1
|
Cooreman MP, Vonghia L, Francque SM. MASLD/MASH and type 2 diabetes: Two sides of the same coin? From single PPAR to pan-PPAR agonists. Diabetes Res Clin Pract 2024; 212:111688. [PMID: 38697298 DOI: 10.1016/j.diabres.2024.111688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 05/04/2024]
Abstract
Type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic liver disease (MASLD), mainly related to nutrition and lack of physical activity, are both very common conditions, share several disease pathways and clinical manifestations, and increasingly co-occur with disease progression. Insulin resistance is an upstream node in the biology of both conditions and triggers liver parenchymal injury, inflammation and fibrosis. Peroxisome proliferator-activated receptor (PPAR) nuclear transcription factors are master regulators of energy homeostasis - insulin signaling in liver, adipose and skeletal muscle tissue - and affect immune and fibrogenesis pathways. Among distinct yet overlapping effects, PPARα regulates lipid metabolism and energy expenditure, PPARβ/δ has anti-inflammatory effects and increases glucose uptake by skeletal muscle, while PPARγ improves insulin sensitivity and exerts direct antifibrotic effects on hepatic stellate cells. Together PPARs thus represent pharmacological targets across the entire biology of MASH. Single PPAR agonists are approved for hypertriglyceridemia (PPARα) and T2D (PPARγ), but these, as well as dual PPAR agonists, have shown mixed results as anti-MASH treatments in clinical trials. Agonists of all three PPAR isoforms have the potential to improve the full disease spectrum from insulin resistance to fibrosis, and correspondingly to improve cardiometabolic and hepatic health, as has been shown (phase II data) with the pan-PPAR agonist lanifibranor.
Collapse
Affiliation(s)
- Michael P Cooreman
- Research and Development, Inventiva, Daix, France; Research and Development, Inventiva, New York, NY, USA.
| | - Luisa Vonghia
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium; InflaMed Centre of Excellence, Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Sven M Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium; InflaMed Centre of Excellence, Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
2
|
Xing Z, Hao Z, Zeng Y, Tan J, Zhang Z, Zhao Y, Zhu H, Li M. Impinging Flow Mediates Vascular Endothelial Cell Injury through the PKCα/ERK/PPARγ Pathway in vitro. Cerebrovasc Dis 2024:1-13. [PMID: 38688248 DOI: 10.1159/000539000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/13/2024] [Indexed: 05/02/2024] Open
Abstract
INTRODUCTION This study aimed to elucidate the mechanisms underlying endothelial injury in the context of intracranial aneurysm formation and development, which are associated with vascular endothelial injury caused by hemodynamic abnormalities. Specifically, we focus on the involvement of PKCα, an intracellular signaling transmitter closely linked to vascular diseases, and its role in activating MAPK. Additionally, we investigate the protective effects of PPARγ, a vasculoprotective factor known to attenuate vascular injury by mitigating the inflammatory response in the vessel wall. METHODS The study employs a modified T-chamber to replicate fluid flow conditions at the artery bifurcation, allowing us to assess wall shear stress effects on human umbilical vein endothelial cells in vitro. Through experimental manipulations involving PKCα knockdown and Ca2+ and MAPK inhibitors, we evaluated the phosphorylation status of PKCα, NF-κB, ERK5, ERK1/2, JNK1/2/3, and P38, as well as the expression levels of PPARγ, NF-κB, and MMP2 via Western blot analysis. The cellular localization of phosphorylated NF-κB was determined using immunofluorescence. RESULTS Our results showed that impinging flow resulted in the activation of PKCα, followed by the phosphorylation of ERK5, ERK1/2, and JNK1/2/3, leading to a decrease in PPARγ expression, an increase in the expression of NF-κB and MMP2, and the induction of apoptotic injury. Inhibition of PKCα activation or knockdown of PKCα using shRNA leads to a suppression of ERK5, ERK1/2, JNK1/2/3, and P38 phosphorylation, an elevation in PPARγ expression, and a reduction in NF-κB and MMP2 expression, alleviated apoptotic injury. Furthermore, we observe that the regulation of PPARγ, NF-κB, and MMP2 expression is influenced by ERK5 and ERK1/2 phosphorylation, and activation of PPARγ effectively counteracts the elevated expression of NF-κB and MMP2. CONCLUSION Our findings suggest that the PKCα/ERK/PPARγ pathway plays a crucial role in mediating endothelial injury under conditions of impinging flow, with potential implications for vascular diseases and intracranial aneurysm development.
Collapse
Affiliation(s)
- Zelong Xing
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Neurosurgery, Jiujiang University Affiliated Hospital, Jiujiang, China
| | - Zheng Hao
- Trauma Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanyang Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiacong Tan
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhixiong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Neurosurgery, Jiujiang University Affiliated Hospital, Jiujiang, China
| | - Yeyu Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huaxin Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Cavallero S, Roustaei M, Satta S, Cho JM, Phan H, Baek KI, Blázquez-Medela AM, Gonzalez-Ramos S, Vu K, Park SK, Yokota T, Sumner J, Mack JJ, Sigmund CD, Reddy ST, Li R, Hsiai TK. Exercise mitigates flow recirculation and activates metabolic transducer SCD1 to catalyze vascular protective metabolites. SCIENCE ADVANCES 2024; 10:eadj7481. [PMID: 38354249 PMCID: PMC10866565 DOI: 10.1126/sciadv.adj7481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024]
Abstract
Exercise promotes pulsatile shear stress in the arterial circulation and ameliorates cardiometabolic diseases. However, exercise-mediated metabolic transducers for vascular protection remain under-investigated. Untargeted metabolomic analysis demonstrated that wild-type mice undergoing voluntary wheel running exercise expressed increased endothelial stearoyl-CoA desaturase 1 (SCD1) that catalyzes anti-inflammatory lipid metabolites, namely, oleic (OA) and palmitoleic acids (PA), to mitigate NF-κB-mediated inflammatory responses. In silico analysis revealed that exercise augmented time-averaged wall shear stress but mitigated flow recirculation and oscillatory shear index in the lesser curvature of the mouse aortic arch. Following exercise, endothelial Scd1-deleted mice (Ldlr-/- Scd1EC-/-) on high-fat diet developed persistent VCAM1-positive endothelium in the lesser curvature and the descending aorta, whereas SCD1 overexpression via adenovirus transfection mitigated endoplasmic reticulum stress and inflammatory biomarkers. Single-cell transcriptomics of the aorta identified Scd1-positive and Vcam1-negative endothelial subclusters interacting with other candidate genes. Thus, exercise mitigates flow recirculation and activates endothelial SCD1 to catalyze OA and PA for vascular endothelial protection.
Collapse
Affiliation(s)
- Susana Cavallero
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
- Department of Medicine, VA Greater Los Angeles Health Care System, Los Angeles, CA, USA
| | - Mehrdad Roustaei
- Department of Bioengineering, School of Engineering and Applied Science, University of California, Los Angeles, CA, USA
| | - Sandro Satta
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
- Department of Medicine, VA Greater Los Angeles Health Care System, Los Angeles, CA, USA
| | - Jae Min Cho
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
- Department of Medicine, VA Greater Los Angeles Health Care System, Los Angeles, CA, USA
| | - Henry Phan
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Kyung In Baek
- Department of Bioengineering, School of Engineering and Applied Science, University of California, Los Angeles, CA, USA
| | - Ana M. Blázquez-Medela
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
- Department of Medicine, VA Greater Los Angeles Health Care System, Los Angeles, CA, USA
| | - Sheila Gonzalez-Ramos
- Department of Bioengineering, School of Engineering and Applied Science, University of California, Los Angeles, CA, USA
| | - Khoa Vu
- Department of Bioengineering, School of Engineering and Applied Science, University of California, Los Angeles, CA, USA
| | - Seul-Ki Park
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Tomohiro Yokota
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
- Department of Medicine, VA Greater Los Angeles Health Care System, Los Angeles, CA, USA
| | - Jennifer Sumner
- Department of Psychology, College of Life Sciences, University of California, Los Angeles, CA, USA
| | - Julia J. Mack
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Curt D. Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Srinivasa T. Reddy
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Rongsong Li
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
- Department of Medicine, VA Greater Los Angeles Health Care System, Los Angeles, CA, USA
| | - Tzung K. Hsiai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
- Department of Medicine, VA Greater Los Angeles Health Care System, Los Angeles, CA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Sigmund CD. The 2023 Walter B. Cannon Award Lecture: Mechanisms Regulating Vascular Function and Blood Pressure by the PPARγ-RhoBTB1-CUL3 Pathway. FUNCTION 2024; 5:zqad071. [PMID: 38196837 PMCID: PMC10775765 DOI: 10.1093/function/zqad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 01/11/2024] Open
Abstract
Human genetic and clinical trial data suggest that peroxisome proliferator activated receptor γ (PPARγ), a nuclear receptor transcription factor plays an important role in the regulation of arterial blood pressure. The examination of a series of novel animal models, coupled with transcriptomic and proteomic analysis, has revealed that PPARγ and its target genes employ diverse pathways to regulate vascular function and blood pressure. In endothelium, PPARγ target genes promote an antioxidant state, stimulating both nitric oxide (NO) synthesis and bioavailability, essential components of endothelial-smooth muscle communication. In vascular smooth muscle, PPARγ induces the expression of a number of genes that promote an antiinflammatory state and tightly control the level of cGMP, thus promoting responsiveness to endothelial-derived NO. One of the PPARγ targets in smooth muscle, Rho related BTB domain containing 1 (RhoBTB1) acts as a substrate adaptor for proteins to be ubiquitinated by the E3 ubiquitin ligase Cullin-3 and targeted for proteasomal degradation. One of these proteins, phosphodiesterase 5 (PDE5) is a target of the Cullin-3/RhoBTB1 pathway. Phosphodiesterase 5 degrades cGMP to GMP and thus regulates the smooth muscle response to NO. Moreover, expression of RhoBTB1 under condition of RhoBTB1 deficiency reverses established arterial stiffness. In conclusion, the coordinated action of PPARγ in endothelium and smooth muscle is needed to maintain NO bioavailability and activity, is an essential regulator of vasodilator/vasoconstrictor balance, and regulates blood vessel structure and stiffness.
Collapse
Affiliation(s)
- Curt D Sigmund
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
5
|
Saleem Raheem S, Falah Hasan H, Hashim Abid Ali A, Mansour Jasim A. Effectiveness of Histopathological Changes of Induced Thin Layer Endometrium by Pentoxifylline and Pentoxifylline-Loaded Poly Lactic-co-Glycolic Acid on Female Rats. ARCHIVES OF RAZI INSTITUTE 2023; 78:1762-1770. [PMID: 38828173 PMCID: PMC11139385 DOI: 10.32592/ari.2023.78.6.1762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/19/2023] [Indexed: 06/05/2024]
Abstract
Pentoxifylline (PTXF) is a vasoactive agent that plays a significant role in the treatment of thin-layer endometrium cases. The PTXF, also identified as oxpentifylline, is a member of xanthine derivatives and a competitive nonselective phosphodiesterase inhibitor leading to the elevation of intracellular cAMP, inhibition of tumor necrosis factor and leukotriene synthesis, activation of protein kinase A, and reduction of inflammation and innate immunity. Moreover, it is used as an agent to relieve muscle pain in people with peripheral artery disease (vascular irregularities). It is also an acceptable choice for the treatment of radiation-induced fibrosis. Therefore, the present study aimed to determine the advantageous impact of PTXF and PTXF-loaded poly lactic-co-glycolic acid (PLGA) on female rats after being exposed to ethanol to create a thin layer of the endometrium. For this purpose, 50 female rats were selected and divided into five groups (G1: negative normal control, G2: positive control, G3: PLGA only, G4: preference PTXF, and G5: PLGA-PTXF groups) for a 20-day treatment period. In this study, the histopathological section revealed a perfect improvement in the tissues of the uterine horn of female rats that induced endometria and were treated with PLGA-PTXF. In this group of rats, clear healing was achieved and there was an increase in the thickness of endometrium and myometrium, compared to the ordinary PTXF-treated group which had the lowest recovery characteristics. However, the positive control group underwent a significant decrease in terms of endometrium and myometrium thickness as well as vascular and glandular density. This study showed that the PTXF-loaded PLGA had the capacity to heal the thin layer of the endometrium by improving the levels of histopathological changes, especially regarding the thickness of the endometrium and myometrium more than the ordinary PTXF.
Collapse
Affiliation(s)
- S Saleem Raheem
- Department of Community Health, College of Health and Medical Techniques, Al_FuratAl_Awsat Technical University, 31003 Al-Kufa, Iraq
| | - H Falah Hasan
- Department of Physiology and Pharmacology, College of Veterinary Medicine/University of Baghdad/Iraq
| | - A Hashim Abid Ali
- Department of Medical laboratory, College of Health and Medical Techniques, Al_FuratAl_Awsat Technical University, 31003 Al-Kufa, Iraq
- Southern Federal University, st. B. Sadovaya, 105/42, 344006 Rostov-on-Don, Russian
| | - A Mansour Jasim
- Department of Pharmacology and Toxicology, College of Veterinary Medicine/Al-Qasim Green University
| |
Collapse
|
6
|
Staels B, Butruille L, Francque S. Treating NASH by targeting peroxisome proliferator-activated receptors. J Hepatol 2023; 79:1302-1316. [PMID: 37459921 DOI: 10.1016/j.jhep.2023.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/18/2023] [Accepted: 07/02/2023] [Indexed: 09/15/2023]
Abstract
The pathophysiology of non-alcoholic steatohepatitis (NASH) encompasses a complex set of intra- and extrahepatic driving mechanisms, involving numerous metabolic, inflammatory, vascular and fibrogenic pathways. The peroxisome proliferator-activated receptors (PPARs) α, β/δ and γ belong to the nuclear receptor family of ligand-activated transcription factors. Activated PPARs modulate target tissue transcriptomic profiles, enabling the body's adaptation to changing nutritional, metabolic and inflammatory environments. PPARs hence regulate several pathways involved in NASH pathogenesis. Whereas single PPAR agonists exert robust anti-NASH activity in several preclinical models, their clinical effects on histological endpoints of NASH resolution and fibrosis regression appear more modest. Simultaneous activation of several PPAR isotypes across different organs and within-organ cell types, resulting in pleiotropic actions, enhances the therapeutic potential of PPAR agonists as pharmacological agents for NASH and NASH-related hepatic and extrahepatic morbidity, with some compounds having already shown clinical efficacy on histological endpoints.
