1
|
Wang X, Ge B, Miao C, Lee C, Romero JE, Li P, Wang F, Xu D, Chen M, Li D, Li D, Li M, Xu F, Li Y, Gong C, Taub CC, Yao J. Beyond conduction impairment: Unveiling the profound myocardial injury in left bundle branch block. Heart Rhythm 2024; 21:1370-1379. [PMID: 38490601 DOI: 10.1016/j.hrthm.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/09/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Left bundle branch block (LBBB) represents a frequently encountered conduction system disorder. Despite its widespread occurrence, a continual dilemma persists regarding its intricate association with underlying cardiomyopathy and its pivotal role in the initiation of dilated cardiomyopathy. The pathologic alterations linked to LBBB-induced cardiomyopathy (LBBB-CM) have remained elusive. OBJECTIVE This study sought to investigate the chronologic dynamics of LBBB to left ventricular dysfunction and the pathologic mechanism of LBBB-CM. METHODS LBBB model was established through main left bundle branch trunk ablation in 14 canines. All LBBB dogs underwent transesophageal echocardiography and electrocardiography before ablation and at 1 month, 3 months, 6 months, and 12 months after LBBB induction. Single-photon emission computed tomography imaging was performed at 12 months. We then harvested the heart from all LBBB dogs and 14 healthy adult dogs as normal controls for anatomic observation, Purkinje fiber staining, histologic staining, and connexin43 protein expression quantitation. RESULTS LBBB induction caused significant fibrotic changes in the endocardium and mid-myocardium. Purkinje fibers exhibited fatty degeneration, vacuolization, and fibrosis along with downregulated connexin43 protein expression. During a 12-month follow-up, left ventricular dysfunction progressively worsened, peaking at the end of the observation period. The association between myocardial dysfunction, hypoperfusion, and fibrosis was observed in the LBBB-afflicted canines. CONCLUSION LBBB may lead to profound myocardial injury beyond its conduction impairment effects. The temporal progression of left ventricular dysfunction and the pathologic alterations observed shed light on the complex relationship between LBBB and cardiomyopathy. These findings offer insights into potential mechanisms and clinical implications of LBBB-CM.
Collapse
Affiliation(s)
- Xiaoxian Wang
- Department of Ultrasound Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Beibei Ge
- Department of Ultrasound Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Changqing Miao
- Department of Cardiology, Jiangyin People's Hospital, Jiangyin, People's Republic of China
| | - Christopher Lee
- Department of Cardiology, University of California, San Francisco, California
| | - Jorge E Romero
- Cardiac Arrhythmia Service, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Peng Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Fang Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Di Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Minglong Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Dianfu Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Dong Li
- Harbor-UCLA Medical Center, Torrance, California
| | - Mingxia Li
- Department of Ultrasound Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Fang Xu
- Department of Ultrasound Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Yan Li
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Chanjuan Gong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Cynthia C Taub
- Department of Medicine, Upstate Medical University, Norton College of Medicine, Syracuse, New York
| | - Jing Yao
- Department of Ultrasound Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People's Republic of China; Medical Imaging Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People's Republic of China.
| |
Collapse
|
2
|
Camps J, Berg LA, Wang ZJ, Sebastian R, Riebel LL, Doste R, Zhou X, Sachetto R, Coleman J, Lawson B, Grau V, Burrage K, Bueno-Orovio A, Weber Dos Santos R, Rodriguez B. Digital twinning of the human ventricular activation sequence to Clinical 12-lead ECGs and magnetic resonance imaging using realistic Purkinje networks for in silico clinical trials. Med Image Anal 2024; 94:103108. [PMID: 38447244 DOI: 10.1016/j.media.2024.103108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
Cardiac in silico clinical trials can virtually assess the safety and efficacy of therapies using human-based modelling and simulation. These technologies can provide mechanistic explanations for clinically observed pathological behaviour. Designing virtual cohorts for in silico trials requires exploiting clinical data to capture the physiological variability in the human population. The clinical characterisation of ventricular activation and the Purkinje network is challenging, especially non-invasively. Our study aims to present a novel digital twinning pipeline that can efficiently generate and integrate Purkinje networks into human multiscale biventricular models based on subject-specific clinical 12-lead electrocardiogram and magnetic resonance recordings. Essential novel features of the pipeline are the human-based Purkinje network generation method, personalisation considering ECG R wave progression as well as QRS morphology, and translation from reduced-order Eikonal models to equivalent biophysically-detailed monodomain ones. We demonstrate ECG simulations in line with clinical data with clinical image-based multiscale models with Purkinje in four control subjects and two hypertrophic cardiomyopathy patients (simulated and clinical QRS complexes with Pearson's correlation coefficients > 0.7). Our methods also considered possible differences in the density of Purkinje myocardial junctions in the Eikonal-based inference as regional conduction velocities. These differences translated into regional coupling effects between Purkinje and myocardial models in the monodomain formulation. In summary, we demonstrate a digital twin pipeline enabling simulations yielding clinically consistent ECGs with clinical CMR image-based biventricular multiscale models, including personalised Purkinje in healthy and cardiac disease conditions.
Collapse
Affiliation(s)
- Julia Camps
- University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | - Ruben Doste
- University of Oxford, Oxford, United Kingdom
| | - Xin Zhou
- University of Oxford, Oxford, United Kingdom
| | - Rafael Sachetto
- Universidade Federal de São João del Rei, São João del Rei, MG, Brazil
| | | | - Brodie Lawson
- Queensland University of Technology, Brisbane, Australia
| | | | - Kevin Burrage
- University of Oxford, Oxford, United Kingdom; Queensland University of Technology, Brisbane, Australia
| | | | | | | |
Collapse
|
3
|
Li T, Marashly Q, Kim JA, Li N, Chelu MG. Cardiac conduction diseases: understanding the molecular mechanisms to uncover targets for future treatments. Expert Opin Ther Targets 2024; 28:385-400. [PMID: 38700451 PMCID: PMC11395937 DOI: 10.1080/14728222.2024.2351501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 05/01/2024] [Indexed: 05/05/2024]
Abstract
INTRODUCTION The cardiac conduction system (CCS) is crucial for maintaining adequate cardiac frequency at rest and modulation during exercise. Furthermore, the atrioventricular node and His-Purkinje system are essential for maintaining atrioventricular and interventricular synchrony and consequently maintaining an adequate cardiac output. AREAS COVERED In this review article, we examine the anatomy, physiology, and pathophysiology of the CCS. We then discuss in detail the most common genetic mutations and the molecular mechanisms of cardiac conduction disease (CCD) and provide our perspectives on future research and therapeutic opportunities in this field. EXPERT OPINION Significant advancement has been made in understanding the molecular mechanisms of CCD, including the recognition of the heterogeneous signaling at the subcellular levels of sinoatrial node, the involvement of inflammatory and autoimmune mechanisms, and the potential impact of epigenetic regulations on CCD. However, the current treatment of CCD manifested as bradycardia still relies primarily on cardiovascular implantable electronic devices (CIEDs). On the other hand, an If specific inhibitor was developed to treat inappropriate sinus tachycardia and sinus tachycardia in heart failure patients with reduced ejection fraction. More work is needed to translate current knowledge into pharmacologic or genetic interventions for the management of CCDs.
Collapse
Affiliation(s)
- Tingting Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Qussay Marashly
- Department of Cardiology, Montefiore Medical Center, New York, NY, USA
| | - Jitae A Kim
- Division of CardiovasculMedicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Na Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Mihail G Chelu
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine (Division of Cardiology), Baylor College of Medicine, Houston, TX, USA
- Division of Cardiology, Baylor St. Luke's Medical Center, Houston, TX, USA
- Division of Cardiology, Texas Heart Institute, Houston, TX, USA
| |
Collapse
|
4
|
Liu T, Li T, Xu D, Wang Y, Zhou Y, Wan J, Huang CLH, Tan X. Small-conductance calcium-activated potassium channels in the heart: expression, regulation and pathological implications. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220171. [PMID: 37122223 PMCID: PMC10150224 DOI: 10.1098/rstb.2022.0171] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/25/2022] [Indexed: 05/02/2023] Open
Abstract
Ca2+-activated K+ channels are critical to cellular Ca2+ homeostasis and excitability; they couple intracellular Ca2+ and membrane voltage change. Of these, the small, 4-14 pS, conductance SK channels include three, KCNN1-3 encoded, SK1/KCa2.1, SK2/KCa2.2 and SK3/KCa2.3, channel subtypes with characteristic, EC50 ∼ 10 nM, 40 pM, 1 nM, apamin sensitivities. All SK channels, particularly SK2 channels, are expressed in atrial, ventricular and conducting system cardiomyocytes. Pharmacological and genetic modification results have suggested that SK channel block or knockout prolonged action potential durations (APDs) and effective refractory periods (ERPs) particularly in atrial, but also in ventricular, and sinoatrial, atrioventricular node and Purkinje myocytes, correspondingly affect arrhythmic tendency. Additionally, mitochondrial SK channels may decrease mitochondrial Ca2+ overload and reactive oxygen species generation. SK channels show low voltage but marked Ca2+ dependences (EC50 ∼ 300-500 nM) reflecting their α-subunit calmodulin (CaM) binding domains, through which they may be activated by voltage-gated or ryanodine-receptor Ca2+ channel activity. SK function also depends upon complex trafficking and expression processes and associations with other ion channels or subunits from different SK subtypes. Atrial and ventricular clinical arrhythmogenesis may follow both increased or decreased SK expression through decreased or increased APD correspondingly accelerating and stabilizing re-entrant rotors or increasing incidences of triggered activity. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Ting Liu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Dandi Xu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Yan Wang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Yafei Zhou
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Juyi Wan
- Department of Cardiovascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Christopher L.-H. Huang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
- Physiological Laboratory and Department of Biochemistry, University of Cambridge, Cambridge CB2 3EG, UK
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| |
Collapse
|
5
|
Strocchi M, Gillette K, Neic A, Elliott MK, Wijesuriya N, Mehta V, Vigmond EJ, Plank G, Rinaldi CA, Niederer SA. Effect of scar and His-Purkinje and myocardium conduction on response to conduction system pacing. J Cardiovasc Electrophysiol 2023; 34:984-993. [PMID: 36738149 PMCID: PMC10089967 DOI: 10.1111/jce.15847] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Conduction system pacing (CSP), in the form of His bundle pacing (HBP) or left bundle branch pacing (LBBP), is emerging as a valuable cardiac resynchronization therapy (CRT) delivery method. However, patient selection and therapy personalization for CSP delivery remain poorly characterized. We aim to compare pacing-induced electrical synchrony during CRT, HBP, LBBP, HBP with left ventricular (LV) epicardial lead (His-optimized CRT [HOT-CRT]), and LBBP with LV epicardial lead (LBBP-optimized CRT [LOT-CRT]) in patients with different conduction disease presentations using computational modeling. METHODS We simulated ventricular activation on 24 four-chamber heart geometries, including His-Purkinje systems with proximal left bundle branch block (LBBB). We simulated septal scar, LV lateral wall scar, and mild and severe myocardium and LV His-Purkinje system conduction disease by decreasing the conduction velocity (CV) down to 70% and 35% of the healthy CV. Electrical synchrony was measured by the shortest interval to activate 90% of the ventricles (90% of biventricular activation time [BIVAT-90]). RESULTS Severe LV His-Purkinje conduction disease favored CRT (BIVAT-90: HBP 101.5 ± 7.8 ms vs. CRT 93.0 ± 8.9 ms, p < .05), with additional electrical synchrony induced by HOT-CRT (87.6 ± 6.7 ms, p < .05) and LOT-CRT (73.9 ± 7.6 ms, p < .05). Patients with slow myocardium CV benefit more from CSP compared to CRT (BIVAT-90: CRT 134.5 ± 24.1 ms; HBP 97.1 ± 9.9 ms, p < .01; LBBP: 101.5 ± 10.7 ms, p < .01). Septal but not lateral wall scar made CSP ineffective, while CRT was able to resynchronize the ventricles in the presence of septal scar (BIVAT-90: baseline 119.1 ± 10.8 ms vs. CRT 85.1 ± 14.9 ms, p < .01). CONCLUSION Severe LV His-Purkinje conduction disease attenuates the benefits of CSP, with additional improvements achieved with HOT-CRT and LOT-CRT. Septal but not lateral wall scars make CSP ineffective.
