department of Neurosurgery (S.-S.L.C.), and Department of Radiology (J.I.B., A.V.), Children's Hospital of Philadelphia, PA
| | - Nicholas S Abend
- From the Department of Neurology (A.M.B., M.P.K., F.W.F., N.S.A.), Departments of Anesthesia and Critical Care Medicine (M.P.K., N.S.A., J.W.H., I.Y., K.G., A.T.), Department of Pediatrics (M.P.K., N.S.A., J.W.H., A.T.), Department of Biomedical and Health Informatics (S.A., A.M.), Department of Neurosurgery (S.-S.L.C.), and Department of Radiology (J.I.B., A.V.), Children's Hospital of Philadelphia, PA
| | - Steve Ampah
- From the Department of Neurology (A.M.B., M.P.K., F.W.F., N.S.A.), Departments of Anesthesia and Critical Care Medicine (M.P.K., N.S.A., J.W.H., I.Y., K.G., A.T.), Department of Pediatrics (M.P.K., N.S.A., J.W.H., A.T.), Department of Biomedical and Health Informatics (S.A., A.M.), Department of Neurosurgery (S.-S.L.C.), and Department of Radiology (J.I.B., A.V.), Children's Hospital of Philadelphia, PA
| | - Antara Mondal
- From the Department of Neurology (A.M.B., M.P.K., F.W.F., N.S.A.), Departments of Anesthesia and Critical Care Medicine (M.P.K., N.S.A., J.W.H., I.Y., K.G., A.T.), Department of Pediatrics (M.P.K., N.S.A., J.W.H., A.T.), Department of Biomedical and Health Informatics (S.A., A.M.), Department of Neurosurgery (S.-S.L.C.), and Department of Radiology (J.I.B., A.V.), Children's Hospital of Philadelphia, PA
| | - Jimmy W Huh
- From the Department of Neurology (A.M.B., M.P.K., F.W.F., N.S.A.), Departments of Anesthesia and Critical Care Medicine (M.P.K., N.S.A., J.W.H., I.Y., K.G., A.T.), Department of Pediatrics (M.P.K., N.S.A., J.W.H., A.T.), Department of Biomedical and Health Informatics (S.A., A.M.), Department of Neurosurgery (S.-S.L.C.), and Department of Radiology (J.I.B., A.V.), Children's Hospital of Philadelphia, PA
| | - Shih-Shan L Chen
- From the Department of Neurology (A.M.B., M.P.K., F.W.F., N.S.A.), Departments of Anesthesia and Critical Care Medicine (M.P.K., N.S.A., J.W.H., I.Y., K.G., A.T.), Department of Pediatrics (M.P.K., N.S.A., J.W.H., A.T.), Department of Biomedical and Health Informatics (S.A., A.M.), Department of Neurosurgery (S.-S.L.C.), and Department of Radiology (J.I.B., A.V.), Children's Hospital of Philadelphia, PA
| | - Ian Yuan
- From the Department of Neurology (A.M.B., M.P.K., F.W.F., N.S.A.), Departments of Anesthesia and Critical Care Medicine (M.P.K., N.S.A., J.W.H., I.Y., K.G., A.T.), Department of Pediatrics (M.P.K., N.S.A., J.W.H., A.T.), Department of Biomedical and Health Informatics (S.A., A.M.), Department of Neurosurgery (S.-S.L.C.), and Department of Radiology (J.I.B., A.V.), Children's Hospital of Philadelphia, PA
| | - Kathryn Graham
- From the Department of Neurology (A.M.B., M.P.K., F.W.F., N.S.A.), Departments of Anesthesia and Critical Care Medicine (M.P.K., N.S.A., J.W.H., I.Y., K.G., A.T.), Department of Pediatrics (M.P.K., N.S.A., J.W.H., A.T.), Department of Biomedical and Health Informatics (S.A., A.M.), Department of Neurosurgery (S.-S.L.C.), and Department of Radiology (J.I.B., A.V.), Children's Hospital of Philadelphia, PA
| | - Jeffrey I Berman
- From the Department of Neurology (A.M.B., M.P.K., F.W.F., N.S.A.), Departments of Anesthesia and Critical Care Medicine (M.P.K., N.S.A., J.W.H., I.Y., K.G., A.T.), Department of Pediatrics (M.P.K., N.S.A., J.W.H., A.T.), Department of Biomedical and Health Informatics (S.A., A.M.), Department of Neurosurgery (S.-S.L.C.), and Department of Radiology (J.I.B., A.V.), Children's Hospital of Philadelphia, PA
| | - Arastoo Vossough
- From the Department of Neurology (A.M.B., M.P.K., F.W.F., N.S.A.), Departments of Anesthesia and Critical Care Medicine (M.P.K., N.S.A., J.W.H., I.Y., K.G., A.T.), Department of Pediatrics (M.P.K., N.S.A., J.W.H., A.T.), Department of Biomedical and Health Informatics (S.A., A.M.), Department of Neurosurgery (S.-S.L.C.), and Department of Radiology (J.I.B., A.V.), Children's Hospital of Philadelphia, PA
| | - Alexis Topjian
- From the Department of Neurology (A.M.B., M.P.K., F.W.F., N.S.A.), Departments of Anesthesia and Critical Care Medicine (M.P.K., N.S.A., J.W.H., I.Y., K.G., A.T.), Department of Pediatrics (M.P.K., N.S.A., J.W.H., A.T.), Department of Biomedical and Health Informatics (S.A., A.M.), Department of Neurosurgery (S.-S.L.C.), and Department of Radiology (J.I.B., A.V.), Children's Hospital of Philadelphia, PA
| |
Collapse
|
36
|
Liu Y, Yo CH, Hu JR, Hsu WT, Hsiung JC, Chang YH, Chen SC, Lee CC. Sepsis increases the risk of in-hospital cardiac arrest: a population-based analysis. Intern Emerg Med 2024; 19:353-363. [PMID: 38141118 DOI: 10.1007/s11739-023-03475-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 10/19/2023] [Indexed: 12/24/2023]
Abstract
Sepsis patients have a high risk of developing in-hospital cardiac arrest (IHCA), which portends poor survival. However, little is known about whether the increased incidence of IHCA is due to sepsis itself or to comorbidities harbored by sepsis patients. We conducted a retrospective population-based cohort study comprising 20,022 patients admitted with sepsis to hospitals in Taiwan using the National Health Insurance Research Database (NHIRD). We constructed three non-sepsis comparison cohorts using risk set sampling and propensity score (PS) matching. We used univariate conditional logistic regression to evaluate the risk of IHCA and associated mortality. We identified 12,790 inpatients without infection (matched cohort 1), 12,789 inpatients with infection but without sepsis (matched cohort 2), and 10,536 inpatients with end-organ dysfunction but without sepsis (matched cohort 3). In the three PS-matched cohorts, the odds ratios (OR) for developing ICHA were 21.17 (95% CI 17.19, 26.06), 18.96 (95% CI: 15.56, 23.10), and 1.23 (95% CI: 1.13, 1.33), respectively (p < 0.001 for all ORs). In conclusion, in our study of inpatients across Taiwan, sepsis was independently associated with an increased risk of IHCA. Further studies should focus on identifying the proxy causes of IHCA using real-time monitoring data to further reduce the incidence of cardiopulmonary insufficiency in patients with sepsis.