Collapse
Affiliation(s)
- Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| | - Laura Butruille
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Sven Francque
- Department of Gastroenterology Hepatology, Antwerp University Hospital, Drie Eikenstraat 655, B-2650, Edegem, Belgium; InflaMed Centre of Excellence, Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
| |
Collapse
|
7
|
Luan J, Ji X, Liu L. PPARγ in Atherosclerotic Endothelial Dysfunction: Regulatory Compounds and PTMs. Int J Mol Sci 2023; 24:14494. [PMID: 37833942 PMCID: PMC10572723 DOI: 10.3390/ijms241914494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
The formation of atherosclerotic plaques is one of the main sources of cardiovascular disease. In addition to known risk factors such as dyslipidemia, diabetes, obesity, and hypertension, endothelial dysfunction has been shown to play a key role in the formation and progression of atherosclerosis. Peroxisome proliferator-activated receptor-gamma (PPARγ), a transcription factor belonging to the steroid superfamily, is expressed in the aorta and plays a critical role in protecting endothelial function. It thereby serves as a target for treating both diabetes and atherosclerosis. Although many studies have examined endothelial cell disorders in atherosclerosis, the role of PPARγ in endothelial dysfunction is still not well understood. In this review, we summarize the possible mechanisms of action behind PPARγ regulatory compounds and post-translational modifications (PTMs) of PPARγ in the control of endothelial function. We also explore the potential use of endothelial PPARγ-targeted agents in the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
| | | | - Longhua Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200082, China
| |
Collapse
|
8
|
Kumar G, Fang S, Golosova D, Lu KT, Brozoski DT, Vazirabad I, Sigmund CD. Structure and Function of RhoBTB1 Required for Substrate Specificity and Cullin-3 Ubiquitination. FUNCTION 2023; 4:zqad034. [PMID: 37575477 PMCID: PMC10413933 DOI: 10.1093/function/zqad034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 08/15/2023] Open
Abstract
We identified Rho-related BTB domain containing 1 (RhoBTB1) as a key regulator of phosphodiesterase 5 (PDE5) activity, and through PDE5, a regulator of vascular tone. We identified the binding interface for PDE5 on RhoBTB1 by truncating full-length RhoBTB1 into its component domains. Co-immunoprecipitation analyses revealed that the C-terminal half of RhoBTB1 containing its two BTB domains and the C-terminal domain (B1B2C) is the minimal region required for PDE5 recruitment and subsequent proteasomal degradation via Cullin-3 (CUL3). The C-terminal domain was essential in recruiting PDE5 as constructs lacking this region could not participate in PDE5 binding or proteasomal degradation. We also identified Pro353 and Ser363 as key amino acid residues in the B1B2C region involved in CUL3 binding to RhoBTB1. Mutation of either of these residues exhibited impaired CUL3 binding and PDE5 degradation, although the binding to PDE5 was preserved. Finally, we employed ascorbate peroxidase 2 (APEX2) proximity labeling using a B1B2C-APEX2 fusion protein as bait to capture unknown RhoBTB1 binding partners. Among several B1B2C-binding proteins identified and validated, we focused on SET domain containing 2 (SETD2). SETD2 and RhoBTB1 directly interacted, and the level of SETD2 increased in response to pharmacological inhibition of the proteasome or Cullin complex, CUL3 deletion, and RhoBTB1-inhibition with siRNA. This suggests that SETD2 is regulated by the RhoBTB1-CUL3 axis. Future studies will determine whether SETD2 plays a role in cardiovascular function.
Collapse
Affiliation(s)
- Gaurav Kumar
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shi Fang
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daria Golosova
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ko-Ting Lu
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daniel T Brozoski
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ibrahim Vazirabad
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Curt D Sigmund
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
9
|
El-Farahaty RM, Fouda O, EL-Deasty A, El-Gilany AH, Saied N. Peroxisome proliferator-activated receptor γ Pro12 ala polymorphism and risk of cerebral stroke in type 2 diabetes mellitus egyptian patients. J Diabetes Metab Disord 2023; 22:415-422. [PMID: 37255811 PMCID: PMC10225373 DOI: 10.1007/s40200-022-01159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/17/2022] [Accepted: 11/20/2022] [Indexed: 06/01/2023]
Abstract
Objectives This study aimed to analyze the association of the peroxisome proliferator activated receptor gamma (PPARγ) P12A (rs1801282) polymorphism with development of cerebral stroke in patients with type 2 diabetes mellitus. Methods We included 224 patients with diabetes, they were categorized into116 patients with ischemic stroke (IS) and 108 without IS, in addition to 148 healthy controls in this study. respectively. Anthropometric parameters and laboratory tests were measured. The polymorphism was detected by a PCR-RFLP method. Results A12 allele and A12 containing genotypes show significant higher percentage in patients with diabetes and IS in comparison to diabetes patients without IS (9.1 vs. 4.2%,16.4 vs7.4%; P = 0.044,0.044) with OR of 2.29 and 2. 449 respectively (95% CI: 1.024-5.115, 1.024-5.856) but does not withstand Bonferroni correction. Conclusion A12 containing genotypes and A12 allele are not associated with IR, diabetes and risk of IS development, however, significant higher BMI were observed in A12 allele carriers in the studied patients with diabetes as well as those with IS.
Collapse
Affiliation(s)
- Reham M. El-Farahaty
- Clinical Pathology department, Mansoura University Faculty of Medicine, Elgomhouria St, 35516 Mansoura City, Egypt
| | - Osama Fouda
- Internal Medicine department, Mansoura University Faculty of Medicine, Elgomhouria St, 35516 Mansoura City, Egypt
| | - Amany EL-Deasty
- Clinical Pathology department, Mansoura University Faculty of Medicine, Elgomhouria St, 35516 Mansoura City, Egypt
| | - Abdel-Hady El-Gilany
- Public health department, Mansoura University Faculty of Medicine, Elgomhouria St, 35516 Mansoura City, Egypt
| | - Narmin Saied
- Clinical Pathology department, Mansoura University Faculty of Medicine, Elgomhouria St, 35516 Mansoura City, Egypt
| |
Collapse
|
10
|
Cavallero S, Roustaei M, Satta S, Cho JM, Phan H, Baek KI, Blázquez-Medela AM, Gonzalez-Ramos S, Vu K, Park SK, Yokota T, Sumner JA, Mack JJ, Sigmund CD, Reddy ST, Li R, Hsiai TK. Exercise Mitigates Flow Recirculation and Activates Mechanosensitive Transcriptome to Uncover Endothelial SCD1-Catalyzed Anti-Inflammatory Metabolites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539172. [PMID: 37205360 PMCID: PMC10187200 DOI: 10.1101/2023.05.02.539172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Exercise modulates vascular plasticity in multiple organ systems; however, the metabolomic transducers underlying exercise and vascular protection in the disturbed flow-prone vasculature remain under-investigated. We simulated exercise-augmented pulsatile shear stress (PSS) to mitigate flow recirculation in the lesser curvature of the aortic arch. When human aortic endothelial cells (HAECs) were subjected to PSS ( τ ave = 50 dyne·cm -2 , ∂τ/∂t = 71 dyne·cm -2 ·s -1 , 1 Hz), untargeted metabolomic analysis revealed that Stearoyl-CoA Desaturase (SCD1) in the endoplasmic reticulum (ER) catalyzed the fatty acid metabolite, oleic acid (OA), to mitigate inflammatory mediators. Following 24 hours of exercise, wild-type C57BL/6J mice developed elevated SCD1-catalyzed lipid metabolites in the plasma, including OA and palmitoleic acid (PA). Exercise over a 2-week period increased endothelial SCD1 in the ER. Exercise further modulated the time-averaged wall shear stress (TAWSS or τ ave) and oscillatory shear index (OSI ave ), upregulated Scd1 and attenuated VCAM1 expression in the disturbed flow-prone aortic arch in Ldlr -/- mice on high-fat diet but not in Ldlr -/- Scd1 EC-/- mice. Scd1 overexpression via recombinant adenovirus also mitigated ER stress. Single cell transcriptomic analysis of the mouse aorta revealed interconnection of Scd1 with mechanosensitive genes, namely Irs2 , Acox1 and Adipor2 that modulate lipid metabolism pathways. Taken together, exercise modulates PSS ( τ ave and OSI ave ) to activate SCD1 as a metabolomic transducer to ameliorate inflammation in the disturbed flow-prone vasculature.
Collapse
|
11
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
12
|
Fang S, Livergood MC, Nakagawa P, Wu J, Sigmund CD. Role of the Peroxisome Proliferator Activated Receptors in Hypertension. Circ Res 2021; 128:1021-1039. [PMID: 33793338 DOI: 10.1161/circresaha.120.318062] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors represent a large family of ligand-activated transcription factors which sense the physiological environment and make long-term adaptations by mediating changes in gene expression. In this review, we will first discuss the fundamental mechanisms by which nuclear receptors mediate their transcriptional responses. We will focus on the PPAR (peroxisome proliferator-activated receptor) family of adopted orphan receptors paying special attention to PPARγ, the isoform with the most compelling evidence as an important regulator of arterial blood pressure. We will review genetic data showing that rare mutations in PPARγ cause severe hypertension and clinical trial data which show that PPARγ activators have beneficial effects on blood pressure. We will detail the tissue- and cell-specific molecular mechanisms by which PPARs in the brain, kidney, vasculature, and immune system modulate blood pressure and related phenotypes, such as endothelial function. Finally, we will discuss the role of placental PPARs in preeclampsia, a life threatening form of hypertension during pregnancy. We will close with a viewpoint on future research directions and implications for developing novel therapies.
Collapse
Affiliation(s)
- Shi Fang
- Department of Physiology, Cardiovascular Center (S.F., P.N., J.W., C.D.S.), Medical College of Wisconsin, Milwaukee.,Department of Neuroscience and Pharmacology, University of Iowa (S.F.)
| | - M Christine Livergood
- Department of Obstetrics and Gynecology (M.C.L.), Medical College of Wisconsin, Milwaukee
| | - Pablo Nakagawa
- Department of Physiology, Cardiovascular Center (S.F., P.N., J.W., C.D.S.), Medical College of Wisconsin, Milwaukee
| | - Jing Wu
- Department of Physiology, Cardiovascular Center (S.F., P.N., J.W., C.D.S.), Medical College of Wisconsin, Milwaukee
| | - Curt D Sigmund
- Department of Physiology, Cardiovascular Center (S.F., P.N., J.W., C.D.S.), Medical College of Wisconsin, Milwaukee
| |
Collapse
|
13
|
Wu J, Agbor LN, Fang S, Mukohda M, Nair AR, Nakagawa P, Sharma A, Morgan DA, Grobe JL, Rahmouni K, Weiss RM, McCormick JA, Sigmund CD. Failure to vasodilate in response to salt loading blunts renal blood flow and causes salt-sensitive hypertension. Cardiovasc Res 2021; 117:308-319. [PMID: 32428209 PMCID: PMC7797211 DOI: 10.1093/cvr/cvaa147] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/22/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
AIMS Salt-sensitive (SS) hypertension is accompanied by impaired vasodilation in the systemic and renal circulation. However, the causal relationship between vascular dysfunction and salt-induced hypertension remains controversial. We sought to determine whether primary vascular dysfunction, characterized by a failure to vasodilate during salt loading, plays a causal role in the pathogenesis of SS hypertension. METHODS AND RESULTS Mice selectively expressing a peroxisome proliferator-activated receptor γ dominant-negative mutation in vascular smooth muscle (S-P467L) exhibited progressive SS hypertension during a 4 week high salt diet (HSD). This was associated with severely impaired vasodilation in systemic and renal vessels. Salt-induced impairment of vasodilation occurred as early as 3 days after HSD, which preceded the onset of SS hypertension. Notably, the overt salt-induced hypertension in S-P467L mice was not driven by higher cardiac output, implying elevations in peripheral vascular resistance. In keeping with this, HSD-fed S-P467L mice exhibited decreased smooth muscle responsiveness to nitric oxide (NO) in systemic vessels. HSD-fed S-P467L mice also exhibited elevated albuminuria and a blunted increase in urinary NO metabolites which was associated with blunted renal blood flow and increased sodium retention mediated by a lack of HSD-induced suppression of NKCC2. Blocking NKCC2 function prevented the salt-induced increase in blood pressure in S-P467L mice. CONCLUSION We conclude that failure to vasodilate in response to salt loading causes SS hypertension by restricting renal perfusion and reducing renal NO through a mechanism involving NKCC2 in a mouse model of vascular peroxisome proliferator-activated receptor γ impairment.