Collapse
Affiliation(s)
| | - Karli Gillette
- BioTechMed-Graz, Graz, Austria
- Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | | | - Mark K. Elliott
- King’s College London, London, UK
- Guy’s and St Thomas’ NHS Foundation trust, London, UK
| | - Nadeev Wijesuriya
- King’s College London, London, UK
- Guy’s and St Thomas’ NHS Foundation trust, London, UK
| | - Vishal Mehta
- King’s College London, London, UK
- Guy’s and St Thomas’ NHS Foundation trust, London, UK
| | - Edward J. Vigmond
- University of Bordeaux, CNRS, Bordeaux, Talence, France
- IHU Liryc, Bordeaux, Talence, France
| | - Gernot Plank
- BioTechMed-Graz, Graz, Austria
- Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | | | | |
Collapse
|
6
|
Rimskaya EM, Mironova NA, Sokolov SF, Golitsyn SP. [Left bundle branch block - dilated cardiomyopathy - heart failure: common links in the closed pathogenetic chain]. KARDIOLOGIIA 2023; 63:68-76. [PMID: 36880146 DOI: 10.18087/cardio.2023.2.n1773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/23/2021] [Indexed: 03/08/2023]
Abstract
This review summarizes the available information on the epidemiology and prognosis of patients with left bundle branch block (LBBB), morphological alterations of the myocardium both resulting in and ensuing LBBB, cardiac biomechanics in LBBB, and possibilities of its correction.
Collapse
Affiliation(s)
- E M Rimskaya
- Chazov National Medical Research Center of Cardiology
| | - N A Mironova
- Chazov National Medical Research Center of Cardiology
| | - S F Sokolov
- Chazov National Medical Research Center of Cardiology
| | - S P Golitsyn
- Chazov National Medical Research Center of Cardiology
| |
Collapse
|
7
|
Strocchi M, Gillette K, Neic A, Elliott MK, Wijesuriya N, Mehta V, Vigmond EJ, Plank G, Rinaldi CA, Niederer SA. Comparison between conduction system pacing and cardiac resynchronization therapy in right bundle branch block patients. Front Physiol 2022; 13:1011566. [PMID: 36213223 PMCID: PMC9532840 DOI: 10.3389/fphys.2022.1011566] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/29/2022] [Indexed: 11/20/2022] Open
Abstract
A significant number of right bundle branch block (RBBB) patients receive cardiac resynchronization therapy (CRT), despite lack of evidence for benefit in this patient group. His bundle (HBP) and left bundle pacing (LBP) are novel CRT delivery methods, but their effect on RBBB remains understudied. We aim to compare pacing-induced electrical synchrony during conventional CRT, HBP, and LBP in RBBB patients with different conduction disturbances, and to investigate whether alternative ways of delivering LBP improve response to pacing. We simulated ventricular activation on twenty-four four-chamber heart geometries each including a His-Purkinje system with proximal right bundle branch block (RBBB). We simulated RBBB combined with left anterior and posterior fascicular blocks (LAFB and LPFB). Additionally, RBBB was simulated in the presence of slow conduction velocity (CV) in the myocardium, left ventricular (LV) or right ventricular (RV) His-Purkinje system, and whole His-Purkinje system. Electrical synchrony was measured by the shortest interval to activate 90% of the ventricles (BIVAT-90). Compared to baseline, HBP significantly improved activation times for RBBB alone (BIVAT-90: 66.9 ± 5.5 ms vs. 42.6 ± 3.8 ms, p < 0.01), with LAFB (69.5 ± 5.0 ms vs. 58.1 ± 6.2 ms, p < 0.01), with LPFB (81.8 ± 6.6 ms vs. 62.9 ± 6.2 ms, p < 0.01), with slow myocardial CV (119.4 ± 11.4 ms vs. 97.2 ± 10.0 ms, p < 0.01) or slow CV in the whole His-Purkinje system (102.3 ± 7.0 ms vs. 75.5 ± 5.2 ms, p < 0.01). LBP was only effective in RBBB cases if combined with anodal capture of the RV septum myocardium (BIVAT-90: 66.9 ± 5.5 ms vs. 48.2 ± 5.2 ms, p < 0.01). CRT significantly reduced activation times in RBBB in the presence of severely slow RV His-Purkinje CV (95.1 ± 7.9 ms vs. 84.3 ± 9.3 ms, p < 0.01) and LPFB (81.8 ± 6.6 ms vs. CRT: 72.9 ± 8.6 ms, p < 0.01). Both CRT and HBP were ineffective with severely slow CV in the LV His-Purkinje system. HBP is effective in RBBB patients with otherwise healthy myocardium and Purkinje system, while CRT and LBP are ineffective. Response to LBP improves when LBP is combined with RV septum anodal capture. CRT is better than HBP only in patients with severely slow CV in the RV His-Purkinje system, while CV slowing of the whole His-Purkinje system and the myocardium favor HBP over CRT.
Collapse
Affiliation(s)
- Marina Strocchi
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Karli Gillette
- BioTechMed-Graz, Graz, Austria
- Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | | | - Mark K. Elliott
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Nadeev Wijesuriya
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Vishal Mehta
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | | | - Gernot Plank
- BioTechMed-Graz, Graz, Austria
- Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Christopher A. Rinaldi
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Steven A. Niederer
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
8
|
Abramochkin DV, Filatova TS, Pustovit KB, Voronina YA, Kuzmin VS, Vornanen M. Ionic currents underlying different patterns of electrical activity in working cardiac myocytes of mammals and non-mammalian vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2022; 268:111204. [PMID: 35346823 DOI: 10.1016/j.cbpa.2022.111204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/19/2022]
Abstract
The orderly contraction of the vertebrate heart is determined by generation and propagation of cardiac action potentials (APs). APs are generated by the integrated activity of time- and voltage-dependent ionic channels which carry inward Na+ and Ca2+ currents, and outward K+ currents. This review compares atrial and ventricular APs and underlying ion currents between different taxa of vertebrates. We have collected literature data and attempted to find common electrophysiological features for two or more vertebrate groups, show differences between taxa and cardiac chambers, and indicate gaps in the existing data. Although electrical excitability of the heart in all vertebrates is based on the same superfamily of channels, there is a vast variability of AP waveforms between atrial and ventricular myocytes, between different species of the same vertebrate class and between endothermic and ectothermic animals. The wide variability of AP shapes is related to species-specific differences in animal size, heart rate, stage of ontogenetic development, excitation-contraction coupling, temperature and oxygen availability. Some of the differences between taxa are related to evolutionary development of genomes, which appear e.g. in the expression of different Na+ and K+ channel orthologues in cardiomyocytes of vertebrates. There is a wonderful variability of AP shapes and underlying ion currents with which electrical excitability of vertebrate heart can be generated depending on the intrinsic and extrinsic conditions of animal body. This multitude of ionic mechanisms provides excellent material for studying how the function of the vertebrate heart can adapt or acclimate to prevailing physiological and environmental conditions.
