1
|
Seghetti P, Latrofa S, Biasi N, Giannoni A, Hartwig V, Rossi A, Tognetti A. Electrophysiological patterns and structural substrates of Brugada syndrome: Critical appraisal and computational analyses. J Cardiovasc Electrophysiol 2024; 35:1673-1687. [PMID: 38899376 DOI: 10.1111/jce.16341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Brugada syndrome (BrS) is a cardiac electrophysiological disease with unknown etiology, associated with sudden cardiac death. Symptomatic patients are treated with implanted cardiac defibrillator, but no risk stratification strategy is effective in patients that are at low to medium arrhythmic risk. Cardiac computational modeling is an emerging tool that can be used to verify the hypotheses of pathogenesis and inspire new risk stratification strategies. However, to obtain reliable results computational models must be validated with consistent experimental data. We reviewed the main electrophysiological and structural variables from BrS clinical studies to assess which data could be used to validate a computational approach. Activation delay in the epicardial right ventricular outflow tract is a consistent finding, as well as increased fibrosis and subclinical alterations of right ventricular functional and morphological parameters. The comparison between other electrophysiological variables is hindered by methodological differences between studies, which we commented. We conclude by presenting a recent theory unifying electrophysiological and structural substrate in BrS and illustrate how computational modeling could help translation to risk stratification.
Collapse
Affiliation(s)
- Paolo Seghetti
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Sara Latrofa
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Niccolò Biasi
- Department of Information Engineering, Università di Pisa, Pisa, Italy
| | - Alberto Giannoni
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy
- Fondazione Toscana 'G. Monasterio', Pisa, Italy
| | - Valentina Hartwig
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
- Fondazione Toscana 'G. Monasterio', Pisa, Italy
| | | | - Alessandro Tognetti
- Department of Information Engineering, Università di Pisa, Pisa, Italy
- Research Center 'Enrico Piaggio', Università di Pisa, Pisa, Italy
| |
Collapse
|
2
|
Fitzsimons LA, Kneeland‐Barber DM, Hannigan GC, Karpe DA, Wu L, Colon M, Randall J, Tucker KL. Electrophysiological phenotyping of left ventricular noncompaction cardiomyopathy in pediatric populations: A systematic review. Physiol Rep 2024; 12:e16029. [PMID: 38684446 PMCID: PMC11058051 DOI: 10.14814/phy2.16029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
Left ventricular noncompaction cardiomyopathy (LVNC) is a structural heart defect that has been associated with generation of arrhythmias in the population and is a cause of sudden cardiac death with severe systolic dysfunction and fatal arrhythmias. LVNC has gained increasing acknowledgment with increased prevalence. We conducted a systematic review of reported electrocardiogram (ECG) results for pediatric LVNC patients. EMBASE database query was performed, yielding 4531 articles related to LVNC between 1990 and December 2023. Patient age ranged from prenatal to 18 years of age. Qualitative analyses were performed to characterize individual arrhythmias, and summative interpretation of ECG evaluations was gathered for the entire cohort. Systematic review of 57 LVNC cases and ECG presentation revealed many waveform consistencies, including abnormal left ventricular, atrioventricular node, and interventricular septal patterns, and specifically a high incidence of Mobitz type II and Wolff-Parkinson-White waveforms. This review of ECG analysis reinforces the clinical and etiologic significance of pediatric LVNC. While LVNC in pediatric populations may not always present as acute clinical cases, further investigation into the electrophysiology of the disease supports the need for further evaluation and risk stratification for patients with suspected LVNC and/or ventricular arrhythmia.
Collapse
Affiliation(s)
- Lindsey A. Fitzsimons
- Department of Biomedical Sciences, College of Osteopathic MedicineUniversity of New EnglandBiddefordMaineUSA
| | - Delanie M. Kneeland‐Barber
- Department of Biomedical Sciences, College of Osteopathic MedicineUniversity of New EnglandBiddefordMaineUSA
| | - Gracie C. Hannigan
- Department of Biomedical Sciences, College of Osteopathic MedicineUniversity of New EnglandBiddefordMaineUSA
| | - David A. Karpe
- Department of Biomedical Sciences, College of Osteopathic MedicineUniversity of New EnglandBiddefordMaineUSA
| | - Lyman Wu
- Albany Medical CenterAlbany Medical CollegeAlbanyNew YorkUSA
| | - Michael Colon
- Albany Medical CenterAlbany Medical CollegeAlbanyNew YorkUSA
- Department of PediatricsAlbany Medical CollegeAlbanyNew YorkUSA
- Pediatric Cardiology, Capital District Pediatric Cardiology AssociatesAlbany Medical CollegeAlbanyNew YorkUSA
| | - Jess Randall
- Albany Medical CenterAlbany Medical CollegeAlbanyNew YorkUSA
- Department of PediatricsAlbany Medical CollegeAlbanyNew YorkUSA
- Pediatric Cardiology, Capital District Pediatric Cardiology AssociatesAlbany Medical CollegeAlbanyNew YorkUSA
| | - Kerry L. Tucker
- Department of Biomedical Sciences, College of Osteopathic MedicineUniversity of New EnglandBiddefordMaineUSA
| |
Collapse
|
3
|
Tonko JB, Lambiase PD. The proarrhythmogenic role of autonomics and emerging neuromodulation approaches to prevent sudden death in cardiac ion channelopathies. Cardiovasc Res 2024; 120:114-131. [PMID: 38195920 PMCID: PMC10936753 DOI: 10.1093/cvr/cvae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 01/11/2024] Open
Abstract
Ventricular arrhythmias in cardiac channelopathies are linked to autonomic triggers, which are sub-optimally targeted in current management strategies. Improved molecular understanding of cardiac channelopathies and cellular autonomic signalling could refine autonomic therapies to target the specific signalling pathways relevant to the specific aetiologies as well as the central nervous system centres involved in the cardiac autonomic regulation. This review summarizes key anatomical and physiological aspects of the cardiac autonomic nervous system and its impact on ventricular arrhythmias in primary inherited arrhythmia syndromes. Proarrhythmogenic autonomic effects and potential therapeutic targets in defined conditions including the Brugada syndrome, early repolarization syndrome, long QT syndrome, and catecholaminergic polymorphic ventricular tachycardia will be examined. Pharmacological and interventional neuromodulation options for these cardiac channelopathies are discussed. Promising new targets for cardiac neuromodulation include inhibitory and excitatory G-protein coupled receptors, neuropeptides, chemorepellents/attractants as well as the vagal and sympathetic nuclei in the central nervous system. Novel therapeutic strategies utilizing invasive and non-invasive deep brain/brain stem stimulation as well as the rapidly growing field of chemo-, opto-, or sonogenetics allowing cell-specific targeting to reduce ventricular arrhythmias are presented.
Collapse
Affiliation(s)
- Johanna B Tonko
- Institute of Cardiovascular Science, University College London, 5 University Street, London WC1E 6JF, London, UK
| | - Pier D Lambiase
- Institute of Cardiovascular Science, University College London, 5 University Street, London WC1E 6JF, London, UK
- Department for Cardiology, Bart’s Heart Centre, West Smithfield EC1A 7BE, London, UK
| |
Collapse
|
4
|
Lerman BB, Markowitz SM, Cheung JW, Thomas G, Ip JE. Ventricular Tachycardia Due to Triggered Activity: Role of Early and Delayed Afterdepolarizations. JACC Clin Electrophysiol 2024; 10:379-401. [PMID: 38127010 DOI: 10.1016/j.jacep.2023.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 12/23/2023]
Abstract
Most forms of sustained ventricular tachycardia (VT) are caused by re-entry, resulting from altered myocardial conduction and refractoriness secondary to underlying structural heart disease. In contrast, VT caused by triggered activity (TA) is unrelated to an abnormal structural substrate and is often caused by molecular defects affecting ion channel function or regulation of intracellular calcium cycling. This review summarizes the cellular and molecular bases underlying TA and exemplifies their clinical relevance with selective representative scenarios. The underlying basis of TA caused by delayed afterdepolarizations is related to sarcoplasmic reticulum calcium overload, calcium waves, and diastolic sarcoplasmic reticulum calcium leak. Clinical examples of TA caused by delayed afterdepolarizations include sustained right and left ventricular outflow tract tachycardia and catecholaminergic polymorphic VT. The other form of afterpotentials, early afterdepolarizations, are systolic events and inscribe early afterdepolarizations during phase 2 or phase 3 of the action potential. The fundamental defect is a decrease in repolarization reserve with associated increases in late plateau inward currents. Malignant ventricular arrhythmias in the long QT syndromes are initiated by early afterdepolarization-mediated TA. An understanding of the molecular and cellular bases of these arrhythmias has resulted in generally effective pharmacologic-based therapies, but these are nonspecific agents that have off-target effects. Therapeutic efficacy may need to be augmented with an implantable defibrillator. Next-generation therapies will include novel agents that rescue arrhythmogenic abnormalities in cellular signaling pathways and gene therapy approaches that transfer or edit pathogenic gene variants or silence mutant messenger ribonucleic acid.
Collapse
Affiliation(s)
- Bruce B Lerman
- Department of Medicine, Division of Cardiology and the Greenberg Institute for Cardiac Electrophysiology, Department of Medicine, Cornell University Medical Center, New York, New York, USA.
| | - Steven M Markowitz
- Department of Medicine, Division of Cardiology and the Greenberg Institute for Cardiac Electrophysiology, Department of Medicine, Cornell University Medical Center, New York, New York, USA
| | - Jim W Cheung
- Department of Medicine, Division of Cardiology and the Greenberg Institute for Cardiac Electrophysiology, Department of Medicine, Cornell University Medical Center, New York, New York, USA
| | - George Thomas
- Department of Medicine, Division of Cardiology and the Greenberg Institute for Cardiac Electrophysiology, Department of Medicine, Cornell University Medical Center, New York, New York, USA
| | - James E Ip
- Department of Medicine, Division of Cardiology and the Greenberg Institute for Cardiac Electrophysiology, Department of Medicine, Cornell University Medical Center, New York, New York, USA
| |
Collapse
|
5
|
Cheniti G, Haissaguerre M, Dina C, Kamakura T, Duchateau J, Sacher F, Racine HP, Surget E, Simonet F, Gourraud JB, Sridi S, Cochet H, Andre C, Bouyer B, Chauvel R, Tixier R, Derval N, Pambrun T, Dubois R, Jais P, Nademanee K, Redon R, Schott JJ, Probst V, Hocini M, Barc J, Bernus O. Left Ventricular Abnormal Substrate in Brugada Syndrome. JACC Clin Electrophysiol 2023; 9:2041-2051. [PMID: 37480873 DOI: 10.1016/j.jacep.2023.05.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Slow-conductive structural abnormalities located in the epicardium of the right ventricle (RV) underlie Brugada syndrome (BrS). The extent of such substrate in the left ventricle (LV) has not been investigated. OBJECTIVES This study sought to characterize the extent of epicardial substrate abnormalities in BrS. METHODS We evaluated 22 consecutive patients (mean age 46 ± 11 years, 21 male) referred for recurrent ventricular arrhythmias (mean 10 ± 13 episodes) in the setting of BrS. The patients underwent clinical investigations and wide genetic screening to identify SCN5A mutations and common risk variants. High-density biventricular epicardial mapping was performed to detect prolonged (>70 ms) fragmented electrograms, indicating abnormal substrate area. RESULTS All patients presented with abnormal substrate in the epicardial anterior RV (27 ± 11 cm2). Abnormal substrate was also identified on the LV epicardium in 10 patients (45%), 9 at baseline and 1 after ajmaline infusion, covering 15 ± 11 cm2. Of these, 4 had severe LV fascicular blocks. Patients with LV substrate had a longer history of arrhythmia (11.4 ± 6.7 years vs 4.3 ± 4.3 years; P = 0.003), longer PR (217 ± 24 ms vs 171 ± 14 ms; P < 0.001) and HV (60 ± 12 ms vs 46 ± 5 ms; P = 0.005) intervals, and abnormal substrate also extending into the inferior RV (100% vs 33%; P = 0.001). SCN5A mutation was present in 70% of patients with LV substrate (vs 25%; P = 0.035). SCN5A BrS patients with recurrent ventricular arrhythmias present a higher polygenic risk score compared with a nonselected BrS population (median of differences: -0.86; 95% CI: -1.48 to -0.27; P = 0.02). CONCLUSIONS A subset of patients with BrS present an abnormal substrate extending onto the LV epicardium and inferior RV that is associated with SCN5A mutations and multigenic variants.