Collapse
Affiliation(s)
- Jing Wu
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-248 BSB, Iowa City, IA 52242, USA
| | - Larry N Agbor
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-248 BSB, Iowa City, IA 52242, USA
| | - Shi Fang
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-248 BSB, Iowa City, IA 52242, USA
| | - Masashi Mukohda
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-248 BSB, Iowa City, IA 52242, USA
| | - Anand R Nair
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-248 BSB, Iowa City, IA 52242, USA
| | - Pablo Nakagawa
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-248 BSB, Iowa City, IA 52242, USA
| | - Avika Sharma
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, L334, Portland, OR 97239, USA
| | - Donald A Morgan
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-248 BSB, Iowa City, IA 52242, USA
| | - Justin L Grobe
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-248 BSB, Iowa City, IA 52242, USA
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-248 BSB, Iowa City, IA 52242, USA
- Veteran Affairs Health Care System, 601 Hwy 6 West, Iowa City, IA 52242, USA
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-248 BSB, Iowa City, IA 52242, USA
| | - Robert M Weiss
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-248 BSB, Iowa City, IA 52242, USA
| | - James A McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, L334, Portland, OR 97239, USA
| | - Curt D Sigmund
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-248 BSB, Iowa City, IA 52242, USA
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW The goal of this review is to evaluate recent advances in understanding the pivotal roles of Cullin-3 (CUL3) in blood pressure regulation with a focus on its actions in the kidney and blood vessels. RECENT FINDINGS Cul3-based ubiquitin ligase regulates renal electrolyte transport, vascular tone, and redox homeostasis by facilitating the normal turnover of (1) with-no-lysine kinases in the distal nephron, (2) RhoA and phosphodiesterase 5 in the vascular smooth muscle, and (3) nuclear factor E2-related factor 2 in antioxidant responses. CUL3 mutations identified in familial hyperkalemic hypertension (FHHt) yield a mutant protein lacking exon 9 (CUL3∆9) which displays dual gain and loss of function. CUL3∆9 acts in a dominant manner to impair CUL3-mediated substrate ubiquitylation and degradation. The consequent accumulation of substrates and overactivation of downstream signaling cause FHHt through increased sodium reabsorption, enhanced vasoconstriction, and decreased vasodilation. CUL3 ubiquitin ligase maintains normal cardiovascular and renal physiology through posttranslational modification of key substrates which regulate blood pressure. Interference with CUL3 disturbs these key downstream pathways. Further understanding the spatial and temporal specificity of how CUL3 functions in these pathways is necessary to identify novel therapeutic targets for hypertension.
Collapse
|
15
|
Triantafyllou GA, Dipla K, Triantafyllou A, Gkaliagkousi E, Douma S. Measurement and Changes in Cerebral Oxygenation and Blood Flow at Rest and During Exercise in Normotensive and Hypertensive Individuals. Curr Hypertens Rep 2020; 22:71. [PMID: 32852614 DOI: 10.1007/s11906-020-01075-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW Summarize the methods used for measurement of cerebral blood flow and oxygenation; describe the effects of hypertension on cerebral blood flow and oxygenation. RECENT FINDINGS Information regarding the effects of hypertension on cerebrovascular circulation during exercise is very limited, despite a plethora of methods to help with its assessment. In normotensive individuals performing incremental exercise testing, total blood flow to the brain increases. In contrast, the few studies performed in hypertensive patients suggest a smaller increase in cerebral blood flow, despite higher blood pressure levels. Endothelial dysfunction and increased vasoconstrictor concentration, as well as large vessel atherosclerosis and decreased small vessel number, have been proposed as the underlying mechanisms. Hypertension may adversely impact oxygen and blood delivery to the brain, both at rest and during exercise. Future studies should utilize the newer, noninvasive techniques to better characterize the interplay between the brain and exercise in hypertension.
Collapse
Affiliation(s)
- Georgios A Triantafyllou
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Ring Road Nea Eukarpia, 56403, Thessaloniki, Greece.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Konstantina Dipla
- Exercise Physiology and Biochemistry Laboratory, Department of Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62122, Serres, Greece
| | - Areti Triantafyllou
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Ring Road Nea Eukarpia, 56403, Thessaloniki, Greece.
| | - Eugenia Gkaliagkousi
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Ring Road Nea Eukarpia, 56403, Thessaloniki, Greece
| | - Stella Douma
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Ring Road Nea Eukarpia, 56403, Thessaloniki, Greece
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW This review provides an up-to-date understanding of how peroxisome proliferator activated receptor γ (PPARγ) exerts its cardioprotective effect in the vasculature through its activation of novel PPARγ target genes in endothelium and vascular smooth muscle. RECENT FINDINGS In vascular endothelial cells, PPARγ plays a protective role by increasing nitric oxide bioavailability and preventing oxidative stress. RBP7 is a PPARγ target gene enriched in vascular endothelial cells, which is likely to form a positive feedback loop with PPARγ. In vascular smooth muscle cells, PPARγ antagonizes the renin-angiotensin system, maintains vascular integrity, suppresses vasoconstriction, and promotes vasodilation through distinct pathways. Rho-related BTB domain containing protein 1 (RhoBTB1) is a novel PPARγ gene target in vascular smooth muscle cells that mediates the protective effect of PPARγ by serving as a substrate adaptor between the Cullin-3 RING ubiquitin ligase and phosphodiesterase 5, thus restraining its activity through ubiquitination and proteasomal degradation. SUMMARY In the vasculature, PPARγ exerts its cardioprotective effect through its transcriptional activity in endothelium and vascular smooth muscle. From the understanding of PPARγ's transcription targets in those pathways, novel hypertension therapy target(s) will emerge.
Collapse
|
17
|
Noureddine FY, Altara R, Fan F, Yabluchanskiy A, Booz GW, Zouein FA. Impact of the Renin-Angiotensin System on the Endothelium in Vascular Dementia: Unresolved Issues and Future Perspectives. Int J Mol Sci 2020; 21:E4268. [PMID: 32560034 PMCID: PMC7349348 DOI: 10.3390/ijms21124268] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 12/11/2022] Open
Abstract
The effects of the renin-angiotensin system (RAS) surpass the renal and cardiovascular systems to encompass other body tissues and organs, including the brain. Angiotensin II (Ang II), the most potent mediator of RAS in the brain, contributes to vascular dementia via different mechanisms, including neuronal homeostasis disruption, vascular remodeling, and endothelial dysfunction caused by increased inflammation and oxidative stress. Other RAS components of emerging significance at the level of the blood-brain barrier include angiotensin-converting enzyme 2 (ACE2), Ang(1-7), and the AT2, Mas, and AT4 receptors. The various angiotensin hormones perform complex actions on brain endothelial cells and pericytes through specific receptors that have either detrimental or beneficial actions. Increasing evidence indicates that the ACE2/Ang(1-7)/Mas axis constitutes a protective arm of RAS on the blood-brain barrier. This review provides an update of studies assessing the different effects of angiotensins on cerebral endothelial cells. The involved signaling pathways are presented and help highlight the potential pharmacological targets for the management of cognitive and behavioral dysfunctions associated with vascular dementia.
Collapse
Affiliation(s)
- Fatima Y. Noureddine
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon;
| | - Raffaele Altara
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, and KG Jebsen Center for Cardiac Research, 0424 Oslo, Norway;
| | - Fan Fan
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center, Jackson, MS 39216, USA; (F.F.); (G.W.B.)
| | - Andriy Yabluchanskiy
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center, Jackson, MS 39216, USA; (F.F.); (G.W.B.)
| | - Fouad A. Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon;
| |
Collapse
|
18
|
Zemskov EA, Lu Q, Ornatowski W, Klinger CN, Desai AA, Maltepe E, Yuan JXJ, Wang T, Fineman JR, Black SM. Biomechanical Forces and Oxidative Stress: Implications for Pulmonary Vascular Disease. Antioxid Redox Signal 2019; 31:819-842. [PMID: 30623676 PMCID: PMC6751394 DOI: 10.1089/ars.2018.7720] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Oxidative stress in the cell is characterized by excessive generation of reactive oxygen species (ROS). Superoxide (O2-) and hydrogen peroxide (H2O2) are the main ROS involved in the regulation of cellular metabolism. As our fundamental understanding of the underlying causes of lung disease has increased it has become evident that oxidative stress plays a critical role. Recent Advances: A number of cells in the lung both produce, and respond to, ROS. These include vascular endothelial and smooth muscle cells, fibroblasts, and epithelial cells as well as the cells involved in the inflammatory response, including macrophages, neutrophils, eosinophils. The redox system is involved in multiple aspects of cell metabolism and cell homeostasis. Critical Issues: Dysregulation of the cellular redox system has consequential effects on cell signaling pathways that are intimately involved in disease progression. The lung is exposed to biomechanical forces (fluid shear stress, cyclic stretch, and pressure) due to the passage of blood through the pulmonary vessels and the distension of the lungs during the breathing cycle. Cells within the lung respond to these forces by activating signal transduction pathways that alter their redox state with both physiologic and pathologic consequences. Future Directions: Here, we will discuss the intimate relationship between biomechanical forces and redox signaling and its role in the development of pulmonary disease. An understanding of the molecular mechanisms induced by biomechanical forces in the pulmonary vasculature is necessary for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Evgeny A Zemskov
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Qing Lu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Wojciech Ornatowski
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Christina N Klinger
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Emin Maltepe
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Jason X-J Yuan
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Ting Wang
- Department of Internal Medicine, The University of Arizona Health Sciences, Phoenix, Arizona
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Stephen M Black
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| |
Collapse
|
19
|
Agbor LN, Nair AR, Wu J, Lu KT, Davis DR, Keen HL, Quelle FW, McCormick JA, Singer JD, Sigmund CD. Conditional deletion of smooth muscle Cullin-3 causes severe progressive hypertension. JCI Insight 2019; 5:129793. [PMID: 31184598 DOI: 10.1172/jci.insight.129793] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Patients with mutations in Cullin-3 (CUL3) exhibit severe early onset hypertension but the contribution of the smooth muscle remains unclear. Conditional genetic ablation of CUL3 in vascular smooth muscle (S-CUL3KO) causes progressive impairment in responsiveness to nitric oxide (NO), rapid development of severe hypertension, and increased arterial stiffness. Loss of CUL3 in primary aortic smooth muscle cells or aorta resulted in decreased expression of the NO receptor, soluble guanylate cyclase (sGC), causing a marked reduction in cGMP production and impaired vasodilation to cGMP analogues. Vasodilation responses to a selective large conductance Ca2+-activated K+-channel activator were normal suggesting that downstream signals which promote smooth muscle-dependent relaxation remained intact. We conclude that smooth muscle specific CUL3 ablation impairs both cGMP production and cGMP responses and that loss of CUL3 function selectively in smooth muscle is sufficient to cause severe hypertension by interfering with the NO-sGC-cGMP pathway. Our study provides compelling evidence for the sufficiency of vascular smooth muscle CUL3 as a major regulator of BP. CUL3 mutations cause severe vascular dysfunction, arterial stiffness and hypertension due to defects in vascular smooth muscle.
Collapse
Affiliation(s)
- Larry N Agbor
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Anand R Nair
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jing Wu
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ko-Ting Lu
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Deborah R Davis
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Henry L Keen
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Frederick W Quelle
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - James A McCormick
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Jeffrey D Singer
- Department of Biology, Portland State University, Portland, Oregon, USA
| | - Curt D Sigmund
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
20
|
Nair AR, Silva SD, Agbor LN, Wu J, Nakagawa P, Mukohda M, Lu KT, Sandgren JA, Pierce GL, Santillan MK, Grobe JL, Sigmund CD. Endothelial PPARγ (Peroxisome Proliferator-Activated Receptor-γ) Protects From Angiotensin II-Induced Endothelial Dysfunction in Adult Offspring Born From Pregnancies Complicated by Hypertension. Hypertension 2019; 74:173-183. [PMID: 31104564 DOI: 10.1161/hypertensionaha.119.13101] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Preeclampsia is a hypertensive disorder of pregnancy associated with vascular dysfunction and cardiovascular risk to offspring. We hypothesize that endothelial PPARγ (peroxisome proliferator-activated receptor-γ) provides cardiovascular protection in offspring from pregnancies complicated by hypertension. C57BL/6J dams were bred with E-V290M sires, which express a dominant-negative allele of PPARγ selectively in the endothelium. Arginine vasopressin was infused throughout gestation. Vasopressin elevated maternal blood pressure at gestational day 14 to 15 and urinary protein at day 17 consistent. Systolic blood pressure and vasodilation responses to acetylcholine were similar in vasopressin-exposed offspring compared to offspring from control pregnancies. We treated offspring with a subpressor dose of angiotensin II to test if hypertension during pregnancy predisposes offspring to hypertension. Male and female angiotensin II-treated E-V290M offspring from vasopressin-exposed but not control pregnancy exhibited significant impairment in acetylcholine-induced relaxation in carotid artery. Endothelial dysfunction in angiotensin II-treated E-V290M vasopressin-exposed offspring was attenuated by tempol, an effect which was more prominent in male offspring. Nrf2 (nuclear factor-E2-related factor) protein levels were significantly elevated in aorta from male E-V290M offspring, but not female offspring compared to controls. Blockade of ROCK (Rho-kinase) signaling and incubation with a ROCK2-specific inhibitor improved endothelial function in both male and female E-V290M offspring from vasopressin-exposed pregnancy. Our data suggest that interference with endothelial PPARγ in offspring from vasopressin-exposed pregnancies increases the risk for endothelial dysfunction on exposure to a cardiovascular stressor in adulthood. This implies that endothelial PPARγ provides protection to cardiovascular stressors in offspring of a pregnancy complicated by hypertension and perhaps in preeclampsia.