Collapse
Affiliation(s)
- Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia.
| | - Tatiana S Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia
| | - Ksenia B Pustovit
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia
| | - Yana A Voronina
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia; Laboratory of Cardiac Electrophysiology, National Medical Research Center for Cardiology, 3(rd) Cherepkovskaya str., 15A, Moscow, Russia
| | - Vladislav S Kuzmin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia; Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova str., 1, Moscow, Russia
| | - Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
9
|
Jian K, Li C, Hancox JC, Zhang H. Pro-Arrhythmic Effects of Discontinuous Conduction at the Purkinje Fiber-Ventricle Junction Arising From Heart Failure-Induced Ionic Remodeling - Insights From Computational Modelling. Front Physiol 2022; 13:877428. [PMID: 35547576 PMCID: PMC9081695 DOI: 10.3389/fphys.2022.877428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 11/18/2022] Open
Abstract
Heart failure is associated with electrical remodeling of the electrical properties and kinetics of the ion channels and transporters that are responsible for cardiac action potentials. However, it is still unclear whether heart failure-induced ionic remodeling can affect the conduction of excitation waves at the Purkinje fiber-ventricle junction contributing to pro-arrhythmic effects of heart failure, as the complexity of the heart impedes a detailed experimental analysis. The aim of this study was to employ computational models to investigate the pro-arrhythmic effects of heart failure-induced ionic remodeling on the cardiac action potentials and excitation wave conduction at the Purkinje fiber-ventricle junction. Single cell models of canine Purkinje fiber and ventricular myocytes were developed for control and heart failure. These single cell models were then incorporated into one-dimensional strand and three-dimensional wedge models to investigate the effects of heart failure-induced remodeling on propagation of action potentials in Purkinje fiber and ventricular tissue and at the Purkinje fiber-ventricle junction. This revealed that heart failure-induced ionic remodeling of Purkinje fiber and ventricular tissue reduced conduction safety and increased tissue vulnerability to the genesis of the unidirectional conduction block. This was marked at the Purkinje fiber-ventricle junction, forming a potential substrate for the genesis of conduction failure that led to re-entry. This study provides new insights into proarrhythmic consequences of heart failure-induced ionic remodeling.
Collapse
Affiliation(s)
- Kun Jian
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Chen Li
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Jules C. Hancox
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, University Walk, Bristol, United Kingdom
| | - Henggui Zhang
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
10
|
Elsokkari I, Tsuji Y, Sapp JL, Nattel S. Recent insights into mechanisms and clinical approaches to electrical storm. Can J Cardiol 2021; 38:439-453. [PMID: 34979281 DOI: 10.1016/j.cjca.2021.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 12/14/2022] Open
Abstract
Electrical storm, characterized by repetitive ventricular tachycardia/fibrillation (VT/VF) over a short period, is becoming commoner with widespread use of implantable cardioverter-defibrillator (ICD) therapy. Electrical storm, sometimes called "arrhythmic storm" or "VT-storm", is usually a medical emergency requiring hospitalization and expert management, and significantly affects short- and long-term outcomes. This syndrome typically occurs in patients with underlying structural heart disease (ischemic or non-ischemic cardiomyopathy) or inherited channelopathies. Triggers for electrical storm should be sought but are often unidentifiable. Initial management is dictated by the hemodynamic status, while subsequent management typically involves ICD interrogation and reprogramming to reduce recurrent shocks, identification/management of triggers like electrolyte abnormalities, myocardial ischemia, or decompensated heart failure, and antiarrhythmic-drug therapy or catheter ablation. Sympathetic nervous system activation is central to the initiation and maintenance of arrhythmic storm, so autonomic modulation is a cornerstone of management. Sympathetic inhibition can be achieved with medications (particularly beta-adrenoreceptor blockers), deep sedation, or cardiac sympathetic denervation. More definitive management targets the underlying ventricular arrhythmia substrate to terminate and prevent recurrent arrhythmia. Arrhythmia targeting can be achieved with antiarrhythmic medications, catheter ablation or more novel therapies such as stereotactic radiation therapy that targets the arrhythmic substrate. Mechanistic studies point to adrenergic activation and other direct consequences of ICD-shocks in promoting further arrhythmogenesis and hypocontractility. Here, we review the pathophysiologic mechanisms, clinical features, prognosis, and therapeutic options for electrical storm. We also outline a clinical approach to this challenging and complex condition, along with its mechanistic basis.
Collapse
Affiliation(s)
- Ihab Elsokkari
- University of Sydney, Nepean Blue Mountains local health district, Australia
| | - Yukiomi Tsuji
- Department of Physiology of Visceral Function, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - John L Sapp
- Dalhousie University, Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada.
| | - Stanley Nattel
- Departments of Medicine and Research Center, Montreal Heart Institute and Université de Montréal and Pharmacology and Therapeutics McGill University, Montreal, Quebec, Canada; Institute of Pharmacology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany; IHU LIYRC Institute, Bordeaux, France.
| |
Collapse
|
11
|
Barber F, Langfield P, Lozano M, Garcia-Fernandez I, Duchateau J, Hocini M, Haissaguerre M, Vigmond E, Sebastian R. Estimation of Personalized Minimal Purkinje Systems From Human Electro-Anatomical Maps. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:2182-2194. [PMID: 33856987 DOI: 10.1109/tmi.2021.3073499] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Purkinje system is a heart structure responsible for transmitting electrical impulses through the ventricles in a fast and coordinated way to trigger mechanical contraction. Estimating a patient-specific compatible Purkinje Network from an electro-anatomical map is a challenging task, that could help to improve models for electrophysiology simulations or provide aid in therapy planning, such as radiofrequency ablation. In this study, we present a methodology to inversely estimate a Purkinje network from a patient's electro-anatomical map. First, we carry out a simulation study to assess the accuracy of the method for different synthetic Purkinje network morphologies and myocardial junction densities. Second, we estimate the Purkinje network from a set of 28 electro-anatomical maps from patients, obtaining an optimal conduction velocity in the Purkinje network of 1.95 ± 0.25 m/s, together with the location of their Purkinje-myocardial junctions, and Purkinje network structure. Our results showed an average local activation time error of 6.8±2.2 ms in the endocardium. Finally, using the personalized Purkinje network, we obtained correlations higher than 0.85 between simulated and clinical 12-lead ECGs.
Collapse
|
12
|
Logantha SJRJ, Cai XJ, Yanni J, Jones CB, Stephenson RS, Stuart L, Quigley G, Monfredi O, Nakao S, Oh IY, Starborg T, Kitmitto A, Vohra A, Hutcheon RC, Corno AF, Jarvis JC, Dobrzynski H, Boyett MR, Hart G. Remodeling of the Purkinje Network in Congestive Heart Failure in the Rabbit. Circ Heart Fail 2021; 14:e007505. [PMID: 34190577 PMCID: PMC8288482 DOI: 10.1161/circheartfailure.120.007505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Supplemental Digital Content is available in the text. Background: Purkinje fibers (PFs) control timing of ventricular conduction and play a key role in arrhythmogenesis in heart failure (HF) patients. We investigated the effects of HF on PFs. Methods: Echocardiography, electrocardiography, micro-computed tomography, quantitative polymerase chain reaction, immunohistochemistry, volume electron microscopy, and sharp microelectrode electrophysiology were used. Results: Congestive HF was induced in rabbits by left ventricular volume- and pressure-overload producing left ventricular hypertrophy, diminished fractional shortening and ejection fraction, and increased left ventricular dimensions. HF baseline QRS and corrected QT interval were prolonged by 17% and 21% (mean±SEMs: 303±6 ms HF, 249±11 ms control; n=8/7; P=0.0002), suggesting PF dysfunction and impaired ventricular repolarization. Micro-computed tomography imaging showed increased free-running left PF network volume and length in HF. mRNA levels for 40 ion channels, Ca2+-handling proteins, connexins, and proinflammatory and fibrosis markers were assessed: 50% and 35% were dysregulated in left and right PFs respectively, whereas only 12.5% and 7.5% changed in left and right ventricular muscle. Funny channels, Ca2+-channels, and K+-channels were significantly reduced in left PFs. Microelectrode recordings from left PFs revealed more negative resting membrane potential, reduced action potential upstroke velocity, prolonged duration (action potential duration at 90% repolarization: 378±24 ms HF, 249±5 ms control; n=23/38; P<0.0001), and arrhythmic events in HF. Similar electrical remodeling was seen at the left PF-ventricular junction. In the failing left ventricle, upstroke velocity and amplitude were increased, but action potential duration at 90% repolarization was unaffected. Conclusions: Severe volume- followed by pressure-overload causes rapidly progressing HF with extensive remodeling of PFs. The PF network is central to both arrhythmogenesis and contractile dysfunction and the pathological remodeling may increase the risk of fatal arrhythmias in HF patients.
Collapse
Affiliation(s)
- Sunil Jit R J Logantha
- Division of Cardiovascular Sciences (S.J.R.J.L., X.J.C., J.Y., L.S., G.Q., S.N., I.-Y.O., A.K., A.V., H.D., M.R.B., G.H.), University of Manchester, United Kingdom.,Liverpool Centre for Cardiovascular Science and Department of Cardiovascular and Metabolic Medicine (S.J.R.J.L.), University of Liverpool, United Kingdom
| | - Xue J Cai
- Division of Cardiovascular Sciences (S.J.R.J.L., X.J.C., J.Y., L.S., G.Q., S.N., I.-Y.O., A.K., A.V., H.D., M.R.B., G.H.), University of Manchester, United Kingdom
| | - Joseph Yanni
- Division of Cardiovascular Sciences (S.J.R.J.L., X.J.C., J.Y., L.S., G.Q., S.N., I.-Y.O., A.K., A.V., H.D., M.R.B., G.H.), University of Manchester, United Kingdom
| | - Caroline B Jones
- Alder Hey Children's National Health Service Foundation Trust, Liverpool, United Kingdom (C.B.J.)
| | - Robert S Stephenson
- School of Sport and Exercise Sciences, Liverpool John Moores University, United Kingdom (R.S.S., J.C.J.).,Institute of Clinical Sciences, University of Birmingham, United Kingdom (R.S.S.)
| | - Luke Stuart
- Division of Cardiovascular Sciences (S.J.R.J.L., X.J.C., J.Y., L.S., G.Q., S.N., I.-Y.O., A.K., A.V., H.D., M.R.B., G.H.), University of Manchester, United Kingdom.,Manchester University NHS Foundation Trust, United Kingdom (L.S.)