Collapse
Affiliation(s)
- Ghassen Cheniti
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France.
| | - Michel Haissaguerre
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France
| | - Christian Dina
- Nantes Université, CHU Nantes, CNRS, INSERM, l'Institut du Thorax, Nantes, France; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Tsukasa Kamakura
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France
| | - Josselin Duchateau
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France
| | - Frederic Sacher
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France
| | - Hugo-Pierre Racine
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France
| | - Elodie Surget
- Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France
| | - Floriane Simonet
- Nantes Université, CHU Nantes, CNRS, INSERM, l'Institut du Thorax, Nantes, France; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Jean-Baptiste Gourraud
- Nantes Université, CHU Nantes, CNRS, INSERM, l'Institut du Thorax, Nantes, France; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Soumaya Sridi
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France
| | - Hubert Cochet
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France
| | - Clementine Andre
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France
| | - Benjamin Bouyer
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France
| | - Remi Chauvel
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France
| | - Romain Tixier
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France
| | - Nicolas Derval
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France
| | - Thomas Pambrun
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France
| | - Remi Dubois
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France
| | - Pierre Jais
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France
| | | | - Richard Redon
- Nantes Université, CHU Nantes, CNRS, INSERM, l'Institut du Thorax, Nantes, France; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Jean-Jacques Schott
- Nantes Université, CHU Nantes, CNRS, INSERM, l'Institut du Thorax, Nantes, France; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Vincent Probst
- Nantes Université, CHU Nantes, CNRS, INSERM, l'Institut du Thorax, Nantes, France; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Meleze Hocini
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France
| | - Julien Barc
- Nantes Université, CHU Nantes, CNRS, INSERM, l'Institut du Thorax, Nantes, France; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Olivier Bernus
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France
| |
Collapse
|
6
|
Yuan M, Lian H, Li P. Spatiotemporal patterns of early afterdepolarizations underlying abnormal T-wave morphologies in a tissue model of the Purkinje-ventricular system. PLoS One 2023; 18:e0280267. [PMID: 36622850 PMCID: PMC9829164 DOI: 10.1371/journal.pone.0280267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023] Open
Abstract
Sudden cardiac death (SCD) is a leading cause of death worldwide, and the majority of SCDs are caused by acute ventricular arrhythmias (VAs). Early afterdepolarizations (EADs) are an important trigger of VA under pathological conditions, e.g., inherited or acquired long QT syndrome (LQTS). However, it remains unclear how EAD events at the cellular level are spatially organized at the tissue level to induce and maintain ventricular arrhythmias and whether the spatial-temporal patterns of EADs at the tissue level are associated with abnormal T-wave morphologies that are often observed in LQTS, such as broad-based, notched or bifid; late appearance; and pointed T-waves. Here, a tissue model of the Purkinje-ventricular system (PVS) was developed to quantitatively investigate the complex spatial-temporal dynamics of EADs during T-wave abnormalities. We found that (1) while major inhibition of ICaL can substantially reduce the excitability of the PVS leading to conduction failures, moderate ICaL inhibition can promote occurrences of AP alternans at short cycle lengths (CLs), and EAD events preferentially occur with a major reduction of IKr (>50%) at long CLs; (2) with a minor reduction of ICaL, spatially synchronized steady-state EAD events with inverted and biphasic T-waves can be "weakened" into beat-to-beat concurrences of spatially synchronized EADs and T-wave alternans, and as pacing CLs increase, beat-to-beat concurrences of localized EADs with late-appearing and pointed T-wave morphologies can be observed; (3) under certain conditions, localized EAD events in the midmyocardium may trigger slow uni-directional electric propagation with inverted (antegrade) or upright (retrograde) broad-based T-waves; (4) spatially discordant EADs were typically characterized by desynchronized spontaneous onsets of EAD events between two groups of PVS tissues with biphasic T-wave morphologies, and they can evolve into spatially discordant oscillating EAD patterns with sustained or self-terminated alternating EAD and electrocardiogram (ECG) patterns. Our results provide new insights into the spatiotemporal aspects of the onset and development of EADs and suggest possible mechanistic links between the complex spatial dynamics of EADs and T-wave morphologies.
Collapse
Affiliation(s)
- Mengya Yuan
- Henan Engineering Research Center of Health Big Data and Intelligent Computing, School of Public Health, Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, Henan, P.R. China
| | - Heqiang Lian
- Henan Engineering Research Center of Health Big Data and Intelligent Computing, School of Public Health, Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, Henan, P.R. China
| | - Pan Li
- Henan Engineering Research Center of Health Big Data and Intelligent Computing, School of Public Health, Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, Henan, P.R. China
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institutes of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States of America
- * E-mail:
| |
Collapse
|
7
|
Sylvén C, Wärdell E, Månsson-Broberg A, Cingolani E, Ampatzis K, Larsson L, Björklund Å, Giacomello S. High cardiomyocyte diversity in human early prenatal heart development. iScience 2022; 26:105857. [PMID: 36624836 PMCID: PMC9823232 DOI: 10.1016/j.isci.2022.105857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/19/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Cardiomyocytes play key roles during cardiogenesis, but have poorly understood features, especially in prenatal stages. Here, we characterized human prenatal cardiomyocytes, 6.5-7 weeks post-conception, by integrating single-cell RNA sequencing, spatial transcriptomics, and ligand-receptor interaction information. Using a computational workflow developed to dissect cell type heterogeneity, localize cell types, and explore their molecular interactions, we identified eight types of developing cardiomyocyte, more than double compared to the ones identified in the Human Developmental Cell Atlas. These have high variability in cell cycle activity, mitochondrial content, and connexin gene expression, and are differentially distributed in the ventricles, including outflow tract, and atria, including sinoatrial node. Moreover, cardiomyocyte ligand-receptor crosstalk is mainly with non-cardiomyocyte cell types, encompassing cardiogenesis-related pathways. Thus, early prenatal human cardiomyocytes are highly heterogeneous and develop unique location-dependent properties, with complex ligand-receptor crosstalk. Further elucidation of their developmental dynamics may give rise to new therapies.
Collapse
Affiliation(s)
- Christer Sylvén
- Department of Medicine, Karolinska Institute, Huddinge, Sweden,Corresponding author
| | - Eva Wärdell
- Department of Medicine, Karolinska Institute, Huddinge, Sweden
| | | | | | | | - Ludvig Larsson
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Åsa Björklund
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Stefania Giacomello
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden,Corresponding author
| |
Collapse
|
8
|
Grune J, Lewis AJM, Yamazoe M, Hulsmans M, Rohde D, Xiao L, Zhang S, Ott C, Calcagno DM, Zhou Y, Timm K, Shanmuganathan M, Pulous FE, Schloss MJ, Foy BH, Capen D, Vinegoni C, Wojtkiewicz GR, Iwamoto Y, Grune T, Brown D, Higgins J, Ferreira VM, Herring N, Channon KM, Neubauer S, Sosnovik DE, Milan DJ, Swirski FK, King KR, Aguirre AD, Ellinor PT, Nahrendorf M. Neutrophils incite and macrophages avert electrical storm after myocardial infarction. NATURE CARDIOVASCULAR RESEARCH 2022; 1:649-664. [PMID: 36034743 PMCID: PMC9410341 DOI: 10.1038/s44161-022-00094-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/06/2022] [Indexed: 12/24/2022]
Abstract
Sudden cardiac death, arising from abnormal electrical conduction, occurs frequently in patients with coronary heart disease. Myocardial ischemia simultaneously induces arrhythmia and massive myocardial leukocyte changes. In this study, we optimized a mouse model in which hypokalemia combined with myocardial infarction triggered spontaneous ventricular tachycardia in ambulatory mice, and we showed that major leukocyte subsets have opposing effects on cardiac conduction. Neutrophils increased ventricular tachycardia via lipocalin-2 in mice, whereas neutrophilia associated with ventricular tachycardia in patients. In contrast, macrophages protected against arrhythmia. Depleting recruited macrophages in Ccr2 -/- mice or all macrophage subsets with Csf1 receptor inhibition increased both ventricular tachycardia and fibrillation. Higher arrhythmia burden and mortality in Cd36 -/- and Mertk -/- mice, viewed together with reduced mitochondrial integrity and accelerated cardiomyocyte death in the absence of macrophages, indicated that receptor-mediated phagocytosis protects against lethal electrical storm. Thus, modulation of leukocyte function provides a potential therapeutic pathway for reducing the risk of sudden cardiac death.
Collapse
Affiliation(s)
- Jana Grune
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew J. M. Lewis
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- These authors contributed equally and are listed in alphabetical order: Andrew J. M. Lewis, Masahiro Yamazoe
| | - Masahiro Yamazoe
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- These authors contributed equally and are listed in alphabetical order: Andrew J. M. Lewis, Masahiro Yamazoe
| | - Maarten Hulsmans
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Rohde
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ling Xiao
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shuang Zhang
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christiane Ott
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - David M. Calcagno
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Yirong Zhou
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kerstin Timm
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Mayooran Shanmuganathan
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- National Institute for Health (NIHR) Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Fadi E. Pulous
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Maximilian J. Schloss
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Brody H. Foy
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Diane Capen
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Claudio Vinegoni
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gregory R. Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yoshiko Iwamoto
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tilman Grune
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Dennis Brown
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - John Higgins
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Neil Herring
- National Institute for Health (NIHR) Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Keith M. Channon
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- National Institute for Health (NIHR) Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Stefan Neubauer
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- National Institute for Health (NIHR) Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | | | - David E. Sosnovik
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Filip K. Swirski
- Cardiovascular Research Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kevin R. King
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, University of California, San Diego La Jolla, CA, USA
| | - Aaron D. Aguirre
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Patrick T. Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Internal Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
9
|
Bi X, Zhang S, Jiang H, Ma W, Li Y, Lu W, Yang F, Wei Z. Mechanistic Insights Into Inflammation-Induced Arrhythmias: A Simulation Study. Front Physiol 2022; 13:843292. [PMID: 35711306 PMCID: PMC9196871 DOI: 10.3389/fphys.2022.843292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular diseases are the primary cause of death of humans, and among these, ventricular arrhythmias are the most common cause of death. There is plausible evidence implicating inflammation in the etiology of ventricular fibrillation (VF). In the case of systemic inflammation caused by an overactive immune response, the induced inflammatory cytokines directly affect the function of ion channels in cardiomyocytes, leading to a prolonged action potential duration (APD). However, the mechanistic links between inflammatory cytokine-induced molecular and cellular influences and inflammation-associated ventricular arrhythmias need to be elucidated. The present study aimed to determine the potential impact of systemic inflammation on ventricular electrophysiology by means of multiscale virtual heart models. The experimental data on the ionic current of three major cytokines [i.e., tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1β), and interleukin-6 (IL-6)] were incorporated into the cell model, and the effects of each cytokine and their combined effect on the cell action potential (AP) were evaluated. Moreover, the integral effect of these cytokines on the conduction of excitation waves was also investigated in a tissue model. The simulation results suggested that inflammatory cytokines significantly prolonged APD, enhanced the transmural and regional repolarization heterogeneities that predispose to arrhythmias, and reduced the adaptability of ventricular tissue to fast heart rates. In addition, simulated pseudo-ECGs showed a prolonged QT interval—a manifestation consistent with clinical observations. In summary, the present study provides new insights into ventricular arrhythmias associated with inflammation.
Collapse
Affiliation(s)
- Xiangpeng Bi
- College of Computer Science and Technology, Ocean University of China, Qingdao, China
| | - Shugang Zhang
- College of Computer Science and Technology, Ocean University of China, Qingdao, China
| | - Huasen Jiang
- College of Computer Science and Technology, Ocean University of China, Qingdao, China
| | - Wenjian Ma
- College of Computer Science and Technology, Ocean University of China, Qingdao, China
| | - Yuanfei Li
- College of Computer Science and Technology, Ocean University of China, Qingdao, China
| | - Weigang Lu
- Department of Educational Technology, Ocean University of China, Qingdao, China
| | - Fei Yang
- School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai, China
| | - Zhiqiang Wei
- College of Computer Science and Technology, Ocean University of China, Qingdao, China
| |
Collapse
|
10
|
Krahn AD, Behr ER, Hamilton R, Probst V, Laksman Z, Han HC. Brugada Syndrome. JACC Clin Electrophysiol 2022; 8:386-405. [PMID: 35331438 DOI: 10.1016/j.jacep.2021.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Brugada syndrome (BrS) is an "inherited" condition characterized by predisposition to syncope and cardiac arrest, predominantly during sleep. The prevalence is ∼1:2,000, and is more commonly diagnosed in young to middle-aged males, although patient sex does not appear to impact prognosis. Despite the perception of BrS being an inherited arrhythmia syndrome, most cases are not associated with a single causative gene variant. Electrocardiogram (ECG) findings support variable extent of depolarization and repolarization changes, with coved ST-segment elevation ≥2 mm and a negative T-wave in the right precordial leads. These ECG changes are often intermittent, and may be provoked by fever or sodium channel blocker challenge. Growing evidence from cardiac imaging, epicardial ablation, and pathology studies suggests the presence of an epicardial arrhythmic substrate within the right ventricular outflow tract. Risk stratification aims to identify those who are at increased risk of sudden cardiac death, with well-established factors being the presence of spontaneous ECG changes and a history of cardiac arrest or cardiogenic syncope. Current management involves conservative measures in asymptomatic patients, including fever management and drug avoidance. Symptomatic patients typically undergo implantable cardioverter defibrillator insertion, with quinidine and epicardial ablation used for patients with recurrent arrhythmia. This review summarizes our current understanding of BrS and provides clinicians with a practical approach to diagnosis and management.
Collapse
Affiliation(s)
- Andrew D Krahn
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Elijah R Behr
- Cardiovascular Clinical Academic Group and Cardiology Research Centre, St. George's, University of London and St. George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Robert Hamilton
- Department of Pediatrics (Cardiology), The Labatt Family Heart Centre and Translational Medicine, The Hospital for Sick Children & Research Institute and the University of Toronto, Toronto, Canada
| | - Vincent Probst
- Cardiologic Department and Reference Center for Hereditary Arrhythmic Diseases, Nantes University Hospital, Nantes, France
| | - Zachary Laksman
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hui-Chen Han
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada; Victorian Heart Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
11
|
Altered Expression of Zonula occludens-1 Affects Cardiac Na + Channels and Increases Susceptibility to Ventricular Arrhythmias. Cells 2022; 11:cells11040665. [PMID: 35203314 PMCID: PMC8870063 DOI: 10.3390/cells11040665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022] Open
Abstract
Zonula occludens-1 (ZO-1) is an intracellular scaffolding protein that orchestrates the anchoring of membrane proteins to the cytoskeleton in epithelial and specialized tissue including the heart. There is clear evidence to support the central role of intracellular auxiliary proteins in arrhythmogenesis and previous studies have found altered ZO-1 expression associated with atrioventricular conduction abnormalities. Here, using human cardiac tissues, we identified all three isoforms of ZO-1, canonical (Transcript Variant 1, TV1), CRA_e (Transcript Variant 4, TV4), and an additionally expressed (Transcript Variant 3, TV3) in non-failing myocardium. To investigate the role of ZO-1 on ventricular arrhythmogenesis, we generated a haploinsufficient ZO-1 mouse model (ZO-1+/-). ZO-1+/- mice exhibited dysregulated connexin-43 protein expression and localization at the intercalated disc. While ZO-1+/- mice did not display abnormal cardiac function at baseline, adrenergic challenge resulted in rhythm abnormalities, including premature ventricular contractions and bigeminy. At baseline, ventricular myocytes from the ZO-1+/- mice displayed prolonged action potential duration and spontaneous depolarizations, with ZO-1+/- cells displaying frequent unsolicited (non-paced) diastolic depolarizations leading to spontaneous activity with multiple early afterdepolarizations (EADs). Mechanistically, ZO-1 deficient myocytes displayed a reduction in sodium current density (INa) and an increased sensitivity to isoproterenol stimulation. Further, ZO-1 deficient myocytes displayed remodeling in ICa current, likely a compensatory change. Taken together, our data suggest that ZO-1 deficiency results in myocardial substrate susceptible to triggered arrhythmias.