Collapse
Affiliation(s)
- Ye Liu
- Department of Health Policy and Organization, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chia-Hung Yo
- Department of Emergency Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Jiun-Ruey Hu
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Wan-Ting Hsu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jo-Ching Hsiung
- Department of Pediatrics, Jefferson Einstein Hospital, Philadelphia, PA, USA
| | - Yung-Han Chang
- Department of Biostatistics, University of California, Los Angeles, Los Angeles, USA
| | - Shyr-Chyr Chen
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Chang Lee
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan.
- The Centre for Intelligent Healthcare, College of Medicine, National Taiwan University Hospital, National Taiwan University, No.7, Chung Shan S. Rd., Zhongzheng Dist., Taipei City, 100, Taiwan.
| |
Collapse
|
37
|
Pedersen BBB, Lauridsen KG, Langsted ST, Løfgren B. Organization and training for pediatric cardiac arrest in Danish hospitals: A nationwide cross-sectional study. Resusc Plus 2024; 17:100555. [PMID: 38586865 PMCID: PMC10995645 DOI: 10.1016/j.resplu.2024.100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024] Open
Abstract
Background Improving survival from pediatric cardiac arrest requires a well-functioning system of care with appropriately trained healthcare providers and designated cardiac arrest teams. This study aimed to describe the current organization and training for pediatric cardiac arrest in Denmark. Methods We performed a nationwide cross-sectional study. A questionnaire was distributed to all hospitals in Denmark with a pediatric department. The survey included questions about receiving patients with out-of-hospital cardiac arrest, protocols for extracorporeal life support, cardiac arrest team compositions, and training. Results We obtained responses from 17 of 19 hospitals with a pediatric department. In total, 76% of hospitals received patients with pediatric out-of-hospital cardiac arrest and 35% of hospitals had a protocol for extracorporeal life support. None of the hospitals had identical cardiac arrest team member compositions. The total number of team members ranged from 4-10, with a median of 8 members (IQR 7;9). In 84% of hospitals a specialized course in pediatric resuscitation was implemented and in 5% of hospitals, the specialized course was for the entire cardiac arrest team. Only few hospitals had training in laryngeal mask (6%) and intubation (29%) for pediatric cardiac arrest and none of them were trained in extracorporeal life support. Conclusion We found high variability in the composition of the pediatric cardiac arrest teams and training across the surveyed Danish hospitals. Many hospitals lack training in important pediatric resuscitation skills. Although many hospitals receive pediatric patients after out-of-hospital cardiac arrest, only few have protocols for transfer for extracorporeal life support.
Collapse
Affiliation(s)
- Bea Brix B. Pedersen
- Research Center for Emergency Medicine, Aarhus University Hospital, Denmark
- Department of Medicine, Randers Regional Hospital, Denmark
| | - Kasper G. Lauridsen
- Research Center for Emergency Medicine, Aarhus University Hospital, Denmark
- Department of Medicine, Randers Regional Hospital, Denmark
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, USA
| | - Sandra Thun Langsted
- Research Center for Emergency Medicine, Aarhus University Hospital, Denmark
- Department of Emergency Medicine, Randers Regional Hospital, Denmark
| | - Bo Løfgren
- Research Center for Emergency Medicine, Aarhus University Hospital, Denmark
- Department of Medicine, Randers Regional Hospital, Denmark
| |
Collapse
|
38
|
Vidal-Calés P, Ortega-Paz L, Brugaletta S, García J, Rodés-Cabau J, Angiolillo DJ, Regueiro A, Freixa X, Abdul-Jawad O, Cepas-Guillén PL, Andrea R, de Diego O, Tizón-Marcos H, Tomás-Querol C, Gómez-Hospital JA, Carrillo X, Cárdenas M, Rojas S, Muñoz-Camacho JF, García-Picart J, Lidón RM, Sabaté M. Long-term survival after cardiac arrest in patients undergoing emergent coronary angiography. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2024; 60:18-26. [PMID: 37793964 DOI: 10.1016/j.carrev.2023.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/07/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023]
Abstract
AIM To determine long-term survival of patients after cardiac arrest undergoing emergent coronary angiography and therapeutic hypothermia. METHODS We analysed data from patients treated within the regional STEMI Network from January 2015 to December 2020. The primary endpoint was all-cause mortality at median follow-up. Secondary endpoints were periprocedural complications (arrhythmias, pulmonary edema, cardiogenic shock, mechanical complication, stent thrombosis, reinfarction, bleeding) and 6-month all-cause death. A landmark analysis was performed, studying two time periods; 0-6 months and beyond 6 months. RESULTS From a total of 24,125 patients in the regional STEMI network, 494 patients who suffered from cardiac arrest were included and divided into two groups: treated with (n = 119) and without therapeutic hypothermia (n = 375). At median follow-up (16.0 [0.2-33.3] months), there was no difference in the adjusted mortality rate between groups (51.3 % with hypothermia vs 48.0 % without hypothermia; HRadj1.08 95%CI [0.77-1.53]; p = 0.659). There was a higher frequency of bleeding in the hypothermia group (6.7 % vs 1.1 %; ORadj 7.99 95%CI [2.05-31.2]; p = 0.002), without difference for the rest of periprocedural complications. At 6-month follow-up, adjusted all-cause mortality rate was similar between groups (46.2 % with hypothermia vs 44.5 % without hypothermia; HRadj1.02 95%CI [0.71-1.47]; p = 0.900). Also, no differences were observed in the adjusted mortality rate between 6 months and median follow-up (9.4 % with hypothermia vs 6.3 % without hypothermia; HRadj2.02 95%CI [0.69-5.92]; p = 0.200). CONCLUSIONS In a large cohort of patients with cardiac arrest within a regional STEMI network, those treated with therapeutic hypothermia did not improve long-term survival compared to those without hypothermia.