| | - Gillian Quigley
- Division of Cardiovascular Sciences (S.J.R.J.L., X.J.C., J.Y., L.S., G.Q., S.N., I.-Y.O., A.K., A.V., H.D., M.R.B., G.H.), University of Manchester, United Kingdom
| | - Oliver Monfredi
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville (O.M.).,Laboratory of Cardiovascular Medicine, National Institute on Aging, NIH Biomedical Research Center, Baltimore, MD (O.M.)
| | - Shu Nakao
- Division of Cardiovascular Sciences (S.J.R.J.L., X.J.C., J.Y., L.S., G.Q., S.N., I.-Y.O., A.K., A.V., H.D., M.R.B., G.H.), University of Manchester, United Kingdom.,Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kyoto, Japan (S.N.)
| | - Il-Young Oh
- Division of Cardiovascular Sciences (S.J.R.J.L., X.J.C., J.Y., L.S., G.Q., S.N., I.-Y.O., A.K., A.V., H.D., M.R.B., G.H.), University of Manchester, United Kingdom.,Department of Internal Medicine, Seoul National University Bundang Hospital, Republic of Korea (I.-Y.O.)
| | - Tobias Starborg
- Wellcome Centre for Cell Matrix Research (T.S.), University of Manchester, United Kingdom
| | - Ashraf Kitmitto
- Division of Cardiovascular Sciences (S.J.R.J.L., X.J.C., J.Y., L.S., G.Q., S.N., I.-Y.O., A.K., A.V., H.D., M.R.B., G.H.), University of Manchester, United Kingdom
| | - Akbar Vohra
- Division of Cardiovascular Sciences (S.J.R.J.L., X.J.C., J.Y., L.S., G.Q., S.N., I.-Y.O., A.K., A.V., H.D., M.R.B., G.H.), University of Manchester, United Kingdom
| | - Robert C Hutcheon
- Division of Clinical Sciences (R.C.H.), University of Liverpool, United Kingdom
| | - Antonio F Corno
- Memorial Hermann Children's Hospital, University of Texas Health, Houston (A.F.C.)
| | - Jonathan C Jarvis
- School of Sport and Exercise Sciences, Liverpool John Moores University, United Kingdom (R.S.S., J.C.J.)
| | - Halina Dobrzynski
- Division of Cardiovascular Sciences (S.J.R.J.L., X.J.C., J.Y., L.S., G.Q., S.N., I.-Y.O., A.K., A.V., H.D., M.R.B., G.H.), University of Manchester, United Kingdom.,Department of Anatomy, Jagiellonian University, Medical College, Cracow, Poland (H.D.)
| | - Mark R Boyett
- Division of Cardiovascular Sciences (S.J.R.J.L., X.J.C., J.Y., L.S., G.Q., S.N., I.-Y.O., A.K., A.V., H.D., M.R.B., G.H.), University of Manchester, United Kingdom
| | - George Hart
- Division of Cardiovascular Sciences (S.J.R.J.L., X.J.C., J.Y., L.S., G.Q., S.N., I.-Y.O., A.K., A.V., H.D., M.R.B., G.H.), University of Manchester, United Kingdom
| |
Collapse
|
13
|
Zhai X, Qiao X, Zhang L, Wang D, Zhang L, Feng Q, Wu B, Cao J, Liu Q. I K1 channel agonist zacopride suppresses ventricular arrhythmias in conscious rats with healing myocardial infarction. Life Sci 2019; 239:117075. [PMID: 31751587 DOI: 10.1016/j.lfs.2019.117075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 01/28/2023]
Abstract
AIMS Arrhythmogenesis of chronic myocardial infarction (MI) is associated with the prolongation of action potential, reduction of inward rectifier potassium (IK1, Kir) channels and hyper-activity of Calcium/calmodulin-dependent kinase II (CaMKII) in cardiomyocytes. Zacopride, a selective IK1 agonist, was applied to clarify the cardioprotection of IK1 agonism via a CaMKII signaling on arrhythmias post-MI. METHODS Male SD rats were implanted wireless transmitter in the abdominal cavity and subjected to left main coronary artery ligation or sham operation. The telemetric ECGs were monitored per day throughout 4 weeks. At the endpoint, isoproterenol (1.28 mg/kg, i.v.) was administered for provocation test. The expressions of Kir2.1 (dominant subunit of IK1 in ventricle) and CaMKII were detected by Western-blotting. KEY FINDINGS In the telemetric rats post-MI, zacopride significantly reduced the episodes of atrioventricular conduction block (AVB), premature ventricular contraction (PVC), ventricular tachycardia (VT) and ventricular fibrillation (VF), without significant effect on superventricular premature contraction (SPVC). In provocation test, zacopride suppressed the onset of ventricular arrhythmias in conscious PMI or sham rats. The expression of Kir2.1 was significantly downregulated and p-CaMKII was upregulated post-MI, whereas both were restored by zacopride treatment. SIGNIFICANCE IK1/Kir2.1 might be an attractive target for pharmacological controlling of lethal arrhythmias post MI.
Collapse
Affiliation(s)
- Xuwen Zhai
- Clinical Skills Teaching Simulation Hospital, Shanxi Medical University, Taiyuan, China
| | - Xi Qiao
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, China
| | - Li Zhang
- Clinical Laboratory, Children's Hospital of Shanxi, Taiyuan, China
| | - Dongming Wang
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lijun Zhang
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, China
| | - Qilong Feng
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan 030001, China; Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Bowei Wu
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan 030001, China; Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan 030001, China; Department of Physiology, Shanxi Medical University, Taiyuan 030001, China.
| | - Qinghua Liu
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
14
|
Ji CC, Yao FJ, Cheng YJ, Yao H, Fan J, Chen XM, Zheng ZH, Dong YG, Wu SH. A novel DPP6 variant in Chinese families causes early repolarization syndrome. Exp Cell Res 2019; 384:111561. [PMID: 31476289 DOI: 10.1016/j.yexcr.2019.111561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 11/15/2022]
Abstract
Previous studies demonstrated that variants in dipeptidyl aminopeptidase-like protein-6 (DPP6) are involved in idiopathic ventricular fibrillation. However, its role in early repolarization syndrome (ERS) remains largely elusive. The aim of this study is to determine whether the novel DPP6-L747P variant is associated with ERS, and explore the underlying mechanisms. In our study, whole genome sequencing was used to identify a genetic variant in 4 Chinese families with sudden cardiac arrest induced by ERS. Then, wild-type (WT) DPP6 or mutant (c.2240T > C/p.L747P) DPP6 were respectively expressed in HEK293 cells, co-expressed with KV4.3 and KChIP2. Western blotting, immunofluorescence, and whole-cell patch clamp experiments were performed to reveal possible underlying mechanisms. A novel missense variant (c.2240T > C/p.L747P) in DPP6 was identified in the 4 families. Both DPP6-WT and DPP6-L747P were mainly located on the cell membrane. Compared with DPP6-WT, the intensity of DPP6 protein bands was downregulated in DPP6-L747P. Functional experiments showed that macroscopic currents exhibited an increase in DPP6-L747P, and the current intensity of DPP6-L747P was increased more than that of DPP6-WT (63.1 ± 8.2 pA/pF vs.86.5 ± 15.1 pA/pF at +50 mV, P < 0.05). Compared with DPP6-WT, the slope of the activation curve of DPP6-L747P was slightly decreased (15.49 ± 0.56 mV vs. 13.88 ± 0.54 mV, P < 0.05), the slope of the inactivation curve was increased (13.65 ± 1.57 mV, vs. 24.44 ± 2.79 mV, P < 0.05) and the recovery time constant was significantly reduced (216.81 ± 18.59 ms vs. 102.11 ± 32.03 ms, P < 0.05). In conclusion, we identified a novel missense variant (c.2240T > C/p. L747P) in DPP6 in 4 Chinese families with sudden cardiac arrest induced by ERS. Patch clamp experiments revealed that this variant could generate a gain of function of Ito and affect the potassium current. These results demonstrated that changes caused by the variant may be the underlying mechanisms of malignant arrhythmias in the individuals with ERS.
Collapse
Affiliation(s)
- Cheng-Cheng Ji
- Department of Cardiology and Department of Medical Ultrasonics (Feng-Juan, Yao), the First Affiliated Hospital, Sun Yat-Sen University, and Key Laboratory of Assisted Circulation, NHC, Guangzhou, China
| | - Feng-Juan Yao
- Department of Cardiology and Department of Medical Ultrasonics (Feng-Juan, Yao), the First Affiliated Hospital, Sun Yat-Sen University, and Key Laboratory of Assisted Circulation, NHC, Guangzhou, China
| | - Yun-Jiu Cheng
- Department of Cardiology and Department of Medical Ultrasonics (Feng-Juan, Yao), the First Affiliated Hospital, Sun Yat-Sen University, and Key Laboratory of Assisted Circulation, NHC, Guangzhou, China
| | - Hao Yao
- Department of Cardiology and Department of Medical Ultrasonics (Feng-Juan, Yao), the First Affiliated Hospital, Sun Yat-Sen University, and Key Laboratory of Assisted Circulation, NHC, Guangzhou, China
| | - Jun Fan
- Department of Cardiology and Department of Medical Ultrasonics (Feng-Juan, Yao), the First Affiliated Hospital, Sun Yat-Sen University, and Key Laboratory of Assisted Circulation, NHC, Guangzhou, China
| | - Xu-Miao Chen
- Department of Cardiology and Department of Medical Ultrasonics (Feng-Juan, Yao), the First Affiliated Hospital, Sun Yat-Sen University, and Key Laboratory of Assisted Circulation, NHC, Guangzhou, China
| | - Zi-Heng Zheng
- Department of Cardiology and Department of Medical Ultrasonics (Feng-Juan, Yao), the First Affiliated Hospital, Sun Yat-Sen University, and Key Laboratory of Assisted Circulation, NHC, Guangzhou, China
| | - Yu-Gang Dong
- Department of Cardiology and Department of Medical Ultrasonics (Feng-Juan, Yao), the First Affiliated Hospital, Sun Yat-Sen University, and Key Laboratory of Assisted Circulation, NHC, Guangzhou, China.
