1
|
Aluja D, Delgado-Tomás S, Barrabés JA, Miró-Casas E, Ruiz-Meana M, Rodríguez-Sinovas A, Benito B, Wang J, Song LS, Ferreira-González I, Inserte J. Efficacy of a cysteine protease inhibitor compared with enalapril in murine heart failure models. iScience 2024; 27:110935. [PMID: 39381741 PMCID: PMC11458958 DOI: 10.1016/j.isci.2024.110935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/29/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Cysteine proteases calpains contribute to heart failure (HF), but it remains unknown whether their inhibition provides any benefit compared to standard pharmacological treatment for HF. Here, we characterize the pharmacological properties of NPO-2270 (NPO) as a potent inhibitor of cysteine proteases. Then, we describe that acute administration of NPO in rodent models of transient ischemia at the time of reperfusion reduces myocardial infarction, while its chronic oral administration attenuates adverse remodeling and cardiac dysfunction induced by ischemic and non-ischemic pathological stimuli more effectively than enalapril when given at the same dose. Finally, we provide evidence showing that the effects of NPO correlate with calpain inhibition and the preservation of the T-tubule morphology, due at least in part to reduced cleavage of the calpain substrate junctophilin-2. Together, our data highlight the potential of cysteine protease inhibition with NPO as a therapeutic strategy for the treatment of heart failure.
Collapse
Affiliation(s)
- David Aluja
- Cardiovascular Diseases Research Group, Vall d’Hebron University Hospital and Research Institute, 08035 Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Sara Delgado-Tomás
- Cardiovascular Diseases Research Group, Vall d’Hebron University Hospital and Research Institute, 08035 Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jose A. Barrabés
- Cardiovascular Diseases Research Group, Vall d’Hebron University Hospital and Research Institute, 08035 Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Elisabet Miró-Casas
- Cardiovascular Diseases Research Group, Vall d’Hebron University Hospital and Research Institute, 08035 Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Marisol Ruiz-Meana
- Cardiovascular Diseases Research Group, Vall d’Hebron University Hospital and Research Institute, 08035 Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Antonio Rodríguez-Sinovas
- Cardiovascular Diseases Research Group, Vall d’Hebron University Hospital and Research Institute, 08035 Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Begoña Benito
- Cardiovascular Diseases Research Group, Vall d’Hebron University Hospital and Research Institute, 08035 Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Jinxi Wang
- Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Long-Sheng Song
- Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Ignacio Ferreira-González
- Cardiovascular Diseases Research Group, Vall d’Hebron University Hospital and Research Institute, 08035 Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Javier Inserte
- Cardiovascular Diseases Research Group, Vall d’Hebron University Hospital and Research Institute, 08035 Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| |
Collapse
|
2
|
Pasupureddy R, Verma S, Goyal B, Pant A, Sharma R, Bhatt S, Vashisht K, Singh S, Saxena AK, Dixit R, Chakraborti S, Pandey KC. Understanding the complex formation of falstatin; an endogenous macromolecular inhibitor of falcipains. Int J Biol Macromol 2024; 265:130420. [PMID: 38460641 DOI: 10.1016/j.ijbiomac.2024.130420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/17/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
Proteolytic activity constitutes a fundamental process essential for the survival of the malaria parasite and is thus highly regulated. Falstatin, a protease inhibitor of Plasmodium falciparum, tightly regulates the activity of cysteine hemoglobinases, falcipain-2 and 3 (FP2, FP3), by inhibiting FP2 through a single surface exposed loop. However, the multimeric nature of falstatin and its interaction with FP2 remained unexplored. Here we report that the N-terminal falstatin region is highly disordered, and needs chaperone activity (heat-shock protein 70, HSP70) for its folding. Protein-protein interaction assays showed a significant interaction between falstatin and HSP70. Further, characterization of the falstatin multimer through a series of biophysical techniques identified the formation of a falstatin decamer, which was extremely thermostable. Computational analysis of the falstatin decamer showed the presence of five falstatin dimers, with each dimer aligned in a head-to-tail orientation. Further, the falstatin C-terminal region was revealed to be primarily involved in the oligomerization process. Stoichiometric analysis of the FP2-falstatin multimer showed the formation of a heterooligomeric complex in a 1:1 ratio, with the participation of ten subunits of each protein. Taken together, our results report a novel protease-inhibitor complex and strengthens our understanding of the regulatory mechanisms of major plasmodium hemoglobinases.
Collapse
Affiliation(s)
- Rahul Pasupureddy
- Parasite-Host Biology Group, ICMR National Institute of Malaria Research, New Delhi, India.
| | - Sonia Verma
- Parasite-Host Biology Group, ICMR National Institute of Malaria Research, New Delhi, India; Department of Biotechnology, Noida Institute of Engineering & Technology, UP, India
| | - Bharti Goyal
- Parasite-Host Biology Group, ICMR National Institute of Malaria Research, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| | - Akansha Pant
- Parasite-Host Biology Group, ICMR National Institute of Malaria Research, New Delhi, India
| | - Ruby Sharma
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shruti Bhatt
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India.
| | - Kapil Vashisht
- Parasite-Host Biology Group, ICMR National Institute of Malaria Research, New Delhi, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| | - Ajay K Saxena
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| | - Rajnikant Dixit
- Parasite-Host Biology Group, ICMR National Institute of Malaria Research, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India.
| | - Soumyananda Chakraborti
- Parasite-Host Biology Group, ICMR National Institute of Malaria Research, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India.
| | - Kailash C Pandey
- Parasite-Host Biology Group, ICMR National Institute of Malaria Research, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India.
| |
Collapse
|
3
|
Salemkour Y, Yildiz D, Dionet L, ‘t Hart DC, Verheijden KA, Saito R, Mahtal N, Delbet JD, Letavernier E, Rabant M, Karras A, van der Vlag J, Nijenhuis T, Tharaux PL, Lenoir O. Podocyte Injury in Diabetic Kidney Disease in Mouse Models Involves TRPC6-mediated Calpain Activation Impairing Autophagy. J Am Soc Nephrol 2023; 34:1823-1842. [PMID: 37678257 PMCID: PMC10631601 DOI: 10.1681/asn.0000000000000212] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 09/09/2023] Open
Abstract
SIGNIFICANCE STATEMENT Autophagy protects podocytes from injury in diabetic kidney disease (DKD). Restoring glomerular autophagy is a promising approach to limit DKD. This study demonstrates a novel regulatory mechanism of autophagy that blocks this critical protection of the glomerular filtration barrier. We demonstrated that TRPC6 induced in podocytes in mouse models of diabetes mediates calpain activation, thereby impairing podocyte autophagy, causing injury and accelerating DKD. Furthermore, this study provides proof of principle for druggable targets for DKD because restoration of podocyte autophagy by calpain inhibitors effectively limits glomerular destruction. BACKGROUND Diabetic kidney disease is associated with impaired podocyte autophagy and subsequent podocyte injury. The regulation of podocyte autophagy is unique because it minimally uses the mTOR and AMPK pathways. Thus, the molecular mechanisms underlying the impaired autophagy in podocytes in diabetic kidney disease remain largely elusive. METHODS This study investigated how the calcium channel TRPC6 and the cysteine protease calpains deleteriously affect podocyte autophagy in diabetic kidney disease in mice. We demonstrated that TRPC6 knockdown in podocytes increased the autophagic flux because of decreased cysteine protease calpain activity. Diabetic kidney disease was induced in vivo using streptozotocin with unilateral nephrectomy and the BTBR ob/ob mouse models. RESULTS Diabetes increased TRPC6 expression in podocytes in vivo with decreased podocyte autophagic flux. Transgenic overexpression of the endogenous calpain inhibitor calpastatin, as well as pharmacologic inhibition of calpain activity, normalized podocyte autophagic flux, reduced nephrin loss, and prevented the development of albuminuria in diabetic mice. In kidney biopsies from patients with diabetes, we further confirmed that TRPC6 overexpression in podocytes correlates with decreased calpastatin expression, autophagy blockade, and podocyte injury. CONCLUSIONS Overall, we discovered a new mechanism that connects TRPC6 and calpain activity to impaired podocyte autophagy, increased podocyte injury, and development of proteinuria in the context of diabetic kidney disease. Therefore, targeting TRPC6 and/or calpain to restore podocyte autophagy might be a promising therapeutic strategy for diabetic kidney disease.
Collapse
Affiliation(s)
| | - Dilemin Yildiz
- Department of Nephrology, Research Institute of Medical Innovations, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Léa Dionet
- Université Paris Cité, Inserm, PARCC, Paris, France
| | - Daan C. ‘t Hart
- Department of Nephrology, Research Institute of Medical Innovations, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Kim A.T. Verheijden
- Department of Nephrology, Research Institute of Medical Innovations, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ryuta Saito
- Discovery Technology Laboratories, Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | | | - Jean-Daniel Delbet
- Université Paris Cité, Inserm, PARCC, Paris, France
- Pediatric Nephrology Department, Armand Trousseau Hospital, DMU Origyne, APHP, Paris and French Reference Center for Rare Diseases MARHEA, Paris, France
| | - Emmanuel Letavernier
- Sorbonne Université, Hôpital Tenon, Paris, France
- INSERM UMR S 1155, Hôpital Tenon, Paris, France
- Explorations Fonctionnelles Multidisciplinaires, AP-HP, Hôpital Tenon, Paris, France
| | - Marion Rabant
- Pathology Department, Necker-Enfants Malades Hospital - Paris, Paris, France
| | - Alexandre Karras
- Université Paris Cité, Inserm, PARCC, Paris, France
- Nephrology Unit, Georges Pompidou European Hospital - Paris, Paris, France
| | - Johan van der Vlag
- Department of Nephrology, Research Institute of Medical Innovations, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Tom Nijenhuis
- Department of Nephrology, Research Institute of Medical Innovations, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
4
|
Potz BA, Sabe SA, Scrimgeour LA, Sabe AA, Harris DD, Abid MR, Clements RT, Sellke FW. Calpain inhibition decreases oxidative stress via mitochondrial regulation in a swine model of chronic myocardial ischemia. Free Radic Biol Med 2023; 208:700-707. [PMID: 37748718 PMCID: PMC10598262 DOI: 10.1016/j.freeradbiomed.2023.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/18/2023] [Accepted: 09/23/2023] [Indexed: 09/27/2023]
Abstract
INTRODUCTION Calpain overexpression is implicated in mitochondrial damage leading to tissue oxidative stress and myocardial ischemic injury. The aim of this study was to determine the effects of calpain inhibition (CI) on mitochondrial impairment and oxidative stress in a swine model of chronic myocardial ischemia and metabolic syndrome. METHODS Yorkshire swine were fed a high-fat diet for 4 weeks to induce metabolic syndrome then underwent placement of an ameroid constrictor to the left circumflex artery. Three weeks later, animals received: no drug (control, "CON"; n= 7); a low-dose calpain inhibitor (0.12 mg/kg; "LCI", n= 7); or high-dose calpain inhibitor (0.25 mg/kg; "HCI", n=7). Treatment continued for 5 weeks, followed by tissue harvest. Cardiac tissue was assayed for protein carbonyl content, as well as antioxidant and mitochondrial protein expression. Reactive oxygen species (ROS) and mitochondrial respiration was measured in H9c2 cells following exposure to normoxia or hypoxia (1%) for 24 h with or without CI. RESULTS In ischemic myocardial tissue, CI was associated with decreased total oxidative stress compared to control. CI was also associated with increased expression of mitochondrial proteins superoxide dismutase 1, SDHA, and pyruvate dehydrogenase compared to control. 100 nM of calpain inhibitor decreased ROS levels and respiration in both normoxic and hypoxic H9c2 cardiomyoblasts. CONCLUSIONS In the setting of metabolic syndrome, CI improves oxidative stress in chronically ischemic myocardial tissue. Decreased oxidative stress may be via modulation of mitochondrial proteins involved in free radical scavenging and production.
Collapse
Affiliation(s)
- Brittany A Potz
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, USA
| | - Sharif A Sabe
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, USA
| | - Laura A Scrimgeour
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, USA
| | - Ashraf A Sabe
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, USA
| | - Dwight D Harris
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, USA
| | - M Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, USA
| | - Richard T Clements
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, USA
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, USA.
| |
Collapse
|
5
|
Liu Q, Li S, Qiu Y, Zhang J, Rios FJ, Zou Z, Touyz RM. Cardiovascular toxicity of tyrosine kinase inhibitors during cancer treatment: Potential involvement of TRPM7. Front Cardiovasc Med 2023; 10:1002438. [PMID: 36818331 PMCID: PMC9936099 DOI: 10.3389/fcvm.2023.1002438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) are a class of membrane spanning cell-surface receptors that transmit extracellular signals through the membrane to trigger diverse intracellular signaling through tyrosine kinases (TKs), and play important role in cancer development. Therapeutic approaches targeting RTKs such as vascular endothelial growth factor receptor (VEGFR), epidermal growth factor receptor (EGFR), and platelet-derived growth factor receptor (PDGFR), and TKs, such as c-Src, ABL, JAK, are widely used to treat human cancers. Despite favorable benefits in cancer treatment that prolong survival, these tyrosine kinase inhibitors (TKIs) and monoclonal antibodies targeting RTKs are also accompanied by adverse effects, including cardiovascular toxicity. Mechanisms underlying TKI-induced cardiovascular toxicity remain unclear. The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed chanzyme consisting of a membrane-based ion channel and intracellular α-kinase. TRPM7 is a cation channel that regulates transmembrane Mg2+ and Ca2+ and is involved in a variety of (patho)physiological processes in the cardiovascular system, contributing to hypertension, cardiac fibrosis, inflammation, and atrial arrhythmias. Of importance, we and others demonstrated significant cross-talk between TRPM7, RTKs, and TK signaling in different cell types including vascular smooth muscle cells (VSMCs), which might be a link between TKIs and their cardiovascular effects. In this review, we summarize the implications of RTK inhibitors (RTKIs) and TKIs in cardiovascular toxicities during anti-cancer treatment, with a focus on the potential role of TRPM7/Mg2+ as a mediator of RTKI/TKI-induced cardiovascular toxicity. We also describe the important role of TRPM7 in cancer development and cardiovascular diseases, and the interaction between TRPM7 and RTKs, providing insights for possible mechanisms underlying cardiovascular disease in cancer patients treated with RTKI/TKIs.
