1
|
Li P, Halabi CM, Stewart R, Butler A, Brown B, Xia X, Santi C, England S, Ferreira J, Mecham RP, Salkoff L. Sodium-activated potassium channels moderate excitability in vascular smooth muscle. J Physiol 2019; 597:5093-5108. [PMID: 31444905 PMCID: PMC6800802 DOI: 10.1113/jp278279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS We report that a sodium-activated potassium current, IKNa , has been inadvertently overlooked in both conduit and resistance arterial smooth muscle cells. IKNa is a major K+ resting conductance and is absent in cells of IKNa knockout (KO) mice. The phenotype of the IKNa KO is mild hypertension, although KO mice react more strongly than wild-type with raised blood pressure when challenged with vasoconstrictive agents. IKNa is negatively regulated by angiotensin II acting through Gαq protein-coupled receptors. In current clamp, KO arterial smooth muscle cells have easily evoked Ca2+ -dependent action potentials. ABSTRACT Although several potassium currents have been reported to play a role in arterial smooth muscle (ASM), we find that one of the largest contributors to membrane conductance in both conduit and resistance ASMs has been inadvertently overlooked. In the present study, we show that IKNa , a sodium-activated potassium current, contributes a major portion of macroscopic outward current in a critical physiological voltage range that determines intrinsic cell excitability; IKNa is the largest contributor to ASM cell resting conductance. A genetic knockout (KO) mouse strain lacking KNa channels (KCNT1 and KCNT2) shows only a modest hypertensive phenotype. However, acute administration of vasoconstrictive agents such as angiotensin II (Ang II) and phenylephrine results in an abnormally large increase in blood pressure in the KO animals. In wild-type animals Ang II acting through Gαq protein-coupled receptors down-regulates IKNa , which increases the excitability of the ASMs. The complete genetic removal of IKNa in KO mice makes the mutant animal more vulnerable to vasoconstrictive agents, thus producing a paroxysmal-hypertensive phenotype. This may result from the lowering of cell resting K+ conductance allowing the cells to depolarize more readily to a variety of excitable stimuli. Thus, the sodium-activated potassium current may serve to moderate blood pressure in instances of heightened stress. IKNa may represent a new therapeutic target for hypertension and stroke.
Collapse
Affiliation(s)
- Ping Li
- Dept. of Neuroscience, Washington University School of Medicine, Saint Louis. MO 63110
- Equal contributors
| | - Carmen M. Halabi
- Dept. of Pediatrics, Washington University School of Medicine, Saint Louis. MO 63110
- Equal contributors
| | - Richard Stewart
- Dept. of Neuroscience, Washington University School of Medicine, Saint Louis. MO 63110
| | - Alice Butler
- Dept. of Neuroscience, Washington University School of Medicine, Saint Louis. MO 63110
| | - Bobbie Brown
- Dept. of Neuroscience, Washington University School of Medicine, Saint Louis. MO 63110
| | - Xiaoming Xia
- Dept. of Anesthesiology, Washington University School of Medicine, Saint Louis. MO 63110
| | - Celia Santi
- Dept. of Neuroscience, Washington University School of Medicine, Saint Louis. MO 63110
- Dept. of OBGYN, Washington University School of Medicine, Saint Louis. MO 63110
| | - Sarah England
- Dept. of OBGYN, Washington University School of Medicine, Saint Louis. MO 63110
| | - Juan Ferreira
- Dept. of Neuroscience, Washington University School of Medicine, Saint Louis. MO 63110
- Dept. of OBGYN, Washington University School of Medicine, Saint Louis. MO 63110
| | - Robert P. Mecham
- Dept. of Cell Biology, Washington University School of Medicine, Saint Louis. MO 63110
| | - Lawrence Salkoff
- Dept. of Neuroscience, Washington University School of Medicine, Saint Louis. MO 63110
- Dept. of Genetics, Washington University School of Medicine, Saint Louis. MO 63110
| |
Collapse
|
2
|