| | - Su-Hua Wu
- Department of Cardiology and Department of Medical Ultrasonics (Feng-Juan, Yao), the First Affiliated Hospital, Sun Yat-Sen University, and Key Laboratory of Assisted Circulation, NHC, Guangzhou, China.
| |
Collapse
|
15
|
Xue J, Yan X, Yang Y, Chen M, Wu L, Gou Z, Sun Z, Talabieke S, Zheng Y, Luo D. Connexin 43 dephosphorylation contributes to arrhythmias and cardiomyocyte apoptosis in ischemia/reperfusion hearts. Basic Res Cardiol 2019; 114:40. [DOI: 10.1007/s00395-019-0748-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022]
|
16
|
Sun Z, Yang Y, Wu L, Talabieke S, You H, Zheng Y, Luo D. Connexin 43-serine 282 modulates serine 279 phosphorylation in cardiomyocytes. Biochem Biophys Res Commun 2019; 513:567-572. [PMID: 30981509 DOI: 10.1016/j.bbrc.2019.04.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 12/21/2022]
Abstract
Connexin 43 (Cx43) phosphorylation plays a pivotal role in cardiac electrical and contractile performance. In a previous study we have found that Cx43 phosphorylation at serine 282 (pS282) regulates cardiomyocyte survival. Considering that both sites are altered simultaneously in many studies, we designed this study to identify the status of S279 phosphorylation upon pS282 manipulation. In heterozygous mice with S282 gene substituted with alanine (S282A), we found ventricular arrhythmias with inhibition of Cx43 phosphorylation at both S282 and S279 in the hearts. In cultured neonatal rat ventricular myocytes (NRVMs), transfection of virus carrying S282A mutant also blocked Cx43 phosphorylation at both S279/282 and gap junction coupling, while expression of wild-type Cx43 or S279A did not. Further, NRVMs transfected with S282 phospho-mimicking mutant substituted with aspartate or treated with ATP exhibited promotions of Cx43 phosphorylation at S279/282 and intercellular communication. Therefore, this study demonstrated a regulatory role of Cx43-S282 on S279 phosphorylation in cardiomyocytes, and suggested an involvement of S279 in the Cx43-S282 mediated cardiomyocyte homeostasis.
Collapse
Affiliation(s)
- Zhipeng Sun
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Yutong Yang
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Lulin Wu
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Shaletanati Talabieke
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Hongjie You
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Yuanyuan Zheng
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Dali Luo
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
17
|
Connexin43 dephosphorylation at serine 282 is associated with connexin43-mediated cardiomyocyte apoptosis. Cell Death Differ 2019; 26:1332-1345. [PMID: 30770876 DOI: 10.1038/s41418-019-0277-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
Gap junction protein connexin 43 (Cx43) plays an important role in regulating cardiomyocyte survival in addition to regulating electrical coordination. Cx43 dephosphorylation, found in severe cardiac pathologies, is thought to contribute to myocardial injury. However, the mechanisms underlying Cx43 mediation of cell survival and myocardial lesions remain unknown. Here, we found that transfecting an adenovirus carrying a mutant gene of Cx43-serine 282 substituted with alanine (S282A) into neonatal rat ventricular myocytes (NRVMs) induced cell apoptosis and Ca2+ transient desynchronization, whereas using gap junction inhibitor or knocking down Cx43 expression with Cx43-miRNA caused uncoupled Ca2+ signaling without cell death. Similarly, while Cx43-S282A+/+ failed in generation, Cx43-S282A+/- mice exhibited cardiomyocyte apoptosis and ventricular arrhythmias dependent on S282 dephosphorylation. Further, Cx43 dephosphorylation at S282 activated p38 mitogen-activated protein kinase (p38 MAPK), factor-associated suicide and the caspase-8 apoptotic pathway by physically interacting with p38 MAPK. These findings uncovered a specific Cx43 phosphorylation residue involved in regulating cardiomyocyte homeostasis. S282 phosphorylation deficiency acts as a trigger inducing cardiomyocyte apoptosis and cardiac arrhythmias, providing a potential mechanism for Cx43-mediated myocardial injury in severe cardiac diseases.
Collapse
|
18
|
Raymond-Paquin A, Nattel S, Wakili R, Tadros R. Mechanisms and Clinical Significance of Arrhythmia-Induced Cardiomyopathy. Can J Cardiol 2018; 34:1449-1460. [DOI: 10.1016/j.cjca.2018.07.475] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/16/2018] [Accepted: 07/27/2018] [Indexed: 12/26/2022] Open
|
19
|
Nguyên UC, Verzaal NJ, van Nieuwenhoven FA, Vernooy K, Prinzen FW. Pathobiology of cardiac dyssynchrony and resynchronization therapy. Europace 2018; 20:1898-1909. [DOI: 10.1093/europace/euy035] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/16/2018] [Indexed: 02/04/2023] Open
Affiliation(s)
- Uyên Châu Nguyên
- Department of Physiology, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, ER Maastricht, The Netherlands
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, ER Maastricht, The Netherlands
| | - Nienke J Verzaal
- Department of Physiology, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, ER Maastricht, The Netherlands
| | - Frans A van Nieuwenhoven
- Department of Physiology, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, ER Maastricht, The Netherlands
| | - Kevin Vernooy
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, ER Maastricht, The Netherlands
| | - Frits W Prinzen
- Department of Physiology, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, ER Maastricht, The Netherlands
| |
Collapse
|
20
|
Exclusion of alternative exon 33 of Ca V1.2 calcium channels in heart is proarrhythmogenic. Proc Natl Acad Sci U S A 2017; 114:E4288-E4295. [PMID: 28490495 DOI: 10.1073/pnas.1617205114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Alternative splicing changes the CaV1.2 calcium channel electrophysiological property, but the in vivo significance of such altered channel function is lacking. Structure-function studies of heterologously expressed CaV1.2 channels could not recapitulate channel function in the native milieu of the cardiomyocyte. To address this gap in knowledge, we investigated the role of alternative exon 33 of the CaV1.2 calcium channel in heart function. Exclusion of exon 33 in CaV1.2 channels has been reported to shift the activation potential -10.4 mV to the hyperpolarized direction, and increased expression of CaV1.2Δ33 channels was observed in rat myocardial infarcted hearts. However, how a change in CaV1.2 channel electrophysiological property, due to alternative splicing, might affect cardiac function in vivo is unknown. To address these questions, we generated mCacna1c exon 33-/--null mice. These mice contained CaV1.2Δ33 channels with a gain-of-function that included conduction of larger currents that reflects a shift in voltage dependence and a modest increase in single-channel open probability. This altered channel property underscored the development of ventricular arrhythmia, which is reflected in significantly more deaths of exon 33-/- mice from β-adrenergic stimulation. In vivo telemetric recordings also confirmed increased frequencies in premature ventricular contractions, tachycardia, and lengthened QT interval. Taken together, the significant decrease or absence of exon 33-containing CaV1.2 channels is potentially proarrhythmic in the heart. Of clinical relevance, human ischemic and dilated cardiomyopathy hearts showed increased inclusion of exon 33. However, the possible role that inclusion of exon 33 in CaV1.2 channels may play in the pathogenesis of human heart failure remains unclear.
Collapse
|
21
|
Maass K, Shekhar A, Lu J, Kang G, See F, Kim EE, Delgado C, Shen S, Cohen L, Fishman GI. Isolation and characterization of embryonic stem cell-derived cardiac Purkinje cells. Stem Cells 2016; 33:1102-12. [PMID: 25524238 DOI: 10.1002/stem.1921] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 12/16/2022]
Abstract
The cardiac Purkinje fiber network is composed of highly specialized cardiomyocytes responsible for the synchronous excitation and contraction of the ventricles. Computational modeling, experimental animal studies, and intracardiac electrical recordings from patients with heritable and acquired forms of heart disease suggest that Purkinje cells (PCs) may also serve as critical triggers of life-threatening arrhythmias. Nonetheless, owing to the difficulty in isolating and studying this rare population of cells, the precise role of PC in arrhythmogenesis and the underlying molecular mechanisms responsible for their proarrhythmic behavior are not fully characterized. Conceptually, a stem cell-based model system might facilitate studies of PC-dependent arrhythmia mechanisms and serve as a platform to test novel therapeutics. Here, we describe the generation of murine embryonic stem cells (ESC) harboring pan-cardiomyocyte and PC-specific reporter genes. We demonstrate that the dual reporter gene strategy may be used to identify and isolate the rare ESC-derived PC (ESC-PC) from a mixed population of cardiogenic cells. ESC-PC display transcriptional signatures and functional properties, including action potentials, intracellular calcium cycling, and chronotropic behavior comparable to endogenous PC. Our results suggest that stem-cell derived PC are a feasible new platform for studies of developmental biology, disease pathogenesis, and screening for novel antiarrhythmic therapies.
Collapse
Affiliation(s)
- Karen Maass
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Huo R, Sheng Y, Guo WT, Dong DL. The potential role of Kv4.3 K+ channel in heart hypertrophy. Channels (Austin) 2015; 8:203-9. [PMID: 24762397 DOI: 10.4161/chan.28972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Transient outward K+ current (I(to)) plays a crucial role in the early phase of cardiac action potential repolarization. Kv4.3 K(+) channel is an important component of I(to). The function and expression of Kv4.3 K(+) channel decrease in variety of heart diseases, especially in heart hypertrophy/heart failure. Int his review, we summarized the changes of cardiac Kv4.3 K(+) channel in heart diseases and discussed the potential role of Kv4.3 K(+) channel in heart hypertrophy/heart failure. In heart hypertrophy/heart failure of mice and rats, down regulation of Kv4.3 K(+) channel leads to prolongation of action potential duration (APD), which is associated with increased [Ca(2+)](I), activation of calcineurin and heart hypertrophy/heart failure.However, in canine and human, Kv4.3 K(+) channel does not play a major role in setting cardiac APD. So, in addition to Kv4.3 K(+) channel/APD/[Ca(2+)](I) pathway, there exits another mechanism of Kv4.3 K(+) channel in heart hypertrophy and heart failure: downregulation of Kv4.3 K(+) channels leads to CaMKII dissociation from Kv4.3–CaMKII complex and subsequent activation of the dissociated CaMKII , which induces heart hypertrophy/heart failure. Upregulation of Kv4.3K(+) channel inhibits CaMKII activation and its related harmful consequences. We put forward a new point-of-view that Kv4.3 K(+) channel is involved in heart hypertrophy/heart failure independently of its electric function, and drugs inhibiting or upregulating Kv4.3 K(+) channel might be potentially harmful or beneficial to hearts through CaMKII.