Collapse
|
12
|
Huang SY, Chen YC, Kao YH, Lu YY, Lin YK, Higa S, Chen SA, Chen YJ. Calcium dysregulation increases right ventricular outflow tract arrhythmogenesis in rabbit model of chronic kidney disease. J Cell Mol Med 2021; 25:11264-11277. [PMID: 34761510 PMCID: PMC8650029 DOI: 10.1111/jcmm.17052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/24/2021] [Accepted: 11/01/2021] [Indexed: 12/03/2022] Open
Abstract
Chronic kidney disease (CKD) increases the risk of arrhythmia. The right ventricular outflow tract (RVOT) is a crucial site of ventricular tachycardia (VT) origination. We hypothesize that CKD increases RVOT arrhythmogenesis through its effects on calcium dysregulation. We analysed measurements obtained using conventional microelectrodes, patch clamp, confocal microscopy, western blotting, immunohistochemical examination and lipid peroxidation for both control and CKD (induced by 150 mg/kg neomycin and 500 mg/kg cefazolin daily) rabbit RVOT tissues or cardiomyocytes. The RVOT of CKD rabbits exhibited a short action potential duration, high incidence of tachypacing (20 Hz)‐induced sustained VT, and long duration of isoproterenol and tachypacing‐induced sustained and non‐sustained VT. Tachypacing‐induced sustained and non‐sustained VT in isoproterenol‐treated CKD RVOT tissues were attenuated by KB‐R7943 and partially inhibited by KN93 and H89. The CKD RVOT myocytes had high levels of phosphorylated CaMKII and PKA, and an increased expression of tyrosine hydroxylase‐positive neural density. The CKD RVOT myocytes exhibited large levels of Ito, IKr, NCX and L‐type calcium currents, calcium leak and malondialdehyde but low sodium current, SERCA2a activity and SR calcium content. The RVOT in CKD with oxidative stress and autonomic neuron hyperactivity exhibited calcium handling abnormalities, which contributed to the induction of VT.
Collapse
Affiliation(s)
- Shih-Yu Huang
- Division of Cardiac Electrophysiology, Cardiovascular Center, Cathay General Hospital, Taipei City, Taiwan.,School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei City, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei City, Taiwan.,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
| | - Yen-Yu Lu
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.,Division of Cardiology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei City, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan.,Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Satoshi Higa
- Cardiac Electrophysiology and Pacing Laboratory, Division of Cardiovascular Medicine, Makiminato Central Hospital, Urasoe, Japan
| | - Shih-Ann Chen
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei City, Taiwan.,Cardiovascular Center, Taichung Veterans General Hospital, Taichung City, 40705, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei City, Taiwan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan.,Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan.,Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
| |
Collapse
|
13
|
Multisite conduction block in the epicardial substrate of Brugada syndrome. Heart Rhythm 2021; 19:417-426. [PMID: 34737095 DOI: 10.1016/j.hrthm.2021.10.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND The Brugada pattern manifests as a spontaneous variability of the electrocardiographic marker, suggesting a variability of the underlying electrical substrate. OBJECTIVE The purpose of this study was to investigate the response of the epicardial substrate of Brugada syndrome (BrS) to programmed ventricular stimulation and to Na blocker infusion. METHODS We investigated 6 patients (all male; mean age 54 ± 14 years) with BrS and recurrent ventricular fibrillation. Five had no type 1 BrS electrocardiogram pattern at admission. They underwent combined epicardial-endocardial mapping using multielectrode catheters. Changes in epicardial electrograms were evaluated during single endocardial extrastimulation and after low-dose ajmaline infusion (0.5 mg/kg in 5 minutes). RESULTS All patients had a region in the anterior epicardial right ventricle with prolonged multicomponent electrograms. Single extrastimulation prolonged late epicardial components by 59 ± 31 ms and in 4 patients abolished epicardial components at some sites, without reactivation by surrounding activated sites. These localized blocks occurred at an initial coupling interval of 335 ± 58 ms and then expanded to other sites, being observed in up to 40% of epicardial sites. Ajmaline infusion prolonged electrogram duration in all and produced localized blocks in 62% of sites in the same patients as during extrastimulation. Epicardial conduction recovery after ajmaline occurred intermittently and at discontinuous sites and produced beat-to-beat changes in local repolarization, resulting in an area of marked electrical disparity. These changes were consistent with models based on microstructural alterations under critical propagation conditions. CONCLUSION In BrS, localized functional conduction blocks occur at multiple epicardial sites and with variable patterns, without being reactivated from the surrounding sites.
Collapse
|
14
|
Pappone C, Santinelli V, Mecarocci V, Tondi L, Ciconte G, Manguso F, Sturla F, Vicedomini G, Micaglio E, Anastasia L, Pica S, Camporeale A, Lombardi M. Brugada Syndrome: New Insights From Cardiac Magnetic Resonance and Electroanatomical Imaging. Circ Arrhythm Electrophysiol 2021; 14:e010004. [PMID: 34693720 DOI: 10.1161/circep.121.010004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Brugada syndrome (BrS) is considered a purely electrical disease with variable electrical substrates. Variable rates of mechanical abnormalities have been also reported. Whether exists a link between electrical and mechanical abnormalities has never been previously explored. This investigational physiopathological study aimed to determine the relationship between the substrate size/location, as exposed by ajmaline provocation, and the severity of mechanical abnormalities, as assessed by cardiac magnetic resonance in patients with BrS. METHODS Twenty-four consecutive high-risk patients with BrS (mean age, 38±11 years, 17 males), presenting with malignant syncope and documented polymorphic ventricular tachycardia/ventricular fibrillation, and candidate to implantable cardioverter defibrillator implantation, underwent cardiac magnetic resonance and electroanatomic maps. During each examination, ajmaline test (1 mg/kg over 5 minutes) was performed. Cardiac magnetic resonance findings were compared with 24 age, sex, and body surface area-matched controls. In patients with BrS, the correlation between the electrical substrate extent and right ventricular regional mechanical abnormalities before/after ajmaline challenge was analyzed. RESULTS After ajmaline, patients with BrS showed a reduction of right ventricular (RV) ejection fraction (P<0.001), associated with decreased transversal displacement (U, P<0.001) and longitudinal strain (ε, P<0.001) localized at RV outflow tract. In patients with BrS significant preajmaline/postajmaline changes of transversal displacement (ΔU, P<0.001) and longitudinal strain (Δε, P<0.001) were found. In the control group, no mechanical changes were observed after ajmaline. The electrical substrate consistently increased after ajmaline from 1.7±2.8 cm2 to 14.2±7.3 cm2 (P<0.001), extending from the RV outflow tract to the neighboring segments of the RV anterior wall. Postajmaline RV ejection fraction inversely correlated with postajmaline substrate extent (r=-0.830, P<0.001). In patients with BrS and normal controls, cardiac magnetic resonance detected neither myocardial fibrosis nor RV outflow tract morphological abnormalities. CONCLUSIONS BrS is a dynamic RV electromechanical disease, where functional abnormalities correlate with the maximal extent of the substrate size. These findings open new lights on the physiopathology of the disease. Registration: URL: https://clinicaltrial.gov; Unique identifier: NCT03524079.
Collapse
Affiliation(s)
- Carlo Pappone
- Arrhythmology Department (C.P., V.S., V.M., G.C., F.M., G.V., E.M., L.A.), IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Vincenzo Santinelli
- Arrhythmology Department (C.P., V.S., V.M., G.C., F.M., G.V., E.M., L.A.), IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Valerio Mecarocci
- Arrhythmology Department (C.P., V.S., V.M., G.C., F.M., G.V., E.M., L.A.), IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Lara Tondi
- Multimodality Cardiac Imaging Section (L.T., S.P., A.C., M.L.), IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Giuseppe Ciconte
- Arrhythmology Department (C.P., V.S., V.M., G.C., F.M., G.V., E.M., L.A.), IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Francesco Manguso
- Arrhythmology Department (C.P., V.S., V.M., G.C., F.M., G.V., E.M., L.A.), IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Francesco Sturla
- Computer Simulation Laboratory (F.S.), IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Gabriele Vicedomini
- Arrhythmology Department (C.P., V.S., V.M., G.C., F.M., G.V., E.M., L.A.), IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Emanuele Micaglio
- Arrhythmology Department (C.P., V.S., V.M., G.C., F.M., G.V., E.M., L.A.), IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Luigi Anastasia
- Arrhythmology Department (C.P., V.S., V.M., G.C., F.M., G.V., E.M., L.A.), IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Silvia Pica
- Multimodality Cardiac Imaging Section (L.T., S.P., A.C., M.L.), IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Antonia Camporeale
- Multimodality Cardiac Imaging Section (L.T., S.P., A.C., M.L.), IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Massimo Lombardi
- Multimodality Cardiac Imaging Section (L.T., S.P., A.C., M.L.), IRCCS Policlinico San Donato, San Donato Milanese, Italy
| |
Collapse
|
15
|
Abstract
Brugada syndrome (BrS) is an inherited cardiac arrhythmia syndrome that causes a heightened risk for ventricular tachyarrhythmias and sudden cardiac death. BrS is characterised by a coved ST-segment elevation in right precordial leads. The prevalence is estimated to range between 1 in 5,000 to 1 in 2,000 in different populations, with the highest being in Southeast Asia and in males. More than 18 genes associated with BrS have been discovered and recent evidence has suggested a complex polygenic mode of inheritance with multiple common and rare genetic variants acting in concert to produce the BrS phenotype. Diagnosis of BrS in patients currently relies on presentation with a type-1 Brugada pattern on ECG either spontaneously or following a drug provocation test using a sodium channel blocker. Risk assessment in patients diagnosed with BrS is controversial, especially with regard to the predictive value of programmed electrical stimulation and novel ECG parameters, such as QRS fragmentation. The first line of BrS therapy remains an implantable cardioverter defibrillator (ICD), although radiofrequency catheter ablation has been shown to be an effective option in patients with contraindications for an ICD. True BrS can be unmasked on ECG in susceptible individuals by monitoring factors such as fever, and this has been recently evident in several patients infected with the 2019 novel coronavirus (COVID-19). Aggressive antipyretic therapy and regular ECG monitoring until fever resolves are current recommendations to help reduce the arrhythmic risk in these COVID-19 patients. In this review, we summarise the current knowledge on the epidemiology, pathophysiology, genetics, clinical diagnosis, risk stratification and treatment of patients with BrS, with special emphasis on COVID-19 comorbidity.
Collapse
Affiliation(s)
| | - Giridhar Korlipara
- Cardiology Division of Department of Medicine, Renaissance School of Medicine, Stony Brook Medical Center, Stony Brook, NY, USA
| | | |
Collapse
|
16
|
Bi X, Zhang S, Jiang H, Wei Z. A Multi-Scale Computational Model for the Rat Ventricle: Construction, Parallelization, and Applications. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 208:106289. [PMID: 34303152 DOI: 10.1016/j.cmpb.2021.106289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cardiovascular diseases are the top killer of human beings. The ventricular arrhythmia, as a type of malignant cardiac arrhythmias, typically leads to death if not treated within minutes. The multi-scale virtual heart provides an idealized tool for exploring the underlying mechanisms, by means of incorporating abundant experimental data at the level of ion channels and analyzing the subsequent pathological changes at organ levels. However, there are few studies on building a virtual heart model for rats-a species most widely used in experiments. OBJECTIVE To build a multi-scale computational model for rats, with detailed methodology for the model construction, computational optimization, and its applications. METHODS First, approaches for building multi-scale models ranging from cellular to 3-D organ levels are introduced, with detailed descriptions of handling the ventricular myocardium heterogeneity, geometry processing, and boundary conditions, etc. Next, for dealing with the expensive computational costs of 3-D models, optimization approaches including an optimized representation and a GPU-based parallelization method are introduced. Finally, methods for reproducing of some key phenomenon (e.g., electrocardiograph, spiral/scroll waves) are demonstrated. RESULTS Three types of heterogeneity, including the transmural heterogeneity, the interventricular heterogeneity, and the base-apex heterogeneity are incorporated into the model. The normal and reentrant excitation waves, as well as the corresponding pseudo-ECGs are reproduced by the constructed ventricle model. In addition, the temporal and spatial vulnerability to reentry arrhythmias are quantified based on the evaluation experiments of vulnerable window and the critical length. CONCLUSIONS The constructed multi-scale rat ventricle model is able to reproduce both the physiological and the pathological phenomenon in different scales. Evaluation experiments suggest that the apex is the most susceptible area to arrhythmias. The model can be a promising tool for the investigation of arrhythmogenesis and the screening of anti-arrhythmic drugs.