Staehr C, Hangaard L, Bouzinova EV, Kim S, Rajanathan R, Boegh Jessen P, Luque N, Xie Z, Lykke-Hartmann K, Sandow SL, Aalkjaer C, Matchkov VV. Smooth muscle Ca 2+ sensitization causes hypercontractility of middle cerebral arteries in mice bearing the familial hemiplegic migraine type 2 associated mutation. J Cereb Blood Flow Metab 2019; 39. [PMID: 29513112 PMCID: PMC6681533 DOI: 10.1177/0271678x18761712] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Familial hemiplegic migraine type 2 (FHM2) is associated with inherited point-mutations in the Na,K-ATPase α2 isoform, including G301R mutation. We hypothesized that this mutation affects specific aspects of vascular function, and thus compared cerebral and systemic arteries from heterozygote mice bearing the G301R mutation (Atp1a2+/-G301R) with wild type (WT). Middle cerebral (MCA) and mesenteric small artery (MSA) function was compared in an isometric myograph. Cerebral blood flow was assessed with Laser speckle analysis. Intracellular Ca2+ and membrane potential were measured simultaneously. Protein expression was semi-quantified by immunohistochemistry. Protein phosphorylation was analysed by Western blot. MSA from Atp1a2+/-G301R and WT showed similar contractile responses. The Atp1a2+/-G301R MCA constricted stronger to U46619, endothelin and potassium compared to WT. This was associated with an increased depolarization, although the Ca2+ change was smaller than in WT. The enhanced constriction of Atp1a2+/-G301R MCA was associated with increased cSrc activation, stronger sensitization to [Ca2+]i and increased MYPT1 phosphorylation. These differences were abolished by cSrc inhibition. Atp1a2+/-G301R mice had reduced resting blood flow through MCA in comparison with WT mice. FHM2-associated mutation leads to elevated contractility of MCA due to sensitization of the contractile machinery to Ca2+, which is mediated via Na,K-ATPase/Src-kinase/MYPT1 signalling.
Collapse
Affiliation(s)
| | - Lise Hangaard
- 1 Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Sukhan Kim
- 1 Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | - Nathan Luque
- 2 Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland, Australia
| | - Zijian Xie
- 3 Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV, USA
| | | | - Shaun L Sandow
- 2 Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland, Australia
| | | | | |
Collapse
|
3
|
Abstract
The Na,K-ATPase is an enzyme essential for ion homeostasis in all cells. Over the last decades, it has been well-established that in addition to the transport of Na+/K+ over the cell membrane, the Na,K-ATPase acts as a receptor transducing humoral signals intracellularly. It has been suggested that ouabain-like compounds serve as endogenous modulators of this Na,K-ATPase signal transduction. The molecular mechanisms underlying Na,K-ATPase signaling are complicated and suggest the confluence of divergent biological pathways. This review discusses recent updates on the Na,K-ATPase signaling pathways characterized or suggested in vascular smooth muscle cells. The conventional view on this signaling is based on a microdomain structure where the Na,K-ATPase controls the Na,Ca-exchanger activity via modulation of intracellular Na+ in the spatially restricted submembrane space. This, in turn, affects intracellular Ca2+ and Ca2+ load in the sarcoplasmic reticulum leading to modulation of contractility as well as gene expression. An ion-transport-independent signal transduction from the Na,K-ATPase is based on molecular interactions. This was primarily characterized in other cell types but recently also demonstrated in vascular smooth muscles. The downstream signaling from the Na,K-ATPase includes Src and phosphatidylinositol-4,5-bisphosphate 3 kinase signaling pathways and generation of reactive oxygen species. Moreover, in vascular smooth muscle cells the interaction between the Na,K-ATPase and proteins responsible for Ca2+ homeostasis, e.g., phospholipase C and inositol triphosphate receptors, contributes to an integration of the signaling pathways. Recent update on the Na,K-ATPase dependent intracellular signaling and the significance for physiological functions and pathophysiological changes are discussed in this review.