Collapse
|
24
|
Sturm AC, Kline CF, Glynn P, Johnson BL, Curran J, Kilic A, Higgins RSD, Binkley PF, Janssen PML, Weiss R, Raman SV, Fowler SJ, Priori SG, Hund TJ, Carnes CA, Mohler PJ. Use of whole exome sequencing for the identification of Ito-based arrhythmia mechanism and therapy. J Am Heart Assoc 2015; 4:JAHA.114.001762. [PMID: 26015324 PMCID: PMC4599408 DOI: 10.1161/jaha.114.001762] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Identified genetic variants are insufficient to explain all cases of inherited arrhythmia. We tested whether the integration of whole exome sequencing with well-established clinical, translational, and basic science platforms could provide rapid and novel insight into human arrhythmia pathophysiology and disease treatment. METHODS AND RESULTS We report a proband with recurrent ventricular fibrillation, resistant to standard therapeutic interventions. Using whole-exome sequencing, we identified a variant in a previously unidentified exon of the dipeptidyl aminopeptidase-like protein-6 (DPP6) gene. This variant is the first identified coding mutation in DPP6 and augments cardiac repolarizing current (Ito) causing pathological changes in Ito and action potential morphology. We designed a therapeutic regimen incorporating dalfampridine to target Ito. Dalfampridine, approved for multiple sclerosis, normalized the ECG and reduced arrhythmia burden in the proband by >90-fold. This was combined with cilostazol to accelerate the heart rate to minimize the reverse-rate dependence of augmented Ito. CONCLUSIONS We describe a novel arrhythmia mechanism and therapeutic approach to ameliorate the disease. Specifically, we identify the first coding variant of DPP6 in human ventricular fibrillation. These findings illustrate the power of genetic approaches for the elucidation and treatment of disease when carefully integrated with clinical and basic/translational research teams.
Collapse
Affiliation(s)
- Amy C Sturm
- The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University College of Engineering, Columbus, OH (A.C.S., C.F.K., P.G., B.L.J., J.C., A.K., R.D.H., P.F.B., P.L.J., R.W., S.V.R., T.J.H., C.A.C., P.J.M.) Department of Internal Medicine, The Ohio State University Wexner Medical Center, The Ohio State University College of Engineering, Columbus, OH (A.C.S., P.F.B., R.W., S.V.R., T.J.H., P.J.M.)
| | - Crystal F Kline
- The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University College of Engineering, Columbus, OH (A.C.S., C.F.K., P.G., B.L.J., J.C., A.K., R.D.H., P.F.B., P.L.J., R.W., S.V.R., T.J.H., C.A.C., P.J.M.) Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, The Ohio State University College of Engineering, Columbus, OH (C.F.K., J.C., P.L.J., P.J.M.)
| | - Patric Glynn
- The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University College of Engineering, Columbus, OH (A.C.S., C.F.K., P.G., B.L.J., J.C., A.K., R.D.H., P.F.B., P.L.J., R.W., S.V.R., T.J.H., C.A.C., P.J.M.) Department of Surgery, The Ohio State University Wexner Medical Center, The Ohio State University College of Engineering, Columbus, OH (P.G., A.K., R.D.H.)
| | - Benjamin L Johnson
- The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University College of Engineering, Columbus, OH (A.C.S., C.F.K., P.G., B.L.J., J.C., A.K., R.D.H., P.F.B., P.L.J., R.W., S.V.R., T.J.H., C.A.C., P.J.M.)
| | - Jerry Curran
- The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University College of Engineering, Columbus, OH (A.C.S., C.F.K., P.G., B.L.J., J.C., A.K., R.D.H., P.F.B., P.L.J., R.W., S.V.R., T.J.H., C.A.C., P.J.M.) Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, The Ohio State University College of Engineering, Columbus, OH (C.F.K., J.C., P.L.J., P.J.M.)
| | - Ahmet Kilic
- The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University College of Engineering, Columbus, OH (A.C.S., C.F.K., P.G., B.L.J., J.C., A.K., R.D.H., P.F.B., P.L.J., R.W., S.V.R., T.J.H., C.A.C., P.J.M.) Department of Surgery, The Ohio State University Wexner Medical Center, The Ohio State University College of Engineering, Columbus, OH (P.G., A.K., R.D.H.)
| | - Robert S D Higgins
- The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University College of Engineering, Columbus, OH (A.C.S., C.F.K., P.G., B.L.J., J.C., A.K., R.D.H., P.F.B., P.L.J., R.W., S.V.R., T.J.H., C.A.C., P.J.M.) Department of Surgery, The Ohio State University Wexner Medical Center, The Ohio State University College of Engineering, Columbus, OH (P.G., A.K., R.D.H.)
| | - Philip F Binkley
- The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University College of Engineering, Columbus, OH (A.C.S., C.F.K., P.G., B.L.J., J.C., A.K., R.D.H., P.F.B., P.L.J., R.W., S.V.R., T.J.H., C.A.C., P.J.M.) Department of Internal Medicine, The Ohio State University Wexner Medical Center, The Ohio State University College of Engineering, Columbus, OH (A.C.S., P.F.B., R.W., S.V.R., T.J.H., P.J.M.)
| | - Paul M L Janssen
- The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University College of Engineering, Columbus, OH (A.C.S., C.F.K., P.G., B.L.J., J.C., A.K., R.D.H., P.F.B., P.L.J., R.W., S.V.R., T.J.H., C.A.C., P.J.M.) Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, The Ohio State University College of Engineering, Columbus, OH (C.F.K., J.C., P.L.J., P.J.M.)
| | - Raul Weiss
- The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University College of Engineering, Columbus, OH (A.C.S., C.F.K., P.G., B.L.J., J.C., A.K., R.D.H., P.F.B., P.L.J., R.W., S.V.R., T.J.H., C.A.C., P.J.M.) Department of Internal Medicine, The Ohio State University Wexner Medical Center, The Ohio State University College of Engineering, Columbus, OH (A.C.S., P.F.B., R.W., S.V.R., T.J.H., P.J.M.)
| | - Subha V Raman
- The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University College of Engineering, Columbus, OH (A.C.S., C.F.K., P.G., B.L.J., J.C., A.K., R.D.H., P.F.B., P.L.J., R.W., S.V.R., T.J.H., C.A.C., P.J.M.) Department of Internal Medicine, The Ohio State University Wexner Medical Center, The Ohio State University College of Engineering, Columbus, OH (A.C.S., P.F.B., R.W., S.V.R., T.J.H., P.J.M.)
| | - Steven J Fowler
- Cardiovascular Genetics Program, Clinical Cardiac Electrophysiology, New York University Langone Medical Center, New York, NY (S.J.F., S.G.P.) Leon H. Charney Division of Cardiology, New York University Langone Medical Center, New York, NY (S.J.F.)
| | - Silvia G Priori
- Cardiovascular Genetics Program, Clinical Cardiac Electrophysiology, New York University Langone Medical Center, New York, NY (S.J.F., S.G.P.) Molecular Cardiology, IRCCS Fondazione Salvatore Maugeri, University of Pavia, Italy (S.G.P.) Department of Cardiology, University of Pavia, Italy (S.G.P.)
| | - Thomas J Hund
- The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University College of Engineering, Columbus, OH (A.C.S., C.F.K., P.G., B.L.J., J.C., A.K., R.D.H., P.F.B., P.L.J., R.W., S.V.R., T.J.H., C.A.C., P.J.M.) Department of Internal Medicine, The Ohio State University Wexner Medical Center, The Ohio State University College of Engineering, Columbus, OH (A.C.S., P.F.B., R.W., S.V.R., T.J.H., P.J.M.) Department of Biomedical Engineering, The Ohio State University, Columbus, OH (T.J.H.)
| | - Cynthia A Carnes
- The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University College of Engineering, Columbus, OH (A.C.S., C.F.K., P.G., B.L.J., J.C., A.K., R.D.H., P.F.B., P.L.J., R.W., S.V.R., T.J.H., C.A.C., P.J.M.) College of Pharmacy, Columbus, OH (C.A.C.)
| | - Peter J Mohler
- The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University College of Engineering, Columbus, OH (A.C.S., C.F.K., P.G., B.L.J., J.C., A.K., R.D.H., P.F.B., P.L.J., R.W., S.V.R., T.J.H., C.A.C., P.J.M.) Department of Internal Medicine, The Ohio State University Wexner Medical Center, The Ohio State University College of Engineering, Columbus, OH (A.C.S., P.F.B., R.W., S.V.R., T.J.H., P.J.M.) Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, The Ohio State University College of Engineering, Columbus, OH (C.F.K., J.C., P.L.J., P.J.M.)
| |
Collapse
|
25
|
Abstract
Patients with heart failure and decreased function frequently develop discoordinate contraction because of electric activation delay. Often termed dyssynchrony, this further decreases systolic function and chamber efficiency and worsens morbidity and mortality. In the mid- 1990s, a pacemaker-based treatment termed cardiac resynchronization therapy (CRT) was developed to restore mechanical synchrony by electrically activating both right and left sides of the heart. It is a major therapeutic advance for the new millennium. Acute chamber effects of CRT include increased cardiac output and mechanical efficiency and reduced mitral regurgitation, whereas reduction in chamber volumes ensues more chronically. Patient candidates for CRT have a prolonged QRS duration and discoordinate wall motion, although other factors may also be important because ≈30% of such selected subjects do not respond to the treatment. In contrast to existing pharmacological inotropes, CRT both acutely and chronically increases cardiac systolic function and work, yet it also reduces long-term mortality. Recent studies reveal unique molecular and cellular changes from CRT that may also contribute to this success. Heart failure with dyssynchrony displays decreased myocyte and myofilament function, calcium handling, β-adrenergic responsiveness, mitochondrial ATP synthase activity, cell survival signaling, and other changes. CRT reverses many of these abnormalities often by triggering entirely new pathways. In this review, we discuss chamber, circulatory, and basic myocardial effects of dyssynchrony and CRT in the failing heart, and we highlight new research aiming to better target and implement CRT, as well as leverage its molecular effects.