Collapse
Affiliation(s)
- Pablo Vidal-Calés
- Hospital Clínic, Cardiovascular Clinic Institute, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Luis Ortega-Paz
- Division of Cardiology, University of Florida College of Medicine, Jacksonville, FL, USA
| | - Salvatore Brugaletta
- Hospital Clínic, Cardiovascular Clinic Institute, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - John García
- Hospital Clínic, Cardiovascular Clinic Institute, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Josep Rodés-Cabau
- Hospital Clínic, Cardiovascular Clinic Institute, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Dominick J Angiolillo
- Division of Cardiology, University of Florida College of Medicine, Jacksonville, FL, USA
| | - Ander Regueiro
- Hospital Clínic, Cardiovascular Clinic Institute, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Xavier Freixa
- Hospital Clínic, Cardiovascular Clinic Institute, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Omar Abdul-Jawad
- Hospital Clínic, Cardiovascular Clinic Institute, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Pedro Luis Cepas-Guillén
- Hospital Clínic, Cardiovascular Clinic Institute, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Rut Andrea
- Hospital Clínic, Cardiovascular Clinic Institute, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Oriol de Diego
- Hospital Clínic, Cardiovascular Clinic Institute, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Helena Tizón-Marcos
- Hospital del Mar, Cardiology Department, Barcelona, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, | C/ Monforte de Lemos 3-5, Pabellón, 11 | 28029, Madrid, Spain
| | | | | | - Xavier Carrillo
- Hospital German Trias i Pujol, Cardiology Deparment, Barcelona, Spain
| | | | - Sergio Rojas
- Hospital Universitari de Tarragona Joan XXIII, Cardiology Deparment, Tarragona, Spain
| | | | | | | | - Manel Sabaté
- Hospital Clínic, Cardiovascular Clinic Institute, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
| |
Collapse
|
39
|
Strömsöe A, Herlitz J. Incidence and percentage of survival after cardiac arrest outside and inside hospital: A comparison between two regions in Sweden. Resusc Plus 2024; 17:100594. [PMID: 38469565 PMCID: PMC10926284 DOI: 10.1016/j.resplu.2024.100594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Aim To compare the incidence and percentage of survival after cardiac arrest outside and inside hospital where cardiopulmonary resuscitation (CPR) had been started between two regions in Sweden in a 10-year perspective. Methods A retrospective observational study including CPR treated patients both after out-of-hospital and in-hospital cardiac arrest (OHCA and IHCA) in Sweden, 2013-2022. Data was retrieved from the Swedish Registry of Cardiopulmonary Resuscitation (SRCR). Results The overall incidence of OHCA and IHCA events were 2,940 in Dalarna (having a lower population and population density) and 16,187 in Västra Götaland (having a higher population and population density). The overall incidence of survival when OHCA and IHCA were combined was 20 per 100,000 person years in Dalarna and 19 per 100,000 person years in Västra Götaland. The corresponding result for OHCA was 9 versus 7 and for IHCA 11 versus 12. The overall percentage of survival was 20% in Dalarna and 19% in Västra Götaland. The corresponding result for OHCA was 13% versus 10% and for IHCA 37% versus 36%. Conclusion Overall, there was no marked difference neither in incidence nor in percentage of survival after cardiac arrest between the two regions. However, regarding cardiac arrest that took place outside hospital both incidence and percentage of survival was higher in Dalarna than in Västra Götaland despite the fact that the former had lower population density.
Collapse
Affiliation(s)
- A. Strömsöe
- School of Health and Welfare, Dalarna University, S-79188 Falun, Sweden
- Center for Clinical Research Dalarna, Uppsala University, S-79182 Falun, Sweden
- Department of Prehospital Care, Region of Dalarna, S-79129 Falun, Sweden
| | - J. Herlitz
- Department of Caring Science, University of Borås, S-50190 Borås, Sweden
| |
Collapse
|
40
|
Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Barone Gibbs B, Beaton AZ, Boehme AK, Commodore-Mensah Y, Currie ME, Elkind MSV, Evenson KR, Generoso G, Heard DG, Hiremath S, Johansen MC, Kalani R, Kazi DS, Ko D, Liu J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Perman SM, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Tsao CW, Urbut SM, Van Spall HGC, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Palaniappan LP. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024; 149:e347-e913. [PMID: 38264914 DOI: 10.1161/cir.0000000000001209] [Citation(s) in RCA: 182] [Impact Index Per Article: 182.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
BACKGROUND The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2024 AHA Statistical Update is the product of a full year's worth of effort in 2023 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. The AHA strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional global data, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
41
|
Okubo M, Komukai S, Andersen LW, Berg RA, Kurz MC, Morrison LJ, Callaway CW. Duration of cardiopulmonary resuscitation and outcomes for adults with in-hospital cardiac arrest: retrospective cohort study. BMJ 2024; 384:e076019. [PMID: 38325874 PMCID: PMC10847985 DOI: 10.1136/bmj-2023-076019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 02/09/2024]
Abstract
OBJECTIVE To quantify time dependent probabilities of outcomes in patients after in-hospital cardiac arrest as a function of duration of cardiopulmonary resuscitation, defined as the interval between start of chest compression and the first return of spontaneous circulation or termination of resuscitation. DESIGN Retrospective cohort study. SETTING Multicenter prospective in-hospital cardiac arrest registry in the United States. PARTICIPANTS 348 996 adult patients (≥18 years) with an index in-hospital cardiac arrest who received cardiopulmonary resuscitation from 2000 through 2021. MAIN OUTCOME MEASURES Survival to hospital discharge and favorable functional outcome at hospital discharge, defined as a cerebral performance category score of 1 (good cerebral performance) or 2 (moderate cerebral disability). Time dependent probabilities of subsequently surviving to hospital discharge or having favorable functional outcome if patients pending the first return of spontaneous circulation at each minute received further cardiopulmonary resuscitation beyond the time point were estimated, assuming that all decisions on termination of resuscitation were accurate (that is, all patients with termination of resuscitation would have invariably failed to survive if cardiopulmonary resuscitation had continued for a longer period of time). RESULTS Among 348 996 included patients, 233 551 (66.9%) achieved return of spontaneous circulation with a median interval of 7 (interquartile range 3-13) minutes between start of chest compressions and first return of spontaneous circulation, whereas 115 445 (33.1%) patients did not achieve return of spontaneous circulation with a median interval of 20 (14-30) minutes between start of chest compressions and termination of resuscitation. 78 799 (22.6%) patients survived to hospital discharge. The time dependent probabilities of survival and favorable functional outcome among patients pending return of spontaneous circulation at one minute's duration of cardiopulmonary resuscitation were 22.0% (75 645/343 866) and 15.1% (49 769/328 771), respectively. The probabilities decreased over time and were <1% for survival at 39 minutes and <1% for favorable functional outcome at 32 minutes' duration of cardiopulmonary resuscitation. CONCLUSIONS This analysis of a large multicenter registry of in-hospital cardiac arrest quantified the time dependent probabilities of patients' outcomes in each minute of duration of cardiopulmonary resuscitation. The findings provide resuscitation teams, patients, and their surrogates with insights into the likelihood of favorable outcomes if patients pending the first return of spontaneous circulation continue to receive further cardiopulmonary resuscitation.