Collapse
Affiliation(s)
- Qing Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Suyao Li
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuran Qiu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayu Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Francisco J. Rios
- Research Institute of McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Zhiguo Zou
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Zhiguo Zou ✉
| | - Rhian M. Touyz
- Research Institute of McGill University Health Centre, McGill University, Montreal, QC, Canada,*Correspondence: Rhian M. Touyz ✉
| |
Collapse
|
6
|
Juibari AD, Rezadoost MH, Soleimani M. The key role of Calpain in COVID-19 as a therapeutic strategy. Inflammopharmacology 2022; 30:1479-1491. [PMID: 35635676 PMCID: PMC9149670 DOI: 10.1007/s10787-022-01002-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/24/2022] [Indexed: 12/02/2022]
Abstract
COVID-19 is one of the viral diseases that has caused many deaths and financial losses to humans. Using the available information, this virus appears to activate the host cell-death mechanism through Calpain activation. Calpain inhibition can stop its downstream cascade reactions that cause cell death. Given the main roles of Calpain in the entry and pathogenicity of the SARS-CoV-2, its inhibition can be effective in controlling the COVID-19. This review describes how the virus activates Calpain by altering calcium flow. When Calpain was activated, the virus can enter the target cell. Subsequently, many complications of the disease, such as inflammation, cytokine storm and pulmonary fibrosis, are caused by virus-activated Calpain function. Calpain inhibitors appear to be a potential drug to control the disease and prevent death from COVID-19.
Collapse
Affiliation(s)
- Aref Doozandeh Juibari
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
| |
Collapse
|
7
|
Calpains as mechanistic drivers and therapeutic targets for ocular disease. Trends Mol Med 2022; 28:644-661. [PMID: 35641420 PMCID: PMC9345745 DOI: 10.1016/j.molmed.2022.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022]
Abstract
Ophthalmic neurodegenerative diseases encompass a wide array of molecular pathologies unified by calpain dysregulation. Calpains are calcium-dependent proteases that perpetuate cellular death and inflammation when hyperactivated. Calpain inhibition trials in other organs have faced pharmacological challenges, but the eye offers many advantages for the development and testing of targeted molecular therapeutics, including small molecules, peptides, engineered proteins, drug implants, and gene-based therapies. This review highlights structural mechanisms underlying calpain activation, distinct cellular expression patterns, and in vivo models that link calpain hyperactivity to human retinal and developmental disease. Optimizing therapeutic approaches for calpain-mediated eye diseases can help accelerate clinically feasible strategies for treating calpain dysregulation in other diseased tissues.
Collapse
|
8
|
Aluja D, Delgado-Tomás S, Ruiz-Meana M, Barrabés JA, Inserte J. Calpains as Potential Therapeutic Targets for Myocardial Hypertrophy. Int J Mol Sci 2022; 23:ijms23084103. [PMID: 35456920 PMCID: PMC9032729 DOI: 10.3390/ijms23084103] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/26/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022] Open
Abstract
Despite advances in its treatment, heart failure remains a major cause of morbidity and mortality, evidencing an urgent need for novel mechanism-based targets and strategies. Myocardial hypertrophy, caused by a wide variety of chronic stress stimuli, represents an independent risk factor for the development of heart failure, and its prevention constitutes a clinical objective. Recent studies performed in preclinical animal models support the contribution of the Ca2+-dependent cysteine proteases calpains in regulating the hypertrophic process and highlight the feasibility of their long-term inhibition as a pharmacological strategy. In this review, we discuss the existing evidence implicating calpains in the development of cardiac hypertrophy, as well as the latest advances in unraveling the underlying mechanisms. Finally, we provide an updated overview of calpain inhibitors that have been explored in preclinical models of cardiac hypertrophy and the progress made in developing new compounds that may serve for testing the efficacy of calpain inhibition in the treatment of pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- David Aluja
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
| | - Sara Delgado-Tomás
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
| | - Marisol Ruiz-Meana
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - José A. Barrabés
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Javier Inserte
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-934894038
| |
Collapse
|
9
|
Lee SB, Park B, Hong KW, Jung DH. Genome-Wide Association of New-Onset Hypertension According to Renin Concentration: The Korean Genome and Epidemiology Cohort Study. J Cardiovasc Dev Dis 2022; 9:jcdd9040104. [PMID: 35448080 PMCID: PMC9025963 DOI: 10.3390/jcdd9040104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
The renin-angiotensin system (RAS) is a crucial regulator of vascular resistance and blood volume in the body. This study aimed to examine the genetic predisposition of the plasma renin concentration influencing future hypertension incidence. Based on the Korean Genome and Epidemiology Cohort dataset, 5211 normotensive individuals at enrollment were observed over 12 years, categorized into the low-renin and high-renin groups. We conducted genome-wide association studies for the total, low-renin, and high-renin groups. Among the significant SNPs, the lead SNPs of each locus were focused on for further interpretation. The effect of genotypes was determined by logistic regression analysis between controls and new-onset hypertension, after adjusting for potential confounding variables. During a mean follow-up period of 7.6 years, 1704 participants (32.7%) developed hypertension. The low-renin group showed more incidence rates of new-onset hypertension (35.3%) than the high-renin group (26.5%). Among 153 SNPs in renin-related gene regions, two SNPs (rs11726091 and rs8137145) showed an association in the high-renin group, four SNPs (rs17038966, rs145286444, rs2118663, and rs12336898) in the low-renin group, and three SNPs (rs1938859, rs7968218, and rs117246401) in the total population. Most significantly, the low-renin SNP rs12336898 in the SPTAN1 gene, closely related to vascular wall remodeling, was associated with the development of hypertension (p-value = 1.3 × 10−6). We found the candidate genetic polymorphisms according to blood renin concentration. Our results might be a valuable indicator for hypertension risk prediction and preventive measure, considering renin concentration with genetic susceptibility.
Collapse
Affiliation(s)
- Sung-Bum Lee
- Severance Check-up, Yonsei University Health System, Yongin-si 16995, Korea;
- Department of Medicine, Graduate School, Yonsei University Wonju College of Medicine, Wonju-si 26426, Korea
| | - Byoungjin Park
- Department of Family Medicine, Yongin Severance Hosptal, Yongin-si 16995, Korea;
| | - Kyung-Won Hong
- Healthcare R&D Division, Theragen Bio Co., Ltd., Ganggyo-ro 145, Suwon-si 16229, Korea
- Correspondence: (K.-W.H.); (D.-H.J.)
| | - Dong-Hyuk Jung
- Department of Family Medicine, Yongin Severance Hosptal, Yongin-si 16995, Korea;
- Department of Family Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: (K.-W.H.); (D.-H.J.)
| |
Collapse
|
10
|
Pathophysiology of heart failure and an overview of therapies. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
11
|
Potz BA, Sabe AA, Sabe SA, Lawandy IJ, Abid MR, Clements RT, Sellke FW. Calpain inhibition decreases myocardial fibrosis in chronically ischemic hypercholesterolemic swine. J Thorac Cardiovasc Surg 2022; 163:e11-e27. [PMID: 32359903 PMCID: PMC7529741 DOI: 10.1016/j.jtcvs.2019.11.150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/08/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Calpain activation during ischemia is known to play critical roles in myocardial remodeling. We hypothesize that calpain inhibition (CI) may serve to reverse and/or prevent fibrosis in chronically ischemic myocardium. METHODS Yorkshire swine were fed a high-cholesterol diet for 4 weeks followed by placement of an ameroid constrictor on the left circumflex artery to induce myocardial ischemia. 3 weeks later, animals received either: no drug; high-cholesterol control group (CON; n = 8); low-dose CI (0.12 mg/kg; LCI, n = 9); or high-dose CI (0.25 mg/kg; HCI, n = 8). The high-cholesterol diet and CI were continued for 5 weeks, after which myocardial tissue was harvested. Tissue samples were analyzed by western blot for changes in protein content. RESULTS In the setting of hypercholesterolemia and chronic myocardial ischemia, CI decreased the expression of collagen in ischemic and nonischemic myocardial tissue. This reduced collagen content was associated with a corresponding decrease in Jak/STAT/MCP-1 signaling pathway, suggesting a role for Jak 2 signaling in calpain activity. CI also decreases the expression of focal adhesion proteins (vinculin) and stabilizes the expression of cytoskeletal and structural proteins (N-cadherin, α-fodrin, desmin, vimentin, filamin, troponin-I). CI had no significant effect on metabolic and hemodynamic parameters. CONCLUSIONS Calpain inhibition may be a beneficial medical therapy to decrease collagen formation in patients with coronary artery disease and associated comorbidities.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Frank W. Sellke
- Dr. Frank W. Sellke, 2 Dudley Street, MOC 360, Division of Cardiothoracic Surgery, Providence, RI 02905, Phone: (401) 444-2732, Fax: (401) 444-2380,
| |
Collapse
|
12
|
Zhang K, Cremers MM, Wiedemann S, Poitz DM, Pfluecke C, Heinzel FR, Pieske B, Adams V, Schauer A, Winzer R, Strasser RH, Linke A, Quick S, Heidrich FM. Spatio-temporal regulation of calpain activity after experimental myocardial infarction in vivo. Biochem Biophys Rep 2021; 28:101162. [PMID: 34761128 PMCID: PMC8566776 DOI: 10.1016/j.bbrep.2021.101162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/25/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022] Open
Abstract
Background Calpains are calcium activated cysteine proteases that play a pivotal role in the pathophysiology of cardiac remodeling. Methods Here, we performed left anterior descending coronary artery ligation in rats as a model for ischemic systolic heart failure and examined the time- and region-specific regulation of calpain-1 and calpain-2 in the left ventricular myocardium. Results Following anterior wall myocardial infarction, calpain activity was significantly increased restricted to the ischemic anterior area at days 1, 5 and 14. No changes in calpain activity at neither time point were detected in the borderzone and remote posterior area of the left ventricle. Of note, calpain activity in the infarcted anterior myocardium was regulated differentially in the acute vs. subacute and chronic phase. In the acute phase, calpain translocation to the plasma membrane and attenuation of the expression of its endogenous inhibitor, calpastatin, were identified as the driving forces. In the subacute and chronic phase, calpain activity was regulated at the level of protein expression that was shown to be essentially independent of transcriptional activity. Conclusions We conclude that myocardial infarction leads to a distinct calpain regulation pattern in the left ventricular myocardium that is region specific and time dependent. Considering the results from our previous studies, a spatio-temporal interaction between calpains and calcium dependent natriuretic peptide production in the infarcted myocardium is possible. General significance Our results shed more light in the differential regulation of calpain activity in the myocardium and might aid in the development of targeted post-infarct and/or heart failure therapeutics.
Collapse
Key Words
- AGTR1, angiotensin II receptor type 1
- Calcium
- Calpain
- Calpain-1
- Calpain-2
- Calpastatin
- Experimental myocardial infarction
- InsP3, inositol 1,4,5-trisphosphate
- InsP3R, inositol 1,4,5-trisphopshate receptor
- LAD, left anterior descending
- LVEDD, left ventricular enddiastolic diameter
- LVEF, left ventricular ejection fraction
- LVESD, left ventricular endsystolic diameter
- NF-ĸB, nuclear factor kappa B
- NT pro-ANP, N-terminal pro atrial natriuretic peptide
- SBDP, spectrin breakdown products
Collapse
Affiliation(s)
- Kun Zhang
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Melissa M Cremers
- Department of Internal Medicine and Cardiology, Herzzentrum Dresden at Technische Universität Dresden, Dresden, Germany
| | - Stephan Wiedemann
- Helios Klinikum Pirna, Department of Internal Medicine and Cardiology, Pirna, Germany
| | - David M Poitz
- Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christian Pfluecke
- Department of Internal Medicine and Cardiology, Herzzentrum Dresden at Technische Universität Dresden, Dresden, Germany
| | - Frank R Heinzel
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Internal Medicine and Cardiology, German Heart Center Berlin, Berlin, Germany
| | - Volker Adams
- Department of Internal Medicine and Cardiology, Herzzentrum Dresden at Technische Universität Dresden, Dresden, Germany
| | - Antje Schauer
- Department of Internal Medicine and Cardiology, Herzzentrum Dresden at Technische Universität Dresden, Dresden, Germany
| | - Robert Winzer
- Institute and Policlinic for Diagnostic and Interventional Radiology, University Hospital, Carl Gustav Carus University, Technische Universität Dresden, Dresden, Germany
| | - Ruth H Strasser
- Technische Universität Dresden, Medical Faculty, Dresden, Germany
| | - Axel Linke
- Department of Internal Medicine and Cardiology, Herzzentrum Dresden at Technische Universität Dresden, Dresden, Germany
| | - Silvio Quick
- Department of Internal Medicine and Cardiology, Herzzentrum Dresden at Technische Universität Dresden, Dresden, Germany
| | - Felix M Heidrich
- Department of Internal Medicine and Cardiology, Herzzentrum Dresden at Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
13
|
Ling XX, Chen H, Fu BB, Ruan CS, Pana M, Zhou K, Fang ZR, Shao JT, Zhu FQ, Gao S. Xin-Ji-Er-Kang protects myocardial and renal injury in hypertensive heart failure in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153675. [PMID: 34332285 DOI: 10.1016/j.phymed.2021.153675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/27/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Xin-Ji-Er-Kang (XJEK) as a herbal formula of traditional Chinese medicine (TCM) has shown the protective effects on myocardial function as well as renal function in mouse models of myocardial infarction. HYPOTHESIS/PURPOSE We investigated the effects of XJEK on cardiovascular- and renal-function in a heart failure mouse model induced by high salt (HS) and the associated mechanisms. STUDY DESIGN For the purpose of assessing the effects of XJEK on a hypertensive heart failure model, mice were fed with 8% high salt diet. XJEK was administered by oral gavage for 8 weeks. Cardiovascular function parameters, renal function associated biomarkers and XJEK's impact on renin-angiotensin-aldosterone system (RAAS) activation were assessed. To determine the underlying mechanism, the calpain1/junctophilin-2 (JP2)/sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) pathway was further studied in AC16 cells after angiotensin II-challenge or after calpastatin small interfering RNA (siRNA) transfection. RESULTS Mice on HS-diet exhibited hypertensive heart failure along with progressive kidney injury. Similar to fosinopril, XJEK ameliorated hypertension, cardiovascular-and renal- dysfunction in mice of HS-diet group. XJEK inhibited HS-induced activation of RAAS and reversed the abnormal expression pattern of calpain1and JP2 protein in heart tissues. XJEK significantly improved cell viability of angiotensin II-challenged AC16 cells. Moreover, XJEK's impact on calpain1/JP2 pathway was partly diminished in AC16 cells transfected with calpastatin siRNA. CONCLUSION XJEK was found to exert cardiovascular- and renal protection in HS-diet induced heart failure mouse model. XJEK inhibited HS-diet induced RAAS activation by inhibiting the activity and expression of calpain1 and protected the junctional membrane complex (JMC) in cardiomyocytes.