Collapse
Affiliation(s)
- Jonathan A Kirk
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
26
|
Dobrzynski H, Anderson RH, Atkinson A, Borbas Z, D'Souza A, Fraser JF, Inada S, Logantha SJRJ, Monfredi O, Morris GM, Moorman AFM, Nikolaidou T, Schneider H, Szuts V, Temple IP, Yanni J, Boyett MR. Structure, function and clinical relevance of the cardiac conduction system, including the atrioventricular ring and outflow tract tissues. Pharmacol Ther 2013; 139:260-88. [PMID: 23612425 DOI: 10.1016/j.pharmthera.2013.04.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 01/01/2023]
Abstract
It is now over 100years since the discovery of the cardiac conduction system, consisting of three main parts, the sinus node, the atrioventricular node and the His-Purkinje system. The system is vital for the initiation and coordination of the heartbeat. Over the last decade, immense strides have been made in our understanding of the cardiac conduction system and these recent developments are reviewed here. It has been shown that the system has a unique embryological origin, distinct from that of the working myocardium, and is more extensive than originally thought with additional structures: atrioventricular rings, a third node (so called retroaortic node) and pulmonary and aortic sleeves. It has been shown that the expression of ion channels, intracellular Ca(2+)-handling proteins and gap junction channels in the system is specialised (different from that in the ordinary working myocardium), but appropriate to explain the functioning of the system, although there is continued debate concerning the ionic basis of pacemaking. We are beginning to understand the mechanisms (fibrosis and remodelling of ion channels and related proteins) responsible for dysfunction of the system (bradycardia, heart block and bundle branch block) associated with atrial fibrillation and heart failure and even athletic training. Equally, we are beginning to appreciate how naturally occurring mutations in ion channels cause congenital cardiac conduction system dysfunction. Finally, current therapies, the status of a new therapeutic strategy (use of a specific heart rate lowering drug) and a potential new therapeutic strategy (biopacemaking) are reviewed.
Collapse
|
27
|
Jost N, Virág L, Comtois P, Ordög B, Szuts V, Seprényi G, Bitay M, Kohajda Z, Koncz I, Nagy N, Szél T, Magyar J, Kovács M, Puskás LG, Lengyel C, Wettwer E, Ravens U, Nánási PP, Papp JG, Varró A, Nattel S. Ionic mechanisms limiting cardiac repolarization reserve in humans compared to dogs. J Physiol 2013; 591:4189-206. [PMID: 23878377 DOI: 10.1113/jphysiol.2013.261198] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The species-specific determinants of repolarization are poorly understood. This study compared the contribution of various currents to cardiac repolarization in canine and human ventricle. Conventional microelectrode, whole-cell patch-clamp, molecular biological and mathematical modelling techniques were used. Selective IKr block (50-100 nmol l(-1) dofetilide) lengthened AP duration at 90% of repolarization (APD90) >3-fold more in human than dog, suggesting smaller repolarization reserve in humans. Selective IK1 block (10 μmol l(-1) BaCl2) and IKs block (1 μmol l(-1) HMR-1556) increased APD90 more in canine than human right ventricular papillary muscle. Ion current measurements in isolated cardiomyocytes showed that IK1 and IKs densities were 3- and 4.5-fold larger in dogs than humans, respectively. IKr density and kinetics were similar in human versus dog. ICa and Ito were respectively ~30% larger and ~29% smaller in human, and Na(+)-Ca(2+) exchange current was comparable. Cardiac mRNA levels for the main IK1 ion channel subunit Kir2.1 and the IKs accessory subunit minK were significantly lower, but mRNA expression of ERG and KvLQT1 (IKr and IKs α-subunits) were not significantly different, in human versus dog. Immunostaining suggested lower Kir2.1 and minK, and higher KvLQT1 protein expression in human versus canine cardiomyocytes. IK1 and IKs inhibition increased the APD-prolonging effect of IKr block more in dog (by 56% and 49%, respectively) than human (34 and 16%), indicating that both currents contribute to increased repolarization reserve in the dog. A mathematical model incorporating observed human-canine ion current differences confirmed the role of IK1 and IKs in repolarization reserve differences. Thus, humans show greater repolarization-delaying effects of IKr block than dogs, because of lower repolarization reserve contributions from IK1 and IKs, emphasizing species-specific determinants of repolarization and the limitations of animal models for human disease.
Collapse
Affiliation(s)
- Norbert Jost
- A. Varró: Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, H-6720 Szeged, Dóm tér 12, PO Box 427, Hungary.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Cardiac excitation is determined by interactions between the source of electric activation (membrane depolarization) and the load that cardiac tissue presents. This relationship is altered in pathology by remodeling processes that often create a substrate favoring the development of cardiac arrhythmias. Most studies of arrhythmia mechanisms and arrhythmogenic substrates have been conducted in animal models, which may differ in important ways from the human pathologies they are designed to represent. Electrocardiographic imaging is a noninvasive method for mapping the electric activity of the heart in humans in real-world conditions. This review summarizes results from electrocardiographic imaging studies of arrhythmogenic substrates associated with human clinical arrhythmias. Examples include heart failure, myocardial infarction scar, atrial fibrillation, and abnormal ventricular repolarization.
Collapse
Affiliation(s)
- Yoram Rudy
- Cardiac Bioelectricity and Arrhythmia Center, Washington University, One Brookings Dr, St Louis, MO 63130-4899, USA.
| |
Collapse
|
29
|
Herren AW, Bers DM, Grandi E. Post-translational modifications of the cardiac Na channel: contribution of CaMKII-dependent phosphorylation to acquired arrhythmias. Am J Physiol Heart Circ Physiol 2013; 305:H431-45. [PMID: 23771687 DOI: 10.1152/ajpheart.00306.2013] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The voltage-gated Na channel isoform 1.5 (NaV1.5) is the pore forming α-subunit of the voltage-gated cardiac Na channel, which is responsible for the initiation and propagation of cardiac action potentials. Mutations in the SCN5A gene encoding NaV1.5 have been linked to changes in the Na current leading to a variety of arrhythmogenic phenotypes, and alterations in the NaV1.5 expression level, Na current density, and/or gating have been observed in acquired cardiac disorders, including heart failure. The precise mechanisms underlying these abnormalities have not been fully elucidated. However, several recent studies have made it clear that NaV1.5 forms a macromolecular complex with a number of proteins that modulate its expression levels, localization, and gating and is the target of extensive post-translational modifications, which may also influence all these properties. We review here the molecular aspects of cardiac Na channel regulation and their functional consequences. In particular, we focus on the molecular and functional aspects of Na channel phosphorylation by the Ca/calmodulin-dependent protein kinase II, which is hyperactive in heart failure and has been causally linked to cardiac arrhythmia. Understanding the mechanisms of altered NaV1.5 expression and function is crucial for gaining insight into arrhythmogenesis and developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Anthony W Herren
- Department of Pharmacology, University of California Davis, Davis, California
| | | | | |
Collapse
|
30
|
Kim GH. MicroRNA regulation of cardiac conduction and arrhythmias. Transl Res 2013; 161:381-92. [PMID: 23274306 PMCID: PMC3619003 DOI: 10.1016/j.trsl.2012.12.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/04/2012] [Accepted: 12/06/2012] [Indexed: 01/01/2023]
Abstract
MicroRNAs are now recognized as important regulators of cardiovascular genes with critical roles in normal development and physiology, as well as disease development. MicroRNAs (miRNAs) are small noncoding RNAs approximately 22 nucleotides in length that regulate expression of target genes through sequence-specific hybridization to the 3' untranslated region of messenger RNAs and either block translation or direct degradation of their target messenger RNA. They have been shown to participate in cardiovascular disease pathogenesis including atherosclerosis, coronary artery disease, myocardial infarction, heart failure, and cardiac arrhythmias. Broadly defined, cardiac arrhythmias are a variation from the normal heart rate or rhythm. Arrhythmias are common and result in significant morbidity and mortality. Ventricular arrhythmias constitute a major cause for cardiac death, particularly sudden cardiac death in the setting of myocardial infarction and heart failure. As advances in pharmacologic, device, and ablative therapy continue to evolve, the molecular insights into the basis of arrhythmia is growing with the ambition of providing additional therapeutic options. Electrical remodeling and structural remodeling are identified mechanisms underlying arrhythmia generation; however, published studies focusing on miRNAs and cardiac conduction are sparse. Recent studies have highlighted the role of miRNAs in cardiac rhythm through regulation of key ion channels, transporters, and cellular proteins in arrhythmogenic conditions. This article aims to review the studies linking miRNAs to cardiac excitability and other processes pertinent to arrhythmia.