Collapse
|
4
|
Sommer B, Flores-Soto E, Gonzalez-Avila G. Cellular Na+ handling mechanisms involved in airway smooth muscle contraction (Review). Int J Mol Med 2017; 40:3-9. [PMID: 28534960 PMCID: PMC5466399 DOI: 10.3892/ijmm.2017.2993] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/20/2017] [Indexed: 12/17/2022] Open
Abstract
A decrease in bronchial diameter is designated as bronchoconstriction (BC) and impedes the flow of air through the airway. Asthma is characterized by inflammation of the airways, reversible BC and nonspecific hyperreactivity. These last two symptoms are dependent on airway smooth muscle. Stimuli that trigger contraction can be characterized as chemical (neurotransmitters, cytokines and terpenoids) and physical (volume inspired, air pressure). Both stimuli activate signaling pathways by acting on membrane proteins and facilitating the passage of ions through the membrane, generating a voltage change and a subsequent depolarization. Na+ plays an important role in preserving the resting membrane potential; this ion is extracted from the cells by the Na+/K+ ATPase (NKA) or introduced into the cytoplasm by the Na+/Ca2+ exchanger (NCX). During depolarization, Na+ appears to accumulate in specific regions beneath the plasma membrane, generating local concentration gradients which determine the handling of Ca2+. At rest, the smooth muscle has a basal tone that is preserved by the continuous adjustment of intracytoplasmic concentrations of Ca2+ and Na+. At homeostasis, the Na+ concentration is primarily dependent on three structures: the NKA, the NCX and non-specific cation channels (NSCC). These three structures, their functions and the available evidence of the probable role of Na+ in asthma are described in the present review.
Collapse
Affiliation(s)
- Bettina Sommer
- Department of Bronchial Hyperreactivity, National Institute of Respiratory Diseases 'Ismael Cosio Villegas', CP 14080 Mexico City, Mexico
| | - Edgar Flores-Soto
- Department of Pharmacology, Faculty of Medicine, National Autonomous University of Mexico, CP 04510 Mexico City, Mexico
| | - Georgina Gonzalez-Avila
- Biomedical Oncology Laboratory, Department of Chronic‑Degenerative Diseases, National Institute of Respiratory Diseases 'Ismael Cosio Villegas', CP 14080 Mexico City, Mexico
| |
Collapse
|
5
|
Matchkov VV, Krivoi II. Specialized Functional Diversity and Interactions of the Na,K-ATPase. Front Physiol 2016; 7:179. [PMID: 27252653 PMCID: PMC4879863 DOI: 10.3389/fphys.2016.00179] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022] Open
Abstract
Na,K-ATPase is a protein ubiquitously expressed in the plasma membrane of all animal cells and vitally essential for their functions. A specialized functional diversity of the Na,K-ATPase isozymes is provided by molecular heterogeneity, distinct subcellular localizations, and functional interactions with molecular environment. Studies over the last decades clearly demonstrated complex and isoform-specific reciprocal functional interactions between the Na,K-ATPase and neighboring proteins and lipids. These interactions are enabled by a spatially restricted ion homeostasis, direct protein-protein/lipid interactions, and protein kinase signaling pathways. In addition to its "classical" function in ion translocation, the Na,K-ATPase is now considered as one of the most important signaling molecules in neuronal, epithelial, skeletal, cardiac and vascular tissues. Accordingly, the Na,K-ATPase forms specialized sub-cellular multimolecular microdomains which act as receptors to circulating endogenous cardiotonic steroids (CTS) triggering a number of signaling pathways. Changes in these endogenous cardiotonic steroid levels and initiated signaling responses have significant adaptive values for tissues and whole organisms under numerous physiological and pathophysiological conditions. This review discusses recent progress in the studies of functional interactions between the Na,K-ATPase and molecular microenvironment, the Na,K-ATPase-dependent signaling pathways and their significance for diversity of cell function.