Collapse
Affiliation(s)
- Xin-Xin Ling
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Hua Chen
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Bei-Bei Fu
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Cheng-Shao Ruan
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Ming Pana
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Kai Zhou
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Zhi-Rui Fang
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Jun-Tang Shao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China.
| | - Feng-Qin Zhu
- Hefei Cancer Hospital, Chinese Academy of Science, Hefei 230032, China.
| | - Shan Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
14
|
Calpain-Mediated Mitochondrial Damage: An Emerging Mechanism Contributing to Cardiac Disease. Cells 2021; 10:cells10082024. [PMID: 34440793 PMCID: PMC8392834 DOI: 10.3390/cells10082024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/19/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Calpains belong to the family of calcium-dependent cysteine proteases expressed ubiquitously in mammals and many other organisms. Activation of calpain is observed in diseased hearts and is implicated in cardiac cell death, hypertrophy, fibrosis, and inflammation. However, the underlying mechanisms remain incompletely understood. Recent studies have revealed that calpains target and impair mitochondria in cardiac disease. The objective of this review is to discuss the role of calpains in mediating mitochondrial damage and the underlying mechanisms, and to evaluate whether targeted inhibition of mitochondrial calpain is a potential strategy in treating cardiac disease. We expect to describe the wealth of new evidence surrounding calpain-mediated mitochondrial damage to facilitate future mechanistic studies and therapy development for cardiac disease.
Collapse
|
15
|
Meng H, Du Z, Lu W, Wang Q, Sun X, Jiang Y, Wang Y, Li C, Tu P. Baoyuan decoction (BYD) attenuates cardiac hypertrophy through ANKRD1-ERK/GATA4 pathway in heart failure after acute myocardial infarction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 89:153617. [PMID: 34157504 DOI: 10.1016/j.phymed.2021.153617] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The pathological cardiac functions of ankyrin repeat domain 1 (ANKRD1) in left ventricle can directly aggravate cardiac hypertrophy (CH) and fibrosis through the activation of extracellular signal-regulated kinase (ERK)/ transcription factor GATA binding protein 4 (GATA4) pathway, and subsequently contribute to heart failure (HF). Baoyuan Decoction (BYD), which is a famous classic Chinese medicinal formulation, has shown impressive cardioprotective effects clinically and experimentally. However, the knowledge is still limited in its underlying mechanisms against HF. PURPOSE To explore whether BYD plays a protective role against HF by attenuating CH via the ANKRD1-ERK/GATA4 pathway. METHODS In vivo, HF rat models were prepared using left anterior descending coronary artery (LADCA) ligation. Rats in the BYD group were administered a dosage of 2.57 g/kg of BYD for 28 days, while in the positive control group rats were given 4.67 mg/kg of Fosinopril. In vitro, a hypertrophic model was constructed by stimulating H9C2 cells with 1 uM Ang II. An ANKRD1-overexpressing cell model was established through transient transfection of ANKRD1 plasmid into H9C2 cells. Subsequently, BYD intervention was performed on the cell models to further elucidate its effects and underlying mechanism. RESULTS In vivo results showed that BYD significantly improved cardiac function and inhibited pathological hypertrophy and fibrosis in a rat model of HF post-acute myocardial infarction (AMI). Noticeably, label-free proteomic analysis demonstrated that BYD could reverse the CH-related biological turbulences, mainly through ANKRD1-ERK/GATA4 pathway. Further in vitro results validated that the hypertrophy was attenuated by BYD through suppression of AT1R, ANKRD1, Calpain1, p-ERK1/2 and p-GATA4. The results of in vitro model indicated that BYD could reverse the outcome of transfected over-expression of ANKRD1, including down-regulated expressions of ANKRD1, p-ERK1/2 and p-GATA4. CONCLUSION BYD ameliorates CH and improves HF through the ANKRD1-ERK/GATA4 pathway, providing a novel therapeutic option for the treatment of HF.
Collapse
Affiliation(s)
- Hui Meng
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Zhiyong Du
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Beijing Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University
| | - Wenji Lu
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qixin Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoqian Sun
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yong Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Beijing Key Laboratory of TCM Syndrome And Formula, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Chun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
16
|
Chelko SP, Keceli G, Carpi A, Doti N, Agrimi J, Asimaki A, Beti CB, Miyamoto M, Amat-Codina N, Bedja D, Wei AC, Murray B, Tichnell C, Kwon C, Calkins H, James CA, O'Rourke B, Halushka MK, Melloni E, Saffitz JE, Judge DP, Ruvo M, Kitsis RN, Andersen P, Di Lisa F, Paolocci N. Exercise triggers CAPN1-mediated AIF truncation, inducing myocyte cell death in arrhythmogenic cardiomyopathy. Sci Transl Med 2021; 13:13/581/eabf0891. [PMID: 33597260 DOI: 10.1126/scitranslmed.abf0891] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
Myocyte death occurs in many inherited and acquired cardiomyopathies, including arrhythmogenic cardiomyopathy (ACM), a genetic heart disease plagued by the prevalence of sudden cardiac death. Individuals with ACM and harboring pathogenic desmosomal variants, such as desmoglein-2 (DSG2), often show myocyte necrosis with progression to exercise-associated heart failure. Here, we showed that homozygous Dsg2 mutant mice (Dsg2 mut/mut), a model of ACM, die prematurely during swimming and display myocardial dysfunction and necrosis. We detected calcium (Ca2+) overload in Dsg2 mut/mut hearts, which induced calpain-1 (CAPN1) activation, association of CAPN1 with mitochondria, and CAPN1-induced cleavage of mitochondrial-bound apoptosis-inducing factor (AIF). Cleaved AIF translocated to the myocyte nucleus triggering large-scale DNA fragmentation and cell death, an effect potentiated by mitochondrial-driven AIF oxidation. Posttranslational oxidation of AIF cysteine residues was due, in part, to a depleted mitochondrial thioredoxin-2 redox system. Hearts from exercised Dsg2 mut/mut mice were depleted of calpastatin (CAST), an endogenous CAPN1 inhibitor, and overexpressing CAST in myocytes protected against Ca2+ overload-induced necrosis. When cardiomyocytes differentiated from Dsg2 mut/mut embryonic stem cells (ES-CMs) were challenged with β-adrenergic stimulation, CAPN1 inhibition attenuated CAPN1-induced AIF truncation. In addition, pretreatment of Dsg2 mut/mut ES-CMs with an AIF-mimetic peptide, mirroring the cyclophilin-A (PPIA) binding site of AIF, blocked PPIA-mediated AIF-nuclear translocation, and reduced both apoptosis and necrosis. Thus, preventing CAPN1-induced AIF-truncation or barring binding of AIF to the nuclear chaperone, PPIA, may avert myocyte death and, ultimately, disease progression to heart failure in ACM and likely other forms of cardiomyopathies.
Collapse
Affiliation(s)
- Stephen P Chelko
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA. .,Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Gizem Keceli
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Andrea Carpi
- Department of Biomedical Sciences, University of Padova, Padova 35122, Italy
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging, CNR, Naples 80134, Italy
| | - Jacopo Agrimi
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Angeliki Asimaki
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London WC1E 6BS, UK
| | - Carlos Bueno Beti
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London WC1E 6BS, UK
| | - Matthew Miyamoto
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Nuria Amat-Codina
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Djahida Bedja
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.,Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2109, Australia
| | - An-Chi Wei
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Brittney Murray
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Crystal Tichnell
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Cynthia A James
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Edon Melloni
- Department of Medicine, University of Genova, Genova 16126, Italy
| | - Jeffrey E Saffitz
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 20115, USA
| | - Daniel P Judge
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.,Medical University of South Carolina, Charleston, SC 29425, USA
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging, CNR, Naples 80134, Italy
| | - Richard N Kitsis
- Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Peter Andersen
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Padova 35122, Italy
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA. .,Department of Biomedical Sciences, University of Padova, Padova 35122, Italy
| |
Collapse
|
17
|
Pickel S, Cruz-Garcia Y, Bandleon S, Barkovits K, Heindl C, Völker K, Abeßer M, Pfeiffer K, Schaaf A, Marcus K, Eder-Negrin P, Kuhn M, Miranda-Laferte E. The β 2-Subunit of Voltage-Gated Calcium Channels Regulates Cardiomyocyte Hypertrophy. Front Cardiovasc Med 2021; 8:704657. [PMID: 34307509 PMCID: PMC8292724 DOI: 10.3389/fcvm.2021.704657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/09/2021] [Indexed: 12/16/2022] Open
Abstract
L-type voltage-gated calcium channels (LTCCs) regulate crucial physiological processes in the heart. They are composed of the Cavα1 pore-forming subunit and the accessory subunits Cavβ, Cavα2δ, and Cavγ. Cavβ is a cytosolic protein that regulates channel trafficking and activity, but it also exerts other LTCC-independent functions. Cardiac hypertrophy, a relevant risk factor for the development of congestive heart failure, depends on the activation of calcium-dependent pro-hypertrophic signaling cascades. Here, by using shRNA-mediated Cavβ silencing, we demonstrate that Cavβ2 downregulation enhances α1-adrenergic receptor agonist-induced cardiomyocyte hypertrophy. We report that a pool of Cavβ2 is targeted to the nucleus in cardiomyocytes and that the expression of this nuclear fraction decreases during in vitro and in vivo induction of cardiac hypertrophy. Moreover, the overexpression of nucleus-targeted Cavβ2 in cardiomyocytes inhibits in vitro-induced hypertrophy. Quantitative proteomic analyses showed that Cavβ2 knockdown leads to changes in the expression of diverse myocyte proteins, including reduction of calpastatin, an endogenous inhibitor of the calcium-dependent protease calpain. Accordingly, Cavβ2-downregulated cardiomyocytes had a 2-fold increase in calpain activity as compared to control cells. Furthermore, inhibition of calpain activity in Cavβ2-downregulated cells abolished the enhanced α1-adrenergic receptor agonist-induced hypertrophy observed in these cells. Our findings indicate that in cardiomyocytes, a nuclear pool of Cavβ2 participates in cellular functions that are independent of LTCC activity. They also indicate that a downregulation of nuclear Cavβ2 during cardiomyocyte hypertrophy promotes the activation of calpain-dependent hypertrophic pathways.
Collapse
Affiliation(s)
- Simone Pickel
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | | | - Sandra Bandleon
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Katalin Barkovits
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, Bochum, Germany.,Medical Proteome Analysis, Center for Proteindiagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Cornelia Heindl
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Katharina Völker
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Marco Abeßer
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Kathy Pfeiffer
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, Bochum, Germany.,Medical Proteome Analysis, Center for Proteindiagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Alice Schaaf
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, Bochum, Germany.,Medical Proteome Analysis, Center for Proteindiagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Petra Eder-Negrin
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Erick Miranda-Laferte
- Institute of Physiology, University of Würzburg, Würzburg, Germany.,Institut für Biologische Informationsprozesse, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
18
|
Seo CH, Cui HS, Kim JB. Calpastatin-Mediated Inhibition of Calpain Ameliorates Skin Scar Formation after Burn Injury. Int J Mol Sci 2021; 22:ijms22115771. [PMID: 34071277 PMCID: PMC8199077 DOI: 10.3390/ijms22115771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 02/05/2023] Open
Abstract
Hypertrophic scars, the most common complication of burn injuries, are characterized by excessive deposition of fibroblast-derived extracellular matrix proteins. Calpain, a calcium-dependent protease, is involved in the fibroblast proliferation and extracellular matrix production observed in certain fibrotic diseases. However, its role in the formation of post-burn hypertrophic skin scars remains largely unknown. Here, calpain expression and activity were assessed in skin fibroblasts obtained directly from patients with third-degree burns, who consequently developed post-burn hypertrophic scars. Furthermore, the antifibrotic effect of calpastatin, an endogenous calpain inhibitor, was evaluated in human fibroblasts and a murine burn model. The activity, mRNA levels, and protein levels of calpain were markedly higher in fibroblasts from the burn wounds of patients than in normal cells. Selective calpain inhibition by calpastatin markedly reduced not only the proliferation of burn-wound fibroblasts but also the mRNA and protein expression of calpain, transforming growth factor-beta 1, α-smooth muscle actin, type I and type III collagens, fibronectin, and vimentin in burn-wound fibroblasts. The anti-scarring effects of calpastatin were validated using a murine burn model by molecular, histological, and visual analyses. This study demonstrates the pathological role of calpain and the antifibrotic effect of calpastatin via calpain inhibition in post-burn hypertrophic scar formation.