Collapse
Affiliation(s)
- Anand R Nair
- From the Department of Pharmacology (A.R.N., S.D.S., L.N.A., J.W., P.N., M.M., K.-T.L., J.A.S., J.L.G., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Sebastiao D Silva
- From the Department of Pharmacology (A.R.N., S.D.S., L.N.A., J.W., P.N., M.M., K.-T.L., J.A.S., J.L.G., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa.,Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee (S.D.S., J.W., P.N., K.-T.L., J.L.G., C.D.S.)
| | - Larry N Agbor
- From the Department of Pharmacology (A.R.N., S.D.S., L.N.A., J.W., P.N., M.M., K.-T.L., J.A.S., J.L.G., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Jing Wu
- From the Department of Pharmacology (A.R.N., S.D.S., L.N.A., J.W., P.N., M.M., K.-T.L., J.A.S., J.L.G., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa.,Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee (S.D.S., J.W., P.N., K.-T.L., J.L.G., C.D.S.)
| | - Pablo Nakagawa
- From the Department of Pharmacology (A.R.N., S.D.S., L.N.A., J.W., P.N., M.M., K.-T.L., J.A.S., J.L.G., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Masashi Mukohda
- From the Department of Pharmacology (A.R.N., S.D.S., L.N.A., J.W., P.N., M.M., K.-T.L., J.A.S., J.L.G., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Ko-Ting Lu
- From the Department of Pharmacology (A.R.N., S.D.S., L.N.A., J.W., P.N., M.M., K.-T.L., J.A.S., J.L.G., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa.,Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee (S.D.S., J.W., P.N., K.-T.L., J.L.G., C.D.S.)
| | - Jeremy A Sandgren
- From the Department of Pharmacology (A.R.N., S.D.S., L.N.A., J.W., P.N., M.M., K.-T.L., J.A.S., J.L.G., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Gary L Pierce
- Department of Health and Human Physiology (G.L.P.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Mark K Santillan
- Department of Obstetrics and Gynecology (M.K.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Justin L Grobe
- From the Department of Pharmacology (A.R.N., S.D.S., L.N.A., J.W., P.N., M.M., K.-T.L., J.A.S., J.L.G., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa.,Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee (S.D.S., J.W., P.N., K.-T.L., J.L.G., C.D.S.)
| | - Curt D Sigmund
- From the Department of Pharmacology (A.R.N., S.D.S., L.N.A., J.W., P.N., M.M., K.-T.L., J.A.S., J.L.G., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa.,Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee (S.D.S., J.W., P.N., K.-T.L., J.L.G., C.D.S.)
| |
Collapse
|
21
|
Nair AR, Agbor LN, Mukohda M, Liu X, Hu C, Wu J, Sigmund CD. Interference With Endothelial PPAR (Peroxisome Proliferator-Activated Receptor)-γ Causes Accelerated Cerebral Vascular Dysfunction in Response to Endogenous Renin-Angiotensin System Activation. Hypertension 2019; 72:1227-1235. [PMID: 30354810 DOI: 10.1161/hypertensionaha.118.11857] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Low-salt diet is beneficial in salt-sensitive hypertension but may provoke cardiovascular risk in patients with heart failure, diabetes mellitus, or other cardiovascular abnormalities because of endogenous renin-angiotensin system activation. PPAR (peroxisome proliferator-activated receptor)-γ is a transcription factor which promotes an antioxidant pathway in the endothelium. We studied transgenic mice expressing a dominant-negative mutation in PPAR-γ selectively in the endothelium (E-V290M) to test the hypothesis that endothelial PPAR-γ plays a protective role in response to low salt-mediated renin-angiotensin system activation. Plasma renin and Ang II (angiotensin II) were significantly and equally increased in all mice fed low salt for 6 weeks. Vasorelaxation to acetylcholine was not affected in basilar artery from E-V290M at baseline but was significantly and selectively impaired in E-V290M after low salt. Unlike basilar artery, low salt was not sufficient to induce vascular dysfunction in carotid artery or aorta. Endothelial dysfunction in the basilar artery from E-V290M mice fed low salt was attenuated by scavengers of superoxide, inhibitors of NADPH oxidase, or blockade of the Ang II AT1 (angiotensin type-1) receptor. Simultaneous AT1 and AT2 receptor blockade revealed that the restoration of endothelial function after AT1 receptor blockade was not a consequence of AT2 receptor activation. We conclude that interference with PPAR-γ in the endothelium produces endothelial dysfunction in the cerebral circulation in response to low salt-mediated activation of the endogenous renin-angiotensin system, mediated at least in part, through AT1 receptor activation and perturbed redox homeostasis. Moreover, our data suggest that the cerebral circulation may be particularly sensitive to inhibition of PPAR-γ activity and renin-angiotensin system activation.
Collapse
Affiliation(s)
- Anand R Nair
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Larry N Agbor
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Masashi Mukohda
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Xuebo Liu
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Chunyan Hu
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Jing Wu
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Curt D Sigmund
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| |
Collapse
|
22
|
Uddin MS, Kabir MT, Jakaria M, Mamun AA, Niaz K, Amran MS, Barreto GE, Ashraf GM. Endothelial PPARγ Is Crucial for Averting Age-Related Vascular Dysfunction by Stalling Oxidative Stress and ROCK. Neurotox Res 2019; 36:583-601. [PMID: 31055770 DOI: 10.1007/s12640-019-00047-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023]
Abstract
Aging plays a significant role in the progression of vascular diseases and vascular dysfunction. Activation of the ADP-ribosylation factor 6 and small GTPases by inflammatory signals may cause vascular permeability and endothelial leakage. Pro-inflammatory molecules have a significant effect on smooth muscle cells (SMC). The migration and proliferation of SMC can be promoted by tumor necrosis factor alpha (TNF-α). TNF-α can also increase oxidative stress in SMCs, which has been identified to persuade DNA damage resulting in apoptosis and cellular senescence. Peroxisome proliferator-activated receptor (PPAR) acts as a ligand-dependent transcription factor and a member of the nuclear receptor superfamily. They play key roles in a wide range of biological processes, including cell differentiation and proliferation, bone formation, cell metabolism, tissue remodeling, insulin sensitivity, and eicosanoid signaling. The PPARγ activation regulates inflammatory responses, which can exert protective effects in the vasculature. In addition, loss of function of PPARγ enhances cardiovascular events and atherosclerosis in the vascular endothelium. This appraisal, therefore, discusses the critical linkage of PPARγ in the inflammatory process and highlights a crucial defensive role for endothelial PPARγ in vascular dysfunction and disease, as well as therapy for vascular aging.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.
| | | | - Md Jakaria
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju, South Korea
| | | | - Kamal Niaz
- Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Md Shah Amran
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia. .,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
23
|
Mukohda M, Fang S, Wu J, Agbor LN, Nair AR, Ibeawuchi SRC, Hu C, Liu X, Lu KT, Guo DF, Davis DR, Keen HL, Quelle FW, Sigmund CD. RhoBTB1 protects against hypertension and arterial stiffness by restraining phosphodiesterase 5 activity. J Clin Invest 2019; 129:2318-2332. [PMID: 30896450 DOI: 10.1172/jci123462] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mice selectively expressing PPARγ dominant negative mutation in vascular smooth muscle exhibit RhoBTB1-deficiency and hypertension. Our rationale was to employ genetic complementation to uncover the mechanism of action of RhoBTB1 in vascular smooth muscle. Inducible smooth muscle-specific restoration of RhoBTB1 fully corrected the hypertension and arterial stiffness by improving vasodilator function. Notably, the cardiovascular protection occurred despite preservation of increased agonist-mediated contraction and RhoA/Rho kinase activity, suggesting RhoBTB1 selectively controls vasodilation. RhoBTB1 augmented the cGMP response to nitric oxide by restraining the activity of phosphodiesterase 5 (PDE5) by acting as a substrate adaptor delivering PDE5 to the Cullin-3 E3 Ring ubiquitin ligase complex for ubiquitination inhibiting PDE5. Angiotensin-II infusion also caused RhoBTB1-deficiency and hypertension which was prevented by smooth muscle specific RhoBTB1 restoration. We conclude that RhoBTB1 protected from hypertension, vascular smooth muscle dysfunction, and arterial stiffness in at least two models of hypertension.
Collapse
Affiliation(s)
- Masashi Mukohda
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Shi Fang
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jing Wu
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Larry N Agbor
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Anand R Nair
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Stella-Rita C Ibeawuchi
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Chunyan Hu
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Xuebo Liu
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ko-Ting Lu
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Deng-Fu Guo
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Deborah R Davis
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Henry L Keen
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Frederick W Quelle
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Curt D Sigmund
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
24
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 682] [Impact Index Per Article: 97.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
25
|
Cipolla MJ, Liebeskind DS, Chan SL. The importance of comorbidities in ischemic stroke: Impact of hypertension on the cerebral circulation. J Cereb Blood Flow Metab 2018; 38:2129-2149. [PMID: 30198826 PMCID: PMC6282213 DOI: 10.1177/0271678x18800589] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Comorbidities are a hallmark of stroke that both increase the incidence of stroke and worsen outcome. Hypertension is prevalent in the stroke population and the most important modifiable risk factor for stroke. Hypertensive disorders promote stroke through increased shear stress, endothelial dysfunction, and large artery stiffness that transmits pulsatile flow to the cerebral microcirculation. Hypertension also promotes cerebral small vessel disease through several mechanisms, including hypoperfusion, diminished autoregulatory capacity and localized increase in blood-brain barrier permeability. Preeclampsia, a hypertensive disorder of pregnancy, also increases the risk of stroke 4-5-fold compared to normal pregnancy that predisposes women to early-onset cognitive impairment. In this review, we highlight how comorbidities and concomitant disorders are not only risk factors for ischemic stroke, but alter the response to acute ischemia. We focus on hypertension as a comorbidity and its effects on the cerebral circulation that alters the pathophysiology of ischemic stroke and should be considered in guiding future therapeutic strategies.
Collapse
Affiliation(s)
- Marilyn J Cipolla
- 1 Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - David S Liebeskind
- 2 Neurovascular Imaging Research Core and Stroke Center, Department of Neurology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Siu-Lung Chan
- 1 Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA
| |
Collapse
|
26
|
Cao XJ, Zhang MJ, Zhang LL, Yu K, Xiang Y, Ding X, Fan J, Li JC, Wang QS. TLR4 mediates high-fat diet induced physiological changes in mice via attenuating PPARγ/ABCG1 signaling pathway. Biochem Biophys Res Commun 2018; 503:1356-1363. [DOI: 10.1016/j.bbrc.2018.07.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022]
|
27
|
De Silva TM, Li Y, Kinzenbaw DA, Sigmund CD, Faraci FM. Endothelial PPARγ (Peroxisome Proliferator-Activated Receptor-γ) Is Essential for Preventing Endothelial Dysfunction With Aging. Hypertension 2018; 72:227-234. [PMID: 29735632 DOI: 10.1161/hypertensionaha.117.10799] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/12/2018] [Accepted: 04/02/2018] [Indexed: 12/15/2022]
Abstract
Little is known about mechanisms that control vascular aging, particularly at the cell-specific level. PPARγ (peroxisome proliferator-activated receptor-γ) exerts protective effects in the vasculature when activated pharmacologically. To gain insight into the cell-specific impact of PPARγ, we examined the hypothesis that genetic interference with endothelial PPARγ would augment age-induced vascular dysfunction. We studied carotid arteries from adult (11.6±0.3 months) and old (24.7±0.6 months) mice with endothelial-specific expression of a human dominant negative mutation in PPARγ driven by the vascular cadherin promoter (E-V290M), along with age-matched, nontransgenic littermates. Acetylcholine (an endothelium-dependent agonist) produced similar relaxation in arteries from adult nontransgenic and E-V290M mice and old nontransgenic mice. In contrast, responses to acetylcholine were reduced by >50% in old male and female E-V290M mice (P<0.01). Endothelial function in old E-V290M mice was not altered by an inhibitor of COX (cyclooxygenase) but was restored to normal by a superoxide scavenger, an inhibitor of NADPH oxidase, or inhibition of ROCK (Rho kinase). Relaxation of arteries to nitroprusside, which acts directly on vascular muscle, was similar in all groups. Vascular expression of IL (interleukin)-6, Nox-2, and CDKN2A (a marker of senescence) was significantly increased in old E-V290M mice compared with controls (P<0.05). These findings provide the first evidence that age-related vascular dysfunction, inflammation, and senescence is accelerated after interference with endothelial PPARγ via mechanisms involving oxidative stress and ROCK. The finding of an essential protective role for endothelial PPARγ has implications for vascular disease and therapy for vascular aging.
Collapse
Affiliation(s)
- T Michael De Silva
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., C.D.S., F.M.F.).,Department of Physiology, Anatomy and Microbiology (T.M.D.S.), La Trobe University, Bundoora, VIC, Australia
| | - Ying Li
- Pharmacology (Y.L., C.D.S., F.M.F.), Center for Hypertension Research, Carver College of Medicine, University of Iowa, Iowa City
| | - Dale A Kinzenbaw
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., C.D.S., F.M.F.)
| | - Curt D Sigmund
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., C.D.S., F.M.F.).,Pharmacology (Y.L., C.D.S., F.M.F.), Center for Hypertension Research, Carver College of Medicine, University of Iowa, Iowa City
| | - Frank M Faraci
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., C.D.S., F.M.F.) .,Pharmacology (Y.L., C.D.S., F.M.F.), Center for Hypertension Research, Carver College of Medicine, University of Iowa, Iowa City.,Iowa City Veterans Affairs Healthcare System, IA (F.M.F.)
| |
Collapse
|
28
|
Zhang Y, Zhang C, Li H, Hou J. Down-regulation of vascular PPAR-γ contributes to endothelial dysfunction in high-fat diet-induced obese mice exposed to chronic intermittent hypoxia. Biochem Biophys Res Commun 2017; 492:243-248. [DOI: 10.1016/j.bbrc.2017.08.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/15/2017] [Indexed: 11/24/2022]
|
29
|
Woll AW, Quelle FW, Sigmund CD. PPARγ and retinol binding protein 7 form a regulatory hub promoting antioxidant properties of the endothelium. Physiol Genomics 2017; 49:653-658. [PMID: 28916634 DOI: 10.1152/physiolgenomics.00055.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a family of conserved ligand-activated nuclear receptor transcription factors heterogeneously expressed in mammalian tissues. PPARγ is recognized as a master regulator of adipogenesis, fatty acid metabolism, and glucose homeostasis, but genetic evidence also supports the concept that PPARγ regulates the cardiovascular system, particularly vascular function and blood pressure. There is now compelling evidence that the beneficial blood pressure-lowering effects of PPARγ activation are due to its activity in vascular smooth muscle and endothelium, through its modulation of nitric oxide-dependent vasomotor function. Endothelial PPARγ regulates the production and bioavailability of nitric oxide, while PPARγ in the smooth muscle regulates the vasomotor response to nitric oxide. We recently identified retinol binding protein 7 (RBP7) as a PPARγ target gene that is specifically and selectively expressed in the endothelium. In this review, we will discuss the evidence that RBP7 is required to mediate the antioxidant effects of PPARγ and mediate PPARγ target gene selectivity in the endothelium.