Collapse
Affiliation(s)
| | - Igor I Krivoi
- Department of General Physiology, St. Petersburg State University St. Petersburg, Russia
| |
Collapse
|
6
|
Yamamura H, Cole WC, Kita S, Hotta S, Murata H, Suzuki Y, Ohya S, Iwamoto T, Imaizumi Y. Overactive bladder mediated by accelerated Ca2+ influx mode of Na+/Ca2+ exchanger in smooth muscle. Am J Physiol Cell Physiol 2013; 305:C299-308. [PMID: 23703524 DOI: 10.1152/ajpcell.00065.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Na(+)/Ca(2+) exchanger (NCX) is thought to be a key molecule in the regulation of cytosolic Ca(2+) dynamics. The relative importance of the two Ca(2+) transport modes of NCX activity leading to Ca(2+) efflux (forward) and influx (reverse) in smooth muscle, however, remains unclear. Unexpectedly, spontaneous contractions of urinary bladder smooth muscle (UBSM) were enhanced in transgenic mice overexpressing NCX1.3 (NCX1.3(tg/tg)). The enhanced activity was attenuated by KB-R7943 or SN-6. Whole cell outward NCX current sensitive to KB-R7943 or Ni(2+) was readily detected in UBSM cells from NCX1.3(tg/tg) but not wild-type mice. Spontaneous Ca(2+) transients in myocytes of NCX1.3(tg/tg) were larger and frequently resulted in propagating events and global elevations in cytosolic Ca(2+) concentration. Significantly, NCX1.3(tg/tg) mice exhibited a pattern of more frequent urination of smaller volumes and this phenotype was reversed by oral administration of KB-R7943. On the other hand, KB-R7943 did not improve it in KB-R7943-insensitive (G833C-)NCX1.3(tg/tg) mice. We conclude that NCX1.3 overexpression is associated with abnormal urination owing to enhanced Ca(2+) influx via reverse mode NCX leading to prolonged, propagating spontaneous Ca(2+) release events and a potentiation of spontaneous UBSM contraction. These findings suggest the possibility that NCX is a candidate molecular target for overactive bladder therapy.
Collapse
Affiliation(s)
- Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Forrest MD, Wall MJ, Press DA, Feng J. The sodium-potassium pump controls the intrinsic firing of the cerebellar Purkinje neuron. PLoS One 2012; 7:e51169. [PMID: 23284664 PMCID: PMC3527461 DOI: 10.1371/journal.pone.0051169] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 10/30/2012] [Indexed: 11/18/2022] Open
Abstract
In vitro, cerebellar Purkinje cells can intrinsically fire action potentials in a repeating trimodal or bimodal pattern. The trimodal pattern consists of tonic spiking, bursting, and quiescence. The bimodal pattern consists of tonic spiking and quiescence. It is unclear how these firing patterns are generated and what determines which firing pattern is selected. We have constructed a realistic biophysical Purkinje cell model that can replicate these patterns. In this model, Na(+)/K(+) pump activity sets the Purkinje cell's operating mode. From rat cerebellar slices we present Purkinje whole cell recordings in the presence of ouabain, which irreversibly blocks the Na(+)/K(+) pump. The model can replicate these recordings. We propose that Na(+)/K(+) pump activity controls the intrinsic firing mode of cerbellar Purkinje cells.
Collapse
Affiliation(s)
- Michael D Forrest
- Department of Computer Science, University of Warwick, Coventry, West Midlands, United Kingdom.