Collapse
Affiliation(s)
- Masashi Okubo
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Sho Komukai
- Division of Biomedical Statistics, Department of Integrated Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Lars W Andersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
- Prehospital Emergency Medical Services, Central Denmark Region, Denmark
| | - Robert A Berg
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael C Kurz
- Section of Emergency Medicine, Department of Medicine, University of Chicago School of Medicine, Chicago, IL, USA
| | - Laurie J Morrison
- Division of Emergency Medicine, Department of Medicine, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Clifton W Callaway
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
42
|
Silverplats J, Äng B, Källestedt MLS, Strömsöe A. Incidence and case ascertainment of treated in-hospital cardiac arrest events in a national quality registry - A comparison of reported and non-reported events. Resuscitation 2024; 195:110119. [PMID: 38244762 DOI: 10.1016/j.resuscitation.2024.110119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Approximately 2500 in-hospital cardiac arrest (IHCA) events are reported annually to the Swedish Registry of Cardiopulmonary Resuscitation (SRCR) with an estimated incidence of 1.7/1000 hospital admissions. The aim of this study was to evaluate the compliance in reporting IHCA events to the SRCR and to compare reported IHCA events with possible non-reported events, and to estimate IHCA incidence. METHODS Fifteen diagnose codes, eight Classification of Care Measure codes, and two perioperative complication codes were used to find all treated IHCAs in 2018-2019 at six hospitals of varying sizes and resources. All identified IHCA events were cross-checked against the SRCR using personal identity numbers. All non-reported IHCA events were retrospectively reported and compared with the prospectively reported events. RESULTS A total of 3638 hospital medical records were reviewed and 1109 IHCA events in 999 patients were identified, with 254 of the events not found in the SRCR. The case completeness was 77% (range 55-94%). IHCA incidence was 2.9/1000 hospital admissions and 12.4/1000 admissions to intensive care units. The retrospectively reported events were more often found on monitored wards, involved patients who were younger, had less comorbidity, were often found in shockable rhythm and more often achieved sustained spontaneous circulation, compared with in prospectively reported events. CONCLUSION IHCA case completeness in the SRCR was 77% and IHCA incidence was 2.9/1000 hospital admissions. The retrospectively reported IHCA events were found in monitored areas where the rapid response team was not alerted, which might have affected regular reporting procedures.
Collapse
Affiliation(s)
- Jennie Silverplats
- Department of Health and Welfare, Dalarna University, SE-79188 Falun, Sweden; Department of Anaesthesiology and Intensive Care, Region Dalarna, SE-79285 Mora, Sweden.
| | - Björn Äng
- Department of Health and Welfare, Dalarna University, SE-79188 Falun, Sweden; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, SE-14186 Huddinge, Sweden; Center for Clinical Research Dalarna, Uppsala University, SE-79182 Falun, Sweden.
| | - Marie-Louise Södersved Källestedt
- Centre for Clinical Research Västmanland, Uppsala University, Affiliated with Mälardalen University, Sweden, SE-72189 Västerås, Sweden.
| | - Anneli Strömsöe
- Department of Health and Welfare, Dalarna University, SE-79188 Falun, Sweden; Center for Clinical Research Dalarna, Uppsala University, SE-79182 Falun, Sweden; Department of Prehospital Care, Region Dalarna, SE-79129 Falun, Sweden.
| |
Collapse
|
43
|
Slovis JC, Bach A, Beaulieu F, Zuckerberg G, Topjian A, Kirschen MP. Neuromonitoring after Pediatric Cardiac Arrest: Cerebral Physiology and Injury Stratification. Neurocrit Care 2024; 40:99-115. [PMID: 37002474 PMCID: PMC10544744 DOI: 10.1007/s12028-023-01685-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 01/30/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Significant long-term neurologic disability occurs in survivors of pediatric cardiac arrest, primarily due to hypoxic-ischemic brain injury. Postresuscitation care focuses on preventing secondary injury and the pathophysiologic cascade that leads to neuronal cell death. These injury processes include reperfusion injury, perturbations in cerebral blood flow, disturbed oxygen metabolism, impaired autoregulation, cerebral edema, and hyperthermia. Postresuscitation care also focuses on early injury stratification to allow clinicians to identify patients who could benefit from neuroprotective interventions in clinical trials and enable targeted therapeutics. METHODS In this review, we provide an overview of postcardiac arrest pathophysiology, explore the role of neuromonitoring in understanding postcardiac arrest cerebral physiology, and summarize the evidence supporting the use of neuromonitoring devices to guide pediatric postcardiac arrest care. We provide an in-depth review of the neuromonitoring modalities that measure cerebral perfusion, oxygenation, and function, as well as neuroimaging, serum biomarkers, and the implications of targeted temperature management. RESULTS For each modality, we provide an in-depth review of its impact on treatment, its ability to stratify hypoxic-ischemic brain injury severity, and its role in neuroprognostication. CONCLUSION Potential therapeutic targets and future directions are discussed, with the hope that multimodality monitoring can shift postarrest care from a one-size-fits-all model to an individualized model that uses cerebrovascular physiology to reduce secondary brain injury, increase accuracy of neuroprognostication, and improve outcomes.