Collapse
Affiliation(s)
- Cheong Hoon Seo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, 12 Beodeunaru-ro 7-gil, Yeongdeungpo-gu, Seoul 07247, Korea;
| | - Hui Song Cui
- Burn Institute, Hangang Sacred Heart Hospital, Hallym University College of Medicine, 12 Beodeunaru-ro 7-gil, Yeongdeungpo-gu, Seoul 07247, Korea;
| | - June-Bum Kim
- Department of Pediatrics, Hangang Sacred Heart Hospital, Hallym University College of Medicine, 12 Beodeunaru-ro 7-gil, Yeongdeungpo-gu, Seoul 07247, Korea
- Correspondence: ; Tel.: +82-2-2639-5200
| |
Collapse
|
19
|
Giannella A, Ceolotto G, Radu CM, Cattelan A, Iori E, Benetti A, Fabris F, Simioni P, Avogaro A, Vigili de Kreutzenberg S. PAR-4/Ca 2+-calpain pathway activation stimulates platelet-derived microparticles in hyperglycemic type 2 diabetes. Cardiovasc Diabetol 2021; 20:77. [PMID: 33812377 PMCID: PMC8019350 DOI: 10.1186/s12933-021-01267-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Background Patients with type 2 diabetes (T2DM) have a prothrombotic state that needs to be fully clarified; microparticles (MPs) have emerged as mediators and markers of this condition. Thus, we investigate, in vivo, in T2DM either with good (HbA1c ≤ 7.0%; GGC) or poor (HbA1c > 7.0%; PGC) glycemic control, the circulating levels of MPs, and in vitro, the molecular pathways involved in the release of MPs from platelets (PMP) and tested their pro-inflammatory effects on THP-1 transformed macrophages. Methods In 59 T2DM, and 23 control subjects with normal glucose tolerance (NGT), circulating levels of CD62E+, CD62P+, CD142+, CD45+ MPs were determined by flow cytometry, while plasma levels of ICAM-1, VCAM-1, IL-6 by ELISA. In vitro, PMP release and activation of isolated platelets from GGC and PGC were investigated, along with their effect on IL-6 secretion in THP-1 transformed macrophages. Results We found that MPs CD62P+ (PMP) and CD142+ (tissue factor-bearing MP) were significantly higher in PGC T2DM than GGC T2DM and NGT. Among MPs, PMP were also correlated with HbA1c and IL-6. In vitro, we showed that acute thrombin exposure stimulated a significantly higher PMP release in PGC T2DM than GGC T2DM through a more robust activation of PAR-4 receptor than PAR-1 receptor. Treatment with PAR-4 agonist induced an increased release of PMP in PGC with a Ca2+-calpain dependent mechanism since this effect was blunted by calpain inhibitor. Finally, the uptake of PMP derived from PAR-4 treated PGC platelets into THP-1 transformed macrophages promoted a marked increase of IL-6 release compared to PMP derived from GGC through the activation of the NF-kB pathway. Conclusions These results identify PAR-4 as a mediator of platelet activation, microparticle release, and inflammation, in poorly controlled T2DM. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-021-01267-w.
Collapse
Affiliation(s)
- Alessandra Giannella
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | - Giulio Ceolotto
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | - Claudia Maria Radu
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | - Arianna Cattelan
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | - Elisabetta Iori
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | - Andrea Benetti
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | - Fabrizio Fabris
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | - Paolo Simioni
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | - Angelo Avogaro
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | | |
Collapse
|
20
|
Bensaada I, Robin B, Perez J, Salemkour Y, Chipont A, Camus M, Lemoine M, Guyonnet L, Lazareth H, Letavernier E, Hénique C, Tharaux PL, Lenoir O. Calpastatin prevents Angiotensin II-mediated podocyte injury through maintenance of autophagy. Kidney Int 2021; 100:90-106. [PMID: 33675847 DOI: 10.1016/j.kint.2021.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022]
Abstract
The strong predictive value of proteinuria in chronic glomerulopathies is firmly established as well as the pathogenic role of angiotensin II promoting progression of glomerular disease with an altered glomerular filtration barrier, podocyte injury and scarring of glomeruli. Here we found that chronic angiotensin II-induced hypertension inhibited autophagy flux in mouse glomeruli. Deletion of Atg5 (a gene encoding a protein involved autophagy) specifically in the podocyte resulted in accelerated angiotensin II-induced podocytopathy, accentuated albuminuria and glomerulosclerosis. This indicates that autophagy is a key protective mechanism in the podocyte in this condition. Angiotensin-II induced calpain activity in podocytes inhibits autophagy flux. Podocytes from mice with transgenic expression of the endogenous calpain inhibitor calpastatin displayed higher podocyte autophagy at baseline that was resistant to angiotensin II-dependent inhibition. Also, sustained autophagy with calpastatin limited podocyte damage and albuminuria. These findings suggest that hypertension has pathogenic effects on the glomerular structure and function, in part through activation of calpains leading to blockade of podocyte autophagy. These findings uncover an original mechanism whereby angiotensin II-mediated hypertension inhibits autophagy via calcium-induced recruitment of calpain with pathogenic consequences in case of imbalance by calpastatin activity. Thus, preventing a calpain-mediated decrease in autophagy may be a promising new therapeutic strategy for nephropathies associated with high renin-angiotensin system activity.
Collapse
Affiliation(s)
| | - Blaise Robin
- Université de Paris, PARCC, Inserm, Paris, France
| | - Joëlle Perez
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Anna Chipont
- Université de Paris, PARCC, Inserm, Paris, France
| | - Marine Camus
- Université de Paris, PARCC, Inserm, Paris, France
| | | | - Lea Guyonnet
- Université de Paris, PARCC, Inserm, Paris, France
| | | | | | | | | | | |
Collapse
|
21
|
Weinberger T, Esfandyari D, Messerer D, Percin G, Schleifer C, Thaler R, Liu L, Stremmel C, Schneider V, Vagnozzi RJ, Schwanenkamp J, Fischer M, Busch K, Klapproth K, Ishikawa-Ankerhold H, Klösges L, Titova A, Molkentin JD, Kobayashi Y, Engelhardt S, Massberg S, Waskow C, Perdiguero EG, Schulz C. Ontogeny of arterial macrophages defines their functions in homeostasis and inflammation. Nat Commun 2020; 11:4549. [PMID: 32917889 PMCID: PMC7486394 DOI: 10.1038/s41467-020-18287-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 08/12/2020] [Indexed: 12/22/2022] Open
Abstract
Arterial macrophages have different developmental origins, but the association of macrophage ontogeny with their phenotypes and functions in adulthood is still unclear. Here, we combine macrophage fate-mapping analysis with single-cell RNA sequencing to establish their cellular identity during homeostasis, and in response to angiotensin-II (AngII)-induced arterial inflammation. Yolk sac erythro-myeloid progenitors (EMP) contribute substantially to adventitial macrophages and give rise to a defined cluster of resident immune cells with homeostatic functions that is stable in adult mice, but declines in numbers during ageing and is not replenished by bone marrow (BM)-derived macrophages. In response to AngII inflammation, increase in adventitial macrophages is driven by recruitment of BM monocytes, while EMP-derived macrophages proliferate locally and provide a distinct transcriptional response that is linked to tissue regeneration. Our findings thus contribute to the understanding of macrophage heterogeneity, and associate macrophage ontogeny with distinct functions in health and disease. Arterial macrophages develop from either yolk sac or bone marrow progenitors. Here, the author show that ageing-induced reduction of arterial macrophages is not replenished by bone marrow-derived cells, but under inflammatory conditions circulating monocytes are recruited to maintain homeostasis, while arterial macrophages of yolk sac origin carry out tissue repair.
Collapse
Affiliation(s)
- Tobias Weinberger
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Dena Esfandyari
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany.,Institute of Pharmacology and Toxicology, Technische Universität München, Biedersteiner Strasse 29, 80802, Munich, Germany
| | - Denise Messerer
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Gulce Percin
- Regeneration in Hematopoiesis, Leibniz-Institute on Aging - Fritz-Lipmann-Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Christian Schleifer
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Raffael Thaler
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Lulu Liu
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Christopher Stremmel
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Vanessa Schneider
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Ronald J Vagnozzi
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jennifer Schwanenkamp
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Maximilian Fischer
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Katrin Busch
- Division of Cellular Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Kay Klapproth
- Division of Cellular Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Hellen Ishikawa-Ankerhold
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Lukas Klösges
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Anna Titova
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yasuhiro Kobayashi
- Institute for Oral Science, Matsumoto Dental University, 1780 Hiro-Oka Gobara Shiojiri, Nagano, 390-0781, Japan
| | - Stefan Engelhardt
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany.,Institute of Pharmacology and Toxicology, Technische Universität München, Biedersteiner Strasse 29, 80802, Munich, Germany
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Claudia Waskow
- Regeneration in Hematopoiesis, Leibniz-Institute on Aging - Fritz-Lipmann-Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany.,Faculty of Biological Sciences, Friedrich-Schiller-University Jena, 07737 Jena, 07745, Jena, Germany
| | - Elisa Gomez Perdiguero
- Institut Pasteur, Macrophages and Endothelial cells, Département de Biologie du Développement et Cellules Souches, UMR3738 CNRS, Paris, 75015, France
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802, Munich, Germany. .,Walter-Brendel-Center for Experimental Medicine, Ludwig Maximilian University, Marchioninistrasse 27, 81377, Munich, Germany.
| |
Collapse
|
22
|
Wang S, Wang H, Su X, Liu B, Wang L, Yan H, Mao S, Huang H, Huang C, Cheng M, Wu G. β-adrenergic activation may promote myosin light chain kinase degradation through calpain in pressure overload-induced cardiac hypertrophy: β-adrenergic activation results in MLCK degradation. Biomed Pharmacother 2020; 129:110438. [PMID: 32768940 DOI: 10.1016/j.biopha.2020.110438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND β-adrenergic activation is able to exacerbate cardiac hypertrophy. Myosin light chain kinase (MLCK) and its phosphorylated substrate, phospho-myosin light chain 2 (p-MLC2), play vital roles in regulating cardiac hypertrophy. However, it is not yet clear whether there is a relationship between β-adrenergic activation and MLCK in the progression of cardiac hypertrophy. Therefore, we explored this relationship and the underlying mechanisms in this work. METHODS Cardiac hypertrophy and cardiomyocyte hypertrophy were induced by pressure overload and isoproterenol (ISO) stimulation, respectively. Echocardiography, histological analysis, immunofluorescence and qRT-PCR were used to confirm the successful establishment of the models. A β-blocker (metoprolol) and a calpain inhibitor (calpeptin) were administered to inhibit β-adrenergic activity in rats and calpain in cardiomyocytes, respectively. The protein expression levels of MLCK, myosin light chain 2 (MLC2), p-MLC2, myosin phosphatase 2 (MYPT2), calmodulin (CaM) and calpain were measured using western blotting. A cleavage assay was performed to assess the degradation of recombinant human MLCK by recombinant human calpain. RESULTS The β-blocker alleviated cardiac hypertrophy and dysfunction, increased MLCK and MLC2 phosphorylation and decreased calpain expression in pressure overload-induced cardiac hypertrophy. Additionally, the calpain inhibitor calpeptin attenuated cardiomyocyte hypertrophy, upregulated MLCK and p-MLC2 and reduced MLCK degradation in ISO-induced cardiomyocyte hypertrophy. Recombinant human calpain degraded recombinant human MLCK in vitro in concentration- and time-dependent manners, and this degradation was inhibited by the calpain inhibitor calpeptin. CONCLUSION Our study suggested that β-adrenergic activation may promote the degradation of MLCK through calpain in pressure overload-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Shun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Haixiong Wang
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, 030001, China
| | - Xiaoling Su
- Department of Cardiology, Qinghai Provincial People's Hospital, Xining, 810007, China
| | - Beilei Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Le Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Hui Yan
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Shuai Mao
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Mian Cheng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Gang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, 430060, China; Department of Cardiology, Ezhou Hospital, Renmin Hospital of Wuhan University, Ezhou, 436000, China.
| |
Collapse
|
23
|
Kim DH, Beckett JD, Nagpal V, Seman-Senderos MA, Gould RA, Creamer TJ, MacFarlane EG, Chen Y, Bedja D, Butcher JT, Mitzner W, Rouf R, Hata S, Warren DS, Dietz HC. Calpain 9 as a therapeutic target in TGFβ-induced mesenchymal transition and fibrosis. Sci Transl Med 2020; 11:11/501/eaau2814. [PMID: 31316008 DOI: 10.1126/scitranslmed.aau2814] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 01/14/2019] [Accepted: 06/05/2019] [Indexed: 12/26/2022]
Abstract
Fibrosis is a common pathologic outcome of chronic disease resulting in the replacement of normal tissue parenchyma with a collagen-rich extracellular matrix produced by myofibroblasts. Although the progenitor cell types and cellular programs giving rise to myofibroblasts through mesenchymal transition can vary between tissues and diseases, their contribution to fibrosis initiation, maintenance, and progression is thought to be pervasive. Here, we showed that the ability of transforming growth factor-β (TGFβ) to efficiently induce myofibroblast differentiation of cultured epithelial cells, endothelial cells, or quiescent fibroblasts is dependent on the induced expression and activity of dimeric calpains, a family of non-lysosomal cysteine proteases that regulate a variety of cellular events through posttranslational modification of diverse substrates. siRNA-based gene silencing demonstrated that TGFβ-induced mesenchymal transition of a murine breast epithelial cell line was dependent on induction of expression of calpain 9 (CAPN9), an isoform previously thought to be restricted to the gastrointestinal tract. Mice lacking functional CAPN9 owing to biallelic targeting of Capn9 were viable and fertile but showed overt protection from bleomycin-induced lung fibrosis, carbon tetrachloride-induced liver fibrosis, and angiotensin II-induced cardiac fibrosis and dysfunction. A predicted loss-of-function allele of CAPN9 is common in Southeast Asia, with the frequency of homozygosity matching the prediction of Hardy-Weinberg equilibrium. Together with the highly spatially restricted pattern of CAPN9 expression under physiologic circumstances and the heartiness of the murine knockout, these data provide a strong signature for tolerance of therapeutic strategies for fibrosis aimed at CAPN9 antagonism.
Collapse
Affiliation(s)
- David H Kim
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Cellular and Molecular Medicine Program, School of Medicine, Baltimore, MD 21205, USA
| | - James D Beckett
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Varun Nagpal
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manuel A Seman-Senderos
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Cellular and Molecular Medicine Program, School of Medicine, Baltimore, MD 21205, USA
| | - Russell A Gould
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Tyler J Creamer
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elena Gallo MacFarlane
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yichun Chen
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Djahida Bedja
- Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jonathan T Butcher
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Wayne Mitzner
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Rosanne Rouf
- Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shoji Hata
- Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Daniel S Warren
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
24
|
Sharma B, Dabur R. Role of Pro-inflammatory Cytokines in Regulation of Skeletal Muscle Metabolism: A Systematic Review. Curr Med Chem 2020; 27:2161-2188. [DOI: 10.2174/0929867326666181129095309] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022]
Abstract
Background:
Metabolic pathways perturbations lead to skeletal muscular atrophy in the
cachexia and sarcopenia due to increased catabolism. Pro-inflammatory cytokines induce the catabolic
pathways that impair the muscle integrity and function. Hence, this review primarily concentrates
on the effects of pro-inflammatory cytokines in regulation of skeletal muscle metabolism.