| | | | | | | |
Collapse
|
8
|
Linde CI, Antos LK, Golovina VA, Blaustein MP. Nanomolar ouabain increases NCX1 expression and enhances Ca2+ signaling in human arterial myocytes: a mechanism that links salt to increased vascular resistance? Am J Physiol Heart Circ Physiol 2012; 303:H784-94. [PMID: 22842068 DOI: 10.1152/ajpheart.00399.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The mechanisms by which NaCl raises blood pressure (BP) in hypertension are unresolved, but much evidence indicates that endogenous ouabain is involved. In rodents, arterial smooth muscle cell (ASMC) Na(+) pumps with an α(2)-catalytic subunit (ouabain EC(50) ≤1.0 nM) are crucial for some hypertension models, even though ≈80% of ASMC Na(+) pumps have an α(1)-subunit (ouabain EC(50) ≈ 5 μM). Human α(1)-Na(+) pumps, however, have high ouabain affinity (EC(50) ≈ 10-20 nM). We used immunoblotting, immunocytochemistry, and Ca(2+) imaging (fura-2) to examine the expression, distribution, and function of Na(+) pump α-subunit isoforms in human arteries and primary cultured human ASMCs (hASMCs). hASMCs express α(1)- and α(2)-Na(+) pumps. Further, α(2)-, but not α(1)-, pumps are confined to plasma membrane microdomains adjacent to sarcoplasmic reticulum (SR), where they colocalize with Na/Ca exchanger-1 (NCX1) and C-type transient receptor potential-6 (receptor-operated channels, ROCs). Prolonged inhibition (72 h) with 100 nM ouabain (blocks nearly all α(1)- and α(2)-pumps) was toxic to most cultured hASMCs. Treatment with 10 nM ouabain (72 h), however, increased NCX1 and sarco(endo)plasmic reticulum Ca(2+)-ATPase expression and augmented ATP (10 μM)-induced SR Ca(2+) release in 0 Ca(2+), ouabain-free media, and Ca(2+) influx after external Ca(2+) restoration. The latter was likely mediated primarily by ROCs and store-operated Ca(2+) channels. These hASMC protein expression and Ca(2+) signaling changes are comparable with previous observations on myocytes isolated from arteries of many rat hypertension models. We conclude that the same structurally and functionally coupled mechanisms (α(2)-Na(+) pumps, NCX1, ROCs, and the SR) regulate Ca(2+) homeostasis and signaling in hASMCs and rodent ASMCs. These ouabain/endogenous ouabain-modulated mechanisms underlie the whole body autoregulation associated with increased vascular resistance and elevation of BP in human, salt-sensitive hypertension.
Collapse
Affiliation(s)
- Cristina I Linde
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
9
|
Blaustein MP, Leenen FHH, Chen L, Golovina VA, Hamlyn JM, Pallone TL, Van Huysse JW, Zhang J, Wier WG. How NaCl raises blood pressure: a new paradigm for the pathogenesis of salt-dependent hypertension. Am J Physiol Heart Circ Physiol 2011; 302:H1031-49. [PMID: 22058154 DOI: 10.1152/ajpheart.00899.2011] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Excess dietary salt is a major cause of hypertension. Nevertheless, the specific mechanisms by which salt increases arterial constriction and peripheral vascular resistance, and thereby raises blood pressure (BP), are poorly understood. Here we summarize recent evidence that defines specific molecular links between Na(+) and the elevated vascular resistance that directly produces high BP. In this new paradigm, high dietary salt raises cerebrospinal fluid [Na(+)]. This leads, via the Na(+)-sensing circumventricular organs of the brain, to increased sympathetic nerve activity (SNA), a major trigger of vasoconstriction. Plasma levels of endogenous ouabain (EO), the Na(+) pump ligand, also become elevated. Remarkably, high cerebrospinal fluid [Na(+)]-evoked, locally secreted (hypothalamic) EO participates in a pathway that mediates the sustained increase in SNA. This hypothalamic signaling chain includes aldosterone, epithelial Na(+) channels, EO, ouabain-sensitive α(2) Na(+) pumps, and angiotensin II (ANG II). The EO increases (e.g.) hypothalamic ANG-II type-1 receptor and NADPH oxidase and decreases neuronal nitric oxide synthase protein expression. The aldosterone-epithelial Na(+) channel-EO-α(2) Na(+) pump-ANG-II pathway modulates the activity of brain cardiovascular control centers that regulate the BP set point and induce sustained changes in SNA. In the periphery, the EO secreted by the adrenal cortex directly enhances vasoconstriction via an EO-α(2) Na(+) pump-Na(+)/Ca(2+) exchanger-Ca(2+) signaling pathway. Circulating EO also activates an EO-α(2) Na(+) pump-Src kinase signaling cascade. This increases the expression of the Na(+)/Ca(2+) exchanger-transient receptor potential cation channel Ca(2+) signaling pathway in arterial smooth muscle but decreases the expression of endothelial vasodilator mechanisms. Additionally, EO is a growth factor and may directly participate in the arterial structural remodeling and lumen narrowing that is frequently observed in established hypertension. These several central and peripheral mechanisms are coordinated, in part by EO, to effect and maintain the salt-induced elevation of BP.