Collapse
Affiliation(s)
- Addison W Woll
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Interdisciplinary Program in Molecular Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Frederick W Quelle
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Curt D Sigmund
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; .,UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| |
Collapse
|
30
|
De Silva TM, Hu C, Kinzenbaw DA, Modrick ML, Sigmund CD, Faraci FM. Genetic Interference With Endothelial PPAR-γ (Peroxisome Proliferator-Activated Receptor-γ) Augments Effects of Angiotensin II While Impairing Responses to Angiotensin 1-7. Hypertension 2017; 70:559-565. [PMID: 28674038 DOI: 10.1161/hypertensionaha.117.09358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 03/27/2017] [Accepted: 05/31/2017] [Indexed: 12/25/2022]
Abstract
Pharmacological activation of PPAR-γ (peroxisome proliferator-activated receptor-γ) protects the vasculature. Much less is known on the cell-specific impact of PPAR-γ when driven by endogenous ligands. Recently, we found that endothelial PPAR-γ protects against angiotensin II-induced endothelial dysfunction. Here, we explored that concept further examining whether effects were sex dependent along with underlying mechanisms. We studied mice expressing a human dominant-negative mutation in PPAR-γ driven by the endothelial-specific vascular cadherin promoter (E-V290M), using nontransgenic littermates as controls. Acetylcholine (an endothelium-dependent agonist) produced similar relaxation of carotid arteries from nontransgenic and E-V290M mice. Incubation of isolated arteries with angiotensin II (1 nmol/L) overnight had no effect in nontransgenic, but reduced responses to acetylcholine by about 50% in male and female E-V290M mice (P<0.05). Endothelial function in E-V290M mice was restored to normal by inhibitors of superoxide (tempol), NADPH oxidase (VAS-2870), Rho kinase (Y-27632), ROCK2 (SLX-2119), NF-κB (nuclear factor-kappa B essential modulator-binding domain peptide), or interleukin-6 (neutralizing antibody). In addition, we hypothesized that PPAR-γ may influence the angiotensin 1-7 arm of the renin-angiotensin system. In the basilar artery, dilation to angiotensin 1-7 was selectively reduced in E-V290M mice by >50% (P<0.05), an effect reversed by Y-27632. Thus, effects of angiotensin II are augmented by interference with endothelial PPAR-γ through sex-independent mechanisms, involving oxidant-inflammatory signaling and ROCK2 (Rho kinase). The study also provides the first evidence that endothelial PPAR-γ interacts with angiotensin 1-7 responses. These critical roles for endothelial PPAR-γ have implications for pathophysiology and therapeutic approaches for vascular disease.
Collapse
Affiliation(s)
- T Michael De Silva
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., M.L.M., F.M.F.) and Pharmacology (C.H., C.D.S., F.M.F.), Center for Hypertension Research, Carver College of Medicine, The University of Iowa; and Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Chunyan Hu
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., M.L.M., F.M.F.) and Pharmacology (C.H., C.D.S., F.M.F.), Center for Hypertension Research, Carver College of Medicine, The University of Iowa; and Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Dale A Kinzenbaw
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., M.L.M., F.M.F.) and Pharmacology (C.H., C.D.S., F.M.F.), Center for Hypertension Research, Carver College of Medicine, The University of Iowa; and Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Mary L Modrick
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., M.L.M., F.M.F.) and Pharmacology (C.H., C.D.S., F.M.F.), Center for Hypertension Research, Carver College of Medicine, The University of Iowa; and Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Curt D Sigmund
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., M.L.M., F.M.F.) and Pharmacology (C.H., C.D.S., F.M.F.), Center for Hypertension Research, Carver College of Medicine, The University of Iowa; and Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Frank M Faraci
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., M.L.M., F.M.F.) and Pharmacology (C.H., C.D.S., F.M.F.), Center for Hypertension Research, Carver College of Medicine, The University of Iowa; and Iowa City Veterans Affairs Healthcare System (F.M.F.).
| |
Collapse
|
31
|
AT1 receptor signaling pathways in the cardiovascular system. Pharmacol Res 2017; 125:4-13. [PMID: 28527699 DOI: 10.1016/j.phrs.2017.05.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 01/14/2023]
Abstract
The importance of the renin angiotensin aldosterone system in cardiovascular physiology and pathophysiology has been well described whereas the detailed molecular mechanisms remain elusive. The angiotensin II type 1 receptor (AT1 receptor) is one of the key players in the renin angiotensin aldosterone system. The AT1 receptor promotes various intracellular signaling pathways resulting in hypertension, endothelial dysfunction, vascular remodeling and end organ damage. Accumulating evidence shows the complex picture of AT1 receptor-mediated signaling; AT1 receptor-mediated heterotrimeric G protein-dependent signaling, transactivation of growth factor receptors, NADPH oxidase and ROS signaling, G protein-independent signaling, including the β-arrestin signals and interaction with several AT1 receptor interacting proteins. In addition, there is functional cross-talk between the AT1 receptor signaling pathway and other signaling pathways. In this review, we will summarize an up to date overview of essential AT1 receptor signaling events and their functional significances in the cardiovascular system.
Collapse
|
32
|
Mukohda M, Lu KT, Guo DF, Wu J, Keen HL, Liu X, Ketsawatsomkron P, Stump M, Rahmouni K, Quelle FW, Sigmund CD. Hypertension-Causing Mutation in Peroxisome Proliferator-Activated Receptor γ Impairs Nuclear Export of Nuclear Factor-κB p65 in Vascular Smooth Muscle. Hypertension 2017; 70:174-182. [PMID: 28507170 DOI: 10.1161/hypertensionaha.117.09276] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/08/2017] [Accepted: 04/08/2017] [Indexed: 12/31/2022]
Abstract
Selective expression of dominant negative (DN) peroxisome proliferator-activated receptor γ (PPARγ) in vascular smooth muscle cells (SMC) results in hypertension, atherosclerosis, and increased nuclear factor-κB (NF-κB) target gene expression. Mesenteric SMC were cultured from mice designed to conditionally express wild-type (WT) or DN-PPARγ in response to Cre recombinase to determine how SMC PPARγ regulates expression of NF-κB target inflammatory genes. SMC-specific overexpression of WT-PPARγ or agonist-induced activation of endogenous PPARγ blunted tumor necrosis factor α (TNF-α)-induced NF-κB target gene expression and activity of an NF-κB-responsive promoter. TNF-α-induced gene expression responses were enhanced by DN-PPARγ in SMC. Although expression of NF-κB p65 was unchanged, nuclear export of p65 was accelerated by WT-PPARγ and prevented by DN-PPARγ in SMC. Leptomycin B, a nuclear export inhibitor, blocked p65 nuclear export and inhibited the anti-inflammatory action of PPARγ. Consistent with a role in facilitating p65 nuclear export, WT-PPARγ coimmunoprecipitated with p65, and WT-PPARγ was also exported from the nucleus after TNF-α treatment. Conversely, DN-PPARγ does not bind to p65 and was retained in the nucleus after TNF-α treatment. Transgenic mice expressing WT-PPARγ or DN-PPARγ specifically in SMC (S-WT or S-DN) were bred with mice expressing luciferase controlled by an NF-κB-responsive promoter to assess effects on NF-κB activity in whole tissue. TNF-α-induced NF-κB activity was decreased in aorta and carotid artery from S-WT but was increased in vessels from S-DN mice. We conclude that SMC PPARγ blunts expression of proinflammatory genes by inhibition of NF-κB activity through a mechanism promoting nuclear export of p65, which is abolished by DN mutation in PPARγ.
Collapse
Affiliation(s)
- Masashi Mukohda
- From the Department of Pharmacology and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Ko-Ting Lu
- From the Department of Pharmacology and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Deng-Fu Guo
- From the Department of Pharmacology and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Jing Wu
- From the Department of Pharmacology and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Henry L Keen
- From the Department of Pharmacology and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Xuebo Liu
- From the Department of Pharmacology and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Pimonrat Ketsawatsomkron
- From the Department of Pharmacology and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Madeliene Stump
- From the Department of Pharmacology and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Kamal Rahmouni
- From the Department of Pharmacology and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Frederick W Quelle
- From the Department of Pharmacology and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Curt D Sigmund
- From the Department of Pharmacology and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa.
| |
Collapse
|
33
|
Maekawa R, Taketani T, Mihara Y, Sato S, Okada M, Tamura I, Jozaki K, Kajimura T, Asada H, Tamura H, Takasaki A, Sugino N. Thin endometrium transcriptome analysis reveals a potential mechanism of implantation failure. Reprod Med Biol 2017; 16:206-227. [PMID: 29259471 PMCID: PMC5661823 DOI: 10.1002/rmb2.12030] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/09/2017] [Indexed: 01/09/2023] Open
Abstract
Aim Although a thin endometrium has been well recognized as a critical factor in implantation failure, little information is available regarding the molecular mechanisms. The present study investigated these mechanisms by using genome‐wide mRNA expression analysis. Methods Thin and normal endometrial tissue was obtained from a total of six women during the mid‐luteal phase of the menstrual cycle. The transcriptomes were analyzed with a microarray. Differentially expressed genes were classified according to Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Results The study identified 318 up‐regulated genes and 322 down‐regulated genes in the thin endometrium, compared to the control endometrium. The GO and KEGG pathway analyses indicated that the thin endometrium possessed aberrantly activated immunity and natural killer cell cytotoxicity that was accompanied by an increased number of inflammatory cytokines, such as IFN‐γ. Various genes that were related to metabolism and anti‐oxidative stress were down‐regulated in the thin endometrium. Conclusion Implantation failure in the thin endometrium appears to be associated with an aberrantly activated inflammatory environment and aberrantly decreased response to oxidative stress.
Collapse
Affiliation(s)
- Ryo Maekawa
- Department of Obstetrics and Gynecology Yamaguchi University Graduate School of Medicine Ube Japan
| | - Toshiaki Taketani
- Department of Obstetrics and Gynecology Yamaguchi University Graduate School of Medicine Ube Japan
| | - Yumiko Mihara
- Department of Obstetrics and Gynecology Yamaguchi University Graduate School of Medicine Ube Japan
| | - Shun Sato
- Department of Obstetrics and Gynecology Yamaguchi University Graduate School of Medicine Ube Japan
| | - Maki Okada
- Department of Obstetrics and Gynecology Yamaguchi University Graduate School of Medicine Ube Japan
| | - Isao Tamura
- Department of Obstetrics and Gynecology Yamaguchi University Graduate School of Medicine Ube Japan
| | - Kosuke Jozaki
- Department of Obstetrics and Gynecology Yamaguchi University Graduate School of Medicine Ube Japan
| | - Takuya Kajimura
- Department of Obstetrics and Gynecology Yamaguchi University Graduate School of Medicine Ube Japan
| | - Hiromi Asada
- Department of Obstetrics and Gynecology Yamaguchi University Graduate School of Medicine Ube Japan
| | - Hiroshi Tamura
- Department of Obstetrics and Gynecology Yamaguchi University Graduate School of Medicine Ube Japan
| | - Akihisa Takasaki
- Department of Obstetrics and Gynecology Saiseikai Shimonoseki General Hospital Shimonoseki Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology Yamaguchi University Graduate School of Medicine Ube Japan
| |
Collapse
|
34
|
Hu C, Keen HL, Lu KT, Liu X, Wu J, Davis DR, Ibeawuchi SRC, Vogel S, Quelle FW, Sigmund CD. Retinol-binding protein 7 is an endothelium-specific PPAR γ cofactor mediating an antioxidant response through adiponectin. JCI Insight 2017; 2:e91738. [PMID: 28352663 PMCID: PMC5358481 DOI: 10.1172/jci.insight.91738] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Impaired PPARγ activity in endothelial cells causes oxidative stress and endothelial dysfunction which causes a predisposition to hypertension, but the identity of key PPARγ target genes that protect the endothelium remain unclear. Retinol-binding protein 7 (RBP7) is a PPARγ target gene that is essentially endothelium specific. Whereas RBP7-deficient mice exhibit normal endothelial function at baseline, they exhibit severe endothelial dysfunction in response to cardiovascular stressors, including high-fat diet and subpressor angiotensin II. Endothelial dysfunction was not due to differences in weight gain, impaired glucose homeostasis, or hepatosteatosis, but occurred through an oxidative stress-dependent mechanism which can be rescued by scavengers of superoxide. RNA sequencing revealed that RBP7 was required to mediate induction of a subset of PPARγ target genes by rosiglitazone in the endothelium including adiponectin. Adiponectin was selectively induced in the endothelium of control mice by high-fat diet and rosiglitazone, whereas RBP7 deficiency abolished this induction. Adiponectin inhibition caused endothelial dysfunction in control vessels, whereas adiponectin treatment of RBP7-deficient vessels improved endothelium-dependent relaxation and reduced oxidative stress. We conclude that RBP7 is required to mediate the protective effects of PPARγ in the endothelium through adiponectin, and RBP7 is an endothelium-specific PPARγ target and regulator of PPARγ activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Silke Vogel
- Duke-NUS Medical School, Singapore, Singapore
| | | | - Curt D Sigmund
- Department of Pharmacology.,UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
35
|
Hu X, De Silva TM, Chen J, Faraci FM. Cerebral Vascular Disease and Neurovascular Injury in Ischemic Stroke. Circ Res 2017; 120:449-471. [PMID: 28154097 PMCID: PMC5313039 DOI: 10.1161/circresaha.116.308427] [Citation(s) in RCA: 280] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/13/2016] [Accepted: 10/26/2016] [Indexed: 12/13/2022]
Abstract
The consequences of cerebrovascular disease are among the leading health issues worldwide. Large and small cerebral vessel disease can trigger stroke and contribute to the vascular component of other forms of neurological dysfunction and degeneration. Both forms of vascular disease are driven by diverse risk factors, with hypertension as the leading contributor. Despite the importance of neurovascular disease and subsequent injury after ischemic events, fundamental knowledge in these areas lag behind our current understanding of neuroprotection and vascular biology in general. The goal of this review is to address select key structural and functional changes in the vasculature that promote hypoperfusion and ischemia, while also affecting the extent of injury and effectiveness of therapy. In addition, as damage to the blood-brain barrier is one of the major consequences of ischemia, we discuss cellular and molecular mechanisms underlying ischemia-induced changes in blood-brain barrier integrity and function, including alterations in endothelial cells and the contribution of pericytes, immune cells, and matrix metalloproteinases. Identification of cell types, pathways, and molecules that control vascular changes before and after ischemia may result in novel approaches to slow the progression of cerebrovascular disease and lessen both the frequency and impact of ischemic events.