Collapse
Affiliation(s)
- Julia C Slovis
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood - 6105, Philadelphia, PA, 19104, USA.
| | - Ashley Bach
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood - 6105, Philadelphia, PA, 19104, USA
| | - Forrest Beaulieu
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood - 6105, Philadelphia, PA, 19104, USA
| | - Gabe Zuckerberg
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood - 6105, Philadelphia, PA, 19104, USA
| | - Alexis Topjian
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood - 6105, Philadelphia, PA, 19104, USA
| | - Matthew P Kirschen
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood - 6105, Philadelphia, PA, 19104, USA
| |
Collapse
|
44
|
Federman M, Sutton RM, Reeder RW, Ahmed T, Bell MJ, Berg RA, Bishop R, Bochkoris M, Burns C, Carcillo JA, Carpenter TC, Dean JM, Diddle JW, Fernandez R, Fink EL, Franzon D, Frazier AH, Friess SH, Graham K, Hall M, Hehir DA, Horvat CM, Huard LL, Kirkpatrick T, Maa T, Maitoza LA, Manga A, McQuillen PS, Meert KL, Morgan RW, Mourani PM, Nadkarni VM, Notterman D, Palmer CA, Pollack MM, Sapru A, Schneiter C, Sharron MP, Srivastava N, Tilford B, Viteri S, Wessel D, Wolfe HA, Yates AR, Zuppa AF, Naim MY. Survival With Favorable Neurologic Outcome and Quality of Cardiopulmonary Resuscitation Following In-Hospital Cardiac Arrest in Children With Cardiac Disease Compared With Noncardiac Disease. Pediatr Crit Care Med 2024; 25:4-14. [PMID: 37678381 PMCID: PMC10843749 DOI: 10.1097/pcc.0000000000003368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
OBJECTIVES To assess associations between outcome and cardiopulmonary resuscitation (CPR) quality for in-hospital cardiac arrest (IHCA) in children with medical cardiac, surgical cardiac, or noncardiac disease. DESIGN Secondary analysis of a multicenter cluster randomized trial, the ICU-RESUScitation Project (NCT02837497, 2016-2021). SETTING Eighteen PICUs. PATIENTS Children less than or equal to 18 years old and greater than or equal to 37 weeks postconceptual age receiving chest compressions (CC) of any duration during the study. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Of 1,100 children with IHCA, there were 273 medical cardiac (25%), 383 surgical cardiac (35%), and 444 noncardiac (40%) cases. Favorable neurologic outcome was defined as no more than moderate disability or no worsening from baseline Pediatric Cerebral Performance Category at discharge. The medical cardiac group had lower odds of survival with favorable neurologic outcomes compared with the noncardiac group (48% vs 55%; adjusted odds ratio [aOR] [95% CI], aOR 0.59 [95% CI, 0.39-0.87], p = 0.008) and surgical cardiac group (48% vs 58%; aOR 0.64 [95% CI, 0.45-0.9], p = 0.01). We failed to identify a difference in favorable outcomes between surgical cardiac and noncardiac groups. We also failed to identify differences in CC rate, CC fraction, ventilation rate, intra-arrest average target diastolic or systolic blood pressure between medical cardiac versus noncardiac, and surgical cardiac versus noncardiac groups. The surgical cardiac group had lower odds of achieving target CC depth compared to the noncardiac group (OR 0.15 [95% CI, 0.02-0.52], p = 0.001). We failed to identify a difference in the percentage of patients achieving target CC depth when comparing medical cardiac versus noncardiac groups. CONCLUSIONS In pediatric IHCA, medical cardiac patients had lower odds of survival with favorable neurologic outcomes compared with noncardiac and surgical cardiac patients. We failed to find differences in CPR quality between medical cardiac and noncardiac patients, but there were lower odds of achieving target CC depth in surgical cardiac compared to noncardiac patients.
Collapse
Affiliation(s)
- Myke Federman
- Department of Pediatrics, Mattel Children’s Hospital, University of California Los Angeles, Los Angeles, CA, USA
| | - Robert M Sutton
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Ron W Reeder
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Tageldin Ahmed
- Department of Pediatrics, Children’s Hospital of Michigan, Central Michigan University, Detroit, MI, USA
| | - Michael J Bell
- Department of Pediatrics, Children’s National Hospital, George Washington University School of Medicine, Washington, DC, USA
| | - Robert A Berg
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Bishop
- Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO, USA
| | - Matthew Bochkoris
- Department of Critical Care Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Candice Burns
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI, USA
| | - Joseph A Carcillo
- Department of Critical Care Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Todd C Carpenter
- Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO, USA
| | - J Michael Dean
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - J Wesley Diddle
- Department of Pediatrics, Children’s National Hospital, George Washington University School of Medicine, Washington, DC, USA
| | - Richard Fernandez
- Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University, Columbus, OH, USA
| | - Ericka L Fink
- Department of Critical Care Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Deborah Franzon
- Department of Pediatrics, Benioff Children’s Hospital, University of California, San Francisco, San Francisco, CA, USA
| | - Aisha H Frazier
- Nemours Cardiac Center, Nemours Children’s Hospital, Delaware, Wilmington, DE, USA