Collapse
Affiliation(s)
- Xiangpeng Bi
- College of Computer Science and Technology, Ocean University of China, Qingdao 266100, China
| | - Shugang Zhang
- College of Computer Science and Technology, Ocean University of China, Qingdao 266100, China; High Performance Computing Center, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Huasen Jiang
- College of Computer Science and Technology, Ocean University of China, Qingdao 266100, China
| | - Zhiqiang Wei
- College of Computer Science and Technology, Ocean University of China, Qingdao 266100, China; High Performance Computing Center, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
17
|
Rivaud MR, Blok M, Jongbloed MRM, Boukens BJ. How Cardiac Embryology Translates into Clinical Arrhythmias. J Cardiovasc Dev Dis 2021; 8:jcdd8060070. [PMID: 34199178 PMCID: PMC8231901 DOI: 10.3390/jcdd8060070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
The electrophysiological signatures of the myocardium in cardiac structures, such as the atrioventricular node, pulmonary veins or the right ventricular outflow tract, are established during development by the spatial and temporal expression of transcription factors that guide expression of specific ion channels. Genome-wide association studies have shown that small variations in genetic regions are key to the expression of these transcription factors and thereby modulate the electrical function of the heart. Moreover, mutations in these factors are found in arrhythmogenic pathologies such as congenital atrioventricular block, as well as in specific forms of atrial fibrillation and ventricular tachycardia. In this review, we discuss the developmental origin of distinct electrophysiological structures in the heart and their involvement in cardiac arrhythmias.
Collapse
Affiliation(s)
- Mathilde R. Rivaud
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands;
| | - Michiel Blok
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands; (M.B.); (M.R.M.J.)
| | - Monique R. M. Jongbloed
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands; (M.B.); (M.R.M.J.)
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Bastiaan J. Boukens
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands;
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-(0)20-566-4659
| |
Collapse
|
18
|
Funakoshi S, Fernandes I, Mastikhina O, Wilkinson D, Tran T, Dhahri W, Mazine A, Yang D, Burnett B, Lee J, Protze S, Bader GD, Nunes SS, Laflamme M, Keller G. Generation of mature compact ventricular cardiomyocytes from human pluripotent stem cells. Nat Commun 2021; 12:3155. [PMID: 34039977 PMCID: PMC8155185 DOI: 10.1038/s41467-021-23329-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 04/18/2021] [Indexed: 02/08/2023] Open
Abstract
Compact cardiomyocytes that make up the ventricular wall of the adult heart represent an important therapeutic target population for modeling and treating cardiovascular diseases. Here, we established a differentiation strategy that promotes the specification, proliferation and maturation of compact ventricular cardiomyocytes from human pluripotent stem cells (hPSCs). The cardiomyocytes generated under these conditions display the ability to use fatty acids as an energy source, a high mitochondrial mass, well-defined sarcomere structures and enhanced contraction force. These ventricular cells undergo metabolic changes indicative of those associated with heart failure when challenged in vitro with pathological stimuli and were found to generate grafts consisting of more mature cells than those derived from immature cardiomyocytes following transplantation into infarcted rat hearts. hPSC-derived atrial cardiomyocytes also responded to the maturation cues identified in this study, indicating that the approach is broadly applicable to different subtypes of the heart. Collectively, these findings highlight the power of recapitulating key aspects of embryonic and postnatal development for generating therapeutically relevant cell types from hPSCs. Cardiomyocytes of heart ventricles consist of subpopulations of trabecular and compact subtypes. Here the authors describe the generation of structurally, metabolically and functionally mature compact ventricular cardiomyocytes as well as mature atrial cardiomyocytes from human pluripotent stem cells.
Collapse
Affiliation(s)
- Shunsuke Funakoshi
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Ian Fernandes
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Olya Mastikhina
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | | | - Thinh Tran
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Wahiba Dhahri
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Amine Mazine
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Donghe Yang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | | | | | - Stephanie Protze
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Department of Computer Science, University of Toronto, Toronto, ON, Canada.,The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Sara S Nunes
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, ON, Canada
| | - Michael Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada.,Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Gordon Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
19
|
Su S, Sun J, Wang Y, Xu Y. Cardiac hERG K + Channel as Safety and Pharmacological Target. Handb Exp Pharmacol 2021; 267:139-166. [PMID: 33829343 DOI: 10.1007/164_2021_455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The human ether-á-go-go related gene (hERG, KCNH2) encodes the pore-forming subunit of the potassium channel responsible for a fast component of the cardiac delayed rectifier potassium current (IKr). Outward IKr is an important determinant of cardiac action potential (AP) repolarization and effectively controls the duration of the QT interval in humans. Dysfunction of hERG channel can cause severe ventricular arrhythmias and thus modulators of the channel, including hERG inhibitors and activators, continue to attract intense pharmacological interest. Certain inhibitors of hERG channel prolong the action potential duration (APD) and effective refractory period (ERP) to suppress premature ventricular contraction and are used as class III antiarrhythmic agents. However, a reduction of the hERG/IKr current has been recognized as a predominant mechanism responsible for the drug-induced delayed repolarization known as acquired long QT syndromes (LQTS), which is linked to an increased risk for "torsades de pointes" (TdP) ventricular arrhythmias and sudden cardiac death. Many drugs of different classes and structures have been identified to carry TdP risk. Hence, assessing hERG/IKr blockade of new drug candidates is mandatory in the drug development process according to the regulatory agencies. In contrast, several hERG channel activators have been shown to enhance IKr and shorten the APD and thus might have potential antiarrhythmic effects against pathological LQTS. However, these activators may also be proarrhythmic due to excessive shortening of APD and the ERP.
Collapse
Affiliation(s)
- Shi Su
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei, China
| | - Jinglei Sun
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei, China
| | - Yi Wang
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei, China
| | - Yanfang Xu
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei, China.
| |
Collapse
|
20
|
Boukens BJ, Potse M, Coronel R. Fibrosis and Conduction Abnormalities as Basis for Overlap of Brugada Syndrome and Early Repolarization Syndrome. Int J Mol Sci 2021; 22:1570. [PMID: 33557237 PMCID: PMC7913989 DOI: 10.3390/ijms22041570] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/16/2022] Open
Abstract
Brugada syndrome and early repolarization syndrome are both classified as J-wave syndromes, with a similar mechanism of arrhythmogenesis and with the same basis for genesis of the characteristic electrocardiographic features. The Brugada syndrome is now considered a conduction disorder based on subtle structural abnormalities in the right ventricular outflow tract. Recent evidence suggests structural substrate in patients with the early repolarization syndrome as well. We propose a unifying mechanism based on these structural abnormalities explaining both arrhythmogenesis and the electrocardiographic changes. In addition, we speculate that, with increasing technical advances in imaging techniques and their spatial resolution, these syndromes will be reclassified as structural heart diseases or cardiomyopathies.
Collapse
Affiliation(s)
- Bastiaan J. Boukens
- Department of Experimental Cardiology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Mark Potse
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600 Bordeaux, France;
- UMR5251, Institut de Mathématiques de Bordeaux, Université de Bordeaux, 33400 Talence, France
- Carmen Team, INRIA Bordeaux—Sud-Ouest, 33400 Talence, France
| | - Ruben Coronel
- Department of Experimental Cardiology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| |
Collapse
|
21
|
Liao H, Qi Y, Ye Y, Yue P, Zhang D, Li Y. Mechanotranduction Pathways in the Regulation of Mitochondrial Homeostasis in Cardiomyocytes. Front Cell Dev Biol 2021; 8:625089. [PMID: 33553165 PMCID: PMC7858659 DOI: 10.3389/fcell.2020.625089] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are one of the most important organelles in cardiomyocytes. Mitochondrial homeostasis is necessary for the maintenance of normal heart function. Mitochondria perform four major biological processes in cardiomyocytes: mitochondrial dynamics, metabolic regulation, Ca2+ handling, and redox generation. Additionally, the cardiovascular system is quite sensitive in responding to changes in mechanical stress from internal and external environments. Several mechanotransduction pathways are involved in regulating the physiological and pathophysiological status of cardiomyocytes. Typically, the extracellular matrix generates a stress-loading gradient, which can be sensed by sensors located in cellular membranes, including biophysical and biochemical sensors. In subsequent stages, stress stimulation would regulate the transcription of mitochondrial related genes through intracellular transduction pathways. Emerging evidence reveals that mechanotransduction pathways have greatly impacted the regulation of mitochondrial homeostasis. Excessive mechanical stress loading contributes to impairing mitochondrial function, leading to cardiac disorder. Therefore, the concept of restoring mitochondrial function by shutting down the excessive mechanotransduction pathways is a promising therapeutic strategy for cardiovascular diseases. Recently, viral and non-viral protocols have shown potentials in application of gene therapy. This review examines the biological process of mechanotransduction pathways in regulating mitochondrial function in response to mechanical stress during the development of cardiomyopathy and heart failure. We also summarize gene therapy delivery protocols to explore treatments based on mechanical stress-induced mitochondrial dysfunction, to provide new integrative insights into cardiovascular diseases.
Collapse
Affiliation(s)
- Hongyu Liao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yan Qi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Yida Ye
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Peng Yue
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Tsumoto K, Ashihara T, Naito N, Shimamoto T, Amano A, Kurata Y, Kurachi Y. Specific decreasing of Na + channel expression on the lateral membrane of cardiomyocytes causes fatal arrhythmias in Brugada syndrome. Sci Rep 2020; 10:19964. [PMID: 33203944 PMCID: PMC7673036 DOI: 10.1038/s41598-020-76681-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 11/02/2020] [Indexed: 12/31/2022] Open
Abstract
Reduced cardiac sodium (Na+) channel current (INa) resulting from the loss-of-function of Na+ channel is a major cause of lethal arrhythmias in Brugada syndrome (BrS). Inspired by previous experimental studies which showed that in heart diseases INa was reduced along with expression changes in Na+ channel within myocytes, we hypothesized that the local decrease in INa caused by the alteration in Na+ channel expression in myocytes leads to the occurrence of phase-2 reentry, the major triggering mechanism of lethal arrhythmias in BrS. We constructed in silico human ventricular myocardial strand and ring models, and examined whether the Na+ channel expression changes in each myocyte cause the phase-2 reentry in BrS. Reducing Na+ channel expression in the lateral membrane of each myocyte caused not only the notch-and-dome but also loss-of-dome type action potentials and slowed conduction, both of which are typically observed in BrS patients. Furthermore, the selective reduction in Na+ channels on the lateral membrane of each myocyte together with spatial tissue heterogeneity of Na+ channel expression caused the phase-2 reentry and phase-2 reentry-mediated reentrant arrhythmias. Our data suggest that the BrS phenotype is strongly influenced by expression abnormalities as well as genetic abnormalities of Na+ channels.
Collapse
Affiliation(s)
- Kunichika Tsumoto
- Department of Physiology II, Kanazawa Medical University, 1-1 Daigaku, Uchinada, 920-0293, Japan.
- Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, 565-0871, Japan.
| | - Takashi Ashihara
- Department of Medical Informatics and Biomedical Engineering, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, 520-2192, Japan
| | - Narumi Naito
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577, Japan
| | - Takao Shimamoto
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577, Japan
| | - Akira Amano
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577, Japan
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University, 1-1 Daigaku, Uchinada, 920-0293, Japan
| | - Yoshihisa Kurachi
- Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, 565-0871, Japan
- Glocal Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamada-oka, Suita, 565-0871, Japan
| |
Collapse
|
23
|
Rogers AJ, Selvalingam A, Alhusseini MI, Krummen DE, Corrado C, Abuzaid F, Baykaner T, Meyer C, Clopton P, Giles W, Bailis P, Niederer S, Wang PJ, Rappel WJ, Zaharia M, Narayan SM. Machine Learned Cellular Phenotypes in Cardiomyopathy Predict Sudden Death. Circ Res 2020; 128:172-184. [PMID: 33167779 DOI: 10.1161/circresaha.120.317345] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE Susceptibility to VT/VF (ventricular tachycardia/fibrillation) is difficult to predict in patients with ischemic cardiomyopathy either by clinical tools or by attempting to translate cellular mechanisms to the bedside. OBJECTIVE To develop computational phenotypes of patients with ischemic cardiomyopathy, by training then interpreting machine learning of ventricular monophasic action potentials (MAPs) to reveal phenotypes that predict long-term outcomes. METHODS AND RESULTS We recorded 5706 ventricular MAPs in 42 patients with coronary artery disease and left ventricular ejection fraction ≤40% during steady-state pacing. Patients were randomly allocated to independent training and testing cohorts in a 70:30 ratio, repeated K=10-fold. Support vector machines and convolutional neural networks were trained to 2 end points: (1) sustained VT/VF or (2) mortality at 3 years. Support vector machines provided superior classification. For patient-level predictions, we computed personalized MAP scores as the proportion of MAP beats predicting each end point. Patient-level predictions in independent test cohorts yielded c-statistics of 0.90 for sustained VT/VF (95% CI, 0.76-1.00) and 0.91 for mortality (95% CI, 0.83-1.00) and were the most significant multivariate predictors. Interpreting trained support vector machine revealed MAP morphologies that, using in silico modeling, revealed higher L-type calcium current or sodium-calcium exchanger as predominant phenotypes for VT/VF. CONCLUSIONS Machine learning of action potential recordings in patients revealed novel phenotypes for long-term outcomes in ischemic cardiomyopathy. Such computational phenotypes provide an approach which may reveal cellular mechanisms for clinical outcomes and could be applied to other conditions.