Collapse
Affiliation(s)
- Xiaoming Hu
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - T. Michael De Silva
- Biomedicine Discovery Institute, Department of Pharmacology, 9 Ancora Imparo Way, Monash University, Clayton, Vic, Australia
| | - Jun Chen
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Frank M. Faraci
- Departments of Internal Medicine and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City Veterans Affairs Healthcare System, Iowa City, IA, USA
| |
Collapse
|
36
|
De Silva TM, Faraci FM. Reactive Oxygen Species and the Regulation of Cerebral Vascular Tone. STUDIES ON ATHEROSCLEROSIS 2017. [DOI: 10.1007/978-1-4899-7693-2_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
37
|
Kim SK, Massett MP. Genetic Regulation of Endothelial Vasomotor Function. Front Physiol 2016; 7:571. [PMID: 27932996 PMCID: PMC5122706 DOI: 10.3389/fphys.2016.00571] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/09/2016] [Indexed: 12/01/2022] Open
Abstract
The endothelium plays an important role in the regulation of vasomotor tone and the maintenance of vascular integrity. Endothelial dysfunction, i.e., impaired endothelial dependent dilation, is a fundamental component of the pathogenesis of cardiovascular disease. Although endothelial dysfunction is associated with a number of cardiovascular disease risk factors, those risk factors are not the only determinants of endothelial dysfunction. Despite knowing many molecules involved in endothelial signaling pathways, the genetic contribution to endothelial function has yet to be fully elucidated. This mini-review summarizes current evidence supporting the genetic contribution to endothelial vasomotor function. Findings from population-based studies, association studies for candidate genes, and unbiased large genomic scale studies in humans and rodent models are discussed. A brief synopsis of the current studies addressing the genetic regulation of endothelial responses to exercise training is also included.
Collapse
Affiliation(s)
- Seung Kyum Kim
- Department of Health and Kinesiology, Texas A&M UniversityCollege Station, TX, USA
- Tufts Medical Center, Molecular Cardiology Research InstituteBoston, MA, USA
| | - Michael P. Massett
- Department of Health and Kinesiology, Texas A&M UniversityCollege Station, TX, USA
| |
Collapse
|
38
|
Ait-Aissa K, Ebben JD, Kadlec AO, Beyer AM. Friend or foe? Telomerase as a pharmacological target in cancer and cardiovascular disease. Pharmacol Res 2016; 111:422-433. [PMID: 27394166 PMCID: PMC5026584 DOI: 10.1016/j.phrs.2016.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/01/2016] [Accepted: 07/02/2016] [Indexed: 12/20/2022]
Abstract
Aging, cancer, and chronic disease have remained at the forefront of basic biological research for decades. Within this context, significant attention has been paid to the role of telomerase, the enzyme responsible for lengthening telomeres, the nucleotide sequences located at the end of chromosomes found in the nucleus. Alterations in telomere length and telomerase activity are a common denominator to the underlying pathology of these diseases. While nuclear-specific, telomere-lengthening effects of telomerase impact cellular/organismal aging and cancer development, non-canonical, extra-nuclear, and non-telomere-lengthening contributions of telomerase have only recently been described and their exact physiological implications are ill defined. Although the mechanism remains unclear, recent reports reveal that the catalytic subunit of telomerase, telomerase reverse transcriptase (TERT), regulates levels of mitochondrial-derived reactive oxygen species (mtROS), independent of its established role in the nucleus. Telomerase inhibition has been the target of chemotherapy (directed or indirectly) for over a decade now, yet no telomerase inhibitor is FDA approved and few are currently in late-stage clinical trials, possibly due to underappreciation of the distinct extra-nuclear functions of telomerase. Moreover, evaluation of telomerase-specific therapies is largely limited to the context of chemotherapy, despite reports of the beneficial effects of telomerase activation in the cardiovascular system in relation to such processes as endothelial dysfunction and myocardial infarction. Thus, there is a need for better understanding of telomerase-focused cell and organism physiology, as well as development of telomerase-specific therapies in relation to cancer and extension of these therapies to cardiovascular pathologies. This review will detail findings related to telomerase and evaluate its potential to serve as a therapeutic target.
Collapse
Affiliation(s)
- Karima Ait-Aissa
- Department of Medicine
- Department of Physiology, Cardiovascular Center
| | - Johnathan D. Ebben
- Department of Pharmacology & Toxicology
- Cancer Center, Medical College of Wisconsin
| | - Andrew O. Kadlec
- Department of Medicine
- Department of Physiology, Cardiovascular Center
| | - Andreas M. Beyer
- Department of Medicine
- Department of Physiology, Cardiovascular Center
| |
Collapse
|
39
|
Stump M, Guo DF, Lu KT, Mukohda M, Liu X, Rahmouni K, Sigmund CD. Effect of selective expression of dominant-negative PPARγ in pro-opiomelanocortin neurons on the control of energy balance. Physiol Genomics 2016; 48:491-501. [PMID: 27199455 DOI: 10.1152/physiolgenomics.00032.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/06/2016] [Indexed: 01/01/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ), a master regulator of adipogenesis, was recently shown to affect energy homeostasis through its actions in the brain. Deletion of PPARγ in mouse brain, and specifically in the pro-opiomelanocortin (POMC) neurons, results in resistance to diet-induced obesity. To study the mechanisms by which PPARγ in POMC neurons controls energy balance, we constructed a Cre-recombinase-dependent conditionally activatable transgene expressing either wild-type (WT) or dominant-negative (P467L) PPARγ and the tdTomato reporter. Inducible expression of both forms of PPARγ was validated in cells in culture, in liver of mice infected with an adenovirus expressing Cre-recombinase (AdCre), and in the brain of mice expressing Cre-recombinase either in all neurons (NES(Cre)/PPARγ-P467L) or selectively in POMC neurons (POMC(Cre)/PPARγ-P467L). Whereas POMC(Cre)/PPARγ-P467L mice exhibited a normal pattern of weight gain when fed 60% high-fat diet, they exhibited increased weight gain and fat mass accumulation in response to a 10% fat isocaloric-matched control diet. POMC(Cre)/PPARγ-P467L mice were leptin sensitive on control diet but became leptin resistant when fed 60% high-fat diet. There was no difference in body weight between POMC(Cre)/PPARγ-WT mice and controls in response to 60% high-fat diet. However, POMC(Cre)/PPARγ-WT, but not POMC(Cre)/PPARγ-P467L, mice increased body weight in response to rosiglitazone, a PPARγ agonist. These observations support the concept that alterations in PPARγ-driven mechanisms in POMC neurons can play a role in the regulation of metabolic homeostasis under certain dietary conditions.
Collapse
Affiliation(s)
- Madeliene Stump
- Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Deng-Fu Guo
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Ko-Ting Lu
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Masashi Mukohda
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Xuebo Liu
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Kamal Rahmouni
- Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Curt D Sigmund
- Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
40
|
Chronic peroxisome proliferator-activated receptorβ/δ agonist GW0742 prevents hypertension, vascular inflammatory and oxidative status, and endothelial dysfunction in diet-induced obesity. J Hypertens 2016; 33:1831-44. [PMID: 26147382 DOI: 10.1097/hjh.0000000000000634] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Endothelial dysfunction plays a key role in obesity-induced risk of cardiovascular disease. The aim of the present study was to analyze the effect of chronic peroxisome proliferator-activated receptor (PPAR)β/δ agonist GW0742 treatment on endothelial function in obese mice fed a high-fat diet (HFD). METHODS AND RESULTS Five-week-old male mice were allocated to one of the following groups: control, control-treated (GW0742, 3 mg/kg per day, by oral gavage), HFD, HFD + GW0742, HFD + GSK0660 (1 mg/kg/day, intraperitoneal) or HFD-GW0742-GSK0660 and followed for 11 or 13 weeks. GW0742 administration to mice fed HFD prevented the gain of body weight, heart and kidney hypertrophy, and fat accumulation. The increase in plasma levels of fasting glucose, glucose tolerance test, homeostatic model assessment of insulin resistance, and triglyceride found in the HFD group was suppressed by GW0742. This agonist increased plasma HDL in HFD-fed mice and restored the levels of tumor necrosis factor-α and adiponectin in fat. GW0742 prevented the impaired nitric oxide-dependent vasodilatation induced by acetylcholine in aortic rings from mice fed HFD. Moreover, GW0742 increased both aortic Akt and endothelial nitric oxide synthase phosphorylation, and inhibited the increase in caveolin-1/endothelial nitric oxide synthase interaction, ethidium fluorescence, NOX-1, Toll-like receptor 4, tumor necrosis factor-α, and interleukin-6 expression, and IκBα phosphorylation found in aortae from the HFD group. GSK0660 prevented all changes induced by GW0742. CONCLUSION PPARβ/δ activation prevents obesity and exerts protective effects on hypertension and on the early manifestations of atherosclerosis, that is, endothelial dysfunction and the vascular pro-oxidant and pro-inflammatory status, in HFD-fed mice.
Collapse
|
41
|
Microvascular Dysfunction and Cognitive Impairment. Cell Mol Neurobiol 2016; 36:241-58. [PMID: 26988697 DOI: 10.1007/s10571-015-0308-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/19/2015] [Indexed: 12/18/2022]
Abstract
The impact of vascular risk factors on cognitive function has garnered much interest in recent years. The appropriate distribution of oxygen, glucose, and other nutrients by the cerebral vasculature is critical for proper cognitive performance. The cerebral microvasculature is a key site of vascular resistance and a preferential target for small vessel disease. While deleterious effects of vascular risk factors on microvascular function are known, the contribution of this dysfunction to cognitive deficits is less clear. In this review, we summarize current evidence for microvascular dysfunction in brain. We highlight effects of select vascular risk factors (hypertension, diabetes, and hyperhomocysteinemia) on the pial and parenchymal circulation. Lastly, we discuss potential links between microvascular disease and cognitive function, highlighting current gaps in our understanding.
Collapse
|
42
|
Abstract
Dysregulation of peroxisome proliferator-activated receptor gamma (PPARγ) activity leads to significant alterations in cardiovascular and metabolic regulation. This is most keenly observed by the metabolic syndrome-like phenotypes exhibited by patients carrying mutations in PPARγ. We will summarize recent findings regarding mechanisms of PPARγ regulation in the cardiovascular and nervous systems focusing largely on PPARγ in the smooth muscle, endothelium, and brain. Canonically, PPARγ exerts its effects by regulating the expression of target genes in these cells, and we will discuss mechanisms by which PPARγ targets in the vasculature regulate cardiovascular function. We will also discuss emerging evidence that PPARγ in the brain is a mediator of appetite and obesity. Finally, we will briefly review how novel PPARγ activators control posttranslational modifications of PPARγ and their prospects to offer new therapeutic options for treatment of metabolic diseases without the adverse side effects of thiazolidinediones which strongly activate transcriptional activity of PPARγ.
Collapse
Affiliation(s)
- Madeliene Stump
- Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA
- Graduate Program in Neuroscience, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA
| | - Masashi Mukohda
- Department of Pharmacology and Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA
| | - Chunyan Hu
- Department of Pharmacology and Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA
| | - Curt D Sigmund
- Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA.
- Graduate Program in Neuroscience, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA.
- Department of Pharmacology and Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA.
- UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA.
| |
Collapse
|
43
|
Serizawa K, Yogo K, Tashiro Y, Takeda S, Kawasaki R, Aizawa K, Endo K. Eldecalcitol prevents endothelial dysfunction in postmenopausal osteoporosis model rats. J Endocrinol 2016; 228:75-84. [PMID: 26537128 DOI: 10.1530/joe-15-0332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/03/2015] [Indexed: 01/07/2023]
Abstract
Postmenopausal women have high incidence of cardiovascular events as estrogen deficiency can cause endothelial dysfunction. Vitamin D is reported to be beneficial on endothelial function, but it remains controversial whether vitamin D is effective for endothelial dysfunction under the treatment for osteoporosis in postmenopausal women. The aim of this study was to evaluate the endothelial protective effect of eldecalcitol (ELD) in ovariectomized (OVX) rats. ELD (20 ng/kg) was orally administrated five times a week for 4 weeks from 1 day after surgery. After that, flow-mediated dilation (FMD) as an indicator of endothelial function was measured by high-resolution ultrasound in the femoral artery of living rats. ELD ameliorated the reduction of FMD in OVX rats. ELD inhibited the increase in NOX4, nitrotyrosine, and p65 and the decrease in dimer/monomer ratio of nitric oxide synthase in OVX rat femoral arteries. ELD also prevented the decrease in peroxisome proliferator-activated receptor gamma (PPARγ) in femoral arteries and cultured endothelial cells. Although PPARγ is known to inhibit osteoblastogenesis, ELD understandably increased bone mineral density of OVX rats without increase in PPARγ in bone marrow. These results suggest that ELD prevented the deterioration of endothelial function under condition of preventing bone loss in OVX rats. This endothelial protective effect of ELD might be exerted through improvement of endothelial nitric oxide synthase uncoupling, which is mediated by an antioxidative effect through normalization of vascular PPARγ/NF-κB signaling.