- Department of Pediatrics, Sidney Kimmel Medical College, Thomas Jefferson University, St. Louis, MO, USA
| | - Stuart H Friess
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathryn Graham
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Hall
- Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University, Columbus, OH, USA
| | - David A Hehir
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher M Horvat
- Department of Critical Care Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leanna L Huard
- Department of Pediatrics, Mattel Children’s Hospital, University of California Los Angeles, Los Angeles, CA, USA
| | - Theresa Kirkpatrick
- Department of Pediatrics, Mattel Children’s Hospital, University of California Los Angeles, Los Angeles, CA, USA
| | - Tensing Maa
- Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University, Columbus, OH, USA
| | - Laura A Maitoza
- Department of Pediatrics, Mattel Children’s Hospital, University of California Los Angeles, Los Angeles, CA, USA
| | - Arushi Manga
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Patrick S McQuillen
- Department of Pediatrics, Benioff Children’s Hospital, University of California, San Francisco, San Francisco, CA, USA
| | - Kathleen L Meert
- Department of Pediatrics, Children’s Hospital of Michigan, Central Michigan University, Detroit, MI, USA
| | - Ryan W Morgan
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter M Mourani
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children’s Hospital, Little Rock, AR, USA
| | - Vinay M Nadkarni
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Notterman
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Chella A Palmer
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Murray M Pollack
- Department of Pediatrics, Children’s National Hospital, George Washington University School of Medicine, Washington, DC, USA
| | - Anil Sapru
- Department of Pediatrics, Mattel Children’s Hospital, University of California Los Angeles, Los Angeles, CA, USA
| | - Carleen Schneiter
- Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO, USA
| | - Matthew P Sharron
- Department of Pediatrics, Children’s National Hospital, George Washington University School of Medicine, Washington, DC, USA
| | - Neeraj Srivastava
- Department of Pediatrics, Mattel Children’s Hospital, University of California Los Angeles, Los Angeles, CA, USA
| | - Bradley Tilford
- Department of Pediatrics, Children’s Hospital of Michigan, Central Michigan University, Detroit, MI, USA
| | - Shirley Viteri
- Department of Pediatrics, Nemours Children’s Hospital, Delaware and Thomas Jefferson University, Wilmington, DE, USA
| | - David Wessel
- Department of Pediatrics, Children’s National Hospital, George Washington University School of Medicine, Washington, DC, USA
| | - Heather A Wolfe
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew R Yates
- Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University, Columbus, OH, USA
| | - Athena F Zuppa
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Maryam Y Naim
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
45
|
Zinna SS, Morgan RW, Reeder RW, Ahmed T, Bell MJ, Bishop R, Bochkoris M, Burns C, Carcillo JA, Carpenter TC, Cooper KK, Michael Dean J, Wesley Diddle J, Federman M, Fernandez R, Fink EL, Franzon D, Frazier AH, Friess SH, Graham K, Hall M, Harding ML, Hehir DA, Horvat CM, Huard LL, Landis WP, Maa T, Manga A, McQuillen PS, Meert KL, Mourani PM, Nadkarni VM, Naim MY, Notterman D, Pollack MM, Sapru A, Schneiter C, Sharron MP, Srivastava N, Tilford B, Viteri S, Wessel D, Wolfe HA, Yates AR, Zuppa AF, Berg RA, Sutton RM. Chest compressions for pediatric organized rhythms: A hemodynamic and outcomes analysis. Resuscitation 2024; 194:110068. [PMID: 38052273 PMCID: PMC10843614 DOI: 10.1016/j.resuscitation.2023.110068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
AIM Pediatric cardiopulmonary resuscitation (CPR) guidelines recommend starting CPR for heart rates (HRs) less than 60 beats per minute (bpm) with poor perfusion. Objectives were to (1) compare HRs and arterial blood pressures (BPs) prior to CPR among patients with clinician-reported bradycardia with poor perfusion ("BRADY") vs. pulseless electrical activity (PEA); and (2) determine if hemodynamics prior to CPR are associated with outcomes. METHODS AND RESULTS Prospective observational cohort study performed as a secondary analysis of the ICU-RESUScitation trial (NCT028374497). Comparisons occurred (1) during the 15 seconds "immediately" prior to CPR and (2) over the two minutes prior to CPR, stratified by age (≤1 year, >1 year). Poisson regression models assessed associations between hemodynamics and outcomes. Primary outcome was return of spontaneous circulation (ROSC). Pre-CPR HRs were lower in BRADY vs. PEA (≤1 year: 63.8 [46.5, 87.0] min-1 vs. 120 [93.2, 150.0], p < 0.001; >1 year: 67.4 [54.5, 87.0] min-1 vs. 100 [66.7, 120], p < 0.014). Pre-CPR pulse pressure was higher among BRADY vs. PEA (≤1 year (12.9 [9.0, 28.5] mmHg vs. 10.4 [6.1, 13.4] mmHg, p > 0.001). Pre-CPR pulse pressure ≥ 20 mmHg was associated with higher rates of ROSC among PEA (aRR 1.58 [CI95 1.07, 2.35], p = 0.022) and survival to hospital discharge with favorable neurologic outcome in both groups (BRADY: aRR 1.28 [CI95 1.01, 1.62], p = 0.040; PEA: aRR 1.94 [CI95 1.19, 3.16], p = 0.008). Pre-CPR HR ≥ 60 bpm was not associated with outcomes. CONCLUSIONS Pulse pressure and HR are used clinically to differentiate BRADY from PEA. A pre-CPR pulse pressure >20 mmHg was associated with improved patient outcomes.