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Dept. of Physiology, Univ. of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Giachini FR, Tostes RC. Does Na+ really play a role in Ca2+ homeostasis in hypertension? Am J Physiol Heart Circ Physiol 2010; 299:H602-4. [PMID: 20543080 DOI: 10.1152/ajpheart.00542.2010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Signaling mechanisms that link salt retention to hypertension: endogenous ouabain, the Na(+) pump, the Na(+)/Ca(2+) exchanger and TRPC proteins. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1219-29. [PMID: 20211726 DOI: 10.1016/j.bbadis.2010.02.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 02/26/2010] [Accepted: 02/27/2010] [Indexed: 12/26/2022]
Abstract
Salt retention as a result of chronic, excessive dietary salt intake, is widely accepted as one of the most common causes of hypertension. In a small minority of cases, enhanced Na(+) reabsorption by the kidney can be traced to specific genetic defects of salt transport, or pathological conditions of the kidney, adrenal cortex, or pituitary. Far more frequently, however, salt retention may be the result of minor renal injury or small genetic variation in renal salt transport mechanisms. How salt retention actually leads to the increase in peripheral vascular resistance (the hallmark of hypertension) and the elevation of blood pressure remains an enigma. Here we review the evidence that endogenous ouabain (an adrenocortical hormone), arterial smooth muscle α2 Na(+) pumps, type-1 Na/Ca exchangers, and receptor- and store-operated Ca(2+) channels play key roles in the pathway that links salt to hypertension. We discuss cardenolide structure-function relationships in an effort to understand why prolonged administration of ouabain, but not digoxin, induces hypertension, and why digoxin is actually anti-hypertensive. Finally, we summarize recent observations which indicate that ouabain upregulates arterial myocyte Ca(2+) signaling mechanisms that promote vasoconstriction, while simultaneously downregulating endothelial vasodilator mechanisms. In sum, the reports reviewed here provide novel insight into the molecular mechanisms by which salt retention leads to hypertension.
Collapse
|
12
|
Jaitovich A, Bertorello AM. Salt, Na+,K+-ATPase and hypertension. Life Sci 2009; 86:73-8. [PMID: 19909757 DOI: 10.1016/j.lfs.2009.10.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 10/27/2009] [Accepted: 10/30/2009] [Indexed: 12/20/2022]
Abstract
Chronic hypertension is characterized by a persistent increase in vascular tone. Sodium-rich diets promote hypertension; however, the underlying molecular mechanisms are not fully understood. Variations in the sodium content of the diet, through hormonal mediators such as dopamine and angiotensin II, modulate renal tubule Na(+),K(+)-ATPase activity. Stimulation of Na(+),K(+)-ATPase activity increases sodium transport across the renal proximal tubule epithelia, promoting Na(+) retention, whereas inhibited Na(+),K(+)-ATPase activity decreases sodium transport, and thereby natriuresis. Diets rich in sodium also enhance the release of adrenal endogenous ouabain-like compounds (OLC), which inhibit Na(+),K(+)-ATPase activity, resulting in increased intracellular Na(+) and Ca(2+) concentrations in vascular smooth muscle cells, thus increasing the vascular tone, with a corresponding increase in blood pressure. The mechanisms by which these homeostatic processes are integrated in response to salt intake are complex and not completely elucidated. However, recent scientific findings provide new insights that may offer additional avenues to further explore molecular mechanisms related to normal physiology and pathophysiology of various forms of hypertension (i.e. salt-induced). Consequently, new strategies for the development of improved therapeutics and medical management of hypertension are anticipated.