Collapse
Affiliation(s)
- Albert J Rogers
- Department of Medicine and Cardiovascular Institute (A.J.R., A.S., M.I.A., T.B., P.C., P.J.W., S.M.N.), Stanford University
| | - Anojan Selvalingam
- Department of Medicine and Cardiovascular Institute (A.J.R., A.S., M.I.A., T.B., P.C., P.J.W., S.M.N.), Stanford University.,Department of Cardiology, University Medical Center Hamburg-Eppendorf, Germany (A.S., C.M.)
| | - Mahmood I Alhusseini
- Department of Medicine and Cardiovascular Institute (A.J.R., A.S., M.I.A., T.B., P.C., P.J.W., S.M.N.), Stanford University
| | - David E Krummen
- Department of Medicine (D.E.K.), University of California, San Diego
| | - Cesare Corrado
- Department of Biomedical Engineering, King's College London, United Kingdom (C.C., S.N.)
| | - Firas Abuzaid
- Department of Computer Sciences (F.A., M.Z., P.B.), Stanford University
| | - Tina Baykaner
- Department of Medicine and Cardiovascular Institute (A.J.R., A.S., M.I.A., T.B., P.C., P.J.W., S.M.N.), Stanford University
| | - Christian Meyer
- Department of Cardiology, University Medical Center Hamburg-Eppendorf, Germany (A.S., C.M.)
| | - Paul Clopton
- Department of Medicine and Cardiovascular Institute (A.J.R., A.S., M.I.A., T.B., P.C., P.J.W., S.M.N.), Stanford University
| | - Wayne Giles
- Department of Physiology and Pharmacology, University of Calgary, Canada (W.G.)
| | - Peter Bailis
- Department of Computer Sciences (F.A., M.Z., P.B.), Stanford University
| | - Steven Niederer
- Department of Biomedical Engineering, King's College London, United Kingdom (C.C., S.N.)
| | - Paul J Wang
- Department of Medicine and Cardiovascular Institute (A.J.R., A.S., M.I.A., T.B., P.C., P.J.W., S.M.N.), Stanford University
| | - Wouter-Jan Rappel
- Department of Physics (W.-J.R.), University of California, San Diego
| | - Matei Zaharia
- Department of Computer Sciences (F.A., M.Z., P.B.), Stanford University
| | - Sanjiv M Narayan
- Department of Medicine and Cardiovascular Institute (A.J.R., A.S., M.I.A., T.B., P.C., P.J.W., S.M.N.), Stanford University
| |
Collapse
|
24
|
Blok M, Boukens BJ. Mechanisms of Arrhythmias in the Brugada Syndrome. Int J Mol Sci 2020; 21:ijms21197051. [PMID: 32992720 PMCID: PMC7582368 DOI: 10.3390/ijms21197051] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
Arrhythmias in Brugada syndrome patients originate in the right ventricular outflow tract (RVOT). Over the past few decades, the characterization of the unique anatomy and electrophysiology of the RVOT has revealed the arrhythmogenic nature of this region. However, the mechanisms that drive arrhythmias in Brugada syndrome patients remain debated as well as the exact site of their occurrence in the RVOT. Identifying the site of origin and mechanism of Brugada syndrome would greatly benefit the development of mechanism-driven treatment strategies.
Collapse
Affiliation(s)
- Michiel Blok
- Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Bastiaan J. Boukens
- Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-(0)20-566-4659
| |
Collapse
|
25
|
Zaitsev AV, Warren M. "Heart Oddity": Intrinsically Reduced Excitability in the Right Ventricle Requires Compensation by Regionally Specific Stress Kinase Function. Front Physiol 2020; 11:86. [PMID: 32132931 PMCID: PMC7040197 DOI: 10.3389/fphys.2020.00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/27/2020] [Indexed: 11/13/2022] Open
Abstract
The traditional view of ventricular excitation and conduction is an all-or-nothing response mediated by a regenerative activation of the inward sodium channel, which gives rise to an essentially constant conduction velocity (CV). However, whereas there is no obvious biological need to tune-up ventricular conduction, the principal molecular components determining CV, such as sodium channels, inward-rectifier potassium channels, and gap junctional channels, are known targets of the “stress” protein kinases PKA and calcium/calmodulin dependent protein kinase II (CaMKII), and are thus regulatable by signal pathways converging on these kinases. In this mini-review we will expose deficiencies and controversies in our current understanding of how ventricular conduction is regulated by stress kinases, with a special focus on the chamber-specific dimension in this regulation. In particular, we will highlight an odd property of cardiac physiology: uniform CV in ventricles requires co-existence of mutually opposing gradients in cardiac excitability and stress kinase function. While the biological advantage of this peculiar feature remains obscure, it is important to recognize the clinical implications of this phenomenon pertinent to inherited or acquired conduction diseases and therapeutic interventions modulating activity of PKA or CaMKII.
Collapse
Affiliation(s)
- Alexey V Zaitsev
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States
| | - Mark Warren
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
26
|
Becker N, Horváth A, De Boer T, Fabbri A, Grad C, Fertig N, George M, Obergrussberger A. Automated Dynamic Clamp for Simulation of I
K1
in Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes in Real Time Using Patchliner Dynamite
8. ACTA ACUST UNITED AC 2019; 88:e70. [DOI: 10.1002/cpph.70] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - Teun De Boer
- Department of Medical PhysiologyUniversity Medical Center Utrecht Utrecht The Netherlands
| | - Alan Fabbri
- Department of Medical PhysiologyUniversity Medical Center Utrecht Utrecht The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Perez-Alday EA, Bender A, German D, Mukundan SV, Hamilton C, Thomas JA, Li-Pershing Y, Tereshchenko LG. Dynamic predictive accuracy of electrocardiographic biomarkers of sudden cardiac death within a survival framework: the Atherosclerosis Risk in Communities (ARIC) study. BMC Cardiovasc Disord 2019; 19:255. [PMID: 31726979 PMCID: PMC6854807 DOI: 10.1186/s12872-019-1234-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The risk of sudden cardiac death (SCD) is known to be dynamic. However, the accuracy of a dynamic SCD prediction is unknown. We aimed to measure the dynamic predictive accuracy of ECG biomarkers of SCD and competing non-sudden cardiac death (non-SCD). METHODS Atherosclerosis Risk In Community study participants with analyzable ECGs in sinus rhythm were included (n = 15,716; 55% female, 73% white, age 54.2 ± 5.8 y). ECGs of 5 follow-up visits were analyzed. Global electrical heterogeneity and traditional ECG metrics (heart rate, QRS, QTc) were measured. Adjudicated SCD was the primary outcome; non-SCD was the competing outcome. Time-dependent area under the receiver operating characteristic curve (ROC(t) AUC) analysis was performed to assess the prediction accuracy of a continuous biomarker in a period of 3,6,9 months, and 1,2,3,5,10, and 15 years using a survival analysis framework. Reclassification improvement as compared to clinical risk factors (age, sex, race, diabetes, hypertension, coronary heart disease, stroke) was measured. RESULTS Over a median 24.4 y follow-up, there were 577 SCDs (incidence 1.76 (95%CI 1.63-1.91)/1000 person-years), and 829 non-SCDs [2.55 (95%CI 2.37-2.71)]. No ECG biomarkers predicted SCD within 3 months after ECG recording. Within 6 months, spatial ventricular gradient (SVG) elevation predicted SCD (AUC 0.706; 95%CI 0.526-0.886), but not a non-SCD (AUC 0.527; 95%CI 0.303-0.75). SVG elevation more accurately predicted SCD if the ECG was recorded 6 months before SCD (AUC 0.706; 95%CI 0.526-0.886) than 2 years before SCD (AUC 0.608; 95%CI 0.515-0.701). Within the first 3 months after ECG recording, only SVG azimuth improved reclassification of the risk beyond clinical risk factors: 18% of SCD events were reclassified from low or intermediate risk to a high-risk category. QRS-T angle was the strongest long-term predictor of SCD (AUC 0.710; 95%CI 0.668-0.753 for ECG recorded within 10 years before SCD). CONCLUSION Short-term and long-term predictive accuracy of ECG biomarkers of SCD differed, reflecting differences in transient vs. persistent SCD substrates. The dynamic predictive accuracy of ECG biomarkers should be considered for competing SCD risk scores. The distinction between markers predicting short-term and long-term events may represent the difference between markers heralding SCD (triggers or transient substrates) versus markers identifying persistent substrate.
Collapse
Affiliation(s)
- Erick A. Perez-Alday
- Knight Cardiovascular Institute, Department of Medicine, Oregon Health & Science University School of Medicine, 3181 SW Sam Jackson Park Rd; UHN62, Portland, OR 97239 USA
- Department of Biomedical Informatics, Emory University, Atlanta, GA USA
| | - Aron Bender
- Knight Cardiovascular Institute, Department of Medicine, Oregon Health & Science University School of Medicine, 3181 SW Sam Jackson Park Rd; UHN62, Portland, OR 97239 USA
- UCLA Cardiac Arrhythmia Center, University of California Los Angeles, Los Angeles, CA USA
| | - David German
- Knight Cardiovascular Institute, Department of Medicine, Oregon Health & Science University School of Medicine, 3181 SW Sam Jackson Park Rd; UHN62, Portland, OR 97239 USA
| | - Srini V. Mukundan
- Knight Cardiovascular Institute, Department of Medicine, Oregon Health & Science University School of Medicine, 3181 SW Sam Jackson Park Rd; UHN62, Portland, OR 97239 USA
- Rush University, Chicago, IL USA
| | - Christopher Hamilton
- Knight Cardiovascular Institute, Department of Medicine, Oregon Health & Science University School of Medicine, 3181 SW Sam Jackson Park Rd; UHN62, Portland, OR 97239 USA
- Rosalind Franklin University of Medicine and Science, North Chicago, IL USA
| | - Jason A. Thomas
- Knight Cardiovascular Institute, Department of Medicine, Oregon Health & Science University School of Medicine, 3181 SW Sam Jackson Park Rd; UHN62, Portland, OR 97239 USA
- University of Washington, Seattle, WA USA
| | - Yin Li-Pershing
- Knight Cardiovascular Institute, Department of Medicine, Oregon Health & Science University School of Medicine, 3181 SW Sam Jackson Park Rd; UHN62, Portland, OR 97239 USA
| | - Larisa G. Tereshchenko
- Knight Cardiovascular Institute, Department of Medicine, Oregon Health & Science University School of Medicine, 3181 SW Sam Jackson Park Rd; UHN62, Portland, OR 97239 USA
- Cardiovascular Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
28
|
Devalla HD, Passier R. Cardiac differentiation of pluripotent stem cells and implications for modeling the heart in health and disease. Sci Transl Med 2019; 10:10/435/eaah5457. [PMID: 29618562 DOI: 10.1126/scitranslmed.aah5457] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 07/15/2016] [Accepted: 06/20/2017] [Indexed: 12/21/2022]
Abstract
Cellular models comprising cardiac cell types derived from human pluripotent stem cells are valuable for studying heart development and disease. We discuss transcriptional differences that define cellular identity in the heart, current methods for generating different cardiomyocyte subtypes, and implications for disease modeling, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Harsha D Devalla
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, Netherlands.
| | - Robert Passier
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, Netherlands. .,Department of Applied Stem Cell Technologies, Technical Medical Center, University of Twente, 7500 AE Enschede, Netherlands
| |
Collapse
|
29
|
Abstract
Ventricular tachycardia is commonly seen in medical practice. It may be completely benign or portend high risk for sudden cardiac death. Therefore, it is important that clinicians be familiar with and able to promptly recognize and manage ventricular tachycardia when confronted with it clinically. In many cases, curative therapy for a given ventricular arrhythmia may be provided after a thorough understanding of the underlying substrate and mechanism. In this article, the authors broadly review the current classification of the different ventricular arrhythmias encountered in medical practice, provide brief background regarding the different mechanisms, and discuss practical diagnosis and management scenarios.
Collapse
Affiliation(s)
- Soufian T AlMahameed
- Heart and Vascular Research Center, MetroHealth Campus of Case Western Reserve University, 2500 MetroHealth Medical Drive, Cleveland, OH 44109, USA.
| | - Ohad Ziv
- Heart and Vascular Research Center, MetroHealth Campus of Case Western Reserve University, 2500 MetroHealth Medical Drive, Cleveland, OH 44109, USA
| |
Collapse
|
30
|
Kelly A, Salerno S, Connolly A, Bishop M, Charpentier F, Stølen T, Smith GL. Normal interventricular differences in tissue architecture underlie right ventricular susceptibility to conduction abnormalities in a mouse model of Brugada syndrome. Cardiovasc Res 2019; 114:724-736. [PMID: 29267949 PMCID: PMC5915948 DOI: 10.1093/cvr/cvx244] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 12/16/2017] [Indexed: 01/09/2023] Open
Abstract
Aims Loss-of-function of the cardiac sodium channel NaV1.5 is a common feature of Brugada syndrome. Arrhythmias arise preferentially from the right ventricle (RV) despite equivalent NaV1.5 downregulation in the left ventricle (LV). The reasons for increased RV sensitivity to NaV1.5 loss-of-function mutations remain unclear. Because ventricular electrical activation occurs predominantly in the transmural axis, we compare RV and LV transmural electrophysiology to determine the underlying cause of the asymmetrical conduction abnormalities in Scn5a haploinsufficient mice (Scn5a+/−). Methods and results Optical mapping and two-photon microscopy in isolated-perfused mouse hearts demonstrated equivalent depression of transmural conduction velocity (CV) in the LV and RV of Scn5a+/− vs. wild-type littermates. Only RV transmural conduction was further impaired when challenged with increased pacing frequencies. Epicardial dispersion of activation and beat-to-beat variation in activation time were increased only in the RV of Scn5a+/− hearts. Analysis of confocal and histological images revealed larger intramural clefts between cardiomyocyte layers in the RV vs. LV, independent of genotype. Acute sodium current inhibition in wild type hearts using tetrodotoxin reproduced beat-to-beat activation variability and frequency-dependent CV slowing in the RV only, with the LV unaffected. The influence of clefts on conduction was examined using a two-dimensional monodomain computational model. When peak sodium channel conductance was reduced to 50% of normal the presence of clefts between cardiomyocyte layers reproduced the activation variability and conduction phenotype observed experimentally. Conclusions Normal structural heterogeneities present in the RV are responsible for increased vulnerability to conduction slowing in the presence of reduced sodium channel function. Heterogeneous conduction slowing seen in the RV will predispose to functional block and the initiation of re-entrant ventricular arrhythmias.