Collapse
Affiliation(s)
- Shairbanu S Zinna
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan W Morgan
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Ron W Reeder
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Tageldin Ahmed
- Department of Pediatrics, Children's Hospital of Michigan, Central Michigan University, Detroit, MI, USA
| | - Michael J Bell
- Department of Pediatrics, Children's National Hospital, George Washington University School of Medicine, Washington, DC, USA
| | - Robert Bishop
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Matthew Bochkoris
- Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Candice Burns
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI, USA
| | - Joseph A Carcillo
- Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Todd C Carpenter
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Kellimarie K Cooper
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - J Michael Dean
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - J Wesley Diddle
- Department of Pediatrics, Children's National Hospital, George Washington University School of Medicine, Washington, DC, USA
| | - Myke Federman
- Department of Pediatrics, Mattel Children's Hospital, University of California Los Angeles, Los Angeles, CA, USA
| | - Richard Fernandez
- Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Ericka L Fink
- Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Deborah Franzon
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, USA
| | - Aisha H Frazier
- Nemours Cardiac Center, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Pediatrics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Stuart H Friess
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathryn Graham
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Hall
- Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Monica L Harding
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - David A Hehir
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher M Horvat
- Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leanna L Huard
- Department of Pediatrics, Mattel Children's Hospital, University of California Los Angeles, Los Angeles, CA, USA
| | - William P Landis
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Tensing Maa
- Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Arushi Manga
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Patrick S McQuillen
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, USA
| | - Kathleen L Meert
- Department of Pediatrics, Children's Hospital of Michigan, Central Michigan University, Detroit, MI, USA
| | - Peter M Mourani
- University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, AR, USA
| | - Vinay M Nadkarni
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Maryam Y Naim
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Notterman
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Murray M Pollack
- Department of Pediatrics, Children's National Hospital, George Washington University School of Medicine, Washington, DC, USA
| | - Anil Sapru
- Department of Pediatrics, Mattel Children's Hospital, University of California Los Angeles, Los Angeles, CA, USA
| | - Carleen Schneiter
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Matthew P Sharron
- Department of Pediatrics, Children's National Hospital, George Washington University School of Medicine, Washington, DC, USA
| | - Neeraj Srivastava
- Department of Pediatrics, Mattel Children's Hospital, University of California Los Angeles, Los Angeles, CA, USA
| | - Bradley Tilford
- Department of Pediatrics, Children's Hospital of Michigan, Central Michigan University, Detroit, MI, USA
| | - Shirley Viteri
- Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children and Thomas Jefferson University, Wilmington, DE, USA
| | - David Wessel
- Department of Pediatrics, Children's National Hospital, George Washington University School of Medicine, Washington, DC, USA
| | - Heather A Wolfe
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew R Yates
- Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Athena F Zuppa
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert A Berg
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert M Sutton
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
46
|
Smith D, Kenigsberg BB. Management of Patients After Cardiac Arrest. Crit Care Clin 2024; 40:57-72. [PMID: 37973357 DOI: 10.1016/j.ccc.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Cardiac arrest remains a significant cause of morbidity and mortality, although contemporary care now enables potential survival with good neurologic outcome. The core acute management goals for survivors of cardiac arrest are to provide organ support, sustain adequate hemodynamics, and evaluate the underlying cause of the cardiac arrest. In this article, the authors review the current state of knowledge and clinical intensive care unit practice recommendations for patients after cardiac arrest, particularly focusing on important areas of uncertainty, such as targeted temperature management, neuroprognostication, coronary evaluation, and hemodynamic targets.
Collapse
Affiliation(s)
- Damien Smith
- Department of Medicine, MedStar Washington Hospital Center, 110 Irving Street Northwest, Washington, DC 20010, USA
| | - Benjamin B Kenigsberg
- Department of Critical Care, MedStar Washington Hospital Center, 110 Irving Street Northwest, Washington, DC 20010, USA; Division of Cardiology, MedStar Washington Hospital Center, 110 Irving Street Northwest, Washington, DC 20010, USA.
| |
Collapse
|
47
|
Ushpol A, Je S, Niles D, Majmudar T, Kirschen M, Del Castillo J, Buysse C, Topjian A, Nadkarni V, Gangadharan S. Association of blood pressure with neurologic outcome at hospital discharge after pediatric cardiac arrest resuscitation. Resuscitation 2024; 194:110066. [PMID: 38056760 PMCID: PMC11024592 DOI: 10.1016/j.resuscitation.2023.110066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Poor outcomes are associated with post cardiac arrest blood pressures <5th percentile for age. We aimed to study the relationship of mean arterial pressure (MAP) with favorable neurologic outcome following cardiac arrest and return of spontaneous circulation (ROSC). METHODS This retrospective, multi-center, observational study analyzed data from the Pediatric Resuscitation Quality Collaborative (pediRES-Q). Children (<18 years) who achieved ROSC following index in-hospital or out-of-hospital cardiac arrest and survived ≥6 hours were included. Lowest documented MAP within the first 6 hours of ROSC was percentile adjusted for age and categorized into six groups - Group I: <5th, II: 5-24th, III: 25-49th, IV: 50-74th, V: 75-94th; and VI: 95-100th percentile. Primary outcome was favorable neurologic status at hospital discharge, defined as PCPC score 1, 2, or no change from pre-arrest baseline. Multivariable logistic regression was performed to analyze the association of MAP group with favorable outcome, controlling for illness category (surgical-cardiac), initial rhythm (shockable), arrest time (weekend or overnight), age, CPR duration, and clustering by site. RESULTS 787 patients were included: median [Q1,Q3] age 17.9 [4.8,90.6] months; male 58%; OHCA 21%; shockable rhythm 13%; CPR duration 7 [3,16] min; favorable neurologic outcome 54%. Median lowest documented MAP percentile for the favorable outcome group was 13 [3,43] versus 8 [1,37] for the unfavorable group. The distribution of blood pressures by MAP group was I: 37%, II: 28%, III: 13%, IV: 11%, V: 7%, and VI: 4%. Compared with patients in Group I (<5%ile), Groups II, III, and IV had higher odds of favorable outcome (aOR, 1.84 [95% CI, 1.24, 2.73]; 2.20 [95% CI, 1.32, 3.68]; 1.90 [95% CI, 1.12, 3.25]). There was no association between Groups V or VI and favorable outcome (aOR, 1.44 [95% CI, 0.75, 2.80]; 1.11 [95% CI, 0.47, 2.59]). CONCLUSION In the first 6-hours post-ROSC, a lowest documented MAP between the 5th-74th percentile for age was associated with favorable neurologic outcome compared to MAP <5th percentile for age.