Objective:
This review will discuss the role of pro-inflammatory cytokines in skeletal muscles during
muscle wasting conditions. Moreover, the coordination among the pro-inflammatory cytokines
and their regulated molecular signaling pathways which increase the protein degradation will be
discussed.
Results:
During normal conditions, pro-inflammatory cytokines are required to balance anabolism
and catabolism and to maintain normal myogenesis process. However, during muscle wasting their
enhanced expression leads to marked destructive metabolism in the skeletal muscles. Proinflammatory
cytokines primarily exert their effects by increasing the expression of calpains and E3
ligases as well as of Nf-κB, required for protein breakdown and local inflammation. Proinflammatory
cytokines also locally suppress the IGF-1and insulin functions, hence increase the
FoxO activation and decrease the Akt function, the central point of carbohydrates lipid and protein
metabolism.
Conclusion:
Current advancements have revealed that the muscle mass loss during skeletal muscular
atrophy is multifactorial. Despite great efforts, not even a single FDA approved drug is available
in the market. It indicates the well-organized coordination among the pro-inflammatory cytokines
that need to be further understood and explored.
Collapse
Affiliation(s)
- Bhawana Sharma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana-124001, India
| | - Rajesh Dabur
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana-124001, India
| |
Collapse
|
25
|
Mendes AS, Blascke de Mello MM, Parente JM, Omoto ACM, Neto-Neves EM, Fazan R, Tanus-Santos JE, Castro MM. Verapamil decreases calpain-1 and matrix metalloproteinase-2 activities and improves hypertension-induced hypertrophic cardiac remodeling in rats. Life Sci 2020; 244:117153. [DOI: 10.1016/j.lfs.2019.117153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/05/2019] [Accepted: 12/08/2019] [Indexed: 12/30/2022]
|
26
|
Kim D, Liu QF, Jeong HJ, Han SH, Kim DI, Jeon S. A Modified Formulation of Sutaehwan Ameliorates Menopausal Anxiety, Depression and Heart Hypertrophy in the VCD-Induced Menopausal Mouse Model. Biol Pharm Bull 2020; 42:1471-1481. [PMID: 31474708 DOI: 10.1248/bpb.b19-00056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sutaehwan (STH) has been used in Korean medicine for the treatment of abortus habitualis such as fetal restlessness in the uterus. Previously, we reported that a modified formulation of STH, Sutaehwan-Gami, has phytoestrogen-like properties in an ovariectomized menopausal rat model. However, the therapeutic effects of STH and the precise mechanisms by which STH affects various menopausal symptoms remain poorly understood. The current study was designed to explore the effects of a modified form of STH on menopausal anxiety, depression and heart hypertrophy and its mechanisms in 4-vinylcyclohexene diepoxide (VCD)-induced menopausal mouse models. VCD-induced menopausal model mice were fed a modified form of STH, which contained water extract of 3 herbs (called STH_KP17001) at a dose of 100 or 300 mg/kg/d or as a positive control, estradiol at a dose of 0.2 mg/kg/d with standard mouse pellets for 13 weeks. The results show that STH_KP17001 significantly restored the VCD-induced weight reduction of uterine and ovary through the phosphorylation of extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) in the uterus and ovary. Moreover, STH_KP17001 showed slight proliferative effects and estrogen receptor α phosphorylation in MCF-7 cells. Treatment with STH_KP17001 reversed VCD-induced anxiety and depression through AMP-activated protein kinase (AMPK) activation and brain-derived neurotrophic factor (BDNF) expression in the cerebral cortex, while improving heart hypertrophy through inactivation of inhibitor of kappaB α (IκBα) in the heart. The results indicate that STH_KP17001 improves menopause-induced anxiety, depression and heart hypertrophy, implying its protective role for the management of menopausal symptoms.
Collapse
Affiliation(s)
- Deokho Kim
- Department of Korean Medicine, Graduate School of Dongguk University
| | - Quan Feng Liu
- Department of Neuropsychiatry, Graduate School of Oriental Medicine, Dongguk University
| | - Ha Jin Jeong
- Department of Biomedical Sciences, BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University
| | | | - Dong-Il Kim
- Department of Obstetrics & Gynecology, College of Korean Medicine, Dongguk University
| | - Songhee Jeon
- Department of Biomedical Sciences, BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University
| |
Collapse
|
27
|
Sun X, Sun Y, Jiang P, Qi G, Chen X. Crosstalk between endothelial cell-specific calpain inhibition and the endothelial-mesenchymal transition via the HSP90/Akt signaling pathway. Biomed Pharmacother 2020; 124:109822. [PMID: 31958767 DOI: 10.1016/j.biopha.2020.109822] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/28/2019] [Accepted: 12/29/2019] [Indexed: 12/15/2022] Open
Abstract
HYPOTHESIS The role of non-cardiomyocytes in cardiac remodeling and fibrosis has not been totally understood until now. This study investigated if endothelial cell (EC)-specific calpain participates in myocardial endothelial injury via the endothelial- mesenchymal transition (EndMT) and in cardiac fibroblasts during cell proliferation, thereby contributing to cardiac fibrosis eventually. METHODS in vitro cultured mouse cardiac ECs were induced with transforming growth factor (TGF)-β1 (10 ng/ml) and calpain inhibitor III (20 μM) or Akt inhibitor (LY294002, 20 μM). Isolated cardiac fibroblasts were induced by TGF-β1 and an HSP90 inhibitor (17AAG, 20 μM), and EndMT were analysed. Capn4-knockout (KO) specific to ECs of mice was generated. We induced the pathological process mimicking cardiac hypertrophy and fibrosis in both Capn4-KO mice and their wild-type littermates. The histological analysis was used to measure cardiomyocyte size and collagen contained in the heart. The immunofluorescence analysis was performed to demonstrate that the ECs went through the EndMT, transforming mesenchymal cells into fibroblasts and myofibroblasts. RESULTS Capn4 deletion specific to ECs abrogated activity of both calpain 1 and calpain 2 in ECs, lowered the volume of cardiac collagen and cardiomyocytes size, and ameliorated myocardial dysfunction in the isoproterenol-treated cardiac fibrosis model. An ex vivo analysis of cardiomyocytes by Evans Blue staining revealed that isoproterenol increased cell death compared with the control, and Capn4-KO alleviated this result. Inhibiting calpain in cultured cardiac microvascular endothelial cells (MCECs) reversed the EndMT process, which was induced by TGF-β1. Overexpression of calpastatin decreased the pathological EndMT process, showing that the cultured MCECs have more mesenchymal markers, such as α-smooth muscle actin (SMA), and fewer endothelial markers, such as VE-cadherin. Activating calpain elevated phosphorylated Akt in mice cultured ECs, and inhibiting calpain decreased phosphorylated Akt. Upregulation of phosphorylated Akt by calpain promoted the EndMT, whereas inhibiting calpain switched on the protective mechanism during the EndMT via the heat shock protein (HSP)90/Akt signaling way in cultured ECs. CONCLUSIONS This study demonstrated a vital role of calpain in ECs for inducing myocardiocyte hypertrophy, cell death and the EndMT via the HSP90/Akt signaling pathway, thereby promoting cardiac fibrosis. The results indicate that inhibiting ECs calpain is a novel therapeutic target to retard cardiac fibrosis and has positive effects on heart failure.
Collapse
Affiliation(s)
- Xiaodi Sun
- Department of Geriatric Cardiovascular Disease, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yujiao Sun
- Department of Geriatric Cardiovascular Disease, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Pengcheng Jiang
- Department of Geriatric Cardiovascular Disease, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Guoxian Qi
- Department of Geriatric Cardiovascular Disease, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xitao Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
28
|
Loonat AA, Martin ED, Sarafraz-Shekary N, Tilgner K, Hertz NT, Levin R, Shokat KM, Burlingame AL, Arabacilar P, Uddin S, Thomas M, Marber MS, Clark JE. p38γ MAPK contributes to left ventricular remodeling after pathologic stress and disinhibits calpain through phosphorylation of calpastatin. FASEB J 2019; 33:13131-13144. [PMID: 31638431 PMCID: PMC6894093 DOI: 10.1096/fj.201701545r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/26/2018] [Indexed: 12/11/2022]
Abstract
Despite the high and preferential expression of p38γ MAPK in the myocardium, little is known about its function in the heart. The aim of the current study was to elucidate the physiologic and biochemical roles of p38γ in the heart. Expression and subcellular localization of p38 isoforms was determined in mouse hearts. Comparisons of the cardiac function and structure of wild-type and p38γ knockout (KO) mice at baseline and after abdominal aortic banding demonstrated that KO mice developed less ventricular hypertrophy and that contractile function is better preserved. To identify potential substrates of p38γ, we generated an analog-sensitive mutant to affinity tag endogenous myocardial proteins. Among other proteins, this technique identified calpastatin as a direct p38γ substrate. Moreover, phosphorylation of calpastatin by p38γ impaired its ability to inhibit the protease, calpain. We have identified p38γ as an important determinant of the progression of pathologic cardiac hypertrophy after aortic banding in mice. In addition, we have identified calpastatin, among other substrates, as a novel direct target of p38γ that may contribute to the protection observed in p38γKO mice.-Loonat, A. A., Martin, E. D., Sarafraz-Shekary, N., Tilgner, K., Hertz, N. T., Levin, R., Shokat, K. M., Burlingame, A. L., Arabacilar, P., Uddin, S., Thomas, M., Marber, M. S., Clark, J. E. p38γ MAPK contributes to left ventricular remodeling after pathologic stress and disinhibits calpain through phosphorylation of calpastatin.
Collapse
Affiliation(s)
- Aminah A. Loonat
- School of Cardiovascular Medicine and Science, British Heart Foundation (BHF) Centre, King’s College London, London, United Kingdom
| | - E. Denise Martin
- School of Cardiovascular Medicine and Science, British Heart Foundation (BHF) Centre, King’s College London, London, United Kingdom
| | - Negin Sarafraz-Shekary
- School of Cardiovascular Medicine and Science, British Heart Foundation (BHF) Centre, King’s College London, London, United Kingdom
| | - Katharina Tilgner
- School of Cardiovascular Medicine and Science, British Heart Foundation (BHF) Centre, King’s College London, London, United Kingdom
| | - Nicholas T. Hertz
- University of California–San Francisco, San Francisco, California, USA
| | - Rebecca Levin
- University of California–San Francisco, San Francisco, California, USA
| | - Kevan M. Shokat
- University of California–San Francisco, San Francisco, California, USA
| | | | - Pelin Arabacilar
- School of Cardiovascular Medicine and Science, British Heart Foundation (BHF) Centre, King’s College London, London, United Kingdom
| | - Shahzan Uddin
- School of Cardiovascular Medicine and Science, British Heart Foundation (BHF) Centre, King’s College London, London, United Kingdom
| | - Max Thomas
- School of Cardiovascular Medicine and Science, British Heart Foundation (BHF) Centre, King’s College London, London, United Kingdom
| | - Michael S. Marber
- School of Cardiovascular Medicine and Science, British Heart Foundation (BHF) Centre, King’s College London, London, United Kingdom
| | - James E. Clark
- School of Cardiovascular Medicine and Science, British Heart Foundation (BHF) Centre, King’s College London, London, United Kingdom
| |
Collapse
|
29
|
Hanouna G, Tang E, Perez J, Vandermeersch S, Haymann JP, Baud L, Letavernier E. Preventing Calpain Externalization by Reducing ABCA1 Activity with Probenecid Limits Melanoma Angiogenesis and Development. J Invest Dermatol 2019; 140:445-454. [PMID: 31425704 DOI: 10.1016/j.jid.2019.06.148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/23/2019] [Accepted: 06/17/2019] [Indexed: 11/17/2022]
Abstract
Calpains, intracellular proteases specifically inhibited by calpastatin, play a major role in neoangiogenesis involved in tumor invasiveness and metastasis. They are partly exteriorized via the ATP-binding cassette transporter A1(ABCA1) transporter, but the importance of this process in tumor growth is still unknown. The aim of our study was to investigate the role of extracellular calpains in a model of melanoma by blocking their extracellular activity or exteriorization. In the first approach, a B16-F10 model of melanoma was developed in transgenic mice expressing high extracellular levels of calpastatin. In these mice, tumor growth was inhibited by ∼ 3-fold compared with wild-type animals. In vitro cytotoxicity assays and in vivo tumor studies have demonstrated that this protection was associated with a defect in tumor neoangiogenesis. Similarly, in wild-type animals given probenecid to blunt ABCA1 activity, melanoma tumor growth was inhibited by ∼ 3-fold. Again, this response was associated with a defect in neoangiogenesis. In vitro studies confirmed that probenecid limited endothelial cell migration and capillary formation from vascular explants. The observed reduction in fibronectin cleavage under these conditions is potentially involved in the response. Collectively, these studies demonstrate that probenecid, by blunting ABCA1 activity and thereby calpain exteriorization, limits melanoma tumor neoangiogenesis and invasiveness.