Collapse
Affiliation(s)
- Allen Kelly
- Department of Circulation and Medical Imaging, St Olav's Hospital, Norwegian University of Science and Technology (NTNU), Postboks 8905, 7491 Trondheim, Norway.,Institute of Cardiovascular & Medical Sciences, University of Glasgow G12 8QQ, UK
| | - Simona Salerno
- Department of Circulation and Medical Imaging, St Olav's Hospital, Norwegian University of Science and Technology (NTNU), Postboks 8905, 7491 Trondheim, Norway
| | - Adam Connolly
- Division of Imaging Sciences and Biomedical Engineering, Department of Biomedical Engineering, Kings College London SE1 7EH, UK
| | - Martin Bishop
- Division of Imaging Sciences and Biomedical Engineering, Department of Biomedical Engineering, Kings College London SE1 7EH, UK
| | | | - Tomas Stølen
- Department of Circulation and Medical Imaging, St Olav's Hospital, Norwegian University of Science and Technology (NTNU), Postboks 8905, 7491 Trondheim, Norway
| | - Godfrey L Smith
- Department of Circulation and Medical Imaging, St Olav's Hospital, Norwegian University of Science and Technology (NTNU), Postboks 8905, 7491 Trondheim, Norway.,Institute of Cardiovascular & Medical Sciences, University of Glasgow G12 8QQ, UK
| |
Collapse
|
31
|
Morris GM, Ariyaratnam JP. Embryology of the Cardiac Conduction System Relevant to Arrhythmias. Card Electrophysiol Clin 2019; 11:409-420. [PMID: 31400866 DOI: 10.1016/j.ccep.2019.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Embryogenesis of the heart involves the complex cellular differentiation of slow-conducting primary myocardium into the rapidly conducting chamber myocardium of the adult. However, small areas of relatively undifferentiated cells remain to form components of the adult cardiac conduction system (CCS) and nodal tissues. Further investigation has revealed additional areas of nodal-like tissues outside of the established CCS. The embryologic origins of these areas are similar to those of the adult CCS. Under pathologic conditions, these areas can give rise to important clinical arrhythmias. Here, we review the embryologic basis for these proarrhythmic structures within the heart.
Collapse
Affiliation(s)
- Gwilym M Morris
- Cardiovascular Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, UK.
| | - Jonathan P Ariyaratnam
- Cardiovascular Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, UK
| |
Collapse
|
32
|
Kapa S, Vaidya V, Hodge DO, McLeod CJ, Connolly HM, Warnes CA, Asirvatham SJ. Right ventricular dysfunction in congenitally corrected transposition of the great arteries and risk of ventricular tachyarrhythmia and sudden death. Int J Cardiol 2018; 258:83-89. [DOI: 10.1016/j.ijcard.2018.01.107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/06/2018] [Accepted: 01/22/2018] [Indexed: 11/25/2022]
|
33
|
Jordaens L. A clinical approach to arrhythmias revisited in 2018 : From ECG over noninvasive and invasive electrophysiology to advanced imaging. Neth Heart J 2018; 26:182-189. [PMID: 29450695 PMCID: PMC5876171 DOI: 10.1007/s12471-018-1089-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Understanding arrhythmias and their treatment is not always easy. The current straightforward approach with catheter ablation and device therapy is an amazing achievement, but does not make management of underlying or other cardiac disease and pharmacological therapy unnecessary. The goal of this paper is to describe how much of the knowledge of the 1980s and early 1990s can and should still be applied in the modern treatment of patients with arrhythmias. After an introduction, this review will focus on paroxysmal atrial fibrillation and a prototype of ‘idiopathic’ ventricular arrhythmias, two diseases with a striking similarity, and will discuss the arrhythmogenesis. The ECG continues to play an important role in diagnostics. Both diseases are associated with a structurally normal heart; the autonomic nervous system plays an important role in triggering arrhythmias at both the atrial and ventricular level.
Collapse
Affiliation(s)
- L Jordaens
- Department of Cardiology, University Hospital, Ghent, Belgium.
| |
Collapse
|
34
|
Patra C, Boccaccini A, Engel F. Vascularisation for cardiac tissue engineering: the extracellular matrix. Thromb Haemost 2017; 113:532-47. [DOI: 10.1160/th14-05-0480] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 09/03/2014] [Indexed: 02/07/2023]
Abstract
SummaryCardiovascular diseases present a major socio-economic burden. One major problem underlying most cardiovascular and congenital heart diseases is the irreversible loss of contractile heart muscle cells, the cardiomyocytes. To reverse damage incurred by myocardial infarction or by surgical correction of cardiac malformations, the loss of cardiac tissue with a thickness of a few millimetres needs to be compensated. A promising approach to this issue is cardiac tissue engineering. In this review we focus on the problem of in vitro vascularisation as implantation of cardiac patches consisting of more than three layers of cardiomyocytes (> 100 μm thick) already results in necrosis. We explain the need for vascularisation and elaborate on the importance to include non-myocytes in order to generate functional vascularised cardiac tissue. We discuss the potential of extracellular matrix molecules in promoting vascularisation and introduce nephronectin as an example of a new promising candidate. Finally, we discuss current biomaterial- based approaches including micropatterning, electrospinning, 3D micro-manufacturing technology and porogens. Collectively, the current literature supports the notion that cardiac tissue engineering is a realistic option for future treatment of paediatric and adult patients with cardiac disease.
Collapse
|
35
|
Leong KMW, Ng FS, Yao C, Roney C, Taraborrelli P, Linton NWF, Whinnett ZI, Lefroy DC, Davies DW, Boon Lim P, Harding SE, Peters NS, Kanagaratnam P, Varnava AM. ST-Elevation Magnitude Correlates With Right Ventricular Outflow Tract Conduction Delay in Type I Brugada ECG. Circ Arrhythm Electrophysiol 2017; 10:CIRCEP.117.005107. [PMID: 29038102 DOI: 10.1161/circep.117.005107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 08/17/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND The substrate location and underlying electrophysiological mechanisms that contribute to the characteristic ECG pattern of Brugada syndrome (BrS) are still debated. Using noninvasive electrocardiographical imaging, we studied whole heart conduction and repolarization patterns during ajmaline challenge in BrS individuals. METHODS AND RESULTS A total of 13 participants (mean age, 44±12 years; 8 men), 11 concealed patients with type I BrS and 2 healthy controls, underwent an ajmaline infusion with electrocardiographical imaging and ECG recordings. Electrocardiographical imaging activation recovery intervals and activation timings across the right ventricle (RV) body, outflow tract (RVOT), and left ventricle were calculated and analyzed at baseline and when type I BrS pattern manifested after ajmaline infusion. Peak J-ST point elevation was calculated from the surface ECG and compared with the electrocardiographical imaging-derived parameters at the same time point. After ajmaline infusion, the RVOT had the greatest increase in conduction delay (5.4±2.8 versus 2.0±2.8 versus 1.1±1.6 ms; P=0.007) and activation recovery intervals prolongation (69±32 versus 39±29 versus 21±12 ms; P=0.0005) compared with RV or left ventricle. In controls, there was minimal change in J-ST point elevation, conduction delay, or activation recovery intervals at all sites with ajmaline. In patients with BrS, conduction delay in RVOT, but not RV or left ventricle, correlated to the degree of J-ST point elevation (Pearson R, 0.81; P<0.001). No correlation was found between J-ST point elevation and activation recovery intervals prolongation in the RVOT, RV, or left ventricle. CONCLUSIONS Magnitude of ST (J point) elevation in the type I BrS pattern is attributed to degree of conduction delay in the RVOT and not prolongation in repolarization time.
Collapse
Affiliation(s)
- Kevin M W Leong
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (K.M.W.L., F.S.N., C.R., N.W.F.L., Z.I.W., P.B.L., S.E.H., N.S.P., P.K.); Imperial College Healthcare NHS Trust, London, United Kingdom (K.M.W.L., F.S.N., P.T., N.W.F.L., Z.I.W., D.C.L., D.W.D., P.B.L., N.S.P., P.K., A.M.V.); and Medtronic Ltd, Watford, United Kingdom (C.Y.).
| | - Fu Siong Ng
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (K.M.W.L., F.S.N., C.R., N.W.F.L., Z.I.W., P.B.L., S.E.H., N.S.P., P.K.); Imperial College Healthcare NHS Trust, London, United Kingdom (K.M.W.L., F.S.N., P.T., N.W.F.L., Z.I.W., D.C.L., D.W.D., P.B.L., N.S.P., P.K., A.M.V.); and Medtronic Ltd, Watford, United Kingdom (C.Y.)
| | - Cheng Yao
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (K.M.W.L., F.S.N., C.R., N.W.F.L., Z.I.W., P.B.L., S.E.H., N.S.P., P.K.); Imperial College Healthcare NHS Trust, London, United Kingdom (K.M.W.L., F.S.N., P.T., N.W.F.L., Z.I.W., D.C.L., D.W.D., P.B.L., N.S.P., P.K., A.M.V.); and Medtronic Ltd, Watford, United Kingdom (C.Y.)
| | - Caroline Roney
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (K.M.W.L., F.S.N., C.R., N.W.F.L., Z.I.W., P.B.L., S.E.H., N.S.P., P.K.); Imperial College Healthcare NHS Trust, London, United Kingdom (K.M.W.L., F.S.N., P.T., N.W.F.L., Z.I.W., D.C.L., D.W.D., P.B.L., N.S.P., P.K., A.M.V.); and Medtronic Ltd, Watford, United Kingdom (C.Y.)
| | - Patricia Taraborrelli
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (K.M.W.L., F.S.N., C.R., N.W.F.L., Z.I.W., P.B.L., S.E.H., N.S.P., P.K.); Imperial College Healthcare NHS Trust, London, United Kingdom (K.M.W.L., F.S.N., P.T., N.W.F.L., Z.I.W., D.C.L., D.W.D., P.B.L., N.S.P., P.K., A.M.V.); and Medtronic Ltd, Watford, United Kingdom (C.Y.)
| | - Nicholas W F Linton
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (K.M.W.L., F.S.N., C.R., N.W.F.L., Z.I.W., P.B.L., S.E.H., N.S.P., P.K.); Imperial College Healthcare NHS Trust, London, United Kingdom (K.M.W.L., F.S.N., P.T., N.W.F.L., Z.I.W., D.C.L., D.W.D., P.B.L., N.S.P., P.K., A.M.V.); and Medtronic Ltd, Watford, United Kingdom (C.Y.)
| | - Zachary I Whinnett
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (K.M.W.L., F.S.N., C.R., N.W.F.L., Z.I.W., P.B.L., S.E.H., N.S.P., P.K.); Imperial College Healthcare NHS Trust, London, United Kingdom (K.M.W.L., F.S.N., P.T., N.W.F.L., Z.I.W., D.C.L., D.W.D., P.B.L., N.S.P., P.K., A.M.V.); and Medtronic Ltd, Watford, United Kingdom (C.Y.)
| | - David C Lefroy
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (K.M.W.L., F.S.N., C.R., N.W.F.L., Z.I.W., P.B.L., S.E.H., N.S.P., P.K.); Imperial College Healthcare NHS Trust, London, United Kingdom (K.M.W.L., F.S.N., P.T., N.W.F.L., Z.I.W., D.C.L., D.W.D., P.B.L., N.S.P., P.K., A.M.V.); and Medtronic Ltd, Watford, United Kingdom (C.Y.)
| | - D Wyn Davies
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (K.M.W.L., F.S.N., C.R., N.W.F.L., Z.I.W., P.B.L., S.E.H., N.S.P., P.K.); Imperial College Healthcare NHS Trust, London, United Kingdom (K.M.W.L., F.S.N., P.T., N.W.F.L., Z.I.W., D.C.L., D.W.D., P.B.L., N.S.P., P.K., A.M.V.); and Medtronic Ltd, Watford, United Kingdom (C.Y.)
| | - Phang Boon Lim
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (K.M.W.L., F.S.N., C.R., N.W.F.L., Z.I.W., P.B.L., S.E.H., N.S.P., P.K.); Imperial College Healthcare NHS Trust, London, United Kingdom (K.M.W.L., F.S.N., P.T., N.W.F.L., Z.I.W., D.C.L., D.W.D., P.B.L., N.S.P., P.K., A.M.V.); and Medtronic Ltd, Watford, United Kingdom (C.Y.)
| | - Sian E Harding
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (K.M.W.L., F.S.N., C.R., N.W.F.L., Z.I.W., P.B.L., S.E.H., N.S.P., P.K.); Imperial College Healthcare NHS Trust, London, United Kingdom (K.M.W.L., F.S.N., P.T., N.W.F.L., Z.I.W., D.C.L., D.W.D., P.B.L., N.S.P., P.K., A.M.V.); and Medtronic Ltd, Watford, United Kingdom (C.Y.)
| | - Nicholas S Peters
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (K.M.W.L., F.S.N., C.R., N.W.F.L., Z.I.W., P.B.L., S.E.H., N.S.P., P.K.); Imperial College Healthcare NHS Trust, London, United Kingdom (K.M.W.L., F.S.N., P.T., N.W.F.L., Z.I.W., D.C.L., D.W.D., P.B.L., N.S.P., P.K., A.M.V.); and Medtronic Ltd, Watford, United Kingdom (C.Y.)
| | - Prapa Kanagaratnam
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (K.M.W.L., F.S.N., C.R., N.W.F.L., Z.I.W., P.B.L., S.E.H., N.S.P., P.K.); Imperial College Healthcare NHS Trust, London, United Kingdom (K.M.W.L., F.S.N., P.T., N.W.F.L., Z.I.W., D.C.L., D.W.D., P.B.L., N.S.P., P.K., A.M.V.); and Medtronic Ltd, Watford, United Kingdom (C.Y.)
| | - Amanda M Varnava
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (K.M.W.L., F.S.N., C.R., N.W.F.L., Z.I.W., P.B.L., S.E.H., N.S.P., P.K.); Imperial College Healthcare NHS Trust, London, United Kingdom (K.M.W.L., F.S.N., P.T., N.W.F.L., Z.I.W., D.C.L., D.W.D., P.B.L., N.S.P., P.K., A.M.V.); and Medtronic Ltd, Watford, United Kingdom (C.Y.).