Collapse
Affiliation(s)
- Ariel Jaitovich
- Membrane Signaling Networks, Atherosclerosis Research Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital-Solna, 171 76 Stockholm, Sweden.
| | | |
Collapse
|
13
|
Pulina MV, Zulian A, Berra-Romani R, Beskina O, Mazzocco-Spezzia A, Baryshnikov SG, Papparella I, Hamlyn JM, Blaustein MP, Golovina VA. Upregulation of Na+ and Ca2+ transporters in arterial smooth muscle from ouabain-induced hypertensive rats. Am J Physiol Heart Circ Physiol 2009; 298:H263-74. [PMID: 19897708 DOI: 10.1152/ajpheart.00784.2009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Prolonged ouabain administration (25 microg kg(-1) day(-1) for 5 wk) induces "ouabain hypertension" (OH) in rats, but the molecular mechanisms by which ouabain elevates blood pressure are unknown. Here, we compared Ca(2+) signaling in mesenteric artery smooth muscle cells (ASMCs) from normotensive (NT) and OH rats. Resting cytosolic free Ca(2+) concentration ([Ca(2+)](cyt); measured with fura-2) and phenylephrine-induced Ca(2+) transients were augmented in freshly dissociated OH ASMCs. Immunoblots revealed that the expression of the ouabain-sensitive alpha(2)-subunit of Na(+) pumps, but not the predominant, ouabain-resistant alpha(1)-subunit, was increased (2.5-fold vs. NT ASMCs) as was Na(+)/Ca(2+) exchanger-1 (NCX1; 6-fold vs. NT) in OH arteries. Ca(2+) entry, activated by sarcoplasmic reticulum (SR) Ca(2+) store depletion with cyclopiazonic acid (SR Ca(2+)-ATPase inhibitor) or caffeine, was augmented in OH ASMCs. This reflected an augmented expression of 2.5-fold in OH ASMCs of C-type transient receptor potential TRPC1, an essential component of store-operated channels (SOCs); two other components of some SOCs were not expressed (TRPC4) or were not upregulated (TRPC5). Ba(2+) entry activated by the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol [a measure of receptor-operated channel (ROC) activity] was much greater in OH than NT ASMCs. This correlated with a sixfold upregulation of TRPC6 protein, a ROC family member. Importantly, in primary cultured mesenteric ASMCs from normal rats, 72-h treatment with 100 nM ouabain significantly augmented NCX1 and TRPC6 protein expression and increased resting [Ca(2+)](cyt) and ROC activity. SOC activity was also increased. Silencer RNA knockdown of NCX1 markedly downregulated TRPC6 and eliminated the ouabain-induced augmentation; silencer RNA knockdown of TRPC6 did not affect NCX1 expression but greatly attenuated its upregulation by ouabain. Clearly, NCX1 and TRPC6 expression are interrelated. Thus, prolonged ouabain treatment upregulates the Na(+) pump alpha(2)-subunit-NCX1-TRPC6 (ROC) Ca(2+) signaling pathway in arterial myocytes in vitro as well as in vivo. This may explain the augmented myogenic responses and enhanced phenylephrine-induced vasoconstriction in OH arteries (83) as well as the high blood pressure in OH rats.