Collapse
Affiliation(s)
- Guillaume Hanouna
- Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06, UMR_S 1155 and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France; Institut National de la Santé et de la Recherche Médicale, UMR_S 1155, Paris, France
| | - Ellie Tang
- Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06, UMR_S 1155 and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France; Institut National de la Santé et de la Recherche Médicale, UMR_S 1155, Paris, France
| | - Joëlle Perez
- Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06, UMR_S 1155 and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France; Institut National de la Santé et de la Recherche Médicale, UMR_S 1155, Paris, France
| | - Sophie Vandermeersch
- Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06, UMR_S 1155 and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France; Institut National de la Santé et de la Recherche Médicale, UMR_S 1155, Paris, France
| | - Jean-Philippe Haymann
- Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06, UMR_S 1155 and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France; Institut National de la Santé et de la Recherche Médicale, UMR_S 1155, Paris, France; Assistance Publique - Hôpitaux de Paris, Hôpital Tenon, Paris, France
| | - Laurent Baud
- Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06, UMR_S 1155 and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France; Institut National de la Santé et de la Recherche Médicale, UMR_S 1155, Paris, France; Assistance Publique - Hôpitaux de Paris, Hôpital Tenon, Paris, France
| | - Emmanuel Letavernier
- Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06, UMR_S 1155 and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France; Institut National de la Santé et de la Recherche Médicale, UMR_S 1155, Paris, France; Assistance Publique - Hôpitaux de Paris, Hôpital Tenon, Paris, France.
| |
Collapse
|
30
|
Meng Y, Sun T, Wu C, Dong C, Xiong S. Calpain regulates CVB3 induced viral myocarditis by promoting autophagic flux upon infection. Microbes Infect 2019; 22:46-54. [PMID: 31319178 DOI: 10.1016/j.micinf.2019.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/22/2019] [Accepted: 07/10/2019] [Indexed: 12/18/2022]
Abstract
Calpains are calcium-activated neutral cysteine proteases. The dysregulation of calpain activity has been found to be related to cardiovascular diseases, for which calpain inhibition is used as a treatment. Viral myocarditis (VMC) is primarily caused by Coxsackievirus group B3 virus infection (CVB3). CVB3 virus infection induces autophagy and hijacks this process to facilitate its replication. In this study, we found that calpain was significantly activated in hearts affected by VMC. However, pharmacologically inhibiting calpain aggravated VMC symptoms in mice due to myocardial inflammation and cardiac dysfunction. The inhibition of calpain activity in vitro led to the accumulation of LC3-II and increased levels of p62/SQSTM1 protein expression, suggesting that autophagic flux was impaired by calpain inhibition. These effects of calpain inhibition were also observed in capn4-specific myocardial knockout mice in vivo. Furthermore, our results provided evidence that calpain inhibition in VMC, unlike other cardiovascular diseases, exacerbated the disease symptom by impairing CVB3-induced autophagic flux, which may subsequently reduce virus autolysosome degradation. Our findings indicated that calpain inhibition may not be a good treatment for VMC disease in a clinical setting.
Collapse
Affiliation(s)
- Yawen Meng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Tianle Sun
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Chuanjian Wu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Chunsheng Dong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China.
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
31
|
Heizmann CW. Ca 2+-Binding Proteins of the EF-Hand Superfamily: Diagnostic and Prognostic Biomarkers and Novel Therapeutic Targets. Methods Mol Biol 2019; 1929:157-186. [PMID: 30710273 DOI: 10.1007/978-1-4939-9030-6_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A multitude of Ca2+-sensor proteins containing the specific Ca2+-binding motif (helix-loop-helix, called EF-hand) are of major clinical relevance in a many human diseases. Measurements of troponin, the first intracellular Ca-sensor protein to be discovered, is nowadays the "gold standard" in the diagnosis of patients with acute coronary syndrome (ACS). Mutations have been identified in calmodulin and linked to inherited ventricular tachycardia and in patients affected by severe cardiac arrhythmias. Parvalbumin, when introduced into the diseased heart by gene therapy to increase contraction and relaxation speed, is considered to be a novel therapeutic strategy to combat heart failure. S100 proteins, the largest subgroup with the EF-hand protein family, are closely associated with cardiovascular diseases, various types of cancer, inflammation, and autoimmune pathologies. The intention of this review is to summarize the clinical importance of this protein family and their use as biomarkers and potential drug targets, which could help to improve the diagnosis of human diseases and identification of more selective therapeutic interventions.
Collapse
Affiliation(s)
- Claus W Heizmann
- Department of Pediatrics, Division of Clinical Chemistry and Biochemistry, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
32
|
Plekhanova O, Parfyonova Y, Beloglazova I, Berk BC, Tkachuk V. Oligonucleotide Microarrays Identified Potential Regulatory Genes Related to Early Outward Arterial Remodeling Induced by Tissue Plasminogen Activator. Front Physiol 2019; 10:493. [PMID: 31114508 PMCID: PMC6502959 DOI: 10.3389/fphys.2019.00493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/08/2019] [Indexed: 01/18/2023] Open
Abstract
Constrictive vascular remodeling limiting blood flow, as well as compensatory outward remodeling, has been observed in many cardiovascular diseases; however, the underlying mechanisms regulating the remodeling response of the vessels remain unclear. Plasminogen activators (PA) are involved in many of the processes of vascular remodeling. We have shown previously that increased levels of tissue-type PA (tPA) contributes to outward vascular remodeling. To elucidate the mechanisms involved in the induction of outward remodeling we characterized changes in the expression profiles of 8799 genes in injured rat carotid arteries 1 and 4 days after recombinant tPA treatment compared to vehicle. Periadventitial tPA significantly increased lumen size and vessel area, encompassed by the external elastic lamina, at both one and 4 days after treatment. Among 41 differentially expressed known genes 1 day after tPA application, five genes were involved in gene transcription, five genes were related to the regulation of vascular tone [for example, thromboxane A2 receptor (D32080) or non-selective-type endothelin receptor (S65355)], and eight genes were identified as participating in vascular innervation [for example, calpain (D14478) or neural cell adhesion molecule L1 (X59149)]. Four days after injury in tPA-treated arteries, four genes, regulating vascular tone, were differentially expressed. Thus, tPA promotes outward arterial remodeling after injury, at least in part, by regulating expression of genes in the vessel wall related to function of the nervous system and vascular tone.
Collapse
Affiliation(s)
- Olga Plekhanova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,National Medical Research Center of Cardiology, Moscow, Russia
| | - Yelena Parfyonova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,National Medical Research Center of Cardiology, Moscow, Russia
| | - Irina Beloglazova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,National Medical Research Center of Cardiology, Moscow, Russia
| | - Bradford C Berk
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, NY, United States
| | - Vsevolod Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,National Medical Research Center of Cardiology, Moscow, Russia
| |
Collapse
|
33
|
Calpains mediate isoproterenol-induced hypertrophy through modulation of GRK2. Basic Res Cardiol 2019; 114:21. [DOI: 10.1007/s00395-019-0730-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/20/2019] [Indexed: 01/27/2023]
|
34
|
Randriamboavonjy V, Kyselova A, Fleming I. Redox Regulation of Calpains: Consequences on Vascular Function. Antioxid Redox Signal 2019; 30:1011-1026. [PMID: 30266074 DOI: 10.1089/ars.2018.7607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Calpains (CAPNs) are a family of calcium-activated cysteine proteases. The ubiquitous isoforms CAPN1 and CAPN2 have been involved in the maintenance of vascular integrity, but uncontrolled CAPN activation plays a role in the pathogenesis of vascular diseases. Recent Advances: It is well accepted that chronic and acute overproduction of reactive oxygen species (ROS) is associated with the development of vascular diseases. There is increasing evidence that ROS can also affect the CAPN activity, suggesting CAPN as a potential link between oxidative stress and vascular disease. CRITICAL ISSUES The physiopathological relevance of ROS in regulating the CAPN activity is not fully understood but seems to involve direct effects on CAPNs, redox modifications of CAPN substrates, as well as indirect effect on CAPNs via changes in Ca2+ levels. Finally, CAPNs can also stimulate ROS production; however, data showing in which context ROS are the causes or the consequences of CAPN activation are missing. FUTURE DIRECTIONS Detailed characterization of the molecular mechanisms underlying the regulation of the different members of the CAPN system by specific ROS would help understanding the pathophysiological role of CAPN in the modulation of the vascular function. Moreover, given that CAPNs have been found in different cellular compartments such as mitochondria and nucleus as well as in the extracellular space, identification of new CAPN targets as well as their functional consequences would add new insights in the function of these enigmatic proteases.
Collapse
Affiliation(s)
- Voahanginirina Randriamboavonjy
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,2 German Center of Cardiovascular Research (DZHK), Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - Anastasia Kyselova
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,2 German Center of Cardiovascular Research (DZHK), Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - Ingrid Fleming
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,2 German Center of Cardiovascular Research (DZHK), Partner Site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
35
|
Chinnakkannu P, Reese C, Gaspar JA, Panneerselvam S, Pleasant-Jenkins D, Mukherjee R, Baicu C, Tourkina E, Hoffman S, Kuppuswamy D. Suppression of angiotensin II-induced pathological changes in heart and kidney by the caveolin-1 scaffolding domain peptide. PLoS One 2018; 13:e0207844. [PMID: 30576317 PMCID: PMC6303044 DOI: 10.1371/journal.pone.0207844] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/07/2018] [Indexed: 01/15/2023] Open
Abstract
Dysregulation of the renin-angiotensin system leads to systemic hypertension and maladaptive fibrosis in various organs. We showed recently that myocardial fibrosis and the loss of cardiac function in mice with transverse aortic constriction (TAC) could be averted by treatment with the caveolin-1 scaffolding domain (CSD) peptide. Here, we used angiotensin II (AngII) infusion (2.1 mg/kg/day for 2 wk) in mice as a second model to confirm and extend our observations on the beneficial effects of CSD on heart and kidney disease. AngII caused cardiac hypertrophy (increased heart weight to body weight ratio (HW/BW) and cardiomyocyte cross-sectional area); fibrosis in heart and kidney (increased levels of collagen I and heat shock protein-47 (HSP47)); and vascular leakage (increased levels of IgG in heart and kidney). Echocardiograms of AngII-infused mice showed increased left ventricular posterior wall thickness (pWTh) and isovolumic relaxation time (IVRT), and decreased ejection fraction (EF), stroke volume (SV), and cardiac output (CO). CSD treatment (i.p. injections, 50 μg/mouse/day) of AngII-infused mice significantly suppressed all of these pathological changes in fibrosis, hypertrophy, vascular leakage, and ventricular function. AngII infusion increased β1 and β3 integrin levels and activated Pyk2 in both heart and kidney. These changes were also suppressed by CSD. Finally, bone marrow cell (BMC) isolated from AngII-infused mice showed hyper-migration toward SDF1. When AngII-infused mice were treated with CSD, BMC migration was reduced to the basal level observed in cells from control mice. Importantly, CSD did not affect the AngII-induced increase in blood pressure (BP), indicating that the beneficial effects of CSD were not mediated via normalization of BP. These results strongly indicate that CSD suppresses AngII-induced pathological changes in mice, suggesting that CSD can be developed as a treatment for patients with hypertension and pressure overload-induced heart failure.
Collapse
Affiliation(s)
- Panneerselvam Chinnakkannu
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Charles Reese
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | | | - Saraswathi Panneerselvam
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Dorea Pleasant-Jenkins
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Rupak Mukherjee
- Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Catalin Baicu
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Elena Tourkina
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Stanley Hoffman
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Dhandapani Kuppuswamy
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|
36
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 708] [Impact Index Per Article: 101.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
37
|
Li S, Ma J, Li JB, Lacefield JC, Jones DL, Peng TQ, Wei M. Over-expression of calpastatin attenuates myocardial injury following myocardial infarction by inhibiting endoplasmic reticulum stress. J Thorac Dis 2018; 10:5283-5297. [PMID: 30416776 DOI: 10.21037/jtd.2018.08.133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background Ischemic heart injury activates calpains and endoplasmic reticulum (ER) stress in cardiomyocytes. This study investigated whether over-expression of calpastatin, an endogenous calpain inhibitor, protects the heart against myocardial infarction (MI) by inhibiting ER stress. Methods Mice over-expressing calpastatin (Tg-CAST) and littermate wild type (WT) mice were divided into four groups: WT-sham, Tg-CAST-sham, WT-MI, and Tg-CAST-MI, respectively. WT-sham and Tg-CAST-sham mice showed similar cardiac function at baseline. MI for 7 days impaired cardiac function in WT-MI mice, which was ameliorated in Tg-CAST-MI mice. Results Tg-CAST-MI mice exhibited significantly decreased diameter of the left ventricular cavity, scar area, and cardiac cell death compared to WT-MI mice. WT-MI mice had higher cardiac expression of C/EBP homologous protein (CHOP) and BIP, indicators of ER stress, compared to WT-sham mice, indicative of MI-induced ER stress. This increase was abolished in Tg-CAST-MI hearts. Furthermore, administration of tauroursodeoxycholic acid, an inhibitor of ER stress, reduced MI-induced expression of CHOP and BIP, scar area, and myocardial dysfunction. In an in vitro model of oxidative stress, H2O2 stimulation of H9c2 cardiomyoblasts induced calpain activation, CHOP expression, and cell death, all of which were prevented by the calpain inhibitor PD150606, as well as CHOP silencing. Conclusions Over-expression of calpastatin ameliorates MI-induced myocardial injury in mice. These protective effects of calpastatin are partially achieved through suppression of the ER stress/CHOP pathway.
Collapse
Affiliation(s)
- Shuai Li
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Critical Illness Research, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada.,Department of Medicine, Western University, London, Ontario, Canada.,Department of Pathology, Western University, London, Ontario, Canada
| | - Jian Ma
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jing-Bo Li
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - James C Lacefield
- Department of Electrical & Computer Engineering, Western University, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada
| | - Douglas L Jones
- Critical Illness Research, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada.,Department of Medicine, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada.,Department of Physiology & Pharmacology, Western University, London, Ontario, Canada
| | - Tian-Qing Peng
- Critical Illness Research, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada.,Department of Medicine, Western University, London, Ontario, Canada.,Department of Pathology, Western University, London, Ontario, Canada
| | - Meng Wei
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
38
|
Poncelas M, Inserte J, Aluja D, Hernando V, Vilardosa U, Garcia-Dorado D. Delayed, oral pharmacological inhibition of calpains attenuates adverse post-infarction remodelling. Cardiovasc Res 2018; 113:950-961. [PMID: 28460013 DOI: 10.1093/cvr/cvx073] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/27/2017] [Indexed: 01/12/2023] Open
Abstract
Calpains activate during myocardial ischemia-reperfusion and contribute to reperfusion injury. Studies in transgenic animals with altered calpain/calpastatin system subjected to permanent ischemia suggest that calpains are also involved in post-infarction remodelling and heart failure. Aims To determine whether delayed oral administration of the calpain inhibitor SNJ-1945 reduces adverse myocardial remodelling and dysfunction following transient coronary occlusion. Methods and results Male Sprague-Dawley rats were subjected to 30 min of ischemia followed by 21 days of reperfusion and received the calpain inhibitor SNJ-1945 intraperitoneally at the onset of reperfusion (Acute group), orally starting after 24 h of reperfusion and for 14 days (Chronic group), or the combination of both treatments. Calpain-1 and calpain-2 protein content increased and correlated with higher calpain activity in control hearts. Administration of SNJ-1945 attenuated calpain activation, and reduced scar expansion, ventricular dilation and dysfunction in both acute and chronic groups. Acute treatment reduced infarct size in hearts reperfused for 24 h and inflammation measured after 3 days. Delayed, chronic oral administration of SNJ-1945 attenuated inflammation, cardiomyocyte hypertrophy and collagen infiltration in the non-infarcted myocardium at 21 days in correlation with increased levels of IĸB and reduced NF-ĸB activation. In cultured fibroblasts, SNJ-1945 attenuated TGF-β1-induced fibroblast activation. Conclusions Our data demonstrate for the first time that long-term calpain inhibition is possible with delayed oral treatment, attenuates adverse post-infarction remodelling, likely through prevention of NF-ĸB activation, and may be a promising therapeutic intervention to prevent adverse remodelling and heart failure in patients with acute myocardial infarction.