Collapse
Affiliation(s)
- Kenichi Serizawa
- Product Research DepartmentChugai Pharmaceutical Co., Ltd, 1-135 Komakado, Gotemba, Shizuoka 412-8513, JapanProduct Research DepartmentChugai Pharmaceutical Co., Ltd, 200 Kajiwara, Kamakura, Kanagawa 247-8530, JapanMedical Science DepartmentChugai Pharmaceutical Co., Ltd, 2-1-1 Nihonbashi-Muromachi, Chuo-ku, Tokyo 103-8324, Japan
| | - Kenji Yogo
- Product Research DepartmentChugai Pharmaceutical Co., Ltd, 1-135 Komakado, Gotemba, Shizuoka 412-8513, JapanProduct Research DepartmentChugai Pharmaceutical Co., Ltd, 200 Kajiwara, Kamakura, Kanagawa 247-8530, JapanMedical Science DepartmentChugai Pharmaceutical Co., Ltd, 2-1-1 Nihonbashi-Muromachi, Chuo-ku, Tokyo 103-8324, Japan
| | - Yoshihito Tashiro
- Product Research DepartmentChugai Pharmaceutical Co., Ltd, 1-135 Komakado, Gotemba, Shizuoka 412-8513, JapanProduct Research DepartmentChugai Pharmaceutical Co., Ltd, 200 Kajiwara, Kamakura, Kanagawa 247-8530, JapanMedical Science DepartmentChugai Pharmaceutical Co., Ltd, 2-1-1 Nihonbashi-Muromachi, Chuo-ku, Tokyo 103-8324, Japan
| | - Satoshi Takeda
- Product Research DepartmentChugai Pharmaceutical Co., Ltd, 1-135 Komakado, Gotemba, Shizuoka 412-8513, JapanProduct Research DepartmentChugai Pharmaceutical Co., Ltd, 200 Kajiwara, Kamakura, Kanagawa 247-8530, JapanMedical Science DepartmentChugai Pharmaceutical Co., Ltd, 2-1-1 Nihonbashi-Muromachi, Chuo-ku, Tokyo 103-8324, Japan
| | - Ryohei Kawasaki
- Product Research DepartmentChugai Pharmaceutical Co., Ltd, 1-135 Komakado, Gotemba, Shizuoka 412-8513, JapanProduct Research DepartmentChugai Pharmaceutical Co., Ltd, 200 Kajiwara, Kamakura, Kanagawa 247-8530, JapanMedical Science DepartmentChugai Pharmaceutical Co., Ltd, 2-1-1 Nihonbashi-Muromachi, Chuo-ku, Tokyo 103-8324, Japan
| | - Ken Aizawa
- Product Research DepartmentChugai Pharmaceutical Co., Ltd, 1-135 Komakado, Gotemba, Shizuoka 412-8513, JapanProduct Research DepartmentChugai Pharmaceutical Co., Ltd, 200 Kajiwara, Kamakura, Kanagawa 247-8530, JapanMedical Science DepartmentChugai Pharmaceutical Co., Ltd, 2-1-1 Nihonbashi-Muromachi, Chuo-ku, Tokyo 103-8324, Japan
| | - Koichi Endo
- Product Research DepartmentChugai Pharmaceutical Co., Ltd, 1-135 Komakado, Gotemba, Shizuoka 412-8513, JapanProduct Research DepartmentChugai Pharmaceutical Co., Ltd, 200 Kajiwara, Kamakura, Kanagawa 247-8530, JapanMedical Science DepartmentChugai Pharmaceutical Co., Ltd, 2-1-1 Nihonbashi-Muromachi, Chuo-ku, Tokyo 103-8324, Japan
| |
Collapse
|
44
|
Restoration of Endothelial Function in Pparα (-/-) Mice by Tempol. PPAR Res 2015; 2015:728494. [PMID: 26649033 PMCID: PMC4663011 DOI: 10.1155/2015/728494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 12/18/2022] Open
Abstract
Peroxisome proliferator activated receptor alpha (PPARα) is one of the PPAR isoforms belonging to the nuclear hormone receptor superfamily that regulates genes involved in lipid and lipoprotein metabolism. PPARα is present in the vascular wall and is thought to be involved in protection against vascular disease. To determine if PPARα contributes to endothelial function, conduit and cerebral resistance arteries were studied in Pparα−/− mice using isometric and isobaric tension myography, respectively. Aortic contractions to PGF2α and constriction of middle cerebral arteries to phenylephrine were not different between wild type (WT) and Pparα−/−; however, relaxation/dilation to acetylcholine (ACh) was impaired. There was no difference in relaxation between WT and Pparα−/− aorta to treatment with a nitric oxide (NO) surrogate indicating impairment in endothelial function. Endothelial NO levels as well as NO synthase expression were reduced in Pparα−/− aortas, while superoxide levels were elevated. Two-week feeding with the reactive oxygen species (ROS) scavenger, tempol, normalized ROS levels and rescued the impaired endothelium-mediated relaxation in Pparα−/− mice. These results suggest that Pparα−/− mice have impaired endothelial function caused by decreased NO bioavailability. Therefore, activation of PPARα receptors may be a therapeutic target for maintaining endothelial function and protection against cardiovascular disease.
Collapse
|
45
|
Mukohda M, Stump M, Ketsawatsomkron P, Hu C, Quelle FW, Sigmund CD. Endothelial PPAR-γ provides vascular protection from IL-1β-induced oxidative stress. Am J Physiol Heart Circ Physiol 2015; 310:H39-48. [PMID: 26566726 DOI: 10.1152/ajpheart.00490.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/09/2015] [Indexed: 11/22/2022]
Abstract
Loss of peroxisome proliferator-activated receptor (PPAR)-γ function in the vascular endothelium enhances atherosclerosis and NF-κB target gene expression in high-fat diet-fed apolipoprotein E-deficient mice. The mechanisms by which endothelial PPAR-γ regulates inflammatory responses and protects against atherosclerosis remain unclear. To assess functional interactions between PPAR-γ and inflammation, we used a model of IL-1β-induced aortic dysfunction in transgenic mice with endothelium-specific overexpression of either wild-type (E-WT) or dominant negative PPAR-γ (E-V290M). IL-1β dose dependently decreased IκB-α, increased phospho-p65, and increased luciferase activity in the aorta of NF-κB-LUC transgenic mice. IL-1β also dose dependently reduced endothelial-dependent relaxation by ACh. The loss of ACh responsiveness was partially improved by pretreatment of the vessels with the PPAR-γ agonist rosiglitazone or in E-WT. Conversely, IL-1β-induced endothelial dysfunction was worsened in the aorta from E-V290M mice. Although IL-1β increased the expression of NF-κB target genes, NF-κB p65 inhibitor did not alleviate endothelial dysfunction induced by IL-1β. Tempol, a SOD mimetic, partially restored ACh responsiveness in the IL-1β-treated aorta. Notably, tempol only modestly improved protection in the E-WT aorta but had an increased protective effect in the E-V290M aorta compared with the aorta from nontransgenic mice, suggesting that PPAR-γ-mediated protection involves antioxidant effects. IL-1β increased ROS and decreased the phospho-endothelial nitric oxide synthase (Ser(1177))-to-endothelial nitric oxide synthase ratio in the nontransgenic aorta. These effects were completely abolished in the aorta with endothelial overexpression of WT PPAR-γ but were worsened in the aorta with E-V290M even in the absence of IL-1β. We conclude that PPAR-γ protects against IL-1β-mediated endothelial dysfunction through a reduction of oxidative stress responses but not by blunting IL-1β-mediated NF-κB activity.
Collapse
Affiliation(s)
- Masashi Mukohda
- Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Madeliene Stump
- Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Pimonrat Ketsawatsomkron
- Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Chunyan Hu
- Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Frederick W Quelle
- Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Curt D Sigmund
- Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
46
|
Hu C, Lu KT, Mukohda M, Davis DR, Faraci FM, Sigmund CD. Interference with PPARγ in endothelium accelerates angiotensin II-induced endothelial dysfunction. Physiol Genomics 2015; 48:124-34. [PMID: 26534936 DOI: 10.1152/physiolgenomics.00087.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/02/2015] [Indexed: 02/07/2023] Open
Abstract
The ligand activated nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) in the endothelium regulates vascular function and blood pressure (BP). We previously reported that transgenic mice (E-V290M) with selectively targeted endothelial-specific expression of dominant negative PPARγ exhibited endothelial dysfunction when treated with a high-fat diet, and exhibited an augmented pressor response to angiotensin II (ANG II). We hypothesize that interference with endothelial PPARγ would exacerbate ANG II-induced endothelial dysfunction. Endothelial function was examined in E-V290M mice infused with a subpressor dose of ANG II (120 ng·kg(-1)·min(-1)) or saline for 2 wk. ANG II infusion significantly impaired the responses to the endothelium-dependent agonist acetylcholine both in basilar and carotid arteries from E-V290M but not NT mice. This impairment was not due to increased BP, which was not significantly different in ANG II-infused E-V290M compared with NT mice. Superoxide levels, and expression of the pro-oxidant Nox2 gene was elevated, whereas expression of the anti-oxidant genes Catalase and SOD3 decreased in carotid arteries from ANG II-infused E-V290M mice. Increased p65 and decreased Iκ-Bα suggesting increased NF-κB activity was also observed in aorta from ANG II-infused E-V290M mice. The responses to acetylcholine were significantly improved both in basilar and carotid arteries after treatment with Tempol (1 mmol/l), a scavenger of superoxide. These findings provide evidence that interference with endothelial PPARγ accelerates ANG II-mediated endothelial dysfunction both in cerebral and conduit arteries through an oxidative stress-dependent mechanism, suggesting a role for endothelial PPARγ in protecting against ANG II-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Chunyan Hu
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Ko-Ting Lu
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Masashi Mukohda
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Deborah R Davis
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Frank M Faraci
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and Iowa City Veterans Affairs Healthcare System, Iowa City, Iowa
| | - Curt D Sigmund
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| |
Collapse
|
47
|
Molecular mechanisms regulating vascular tone by peroxisome proliferator activated receptor gamma. Curr Opin Nephrol Hypertens 2015; 24:123-30. [PMID: 25587903 DOI: 10.1097/mnh.0000000000000103] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW This review summarizes recent findings on the regulation of vascular tone by the nuclear receptor transcription factor, peroxisome proliferator activated receptor (PPAR) γ. Much of the recent work utilizes genetic tools to interrogate the significance of PPARγ in endothelial and smooth muscle cells and novel PPARγ target genes have been identified. RECENT FINDINGS Endothelial PPARγ prevents inflammation and oxidative stress, while promoting vasodilation by controlling the regulation of NADPH oxidase, catalase and superoxide dismutase gene expression. Moreover, the protective functions of endothelial PPARγ appear more prominent during disease conditions. Novel findings also suggest a role for endothelial PPARγ as a mediator of whole body metabolism. In smooth muscle cells, PPARγ regulates vascular tone by targeting genes involved with contraction and relaxation signaling cascades, some of which is via transcriptional activation, and some through novel mechanisms regulating protein turnover. Furthermore, aberrant changes in renin-angiotensin system components and exacerbated responses to angiotensin II induced vascular dysfunction are observed when PPARγ function is lost in smooth muscle cells. SUMMARY With these recent advances based partially on lessons from patients with PPARγ mutants, we conclude that vascular PPARγ is protective and plays an important role in the regulation of vascular tone.
Collapse
|
48
|
Hasan DM, Starke RM, Gu H, Wilson K, Chu Y, Chalouhi N, Heistad DD, Faraci FM, Sigmund CD. Smooth Muscle Peroxisome Proliferator-Activated Receptor γ Plays a Critical Role in Formation and Rupture of Cerebral Aneurysms in Mice In Vivo. Hypertension 2015; 66:211-20. [PMID: 25916724 DOI: 10.1161/hypertensionaha.115.05332] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/07/2015] [Indexed: 12/17/2022]
Abstract
Vascular inflammation plays a critical role in the pathogenesis of cerebral aneurysms. Peroxisome proliferator-activated receptor γ (PPARγ) protects against vascular inflammation and atherosclerosis, whereas dominant-negative mutations in PPARγ promote atherosclerosis and vascular dysfunction. We tested the role of PPARγ in aneurysm formation and rupture. Aneurysms were induced with a combination of systemic infusion of angiotensin-II and local injection of elastase in (1) mice that received the PPARγ antagonist GW9662 or the PPARγ agonist pioglitazone, (2) mice carrying dominant-negative PPARγ mutations in endothelial or smooth muscle cells, and (3) mice that received the Cullin inhibitor MLN4924. Incidence of aneurysm formation, rupture, and mortality was quantified. Cerebral arteries were analyzed for expression of Cullin3, Kelch-like ECH-associated protein 1, nuclear factor (erythroid-derived 2)-like 2, NAD(P)H dehydrogenase (quinone)1 (NQO1), and inflammatory marker mRNAs. Neither pioglitazone nor GW9662 altered the incidence of aneurysm formation. GW9662 significantly increased the incidence of aneurysm rupture, whereas pioglitazone tended to decrease the incidence of rupture. Dominant-negative endothelial-specific PPARγ did not alter the incidence of aneurysm formation or rupture. In contrast, dominant-negative smooth muscle-specific PPARγ resulted in an increase in aneurysm formation (P<0.05) and rupture (P=0.05). Dominant-negative smooth muscle-specific PPARγ, but not dominant-negative endothelial-specific PPARγ, resulted in significant decreases in expression of genes encoding Cullin3, Kelch-like ECH-associated protein 1, and nuclear factor (erythroid-derived 2)-like 2, along with significant increases in tumor necrosis factor-α, monocyte chemoattractant protein-1, chemokine (C-X-C motif) ligand 1, CD68, matrix metalloproteinase-3, -9, and -13. MLN4924 did not alter incidence of aneurysm formation, but increased the incidence of rupture (P<0.05). In summary, endogenous PPARγ, specifically smooth muscle PPARγ, plays an important role in protecting from formation and rupture of experimental cerebral aneurysms in mice.