| |
Collapse
|
36
|
Moncayo-Arlandi J, Brugada R. Unmasking the molecular link between arrhythmogenic cardiomyopathy and Brugada syndrome. Nat Rev Cardiol 2017; 14:744-756. [DOI: 10.1038/nrcardio.2017.103] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Wang C, Zhang Y, Hong F, Huang Y. Pulmonary artery: A pivotal site for catheter ablation in idiopathic RVOT ventricular arrhythmias. Pacing Clin Electrophysiol 2017; 40:803-807. [PMID: 28585685 DOI: 10.1111/pace.13131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/13/2017] [Accepted: 05/26/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Chunmiao Wang
- Department of Cardiology; the First Affiliated Hospital of Anhui Medical University; Hefei China
| | - Yawen Zhang
- Department of Cardiology; the First Affiliated Hospital of Anhui Medical University; Hefei China
| | - Fangde Hong
- Department of Cardiology; the First Affiliated Hospital of Anhui Medical University; Hefei China
| | - Ying Huang
- Department of Cardiology; the First Affiliated Hospital of Anhui Medical University; Hefei China
| |
Collapse
|
38
|
Dressler FF, Bodi I, Menza M, Moss R, Bugger H, Bode C, Behrends JC, Seemann G, Odening KE. Interregional electro-mechanical heterogeneity in the rabbit myocardium. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:344-355. [PMID: 28655649 DOI: 10.1016/j.pbiomolbio.2017.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Increased electrical heterogeneity has been causatively linked to arrhythmic disorders, yet the knowledge about physiological heterogeneity remains incomplete. This study investigates regional electro-mechanical heterogeneities in rabbits, one of the key animal models for arrhythmic disorders. METHODS AND FINDINGS 7 wild-type rabbits were examined by phase-contrast magnetic resonance imaging in vivo to assess cardiac wall movement velocities. Using a novel data-processing algorithm regional contraction-like profiles were calculated. Contraction started earlier and was longer in left ventricular (LV) apex than base. Patch clamp recordings showed longer action potentials (AP) in LV apex compared to the base of LV, septum, and right ventricle. Western blots of cardiac ion channels and calcium handling proteins showed lower expression of Cav1.2, KvLQT1, Kv1.4, NCX and Phospholamban in LV apex vs. base. A single-cell in silico model integrating the quantitative regional differences in ion channels reproduced a longer contraction and longer AP in apex vs. base. CONCLUSIONS Apico-basal electro-mechanical heterogeneity is physiologically present in the healthy rabbit heart. An apico-basal electro-mechanical gradient exists with longer APD and contraction duration in the apex and associated regionally heterogeneous expression of five key proteins. This pattern of apical mechanical dominance probably serves to increase pumping efficiency.
Collapse
Affiliation(s)
- Franz F Dressler
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacher Strasse 153, 79110 Freiburg, Germany
| | - Ilona Bodi
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacher Strasse 153, 79110 Freiburg, Germany
| | - Marius Menza
- Faculty of Medicine, University of Freiburg, Breisacher Strasse 153, 79110 Freiburg, Germany; Department of Medical Physics, Medical Center - University of Freiburg, Breisacher Straße 60a, 79106 Freiburg, Germany
| | - Robin Moss
- Faculty of Medicine, University of Freiburg, Breisacher Strasse 153, 79110 Freiburg, Germany; Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76128 Karlsruhe, Germany; Institute for Experimental Cardiovascular Medicine, Heart Center University of Freiburg, Medical Center - University of Freiburg, Elsaesserstrasse 2q, 79110 Freiburg, Germany
| | - Heiko Bugger
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacher Strasse 153, 79110 Freiburg, Germany
| | - Christoph Bode
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacher Strasse 153, 79110 Freiburg, Germany
| | - Jan C Behrends
- Faculty of Medicine, University of Freiburg, Breisacher Strasse 153, 79110 Freiburg, Germany; Department of Physiology, Laboratory for Membrane Physiology and -Technology, University of Freiburg, Hermann-Herder-Strasse 7, 79104 Freiburg, Germany
| | - Gunnar Seemann
- Faculty of Medicine, University of Freiburg, Breisacher Strasse 153, 79110 Freiburg, Germany; Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76128 Karlsruhe, Germany; Institute for Experimental Cardiovascular Medicine, Heart Center University of Freiburg, Medical Center - University of Freiburg, Elsaesserstrasse 2q, 79110 Freiburg, Germany
| | - Katja E Odening
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacher Strasse 153, 79110 Freiburg, Germany; Institute for Experimental Cardiovascular Medicine, Heart Center University of Freiburg, Medical Center - University of Freiburg, Elsaesserstrasse 2q, 79110 Freiburg, Germany.
| |
Collapse
|
39
|
Turker I, Ai T, Itoh H, Horie M. Drug-induced fatal arrhythmias: Acquired long QT and Brugada syndromes. Pharmacol Ther 2017; 176:48-59. [PMID: 28527921 DOI: 10.1016/j.pharmthera.2017.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since the early 1990s, the concept of primary "inherited" arrhythmia syndromes or ion channelopathies has evolved rapidly as a result of revolutionary progresses made in molecular genetics. Alterations in genes coding for membrane proteins such as ion channels or their associated proteins responsible for the generation of cardiac action potentials (AP) have been shown to cause specific malfunctions which eventually lead to cardiac arrhythmias. These arrhythmic disorders include congenital long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, short QT syndrome, progressive cardiac conduction disease, etc. Among these, long QT and Brugada syndromes are the most extensively studied, and drugs cause a phenocopy of these two diseases. To date, more than 10 different genes have been reported to be responsible for each syndrome. More recently, it was recognized that long QT syndrome can be latent, even in the presence of an unequivocally pathogenic mutation (silent mutation carrier). Co-existence of other pathological conditions in these silent mutation carriers may trigger a malignant form of ventricular arrhythmia, the so called torsade de pointes (TdP) that is most commonly brought about by drugs. In analogy to the drug-induced long QT syndrome, Brugada type 1 ECG can also be induced or unmasked by a wide variety of drugs and pathological conditions; so physicians may encounter patients with a latent form of Brugada syndrome. Of particular note, Brugada syndrome is frequently associated with atrial fibrillation whose therapeutic agents such as Vaughan Williams class IC drugs can unmask the dormant and asymptomatic Brugada syndrome. This review describes two types of drug-induced arrhythmias: the long QT and Brugada syndromes.
Collapse
Affiliation(s)
- Isik Turker
- Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tomohiko Ai
- Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Hideki Itoh
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Minoru Horie
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan.
| |
Collapse
|
40
|
Wang Z, Zhang H, Peng H, Shen X, Sun Z, Zhao C, Dong R, Gao H, Wu Y. Voltage combined with pace mapping is simple and effective for ablation of noninducible premature ventricular contractions originating from the right ventricular outflow tract. Clin Cardiol 2017; 39:733-738. [PMID: 28026917 DOI: 10.1002/clc.22598] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/23/2016] [Accepted: 08/31/2016] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Premature ventricular contractions (PVCs) from the right ventricular outflow tract (RVOT) can resist conventional mapping strategies. Studies regarding optimal mapping and ablation methods for patients with noninducible RVOT-PVCs are limited. We retrospectively evaluated the efficacy and safety of a novel mapping strategy for these cases: voltage mapping combined with pace mapping. HYPOTHESIS METHODS: We retrospectively included symptomatic patients (n = 148; 76 males; age, 44.5 ± 1.4 years) with drug-refractory PVCs originating from the RVOT, who underwent radiofrequency catheter ablation (RFCA), and stratified them as Group 1 and Group 2. Group 1 patients had noninducible RVOT-PVCs, determined after programmed stimulation, burst pacing, and isoproterenol infusion (n = 21; 12 males; age, 39.5 ± 10.8 years). Group 2 patients had inducible PVCs. Group 1 patients were subjected to voltage mapping combined with pace mapping; Group 2 underwent conventional mapping. In all patients prior to RFCA, detailed 3-dimensional electroanatomic voltage maps of the RVOT were obtained during sinus rhythm using the CARTO system. RESULTS Patients from both groups had similar success and complication rates associated with the RFCA. In Group 2, 89% (113/127) experienced the earliest and the successful ablation points in the voltage transitional zone. During the follow-up (36 ± 8 months), patients from both groups suffered similar rates of PVC relapse (2/21 and 7/127, respectively; P = 0.826). CONCLUSIONS Voltage mapping combined with pace mapping is effective and safe for patients with noninducible RVOT-PVCs determined by conventional methods.
Collapse
Affiliation(s)
- Zefeng Wang
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Heping Zhang
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hui Peng
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xuhua Shen
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhijun Sun
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Can Zhao
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ruiqing Dong
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Huikuan Gao
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yongquan Wu
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
41
|
Chiamvimonvat N, Chen-Izu Y, Clancy CE, Deschenes I, Dobrev D, Heijman J, Izu L, Qu Z, Ripplinger CM, Vandenberg JI, Weiss JN, Koren G, Banyasz T, Grandi E, Sanguinetti MC, Bers DM, Nerbonne JM. Potassium currents in the heart: functional roles in repolarization, arrhythmia and therapeutics. J Physiol 2017; 595:2229-2252. [PMID: 27808412 DOI: 10.1113/jp272883] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/11/2016] [Indexed: 12/19/2022] Open
Abstract
This is the second of the two White Papers from the fourth UC Davis Cardiovascular Symposium Systems Approach to Understanding Cardiac Excitation-Contraction Coupling and Arrhythmias (3-4 March 2016), a biennial event that brings together leading experts in different fields of cardiovascular research. The theme of the 2016 symposium was 'K+ channels and regulation', and the objectives of the conference were severalfold: (1) to identify current knowledge gaps; (2) to understand what may go wrong in the diseased heart and why; (3) to identify possible novel therapeutic targets; and (4) to further the development of systems biology approaches to decipher the molecular mechanisms and treatment of cardiac arrhythmias. The sessions of the Symposium focusing on the functional roles of the cardiac K+ channel in health and disease, as well as K+ channels as therapeutic targets, were contributed by Ye Chen-Izu, Gideon Koren, James Weiss, David Paterson, David Christini, Dobromir Dobrev, Jordi Heijman, Thomas O'Hara, Crystal Ripplinger, Zhilin Qu, Jamie Vandenberg, Colleen Clancy, Isabelle Deschenes, Leighton Izu, Tamas Banyasz, Andras Varro, Heike Wulff, Eleonora Grandi, Michael Sanguinetti, Donald Bers, Jeanne Nerbonne and Nipavan Chiamvimonvat as speakers and panel discussants. This article summarizes state-of-the-art knowledge and controversies on the functional roles of cardiac K+ channels in normal and diseased heart. We endeavour to integrate current knowledge at multiple scales, from the single cell to the whole organ levels, and from both experimental and computational studies.
Collapse
Affiliation(s)
- Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California, Davis, Genome and Biomedical Science Facility, Rm 6315, Davis, CA, 95616, USA.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA, 95655, USA
| | - Ye Chen-Izu
- Department of Internal Medicine, University of California, Davis, Genome and Biomedical Science Facility, Rm 6315, Davis, CA, 95616, USA.,Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA.,Department of Biomedical Engineering, University of California, Davis, Genome and Biomedical Science Facility, Rm 2303, Davis, CA, 95616, USA
| | - Colleen E Clancy
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Isabelle Deschenes
- Department of Physiology and Biophysics, and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44109, USA.,Heart and Vascular Research Center, MetroHealth Medical Center, Cleveland, OH, 44109, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Leighton Izu
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Zhilin Qu
- Division of Cardiology, Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, 3645 MRL, Los Angeles, CA, 90095, USA
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Jamie I Vandenberg
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia
| | - James N Weiss
- Division of Cardiology, Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, 3645 MRL, Los Angeles, CA, 90095, USA
| | - Gideon Koren
- Cardiovascular Research Center, Rhode Island Hospital and the Cardiovascular Institute, The Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Tamas Banyasz
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eleonora Grandi
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Michael C Sanguinetti
- Department of Internal Medicine, University of Utah, Nora Eccles Harrison Cardiovascular Research & Training Institute, Salt Lake City, UT, 84112, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Jeanne M Nerbonne
- Departments of Developmental Biology and Internal Medicine, Cardiovascular Division, Washington University Medical School, St Louis, MO, 63110, USA
| |
Collapse
|
42
|
Nakamura R, Nishizaki M, Lee K, Shimizu M, Fujii H, Yamawake N, Sakurada H, Hiraoka M, Isobe M. Life-Threatening Ventricular Arrhythmia and Brugada-Type ST-Segment Elevation Associated With Acute Ischemia of the Right Ventricular Outflow Tract. Circ J 2017; 81:322-329. [DOI: 10.1253/circj.cj-16-1112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rena Nakamura
- Department of Cardiology, Yokohama Minami Kyosai Hospital
| | | | - Kiko Lee
- Department of Cardiology, Yokohama Minami Kyosai Hospital
| | - Masato Shimizu
- Department of Cardiology, Yokohama Minami Kyosai Hospital
| | - Hiroyuki Fujii
- Department of Cardiology, Yokohama Minami Kyosai Hospital
| | | | - Harumizu Sakurada
- Tokyo Metropolitan Health and Medical Treatment Corporation Ohkubo Hospital
| | | | | |
Collapse
|
43
|
Martini B, Martini N, Dorantes Sánchez M, Márquez MF, Zhang L, Fontaine G, Nava A. [Clues of an underlying organic substrate in the Brugada Syndrome]. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2016; 87:49-60. [PMID: 28038951 DOI: 10.1016/j.acmx.2016.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022] Open
Affiliation(s)
- Bortolo Martini
- Unidad Cardiovascular, Hospital Alto Vicentino, Santorso, Italia.