Collapse
Affiliation(s)
- A Ushpol
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.
| | - S Je
- Departments of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - D Niles
- Departments of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - T Majmudar
- Drexel University College of Medicine, 2900 W Queen Ln, Philadelphia, PA 19129, USA
| | - M Kirschen
- Departments of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - J Del Castillo
- Unidad de Cuidados Intensivos Pediátricos, Hospital General Universitario Gregorio Marañón, C. del Dr. Esquerdo, 46, 28007 Madrid, Spain
| | - C Buysse
- Intensive Care and Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - A Topjian
- Departments of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - V Nadkarni
- Departments of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - S Gangadharan
- Department of Pediatrics, Division of Critical Care Medicine, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, 1184 5th Ave, New York, NY 10029, USA
| |
Collapse
|
48
|
Thiagarajan RR. Quality of Cardiopulmonary Resuscitation in Children With Cardiac and Noncardiac Disease: Comparing Apples and Oranges? Pediatr Crit Care Med 2024; 25:72-73. [PMID: 38169337 DOI: 10.1097/pcc.0000000000003399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Affiliation(s)
- Ravi R Thiagarajan
- Division of Cardiovascular Critical Care, Department of Cardiology, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| |
Collapse
|
49
|
Agha-Mir-Salim L, McCullum L, Dähnert E, Scheel YD, Wilson A, Carpio M, Chan C, Lo C, Maher L, Dressler C, Balzer F, Celi LA, Poncette AS, Pelter MM. Interdisciplinary collaboration in critical care alarm research: A bibliometric analysis. Int J Med Inform 2024; 181:105285. [PMID: 37977055 DOI: 10.1016/j.ijmedinf.2023.105285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/30/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Alarm fatigue in nurses is a major patient safety concern in the intensive care unit. This is caused by exposure to high rates of false and non-actionable alarms. Despite decades of research, the problem persists, leading to stress, burnout, and patient harm resulting from true missed events. While engineering approaches to reduce false alarms have spurred hope, they appear to lack collaboration between nurses and engineers to produce real-world solutions. The aim of this bibliometric analysis was to examine the relevant literature to quantify the level of authorial collaboration between nurses, physicians, and engineers. METHODS We conducted a bibliometric analysis of articles on alarm fatigue and false alarm reduction strategies in critical care published between 2010 and 2022. Data were extracted at the article and author level. The percentages of author disciplines per publication were calculated by study design, journal subject area, and other article-level factors. RESULTS A total of 155 articles with 583 unique authors were identified. While 31.73 % (n = 185) of the unique authors had a nursing background, publications using an engineering study design (n = 46), e.g., model development, had a very low involvement of nursing authors (mean proportion at 1.09 %). Observational studies (n = 58) and interventional studies (n = 33) had a higher mean involvement of 52.27 % and 47.75 %, respectively. Articles published in nursing journals (n = 32) had the highest mean proportion of nursing authors (80.32 %), while those published in engineering journals (n = 46) had the lowest (9.00 %), with 6 (13.04 %) articles having one or more nurses as co-authors. CONCLUSION Minimal involvement of nursing expertise in alarm research utilizing engineering methodologies may be one reason for the lack of successful, real-world solutions to ameliorate alarm fatigue. Fostering a collaborative, interdisciplinary research culture can promote a common publication culture across fields and may yield sustainable implementation of technological solutions in healthcare.
Collapse
Affiliation(s)
- Louis Agha-Mir-Salim
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Lucas McCullum
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Enrico Dähnert
- Hospital Management, Nursing Directorate, Practice Development and Nursing Science, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yanick-Daniel Scheel
- Hospital Management, Nursing Directorate, Practice Development and Nursing Science, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ainsley Wilson
- Department of Nursing, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Marianne Carpio
- Medical Intensive Care Unit, Boston Children's Hospital, Boston, MA, USA
| | - Carmen Chan
- School of Nursing and Health Professions, University of San Francisco, San Francisco, CA, USA
| | - Claudia Lo
- School of Nursing and Health Professions, University of San Francisco, San Francisco, CA, USA; Department of Business Analytics and Information Systems, School of Management, University of San Francisco, San Francisco, CA, USA
| | - Lindsay Maher
- School of Nursing and Health Professions, University of San Francisco, San Francisco, CA, USA
| | - Corinna Dressler
- Medical Library, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Felix Balzer
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leo Anthony Celi
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Akira-Sebastian Poncette
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michele M Pelter
- Department of Physiological Nursing, University of California San Francisco School of Nursing, San Francisco, CA, USA
| |
Collapse
|
50
|
Ding X, Wang Y, Ma W, Peng Y, Huang J, Wang M, Zhu H. Development of early prediction model of in-hospital cardiac arrest based on laboratory parameters. Biomed Eng Online 2023; 22:116. [PMID: 38057823 DOI: 10.1186/s12938-023-01178-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND In-hospital cardiac arrest (IHCA) is an acute disease with a high fatality rate that burdens individuals, society, and the economy. This study aimed to develop a machine learning (ML) model using routine laboratory parameters to predict the risk of IHCA in rescue-treated patients. METHODS This retrospective cohort study examined all rescue-treated patients hospitalized at the First Medical Center of the PLA General Hospital in Beijing, China, from January 2016 to December 2020. Five machine learning algorithms, including support vector machine, random forest, extra trees classifier (ETC), decision tree, and logistic regression algorithms, were trained to develop models for predicting IHCA. We included blood counts, biochemical markers, and coagulation markers in the model development. We validated model performance using fivefold cross-validation and used the SHapley Additive exPlanation (SHAP) for model interpretation. RESULTS A total of 11,308 participants were included in the study, of which 7779 patients remained. Among these patients, 1796 (23.09%) cases of IHCA occurred. Among five machine learning models for predicting IHCA, the ETC algorithm exhibited better performance, with an AUC of 0.920, compared with the other four machine learning models in the fivefold cross-validation. The SHAP showed that the top ten factors accounting for cardiac arrest in rescue-treated patients are prothrombin activity, platelets, hemoglobin, N-terminal pro-brain natriuretic peptide, neutrophils, prothrombin time, serum albumin, sodium, activated partial thromboplastin time, and potassium. CONCLUSIONS We developed a reliable machine learning-derived model that integrates readily available laboratory parameters to predict IHCA in patients treated with rescue therapy.
Collapse
Affiliation(s)
- Xinhuan Ding
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Emergency, The First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Beijing, 100853, People's Republic of China
| | - Yingchan Wang
- Department of Emergency, The First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Beijing, 100853, People's Republic of China
| | - Weiyi Ma
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Emergency, The First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Beijing, 100853, People's Republic of China
| | - Yaojun Peng
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Emergency, The First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Beijing, 100853, People's Republic of China
| | - Jingjing Huang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China
- Department of Emergency, Hainan Hospital of PLA General Hospital, Sanya, 572013, Hainan, China
| | - Meng Wang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Emergency, The First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Beijing, 100853, People's Republic of China
| | - Haiyan Zhu
- Medical School of Chinese PLA, Beijing, 100853, China.
- Department of Emergency, The First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Beijing, 100853, People's Republic of China.
| |
Collapse
|