Collapse
Affiliation(s)
- David M Hasan
- From the Department of Neurological Surgery (D.M.H., H.G., K.W., Y.C.) and Departments of Pharmacology and Internal Medicine, Carver College of Medicine (Y.C., D.D.H., F.M.F., C.D.S.), University of Department of Internal Medicine, Iowa; Department of Neurological Surgery, University of Virginia, Charlottesville (R.M.S.); Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA (N.C.); and Department of Internal Medicine, Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Robert M Starke
- From the Department of Neurological Surgery (D.M.H., H.G., K.W., Y.C.) and Departments of Pharmacology and Internal Medicine, Carver College of Medicine (Y.C., D.D.H., F.M.F., C.D.S.), University of Department of Internal Medicine, Iowa; Department of Neurological Surgery, University of Virginia, Charlottesville (R.M.S.); Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA (N.C.); and Department of Internal Medicine, Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - He Gu
- From the Department of Neurological Surgery (D.M.H., H.G., K.W., Y.C.) and Departments of Pharmacology and Internal Medicine, Carver College of Medicine (Y.C., D.D.H., F.M.F., C.D.S.), University of Department of Internal Medicine, Iowa; Department of Neurological Surgery, University of Virginia, Charlottesville (R.M.S.); Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA (N.C.); and Department of Internal Medicine, Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Katina Wilson
- From the Department of Neurological Surgery (D.M.H., H.G., K.W., Y.C.) and Departments of Pharmacology and Internal Medicine, Carver College of Medicine (Y.C., D.D.H., F.M.F., C.D.S.), University of Department of Internal Medicine, Iowa; Department of Neurological Surgery, University of Virginia, Charlottesville (R.M.S.); Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA (N.C.); and Department of Internal Medicine, Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Yi Chu
- From the Department of Neurological Surgery (D.M.H., H.G., K.W., Y.C.) and Departments of Pharmacology and Internal Medicine, Carver College of Medicine (Y.C., D.D.H., F.M.F., C.D.S.), University of Department of Internal Medicine, Iowa; Department of Neurological Surgery, University of Virginia, Charlottesville (R.M.S.); Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA (N.C.); and Department of Internal Medicine, Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Nohra Chalouhi
- From the Department of Neurological Surgery (D.M.H., H.G., K.W., Y.C.) and Departments of Pharmacology and Internal Medicine, Carver College of Medicine (Y.C., D.D.H., F.M.F., C.D.S.), University of Department of Internal Medicine, Iowa; Department of Neurological Surgery, University of Virginia, Charlottesville (R.M.S.); Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA (N.C.); and Department of Internal Medicine, Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Donald D Heistad
- From the Department of Neurological Surgery (D.M.H., H.G., K.W., Y.C.) and Departments of Pharmacology and Internal Medicine, Carver College of Medicine (Y.C., D.D.H., F.M.F., C.D.S.), University of Department of Internal Medicine, Iowa; Department of Neurological Surgery, University of Virginia, Charlottesville (R.M.S.); Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA (N.C.); and Department of Internal Medicine, Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Frank M Faraci
- From the Department of Neurological Surgery (D.M.H., H.G., K.W., Y.C.) and Departments of Pharmacology and Internal Medicine, Carver College of Medicine (Y.C., D.D.H., F.M.F., C.D.S.), University of Department of Internal Medicine, Iowa; Department of Neurological Surgery, University of Virginia, Charlottesville (R.M.S.); Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA (N.C.); and Department of Internal Medicine, Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Curt D Sigmund
- From the Department of Neurological Surgery (D.M.H., H.G., K.W., Y.C.) and Departments of Pharmacology and Internal Medicine, Carver College of Medicine (Y.C., D.D.H., F.M.F., C.D.S.), University of Department of Internal Medicine, Iowa; Department of Neurological Surgery, University of Virginia, Charlottesville (R.M.S.); Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA (N.C.); and Department of Internal Medicine, Iowa City Veterans Affairs Healthcare System (F.M.F.).
| |
Collapse
|
49
|
Jin H, Gebska MA, Blokhin IO, Wilson KM, Ketsawatsomkron P, Chauhan AK, Keen HL, Sigmund CD, Lentz SR. Endothelial PPAR-γ protects against vascular thrombosis by downregulating P-selectin expression. Arterioscler Thromb Vasc Biol 2015; 35:838-44. [PMID: 25675995 DOI: 10.1161/atvbaha.115.305378] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE We tested the hypothesis that endothelial peroxisome proliferator-activated receptor-γ protects against vascular thrombosis using a transgenic mouse model expressing a peroxisome proliferator-activated receptor-γ mutant (E-V290M) selectively in endothelium. APPROACH AND RESULTS The time to occlusive thrombosis of the carotid artery was significantly shortened in E-V290M mice compared with nontransgenic littermates after either chemical injury with ferric chloride (5.1 ± 0.2 versus 10.1 ± 3.3 minutes; P=0.01) or photochemical injury with rose bengal (48 ± 9 versus 74 ± 9 minutes; P=0.04). Gene set enrichment analysis demonstrated the upregulation of NF-κB target genes, including P-selectin, in aortic endothelial cells from E-V290M mice (P<0.001). Plasma P-selectin and carotid artery P-selectin mRNA were elevated in E-V290M mice (P<0.05). P-selectin-dependent leukocyte rolling on mesenteric venules was increased in E-V290M mice compared with nontransgenic mice (53 ± 8 versus 25 ± 7 per minute; P=0.02). The shortened time to arterial occlusion in E-V290M mice was reversed by administration of P-selectin-blocking antibodies or neutrophil-depleting antibodies (P=0.04 and P=0.02, respectively) before photochemical injury. CONCLUSIONS Endothelial peroxisome proliferator-activated receptor-γ protects against thrombosis through a mechanism that involves downregulation of P-selectin expression and diminished P-selectin-mediated leukocyte-endothelial interactions.
Collapse
Affiliation(s)
- Hong Jin
- From the Departments of Internal Medicine (H.J., M.A.G., I.O.B., K.M.W., A.K.C., C.D.S., S.R.L.) and Pharmacology (P.K., H.L.K., C.D.S.), Interdisciplinary Graduate Program in Molecular and Cellular Biology (I.O.B.), University of Iowa Carver College of Medicine, Iowa City
| | - Milena A Gebska
- From the Departments of Internal Medicine (H.J., M.A.G., I.O.B., K.M.W., A.K.C., C.D.S., S.R.L.) and Pharmacology (P.K., H.L.K., C.D.S.), Interdisciplinary Graduate Program in Molecular and Cellular Biology (I.O.B.), University of Iowa Carver College of Medicine, Iowa City
| | - Ilya O Blokhin
- From the Departments of Internal Medicine (H.J., M.A.G., I.O.B., K.M.W., A.K.C., C.D.S., S.R.L.) and Pharmacology (P.K., H.L.K., C.D.S.), Interdisciplinary Graduate Program in Molecular and Cellular Biology (I.O.B.), University of Iowa Carver College of Medicine, Iowa City
| | - Katina M Wilson
- From the Departments of Internal Medicine (H.J., M.A.G., I.O.B., K.M.W., A.K.C., C.D.S., S.R.L.) and Pharmacology (P.K., H.L.K., C.D.S.), Interdisciplinary Graduate Program in Molecular and Cellular Biology (I.O.B.), University of Iowa Carver College of Medicine, Iowa City
| | - Pimonrat Ketsawatsomkron
- From the Departments of Internal Medicine (H.J., M.A.G., I.O.B., K.M.W., A.K.C., C.D.S., S.R.L.) and Pharmacology (P.K., H.L.K., C.D.S.), Interdisciplinary Graduate Program in Molecular and Cellular Biology (I.O.B.), University of Iowa Carver College of Medicine, Iowa City
| | - Anil K Chauhan
- From the Departments of Internal Medicine (H.J., M.A.G., I.O.B., K.M.W., A.K.C., C.D.S., S.R.L.) and Pharmacology (P.K., H.L.K., C.D.S.), Interdisciplinary Graduate Program in Molecular and Cellular Biology (I.O.B.), University of Iowa Carver College of Medicine, Iowa City
| | - Henry L Keen
- From the Departments of Internal Medicine (H.J., M.A.G., I.O.B., K.M.W., A.K.C., C.D.S., S.R.L.) and Pharmacology (P.K., H.L.K., C.D.S.), Interdisciplinary Graduate Program in Molecular and Cellular Biology (I.O.B.), University of Iowa Carver College of Medicine, Iowa City
| | - Curt D Sigmund
- From the Departments of Internal Medicine (H.J., M.A.G., I.O.B., K.M.W., A.K.C., C.D.S., S.R.L.) and Pharmacology (P.K., H.L.K., C.D.S.), Interdisciplinary Graduate Program in Molecular and Cellular Biology (I.O.B.), University of Iowa Carver College of Medicine, Iowa City
| | - Steven R Lentz
- From the Departments of Internal Medicine (H.J., M.A.G., I.O.B., K.M.W., A.K.C., C.D.S., S.R.L.) and Pharmacology (P.K., H.L.K., C.D.S.), Interdisciplinary Graduate Program in Molecular and Cellular Biology (I.O.B.), University of Iowa Carver College of Medicine, Iowa City.
| |
Collapse
|
50
|
De Silva TM, Ketsawatsomkron P, Pelham C, Sigmund CD, Faraci FM. Genetic interference with peroxisome proliferator-activated receptor γ in smooth muscle enhances myogenic tone in the cerebrovasculature via A Rho kinase-dependent mechanism. Hypertension 2014; 65:345-51. [PMID: 25385762 DOI: 10.1161/hypertensionaha.114.04541] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Myogenic responses by resistance vessels are a key component of autoregulation in brain, thus playing a crucial role in regulating cerebral blood flow and protecting the blood-brain barrier against potentially detrimental elevations in blood pressure. Although cerebrovascular disease is often accompanied by alterations in myogenic responses, mechanisms that control these changes are poorly understood. Peroxisome proliferator-activated receptor γ has emerged as a regulator of vascular tone. We hypothesized that interference with peroxisome proliferator-activated receptor γ in smooth muscle would augment myogenic responses in cerebral arteries. We studied transgenic mice expressing a dominant-negative mutation in peroxisome proliferator-activated receptor γ selectively in smooth muscle (S-P467L) and nontransgenic littermates. Myogenic tone in middle cerebral arteries from S-P467L was elevated 3-fold when compared with nontransgenic littermates. Rho kinase is thought to play a major role in cerebrovascular disease. The Rho kinase inhibitor, Y-27632, abolished augmented myogenic tone in middle cerebral arteries from S-P467L mice. CN-03, which modifies RhoA making it constitutively active, elevated myogenic tone to ≈60% in both strains, via a Y-27632-dependent mechanism. Large conductance Ca(2+)-activated K(+) channels (BKCa) modulate myogenic tone. Inhibitors of BKCa caused greater constriction in middle cerebral arteries from nontransgenic littermates when compared with S-P467L. Expression of RhoA or Rho kinase-I/II protein was similar in cerebral arteries from S-P467L mice. Overall, the data suggest that peroxisome proliferator-activated receptor γ in smooth muscle normally inhibits Rho kinase and promotes BKCa function, thus influencing myogenic tone in resistance arteries in brain. These findings have implications for mechanisms that underlie large- and small-vessel disease in brain, as well as regulation of cerebral blood flow.
Collapse
Affiliation(s)
- T Michael De Silva
- From the Departments of Internal Medicine (T.M.D.S., C.D.S, F.M.F.) and Pharmacology (P.K., C.P., C.D.S., F.M.F.), Francois M. Abboud Cardiovascular Center, The University of Iowa Carver College of Medicine; and Veterans Affairs Healthcare System, Iowa City, IA (F.M.F.)
| | - Pimonrat Ketsawatsomkron
- From the Departments of Internal Medicine (T.M.D.S., C.D.S, F.M.F.) and Pharmacology (P.K., C.P., C.D.S., F.M.F.), Francois M. Abboud Cardiovascular Center, The University of Iowa Carver College of Medicine; and Veterans Affairs Healthcare System, Iowa City, IA (F.M.F.)
| | - Christopher Pelham
- From the Departments of Internal Medicine (T.M.D.S., C.D.S, F.M.F.) and Pharmacology (P.K., C.P., C.D.S., F.M.F.), Francois M. Abboud Cardiovascular Center, The University of Iowa Carver College of Medicine; and Veterans Affairs Healthcare System, Iowa City, IA (F.M.F.)
| | - Curt D Sigmund
- From the Departments of Internal Medicine (T.M.D.S., C.D.S, F.M.F.) and Pharmacology (P.K., C.P., C.D.S., F.M.F.), Francois M. Abboud Cardiovascular Center, The University of Iowa Carver College of Medicine; and Veterans Affairs Healthcare System, Iowa City, IA (F.M.F.)
| | - Frank M Faraci
- From the Departments of Internal Medicine (T.M.D.S., C.D.S, F.M.F.) and Pharmacology (P.K., C.P., C.D.S., F.M.F.), Francois M. Abboud Cardiovascular Center, The University of Iowa Carver College of Medicine; and Veterans Affairs Healthcare System, Iowa City, IA (F.M.F.).
| |
Collapse
|