Collapse
Affiliation(s)
- Marcos Poncelas
- Laboratory of Experimental Cardiology, Cardiology Department, Vall d'Hebron University Hospital and Research Institute VHIR, Universitat Autónoma de Barcelona, Passeig Vall d'Hebron 119-129 08035 Barcelona, Spain
| | - Javier Inserte
- Laboratory of Experimental Cardiology, Cardiology Department, Vall d'Hebron University Hospital and Research Institute VHIR, Universitat Autónoma de Barcelona, Passeig Vall d'Hebron 119-129 08035 Barcelona, Spain
- CIBERCV, Spain
| | - David Aluja
- Laboratory of Experimental Cardiology, Cardiology Department, Vall d'Hebron University Hospital and Research Institute VHIR, Universitat Autónoma de Barcelona, Passeig Vall d'Hebron 119-129 08035 Barcelona, Spain
| | - Victor Hernando
- Laboratory of Experimental Cardiology, Cardiology Department, Vall d'Hebron University Hospital and Research Institute VHIR, Universitat Autónoma de Barcelona, Passeig Vall d'Hebron 119-129 08035 Barcelona, Spain
| | - Ursula Vilardosa
- Laboratory of Experimental Cardiology, Cardiology Department, Vall d'Hebron University Hospital and Research Institute VHIR, Universitat Autónoma de Barcelona, Passeig Vall d'Hebron 119-129 08035 Barcelona, Spain
| | - David Garcia-Dorado
- Laboratory of Experimental Cardiology, Cardiology Department, Vall d'Hebron University Hospital and Research Institute VHIR, Universitat Autónoma de Barcelona, Passeig Vall d'Hebron 119-129 08035 Barcelona, Spain
- CIBERCV, Spain
| |
Collapse
|
39
|
Ashraf J, Ahmad J, Ali A, Ul-Haq Z. Analyzing the Behavior of Neuronal Pathways in Alzheimer's Disease Using Petri Net Modeling Approach. Front Neuroinform 2018; 12:26. [PMID: 29875647 PMCID: PMC5974338 DOI: 10.3389/fninf.2018.00026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/30/2018] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's Disease (AD) is the most common neuro-degenerative disorder in the elderly that leads to dementia. The hallmark of AD is senile lesions made by abnormal aggregation of amyloid beta in extracellular space of brain. One of the challenges in AD treatment is to better understand the mechanism of action of key proteins and their related pathways involved in neuronal cell death in order to identify adequate therapeutic targets. This study focuses on the phenomenon of aggregation of amyloid beta into plaques by considering the signal transduction pathways of Calpain-Calpastatin (CAST) regulation system and Amyloid Precursor Protein (APP) processing pathways along with Ca2+ channels. These pathways are modeled and analyzed individually as well as collectively through Stochastic Petri Nets for comprehensive analysis and thorough understating of AD. The model predicts that the deregulation of Calpain activity, disruption of Calcium homeostasis, inhibition of CAST and elevation of abnormal APP processing are key cytotoxic events resulting in an early AD onset and progression. Interestingly, the model also reveals that plaques accumulation start early (at the age of 40) in life but symptoms appear late. These results suggest that the process of neuro-degeneration can be slowed down or paused by slowing down the degradation rate of Calpain-CAST Complex. In the light of this study, the suggestive therapeutic strategy might be the prevention of the degradation of Calpain-CAST complexes and the inhibition of Calpain for the treatment of neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Javaria Ashraf
- Research Center for Modeling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan
| | - Jamil Ahmad
- Research Center for Modeling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan
| | - Amjad Ali
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
40
|
Affiliation(s)
- Sabine Kossmann
- From the Center for Cardiology–Cardiology I (S.K., P.W.) and Center for Thrombosis and Hemostasis Mainz (S.K., P.W.), University Medical Center Mainz, Germany; and German Center for Cardiovascular Research–Partner Site Rhine-Main, Germany (P.W.)
| | - Philip Wenzel
- From the Center for Cardiology–Cardiology I (S.K., P.W.) and Center for Thrombosis and Hemostasis Mainz (S.K., P.W.), University Medical Center Mainz, Germany; and German Center for Cardiovascular Research–Partner Site Rhine-Main, Germany (P.W.)
| |
Collapse
|
41
|
Goulopoulou S. Calpain: A Novel Mediator of MPO (Myeloperoxidase)-Induced Endothelial Dysfunction. Hypertension 2018; 71:574-576. [PMID: 29507102 DOI: 10.1161/hypertensionaha.118.10441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Styliani Goulopoulou
- From the Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth.
| |
Collapse
|
42
|
Miyazaki T, Miyazaki A. Defective Protein Catabolism in Atherosclerotic Vascular Inflammation. Front Cardiovasc Med 2017; 4:79. [PMID: 29270409 PMCID: PMC5725411 DOI: 10.3389/fcvm.2017.00079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/23/2017] [Indexed: 01/08/2023] Open
Abstract
Vascular inflammation in atheroprone vessels propagates throughout the arterial tree in dyslipidemic patients, thereby accelerating atherosclerotic progression. To elucidate the mechanism of vascular inflammation, most previous studies have focused on inflammation-related signals that are sent in response to vasoactive stimuli. However, it is also important to understand how normal blood vessels become defective and start degenerating. Growing evidence suggests that major protein catabolism pathways, including the ubiquitin-proteasome, autophagy, and calpain systems, are disturbed in atheroprone vessels and contribute to the pathogenesis of atherosclerosis. Indeed, dysregulation of ubiquitin-proteasome pathways results in the accumulation of defective proteins in blood vessels, leading to vascular endothelial dysfunction and apoptosis in affected cells. Impaired autophagy-lysosomal degradation affects smooth muscle cell transformation and proliferation, as well as endothelial integrity and phagocytic clearance of cellular corpses. Dysregulation of the calpain system confers proatherogenic properties to endothelial cells, smooth muscle cells, and macrophages. In this review article, we will discuss the current information available on defective protein catabolism in atheroprone vessels and its potential interrelation with inflammation-related signals.
Collapse
Affiliation(s)
- Takuro Miyazaki
- Department of Biochemistry, School of Medicine, Showa University, Tokyo, Japan
| | - Akira Miyazaki
- Department of Biochemistry, School of Medicine, Showa University, Tokyo, Japan
| |
Collapse
|
43
|
Muniappan L, Javidan A, Jiang W, Mohammadmoradi S, Moorleghen JJ, Katz WS, Balakrishnan A, Howatt DA, Subramanian V. Calpain Inhibition Attenuates Adipose Tissue Inflammation and Fibrosis in Diet-induced Obese Mice. Sci Rep 2017; 7:14398. [PMID: 29089532 PMCID: PMC5663911 DOI: 10.1038/s41598-017-14719-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/17/2017] [Indexed: 11/09/2022] Open
Abstract
Adipose tissue macrophages have been proposed as a link between obesity and insulin resistance. However, the mechanisms underlying these processes are not completely defined. Calpains are calcium-dependent neutral cysteine proteases that modulate cellular function and have been implicated in various inflammatory diseases. To define whether activated calpains influence diet-induced obesity and adipose tissue macrophage accumulation, mice that were either wild type (WT) or overexpressing calpastatin (CAST Tg), the endogenous inhibitor of calpains were fed with high (60% kcal) fat diet for 16 weeks. CAST overexpression did not influence high fat diet-induced body weight and fat mass gain throughout the study. Calpain inhibition showed a transient improvement in glucose tolerance at 5 weeks of HFD whereas it lost this effect on glucose and insulin tolerance at 16 weeks HFD in obese mice. However, CAST overexpression significantly reduced adipocyte apoptosis, adipose tissue collagen and macrophage accumulation as detected by TUNEL, Picro Sirius and F4/80 immunostaining, respectively. CAST overexpression significantly attenuated obesity-induced inflammatory responses in adipose tissue. Furthermore, calpain inhibition suppressed macrophage migration to adipose tissue in vitro. The present study demonstrates a pivotal role for calpains in mediating HFD-induced adipose tissue remodeling by influencing multiple functions including apoptosis, fibrosis and inflammation.
Collapse
Affiliation(s)
- Latha Muniappan
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Aida Javidan
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Weihua Jiang
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | | | | | - Wendy S Katz
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Anju Balakrishnan
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Deborah A Howatt
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Venkateswaran Subramanian
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA.
- Department of Physiology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
44
|
Parente JM, Pereira CA, Oliveira-Paula GH, Tanus-Santos JE, Tostes RC, Castro MM. Matrix Metalloproteinase-2 Activity is Associated with Divergent Regulation of Calponin-1 in Conductance and Resistance Arteries in Hypertension-induced Early Vascular Dysfunction and Remodelling. Basic Clin Pharmacol Toxicol 2017; 121:246-256. [PMID: 28374979 DOI: 10.1111/bcpt.12787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/27/2017] [Indexed: 01/19/2023]
Abstract
Matrix metalloproteinase (MMP)-2 participates in hypertension-induced maladaptive vascular remodelling by degrading extra- and intracellular proteins. The consequent extracellular matrix rearrangement and phenotype switch of vascular smooth muscle cells (VSMCs) lead to increased cellular migration and proliferation. As calponin-1 degradation by MMP-2 may lead to VSMC proliferation during hypertension, the hypothesis of this study is that increased MMP-2 activity contributes to early hypertension-induced maladaptive remodelling in conductance and resistance arteries via regulation of calponin-1. The main objective was to analyse whether MMP-2 exerts similar effects on the structure and function of the resistance and conductance arteries during early hypertension. Two-kidney, one-clip (2K-1C) hypertensive male rats and corresponding controls were treated with doxycycline (30 mg/kg/day) or water until reaching one week of hypertension. Systolic blood pressure was increased in 2K-1C rats, and doxycycline did not reduce it. Aortas and mesenteric arteries were analysed. MMP-2 activity and expression were increased in both arteries, and doxycycline reduced it. Significant hypertrophic remodelling and VSMC proliferation were observed in aortas but not in mesenteric arteries of 2K-1C rats. The contractility of mesenteric arteries to phenylephrine was increased in 2K-1C rats, and doxycycline prevented this alteration. The potency of phenylephrine to contract aortas of 2K-1C rats was increased, and doxycycline decreased it. Whereas calponin-1 expression was increased in 2K-1C mesenteric arteries, calponin-1 was reduced in aortas. Doxycycline treatment reverted changes in calponin-1 expression. MMP-2 contributes to hypertrophic remodelling in aortas by decreasing calponin-1 levels, which may result in VSMC proliferation. On the other hand, MMP-2-dependent increased calponin-1 in mesenteric arteries may contribute to vascular hypercontractility in 2K-1C rats. Divergent regulation of calponin-1 by MMP-2 may be an important mechanism that leads to maladaptive vascular effects in hypertension.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/enzymology
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Calcium-Binding Proteins/metabolism
- Disease Models, Animal
- Female
- Hypertension, Renovascular/enzymology
- Hypertension, Renovascular/pathology
- Hypertension, Renovascular/physiopathology
- Matrix Metalloproteinase 2/metabolism
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/enzymology
- Mesenteric Arteries/pathology
- Mesenteric Arteries/physiopathology
- Microfilament Proteins/metabolism
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Rats, Wistar
- Signal Transduction
- Vascular Remodeling/drug effects
- Vascular Resistance/drug effects
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/pharmacology
- Vasodilator Agents/pharmacology
- Calponins
Collapse
Affiliation(s)
- Juliana M Parente
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Camila A Pereira
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Gustavo H Oliveira-Paula
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - José E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Michele M Castro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
45
|
Metabolic stress-induced cardiomyopathy is caused by mitochondrial dysfunction due to attenuated Erk5 signaling. Nat Commun 2017; 8:494. [PMID: 28887535 PMCID: PMC5591279 DOI: 10.1038/s41467-017-00664-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 07/18/2017] [Indexed: 12/01/2022] Open
Abstract
The prevalence of cardiomyopathy from metabolic stress has increased dramatically; however, its molecular mechanisms remain elusive. Here, we show that extracellular signal-regulated protein kinase 5 (Erk5) is lost in the hearts of obese/diabetic animal models and that cardiac-specific deletion of Erk5 in mice (Erk5-CKO) leads to dampened cardiac contractility and mitochondrial abnormalities with repressed fuel oxidation and oxidative damage upon high fat diet (HFD). Erk5 regulation of peroxisome proliferator-activated receptor γ co-activator-1α (Pgc-1α) is critical for cardiac mitochondrial functions. More specifically, we show that Gp91phox activation of calpain-1 degrades Erk5 in free fatty acid (FFA)-stressed cardiomyocytes, whereas the prevention of Erk5 loss by blocking Gp91phox or calpain-1 rescues mitochondrial functions. Similarly, adeno-associated virus 9 (AAV9)-mediated restoration of Erk5 expression in Erk5-CKO hearts prevents cardiomyopathy. These findings suggest that maintaining Erk5 integrity has therapeutic potential for treating metabolic stress-induced cardiomyopathy. The mechanistic link between metabolic stress and associated cardiomyopathy is unknown. Here the authors show that high fat diet causes calpain-1-dependent degradation of ERK5 leading to mitochondrial dysfunction, suggesting the maintenance of cardiac ERK5 as a therapeutic approach for cardiomyopathy prevention and/or treatment.