| | - Nicolò Martini
- Colegio Médico, Universidad de Medicina de Ferrara, Ferrara, Italia
| | - Margarita Dorantes Sánchez
- Servicio de Arritmias y Estimulación Cardiaca, Instituto de Cardiología y Cirugía Cardiovascular, La Habana, Cuba
| | - Manlio F Márquez
- Servicio de Electrocardiología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Li Zhang
- Instituto Lankenau de Investigación Médica, Colegio Médico Jefferson, Filadelfia, Estados Unidos
| | - Guy Fontaine
- Unidad de Ritmología, Instituto de Cardiología, Hospital de La Pitié-Salpêtrière, París, Francia
| | | |
Collapse
|
44
|
Li XM, Jiang H, Li YH, Zhang Y, Liu HJ, Ge HY, Zhang Y, Li MT. Effectiveness of Radiofrequency Catheter Ablation of Outflow Tract Ventricular Arrhythmias in Children and Adolescents. Pediatr Cardiol 2016; 37:1475-1481. [PMID: 27562132 DOI: 10.1007/s00246-016-1460-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/16/2016] [Indexed: 10/21/2022]
Abstract
Outflow tract ventricular arrhythmias (OTVAs) are common in children; however, experience is limited on their radiofrequency catheter ablation (RFCA). The purpose of this study was to assess the outcomes of mapping and ablation of pediatric OTVAs and to evaluate the role of ECG algorithms in distinguishing the origin of OTVAs. We compared retrospectively collected single-center data on 92 consecutive pediatric patients (58 male; age, 8.2 ± 2.9 [range 3.6-18] years) who underwent RFCA for OTVAs from 2009 to 2015. Two independent and blinded observers analyzed ECG data. Of these children, 69 (75 %) were of RVOT origin. RFCA was given up in 1 case, and the acute success rate was 92.3 % (84/91), the 1-year follow-up recurrence rate was 8.3 % (7/84) and the complications of the procedure were 2.2 % (2/92). And 3D versus 2D mapping-guided RFCA was associated with significantly (p < 0.05) higher acute success rate (96.1 % [49/51] vs. 87.5 % [35/40]), and lower X-ray exposure (742.5 ± 323.1 vs. 1432.3 ± 605.5 mGy cm2) and 1-year recurrence rate (4.1 % [2/49] vs. 14.3 % [5/35]). The positive predictive value of four types of ECG algorithms used in adults for LVOT origin was only 47.7-65.4 %. In these cases, four identified as RVOT origin and two identified as LVOT origin by ECG underwent successful ablation on the other side of outflow tract finally. And these six children who underwent successful RFCA in both sides of outflow tract had no follow-up recurrence. OTVAs in children originate mostly from RVOT. RFCA can be used for ablation of pediatric OTVAs effectively and safely. In some cases, successful RFCA should be ablated in both sides of outflow tract. ECG-based prediction of OTVA origin as used in adults is limited in children.
Collapse
Affiliation(s)
- Xiao-Mei Li
- Medical Center, Tsinghua University, Beijing, 100084, China. .,Department of Pediatric Cardiology, Heart Center, Beijing Huaxin Hospital, The First Hospital of Tsinghua University, No. 6 Jiuxianqiao 1st Road, Chao Yang District, Beijing, 100016, China.
| | - He Jiang
- Medical Center, Tsinghua University, Beijing, 100084, China.,Department of Pediatric Cardiology, Heart Center, Beijing Huaxin Hospital, The First Hospital of Tsinghua University, No. 6 Jiuxianqiao 1st Road, Chao Yang District, Beijing, 100016, China
| | - Yan-Hui Li
- Medical Center, Tsinghua University, Beijing, 100084, China.,Department of Pediatric Cardiology, Heart Center, Beijing Huaxin Hospital, The First Hospital of Tsinghua University, No. 6 Jiuxianqiao 1st Road, Chao Yang District, Beijing, 100016, China
| | - Yan Zhang
- Medical Center, Tsinghua University, Beijing, 100084, China.,Department of Pediatric Cardiology, Heart Center, Beijing Huaxin Hospital, The First Hospital of Tsinghua University, No. 6 Jiuxianqiao 1st Road, Chao Yang District, Beijing, 100016, China
| | - Hai-Ju Liu
- Medical Center, Tsinghua University, Beijing, 100084, China.,Department of Pediatric Cardiology, Heart Center, Beijing Huaxin Hospital, The First Hospital of Tsinghua University, No. 6 Jiuxianqiao 1st Road, Chao Yang District, Beijing, 100016, China
| | - Hai-Yan Ge
- Medical Center, Tsinghua University, Beijing, 100084, China.,Department of Pediatric Cardiology, Heart Center, Beijing Huaxin Hospital, The First Hospital of Tsinghua University, No. 6 Jiuxianqiao 1st Road, Chao Yang District, Beijing, 100016, China
| | - Yi Zhang
- Medical Center, Tsinghua University, Beijing, 100084, China.,Department of Pediatric Cardiology, Heart Center, Beijing Huaxin Hospital, The First Hospital of Tsinghua University, No. 6 Jiuxianqiao 1st Road, Chao Yang District, Beijing, 100016, China
| | - Mei-Ting Li
- Medical Center, Tsinghua University, Beijing, 100084, China.,Department of Pediatric Cardiology, Heart Center, Beijing Huaxin Hospital, The First Hospital of Tsinghua University, No. 6 Jiuxianqiao 1st Road, Chao Yang District, Beijing, 100016, China
| |
Collapse
|
45
|
Transmural electrophysiological heterogeneity, the T-wave and ventricular arrhythmias. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:202-214. [DOI: 10.1016/j.pbiomolbio.2016.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/21/2016] [Accepted: 05/03/2016] [Indexed: 01/05/2023]
|
46
|
McKinnon D, Rosati B. Transmural gradients in ion channel and auxiliary subunit expression. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:165-186. [PMID: 27702655 DOI: 10.1016/j.pbiomolbio.2016.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/30/2016] [Indexed: 12/11/2022]
Abstract
Evolution has acted to shape the action potential in different regions of the heart in order to produce a maximally stable and efficient pump. This has been achieved by creating regional differences in ion channel expression levels within the heart as well as differences between equivalent cardiac tissues in different species. These region- and species-dependent differences in channel expression are established by regulatory evolution, evolution of the regulatory mechanisms that control channel expression levels. Ion channel auxiliary subunits are obvious targets for regulatory evolution, in order to change channel expression levels and/or modify channel function. This review focuses on the transmural gradients of ion channel expression in the heart and the role that regulation of auxiliary subunit expression plays in generating and shaping these gradients.
Collapse
Affiliation(s)
- David McKinnon
- Department of Veterans Affairs Medical Center, Northport, NY, USA; Institute of Molecular Cardiology, Stony Brook University, Stony Brook, NY, USA; Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Barbara Rosati
- Department of Veterans Affairs Medical Center, Northport, NY, USA; Institute of Molecular Cardiology, Stony Brook University, Stony Brook, NY, USA; Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
47
|
Veerman CC, Mengarelli I, Guan K, Stauske M, Barc J, Tan HL, Wilde AAM, Verkerk AO, Bezzina CR. hiPSC-derived cardiomyocytes from Brugada Syndrome patients without identified mutations do not exhibit clear cellular electrophysiological abnormalities. Sci Rep 2016; 6:30967. [PMID: 27485484 PMCID: PMC4971529 DOI: 10.1038/srep30967] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022] Open
Abstract
Brugada syndrome (BrS) is a rare cardiac rhythm disorder associated with sudden cardiac death. Mutations in the sodium channel gene SCN5A are found in ~20% of cases while mutations in other genes collectively account for <5%. In the remaining patients the genetic defect and the underlying pathogenic mechanism remain obscure. To provide insight into the mechanism of BrS in individuals without identified mutations, we here studied electrophysiological properties of cardiomyocytes (CMs) generated from human induced pluripotent stem cells (hiPSCs) from 3 BrS patients who tested negative for mutations in the known BrS-associated genes. Patch clamp studies revealed no differences in sodium current (INa) in hiPSC-CMs from the 3 BrS patients compared to 2 unrelated controls. Moreover, action potential upstroke velocity (Vmax), reflecting INa, was not different between hiPSC-CMs from the BrS patients and the controls. hiPSC-CMs harboring the BrS-associated SCN5A-1795insD mutation exhibited a reduction in both INa and Vmax, demonstrating our ability to detect reduced sodium channel function. hiPSC-CMs from one of the BrS lines demonstrated a mildly reduced action potential duration, however, the transient outward potassium current (Ito) and the L-type calcium current (ICa,L), both implicated in BrS, were not different compared to the controls. Our findings indicate that ion channel dysfunction, in particular in the cardiac sodium channel, may not be a prerequisite for BrS.
Collapse
Affiliation(s)
- Christiaan C Veerman
- Heart Centre, Department of Experimental and Clinical Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Isabella Mengarelli
- Heart Centre, Department of Experimental and Clinical Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kaomei Guan
- Department of Cardiology and Pneumonology, Georg-August-University Göttingen, Göttingen, Germany
| | - Michael Stauske
- Department of Cardiology and Pneumonology, Georg-August-University Göttingen, Göttingen, Germany
| | - Julien Barc
- Heart Centre, Department of Experimental and Clinical Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,l'institut du thorax, INSERM, CNRS, Université de Nantes, Nantes, France
| | - Hanno L Tan
- Heart Centre, Department of Experimental and Clinical Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Arthur A M Wilde
- Heart Centre, Department of Experimental and Clinical Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Arie O Verkerk
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Connie R Bezzina
- Heart Centre, Department of Experimental and Clinical Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
48
|
Molina CE, Heijman J, Dobrev D. Differences in Left Versus Right Ventricular Electrophysiological Properties in Cardiac Dysfunction and Arrhythmogenesis. Arrhythm Electrophysiol Rev 2016; 5:14-9. [PMID: 27403288 DOI: 10.15420/aer.2016.8.2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A wide range of ion channels, transporters, signaling pathways and tissue structure at a microscopic and macroscopic scale regulate the electrophysiological activity of the heart. Each region of the heart has optimised these properties based on its specific role during the cardiac cycle, leading to well-established differences in electrophysiology, Ca(2+) handling and tissue structure between atria and ventricles and between different layers of the ventricular wall. Similarly, the right ventricle (RV) and left ventricle (LV) have different embryological, structural, metabolic and electrophysiological features, but whether interventricular differences promote differential remodeling leading to arrhythmias is not well understood. In this article, we will summarise the available data on intrinsic differences between LV and RV electrophysiology and indicate how these differences affect cardiac function. Furthermore, we will discuss the differential remodeling of both chambers in pathological conditions and its potential impact on arrhythmogenesis.
Collapse
Affiliation(s)
- Cristina E Molina
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Jordi Heijman
- Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
49
|
Tan AY, Ellenbogen K. Ventricular Arrhythmias in Apparently Normal Hearts: Who Needs an Implantable Cardiac Defibrillator? Card Electrophysiol Clin 2016; 8:613-21. [PMID: 27521094 DOI: 10.1016/j.ccep.2016.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Idiopathic ventricular tachycardia is often considered a benign form of ventricular arrhythmia in patients without apparent structural heart disease. However, a subset of patients may develop malignant ventricular arrhythmias and present with syncope and sudden cardiac arrest. Survivors of cardiac arrest are candidates for implantable cardiac defibrillators (ICDs). The indications for ICDs in patients with less than a full-blown cardiac arrest presentation but with electrocardiographically high-risk ectopy features remain uncertain. This article addresses some of the uncertainties and pitfalls in ICD risk stratification in this patient group and explores potential mechanisms for malignant conversion of benign premature ventricular complexes to sustained arrhythmia.
Collapse
Affiliation(s)
- Alex Y Tan
- Electrophysiology Section, Division of Cardiology, Hunter Holmes McGuire VA Medical Center, 1201 Broad Rock Boulevard, Richmond, VA 23249, USA; VCU Pauley Heart Center, Medical College of Virginia, Virginia Commonwealth University School of Medicine, 1250 E Marshall Street, Richmond, VA 23298, USA.
| | - Kenneth Ellenbogen
- VCU Pauley Heart Center, Medical College of Virginia, Virginia Commonwealth University School of Medicine, 1250 E Marshall Street, Richmond, VA 23298, USA
| |
Collapse
|
50
|
Yao X, Gan Y, Marboe CC, Hendon CP. Myocardial imaging using ultrahigh-resolution spectral domain optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:61006. [PMID: 27001162 PMCID: PMC4814547 DOI: 10.1117/1.jbo.21.6.061006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/29/2016] [Indexed: 05/17/2023]
Abstract
We present an ultrahigh-resolution spectral domain optical coherence tomography (OCT) system in 800 nm with a low-noise supercontinuum source (SC) optimized for myocardial imaging. The system was demonstrated to have an axial resolution of 2.72 μm with a large imaging depth of 1.78 mm and a 6-dB falloff range of 0.89 mm. The lateral resolution (5.52 μm) was compromised to enhance the image penetration required for myocardial imaging. The noise of the SC source was analyzed extensively and an imaging protocol was proposed for SC-based OCT imaging with appreciable contrast. Three-dimensional datasets were acquired ex vivo on the endocardium side of tissue specimens from different chambers of fresh human and swine hearts. With the increased resolution and contrast, features such as elastic fibers, Purkinje fibers, and collagen fiber bundles were observed. The correlation between the structural information revealed in the OCT images and tissue pathology was discussed as well.
Collapse
Affiliation(s)
- Xinwen Yao
- Columbia University, Department of Electrical Engineering, 500 West 120th Street, New York, New York 10027, United States
| | - Yu Gan
- Columbia University, Department of Electrical Engineering, 500 West 120th Street, New York, New York 10027, United States
| | - Charles C Marboe
- Columbia University Medical Center, Department of Pathology and Cell Biology, 630 West 168th Street, New York, New York 10032, United States
| | - Christine P Hendon
- Columbia University, Department of Electrical Engineering, 500 West 120th Street, New York, New York 10027, United States
| |
Collapse
|