Collapse
Affiliation(s)
- Maria V Pulina
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Demaurex N, Poburko D, Frieden M. Regulation of plasma membrane calcium fluxes by mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1383-94. [PMID: 19161976 DOI: 10.1016/j.bbabio.2008.12.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 12/21/2008] [Accepted: 12/29/2008] [Indexed: 11/27/2022]
Abstract
The role of mitochondria in cell signaling is becoming increasingly apparent, to an extent that the signaling role of mitochondria appears to have stolen the spotlight from their primary function as energy producers. In this chapter, we will review the ionic basis of calcium handling by mitochondria and discuss the mechanisms that these organelles use to regulate the activity of plasma membrane calcium channels and transporters.
Collapse
Affiliation(s)
- Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, 1, rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
15
|
Blaustein MP, Zhang J, Chen L, Song H, Raina H, Kinsey SP, Izuka M, Iwamoto T, Kotlikoff MI, Lingrel JB, Philipson KD, Wier WG, Hamlyn JM. The pump, the exchanger, and endogenous ouabain: signaling mechanisms that link salt retention to hypertension. Hypertension 2008; 53:291-8. [PMID: 19104005 DOI: 10.1161/hypertensionaha.108.119974] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, 655 W Baltimore St, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kapela A, Bezerianos A, Tsoukias NM. A mathematical model of Ca2+ dynamics in rat mesenteric smooth muscle cell: agonist and NO stimulation. J Theor Biol 2008; 253:238-60. [PMID: 18423672 DOI: 10.1016/j.jtbi.2008.03.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 02/28/2008] [Accepted: 03/03/2008] [Indexed: 11/27/2022]
Abstract
A mathematical model of calcium dynamics in vascular smooth muscle cell (SMC) was developed based on data mostly from rat mesenteric arterioles. The model focuses on (a) the plasma membrane electrophysiology; (b) Ca2+ uptake and release from the sarcoplasmic reticulum (SR); (c) cytosolic balance of Ca2+, Na+, K+, and Cl ions; and (d) IP3 and cGMP formation in response to norepinephrine(NE) and nitric oxide (NO) stimulation. Stimulation with NE induced membrane depolarization and an intracellular Ca2+ ([Ca2+]i) transient followed by a plateau. The plateau concentrations were mostly determined by the activation of voltage-operated Ca2+ channels. NE causes a greater increase in [Ca2+]i than stimulation with KCl to equivalent depolarization. Model simulations suggest that the effect of[Na+]i accumulation on the Na+/Ca2+ exchanger (NCX) can potentially account for this difference.Elevation of [Ca2+]i within a concentration window (150-300 nM) by NE or KCl initiated [Ca2+]i oscillations with a concentration-dependent period. The oscillations were generated by the nonlinear dynamics of Ca2+ release and refilling in the SR. NO repolarized the NE-stimulated SMC and restored low [Ca2+]i mainly through its effect on Ca2+-activated K+ channels. Under certain conditions, Na+-K+-ATPase inhibition can result in the elevation of [Na+]i and the reversal of NCX, increasing resting cytosolic and SR Ca2+ content, as well as reactivity to NE. Blockade of the NCX's reverse mode could eliminate these effects. We conclude that the integration of the selected cellular components yields a mathematical model that reproduces, satisfactorily, some of the established features of SMC physiology. Simulations suggest a potential role of intracellular Na+ in modulating Ca2+ dynamics and provide insights into the mechanisms of SMC constriction, relaxation, and the phenomenon of vasomotion. The model will provide the basis for the development of multi-cellular mathematical models that will investigate microcirculatory function in health and disease.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium Channels/physiology
- Membrane Potentials/physiology
- Mesentery/blood supply
- Microcirculation/drug effects
- Microcirculation/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Nitric Oxide/pharmacology
- Potassium Channels, Calcium-Activated/physiology
- Potassium Channels, Voltage-Gated/physiology
- Proteins/pharmacology
- Rats
- Ryanodine Receptor Calcium Release Channel/metabolism
- Sarcoplasmic Reticulum/metabolism
- ATPase Inhibitory Protein
Collapse
Affiliation(s)
- Adam Kapela
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA.
| | | | | |
Collapse
|