Collapse
|
46
|
Miyazaki T, Miyazaki A. Dysregulation of Calpain Proteolytic Systems Underlies Degenerative Vascular Disorders. J Atheroscler Thromb 2017; 25:1-15. [PMID: 28819082 PMCID: PMC5770219 DOI: 10.5551/jat.rv17008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chronic vascular diseases such as atherosclerosis, aneurysms, diabetic angiopathy/retinopathy as well as fibrotic and proliferative vascular diseases are generally complicated by the progression of degenerative insults, which are characterized by endothelial dysfunction, apoptotic/necrotic cell death in vascular/immune cells, remodeling of extracellular matrix or breakdown of elastic lamella. Increasing evidence suggests that dysfunctional calpain proteolytic systems and defective calpain protein metabolism in blood vessels contribute to degenerative disorders. In vascular endothelial cells, the overactivation of conventional calpains consisting of calpain-1 and -2 isozymes can lead to the disorganization of cell-cell junctions, dysfunction of nitric oxide synthase, sensitization of Janus kinase/signal transducer and activator of transcription cascades and depletion of prostaglandin I2, which contributes to degenerative disorders. In addition to endothelial cell dysfunctions, calpain overactivation results in inflammatory insults in macrophages and excessive fibrogenic/proliferative signaling in vascular smooth muscle cells. Moreover, calpain-6, a non-proteolytic unconventional calpain, is involved in the conversion of macrophages to a pro-atherogenic phenotype, leading to the pinocytotic deposition of low-density lipoprotein cholesterol in the cells. Here, we discuss the recent progress that has been made in our understanding of how calpain contributes to degenerative vascular disorders.
Collapse
Affiliation(s)
- Takuro Miyazaki
- Department of Biochemistry, Showa University School of Medicine
| | - Akira Miyazaki
- Department of Biochemistry, Showa University School of Medicine
| |
Collapse
|
47
|
Specific calpain inhibition protects kidney against inflammaging. Sci Rep 2017; 7:8016. [PMID: 28808241 PMCID: PMC5556007 DOI: 10.1038/s41598-017-07922-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 07/03/2017] [Indexed: 11/12/2022] Open
Abstract
Calpains are ubiquitous pro-inflammatory proteases, whose activity is controlled by calpastatin, their specific inhibitor. Transgenic mice over-expressing rabbit calpastatin (CalpTG) are protected against vascular remodelling and angiotensin II-dependent inflammation. We hypothesized that specific calpain inhibition would protect against aging-related lesions in arteries and kidneys. We analysed tissues from 2-months and 2-years-old CalpTG and wild-type mice and performed high throughput RNA-Sequencing of kidney tissue in aged mice. In addition, we analysed inflammatory response in the kidney of aged CalpTG and wild-type mice, and in both in vivo (monosodium urate peritonitis) and in vitro models of inflammation. At two years, CalpTG mice had preserved kidney tissue, less vascular remodelling and less markers of senescence than wild-type mice. Nevertheless, CalpTG mice lifespan was not extended, due to the development of lethal spleen tumors. Inflammatory pathways were less expressed in aged CalpTG mice, especially cytokines related to NF-κB and NLRP3 inflammasome activation. CalpTG mice had reduced macrophage infiltration with aging and CalpTG mice produced less IL-1α and IL-1β in vivo in response to inflammasome activators. In vitro, macrophages from CalpTG mice produced less IL-1α in response to particulate activators of inflammasome. Calpains inhibition protects against inflammaging, limiting kidney and vascular lesions related to aging.
Collapse
|
48
|
Abou Ziki MD, Mani A. Wnt signaling, a novel pathway regulating blood pressure? State of the art review. Atherosclerosis 2017; 262:171-178. [PMID: 28522145 PMCID: PMC5508596 DOI: 10.1016/j.atherosclerosis.2017.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/06/2017] [Accepted: 05/03/2017] [Indexed: 12/18/2022]
Abstract
Recent antihypertensive trials show conflicting results on blood pressure (BP) targets in patient populations with different metabolic profiles, with lowest benefit from tight BP control observed in patients with type 2 diabetes mellitus. This paradox could arise from the heterogeneity of study populations and underscores the importance of precision medicine initiatives towards understanding and treating hypertension. Wnt signaling pathways and genetic variations in its signaling peptides have been recently associated with metabolic syndrome, hypertension and diabetes, generating a breakthrough for advancement of precision medicine in the field of hypertension. We performed a review of PubMed for publications addressing the contributions of Wnt to BP regulation and hypertension. In addition, we performed a manual search of the reference lists for relevant articles, and included unpublished observations from our laboratory. There is emerging evidence for Wnt's role in BP regulation and its involvement in the pathogenesis of hypertension. Wnt signaling has pleiotropic effects on distinct pathways that involve vascular smooth muscle plasticity, and cardiac, renal, and neural physiology. Hypertension is a heterogeneous disease with unique molecular pathways regulating its response to therapy. Recognition of these pathways is a prerequisite to identify novel targets for drug development and personalizing medicine. A review of Wnt signaling reveals its emerging role in BP regulation and as a target for novel drug development that has the potential to transform the therapy of hypertension in specific populations.
Collapse
Affiliation(s)
- Maen D Abou Ziki
- Departments of Internal Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Arya Mani
- Departments of Internal Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
49
|
Wan F, Letavernier E, Abid S, Houssaini A, Czibik G, Marcos E, Rideau D, Parpaleix A, Lipskaia L, Amsellem V, Gellen B, Sawaki D, Derumeaux G, Dubois-Randé JL, Delcroix M, Quarck R, Baud L, Adnot S. Extracellular Calpain/Calpastatin Balance Is Involved in the Progression of Pulmonary Hypertension. Am J Respir Cell Mol Biol 2017; 55:337-51. [PMID: 26974350 DOI: 10.1165/rcmb.2015-0257oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Excessive growth of pulmonary arterial (PA) smooth muscle cells (SMCs) is a major component of PA hypertension (PAH). The calcium-activated neutral cysteine proteases calpains 1 and 2, expressed by PASMCs, contribute to PH but are tightly controlled by a single specific inhibitor, calpastatin. Our objective was to investigate calpastatin during pulmonary hypertension (PH) progression and its potential role as an intracellular and/or extracellular effector. We assessed calpains and calpastatin in patients with idiopathic PAH and mice with hypoxic or spontaneous (SM22-5HTT(+) strain) PH. To assess intracellular and extracellular roles for calpastatin, we studied effects of the calpain inhibitor PD150606 on hypoxic PH in mice with calpastatin overexpression driven by the cytomegalovirus promoter (CMV-Cast) or C-reactive protein (CRP) promoter (CRP-Cast), inducing increased calpastatin production ubiquitously and in the liver, respectively. Chronically hypoxic and SM22-5HTT(+) mice exhibited increased lung calpastatin and calpain 1 and 2 protein levels and activity, both intracellularly and extracellularly. Prominent calpastatin and calpain immunostaining was found in PASMCs of remodeled vessels in mice and patients with PAH, who also exhibited increased plasma calpastatin levels. CMV-Cast and CRP-Cast mice showed similarly decreased PH severity compared with wild-type mice, with no additional effect of PD150606 treatment. In cultured PASMCs from wild-type and CMV-Cast mice, exogenous calpastatin decreased cell proliferation and migration with similar potency as PD150606 and suppressed fibronectin-induced potentiation. These results indicate that calpastatin limits PH severity via extracellular mechanisms. They suggest a new approach to the development of treatments for PH.
Collapse
Affiliation(s)
- Feng Wan
- 1 INSERM Unit 955 and Département de Physiologie, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Departement Hospitalo-Universitaire Aging-Thorax-Vessels-Blood, Créteil, France, and Université Paris-Est Créteil, Paris-Est Créteil, France
| | - Emmanuel Letavernier
- 2 Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, Unité Mixte de Recherche_accredited by INSERM 1155, and Department of Inflammation-Immunopathology-Biotherapy (DHU Inflammation-Immunopathology-Biotherapy), Paris, France, and Department of Physiology, Tenon Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Shariq Abid
- 1 INSERM Unit 955 and Département de Physiologie, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Departement Hospitalo-Universitaire Aging-Thorax-Vessels-Blood, Créteil, France, and Université Paris-Est Créteil, Paris-Est Créteil, France
| | - Amal Houssaini
- 1 INSERM Unit 955 and Département de Physiologie, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Departement Hospitalo-Universitaire Aging-Thorax-Vessels-Blood, Créteil, France, and Université Paris-Est Créteil, Paris-Est Créteil, France
| | - Gabor Czibik
- 1 INSERM Unit 955 and Département de Physiologie, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Departement Hospitalo-Universitaire Aging-Thorax-Vessels-Blood, Créteil, France, and Université Paris-Est Créteil, Paris-Est Créteil, France
| | - Elisabeth Marcos
- 1 INSERM Unit 955 and Département de Physiologie, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Departement Hospitalo-Universitaire Aging-Thorax-Vessels-Blood, Créteil, France, and Université Paris-Est Créteil, Paris-Est Créteil, France
| | - Dominique Rideau
- 1 INSERM Unit 955 and Département de Physiologie, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Departement Hospitalo-Universitaire Aging-Thorax-Vessels-Blood, Créteil, France, and Université Paris-Est Créteil, Paris-Est Créteil, France
| | - Aurélien Parpaleix
- 1 INSERM Unit 955 and Département de Physiologie, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Departement Hospitalo-Universitaire Aging-Thorax-Vessels-Blood, Créteil, France, and Université Paris-Est Créteil, Paris-Est Créteil, France
| | - Larissa Lipskaia
- 1 INSERM Unit 955 and Département de Physiologie, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Departement Hospitalo-Universitaire Aging-Thorax-Vessels-Blood, Créteil, France, and Université Paris-Est Créteil, Paris-Est Créteil, France
| | - Valérie Amsellem
- 1 INSERM Unit 955 and Département de Physiologie, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Departement Hospitalo-Universitaire Aging-Thorax-Vessels-Blood, Créteil, France, and Université Paris-Est Créteil, Paris-Est Créteil, France
| | - Barnabas Gellen
- 1 INSERM Unit 955 and Département de Physiologie, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Departement Hospitalo-Universitaire Aging-Thorax-Vessels-Blood, Créteil, France, and Université Paris-Est Créteil, Paris-Est Créteil, France
| | - Daigo Sawaki
- 1 INSERM Unit 955 and Département de Physiologie, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Departement Hospitalo-Universitaire Aging-Thorax-Vessels-Blood, Créteil, France, and Université Paris-Est Créteil, Paris-Est Créteil, France
| | - Genevieve Derumeaux
- 1 INSERM Unit 955 and Département de Physiologie, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Departement Hospitalo-Universitaire Aging-Thorax-Vessels-Blood, Créteil, France, and Université Paris-Est Créteil, Paris-Est Créteil, France
| | - Jean-Luc Dubois-Randé
- 3 Service de Cardiologie, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France; and Université Paris-Est Créteil, Paris-Est Créteil, France; and
| | - Marion Delcroix
- 4 Respiratory Division, University Hospitals of Leuven and Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | - Rozenn Quarck
- 4 Respiratory Division, University Hospitals of Leuven and Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | - Laurent Baud
- 2 Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, Unité Mixte de Recherche_accredited by INSERM 1155, and Department of Inflammation-Immunopathology-Biotherapy (DHU Inflammation-Immunopathology-Biotherapy), Paris, France, and Department of Physiology, Tenon Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Serge Adnot
- 1 INSERM Unit 955 and Département de Physiologie, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Departement Hospitalo-Universitaire Aging-Thorax-Vessels-Blood, Créteil, France, and Université Paris-Est Créteil, Paris-Est Créteil, France
| |
Collapse
|
50
|
Gresham KS, Mamidi R, Li J, Kwak H, Stelzer JE. Sarcomeric protein modification during adrenergic stress enhances cross-bridge kinetics and cardiac output. J Appl Physiol (1985) 2016; 122:520-530. [PMID: 27909224 DOI: 10.1152/japplphysiol.00306.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 10/21/2016] [Accepted: 11/23/2016] [Indexed: 12/23/2022] Open
Abstract
Molecular adaptations to chronic neurohormonal stress, including sarcomeric protein cleavage and phosphorylation, provide a mechanism to increase ventricular contractility and enhance cardiac output, yet the link between sarcomeric protein modifications and changes in myocardial function remains unclear. To examine the effects of neurohormonal stress on posttranslational modifications of sarcomeric proteins, mice were administered combined α- and β-adrenergic receptor agonists (isoproterenol and phenylephrine, IPE) for 14 days using implantable osmotic pumps. In addition to significant cardiac hypertrophy and increased maximal ventricular pressure, IPE treatment accelerated pressure development and relaxation (74% increase in dP/dtmax and 14% decrease in τ), resulting in a 52% increase in cardiac output compared with saline (SAL)-treated mice. Accelerated pressure development was maintained when accounting for changes in heart rate and preload, suggesting that myocardial adaptations contribute to enhanced ventricular contractility. Ventricular myocardium isolated from IPE-treated mice displayed a significant reduction in troponin I (TnI) and myosin-binding protein C (MyBP-C) expression and a concomitant increase in the phosphorylation levels of the remaining TnI and MyBP-C protein compared with myocardium isolated from saline-treated control mice. Skinned myocardium isolated from IPE-treated mice displayed a significant acceleration in the rate of cross-bridge (XB) detachment (46% increase) and an enhanced magnitude of XB recruitment (43% increase) at submaximal Ca2+ activation compared with SAL-treated mice but unaltered myofilament Ca2+ sensitivity of force generation. These findings demonstrate that sarcomeric protein modifications during neurohormonal stress are molecular adaptations that enhance in vivo ventricular contractility through accelerated XB kinetics to increase cardiac output.NEW & NOTEWORTHY Posttranslational modifications to sarcomeric regulatory proteins provide a mechanism to modulate cardiac function in response to stress. In this study, we demonstrate that neurohormonal stress produces modifications to myosin-binding protein C and troponin I, including a reduction in protein expression within the sarcomere and increased phosphorylation of the remaining protein, which serve to enhance cross-bridge kinetics and increase cardiac output. These findings highlight the importance of sarcomeric regulatory protein modifications in modulating ventricular function during cardiac stress.
Collapse
Affiliation(s)
- Kenneth S Gresham
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Jiayang Li
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Hyerin Kwak
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|