Collapse
Affiliation(s)
- Gene H Kim
- University of Chicago, Institute for Cardiovascular Research, Chicago, IL 60637, USA.
| |
Collapse
|
31
|
Xiao L, Koopmann TT, Ördög B, Postema PG, Verkerk AO, Iyer V, Sampson KJ, Boink GJJ, Mamarbachi MA, Varro A, Jordaens L, Res J, Kass RS, Wilde AA, Bezzina CR, Nattel S. Unique cardiac Purkinje fiber transient outward current β-subunit composition: a potential molecular link to idiopathic ventricular fibrillation. Circ Res 2013; 112:1310-22. [PMID: 23532596 DOI: 10.1161/circresaha.112.300227] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RATIONALE A chromosomal haplotype producing cardiac overexpression of dipeptidyl peptidase-like protein-6 (DPP6) causes familial idiopathic ventricular fibrillation. The molecular basis of transient outward current (I(to)) in Purkinje fibers (PFs) is poorly understood. We hypothesized that DPP6 contributes to PF I(to) and that its overexpression might specifically alter PF I(to) properties and repolarization. OBJECTIVE To assess the potential role of DPP6 in PF I(to). METHODS AND RESULTS Clinical data in 5 idiopathic ventricular fibrillation patients suggested arrhythmia origin in the PF-conducting system. PF and ventricular muscle I(to) had similar density, but PF I(to) differed from ventricular muscle in having tetraethylammonium sensitivity and slower recovery. DPP6 overexpression significantly increased, whereas DPP6 knockdown reduced, I(to) density and tetraethylammonium sensitivity in canine PF but not in ventricular muscle cells. The K(+)-channel interacting β-subunit K(+)-channel interacting protein type-2, essential for normal expression of I(to) in ventricular muscle, was weakly expressed in human PFs, whereas DPP6 and frequenin (neuronal calcium sensor-1) were enriched. Heterologous expression of Kv4.3 in Chinese hamster ovary cells produced small I(to); I(to) amplitude was greatly enhanced by coexpression with K(+)-channel interacting protein type-2 or DPP6. Coexpression of DPP6 with Kv4.3 and K(+)-channel interacting protein type-2 failed to alter I(to) compared with Kv4.3/K(+)-channel interacting protein type-2 alone, but DPP6 expression with Kv4.3 and neuronal calcium sensor-1 (to mimic PF I(to) composition) greatly enhanced I(to) compared with Kv4.3/neuronal calcium sensor-1 and recapitulated characteristic PF kinetic/pharmacological properties. A mathematical model of cardiac PF action potentials showed that I(to) enhancement can greatly accelerate PF repolarization. CONCLUSIONS These results point to a previously unknown central role of DPP6 in PF I(to), with DPP6 gain of function selectively enhancing PF current, and suggest that a DPP6-mediated PF early-repolarization syndrome might be a novel molecular paradigm for some forms of idiopathic ventricular fibrillation.
Collapse
Affiliation(s)
- Ling Xiao
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, QC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Barriga M, Cal R, Cabello N, Llach A, Vallmitjana A, Benítez R, Badimon L, Cinca J, Llorente-Cortés V, Hove-Madsen L. Low density lipoproteins promote unstable calcium handling accompanied by reduced SERCA2 and connexin-40 expression in cardiomyocytes. PLoS One 2013; 8:e58128. [PMID: 23516438 PMCID: PMC3596315 DOI: 10.1371/journal.pone.0058128] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 02/01/2013] [Indexed: 11/18/2022] Open
Abstract
The damaging effects of high plasma levels of cholesterol in the cardiovascular system are widely known, but little attention has been paid to direct effects on cardiomyocyte function. We therefore aimed at testing the hypothesis that Low Density Lipoprotein (LDL) cholesterol affects calcium dynamics and signal propagation in cultured atrial myocytes. For this purpose, mRNA and protein expression levels were determined by real time PCR and western blot analysis, respectively, and intracellular calcium was visualized in fluo-4 loaded atrial HL-1 myocyte cultures subjected to field stimulation. At low stimulation frequencies all cultures had uniform calcium transients at all tested LDL concentrations. However, 500 µg LDL/mL maximally reduced the calcium transient amplitude by 43% from 0.30 ± 0.04 to 0.17 ± 0.02 (p<0.05). Moreover, LDL-cholesterol dose-dependently increased the fraction of alternating and irregular beat-to-beat responses observed when the stimulation interval was shortened. This effect was linked to a concurrent reduction in SERCA2, RyR2, IP3RI and IP3RII mRNA levels. SERCA2 protein levels were also reduced by 43% at 200 µg LDL/mL (p<0.05) and SR calcium loading was reduced by 38 ± 6% (p<0.001). By contrast, HDL-cholesterol had no significant effect on SERCA expression or SR calcium loading. LDL-cholesterol also slowed the conduction velocity of the calcium signal from 3.2+0.2 mm/s without LDL to 1.7 ± 0.1 mm/s with 500 µg LDL/mL (p<0.05). This coincided with a reduction in Cx40 expression (by 44 ± 3%; p<0.05 for mRNA and by 79 ± 2%; p<0.05 for Cx40 protein at 200 µg/ml LDL) whereas the Cx-43 expression did not significantly change. In conclusion, LDL-cholesterol destabilizes calcium handling in cultured atrial myocytes subjected to rapid pacing by reducing SERCA2 and Cx40 expression and by slowing the conduction velocity of the calcium signal.
Collapse
Affiliation(s)
- Montserrat Barriga
- Cardiovascular Research Center, Consejo Superior de Investigaciones Cientificas, Insitut Català de Ciencies Cardiovasculars and Institut d'Investigació Biomedica Sant Pau, Barcelona, Spain
| | - Roi Cal
- Cardiovascular Research Center, Consejo Superior de Investigaciones Cientificas, Insitut Català de Ciencies Cardiovasculars and Institut d'Investigació Biomedica Sant Pau, Barcelona, Spain
| | - Nuria Cabello
- Cardiovascular Research Center, Consejo Superior de Investigaciones Cientificas, Insitut Català de Ciencies Cardiovasculars and Institut d'Investigació Biomedica Sant Pau, Barcelona, Spain
| | - Anna Llach
- Cardiology Service, Institut d'Investigació Biomedica Sant Pau and Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alexander Vallmitjana
- Dept. Ingeniería de Sistemas, Automática e Informática Industrial, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Raúl Benítez
- Dept. Ingeniería de Sistemas, Automática e Informática Industrial, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Research Center, Consejo Superior de Investigaciones Cientificas, Insitut Català de Ciencies Cardiovasculars and Institut d'Investigació Biomedica Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Obesidad y Nutricion, Barcelona, Spain
| | - Juan Cinca
- Cardiology Service, Institut d'Investigació Biomedica Sant Pau and Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vicenta Llorente-Cortés
- Cardiovascular Research Center, Consejo Superior de Investigaciones Cientificas, Insitut Català de Ciencies Cardiovasculars and Institut d'Investigació Biomedica Sant Pau, Barcelona, Spain
| | - Leif Hove-Madsen
- Cardiovascular Research Center, Consejo Superior de Investigaciones Cientificas, Insitut Català de Ciencies Cardiovasculars and Institut d'Investigació Biomedica Sant Pau, Barcelona, Spain
| |
Collapse
|
33
|
Large T-antigen up-regulates Kv4.3 K⁺ channels through Sp1, and Kv4.3 K⁺ channels contribute to cell apoptosis and necrosis through activation of calcium/calmodulin-dependent protein kinase II. Biochem J 2012; 441:859-67. [PMID: 22023388 DOI: 10.1042/bj20111604] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Down-regulation of Kv4.3 K⁺ channels commonly occurs in multiple diseases, but the understanding of the regulation of Kv4.3 K⁺ channels and the role of Kv4.3 K⁺ channels in pathological conditions are limited. HEK (human embryonic kidney)-293T cells are derived from HEK-293 cells which are transformed by expression of the large T-antigen. In the present study, by comparing HEK-293 and HEK-293T cells, we find that HEK-293T cells express more Kv4.3 K⁺ channels and more transcription factor Sp1 (specificity protein 1) than HEK-293 cells. Inhibition of Sp1 with Sp1 decoy oligonucleotide reduces Kv4.3 K⁺ channel expression in HEK-293T cells. Transfection of pN3-Sp1FL vector increases Sp1 protein expression and results in increased Kv4.3 K⁺ expression in HEK-293 cells. Since the ultimate determinant of the phenotype difference between HEK-293 and HEK-293T cells is the large T-antigen, we conclude that the large T-antigen up-regulates Kv4.3 K⁺ channel expression through an increase in Sp1. In both HEK-293 and HEK-293T cells, inhibition of Kv4.3 K⁺ channels with 4-AP (4-aminopyridine) or Kv4.3 small interfering RNA induces cell apoptosis and necrosis, which are completely rescued by the specific CaMKII (calcium/calmodulin-dependent protein kinase II) inhibitor KN-93, suggesting that Kv4.3 K⁺ channels contribute to cell apoptosis and necrosis through CaMKII activation. In summary, we establish: (i) the HEK-293 and HEK-293T cell model for Kv4.3 K⁺ channel study; (ii) that large T-antigen up-regulates Kv4.3 K⁺ channels through increasing Sp1 levels; and (iii) that Kv4.3 K⁺ channels contribute to cell apoptosis and necrosis through activating CaMKII. The present study provides deep insights into the mechanism of the regulation of Kv4.3 K⁺ channels and the role of Kv4.3 K⁺ channels in cell death.
Collapse
|
34
|
Koncz I, Szél T, Bitay M, Cerbai E, Jaeger K, Fülöp F, Jost N, Virág L, Orvos P, Tálosi L, Kristóf A, Baczkó I, Papp JG, Varró A. Electrophysiological effects of ivabradine in dog and human cardiac preparations: potential antiarrhythmic actions. Eur J Pharmacol 2011; 668:419-26. [PMID: 21821019 DOI: 10.1016/j.ejphar.2011.07.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 07/19/2011] [Accepted: 07/21/2011] [Indexed: 10/17/2022]
Abstract
Ivabradine is a novel antianginal agent which inhibits the pacemaker current. The effects of ivabradine on maximum rate of depolarization (V(max)), repolarization and spontaneous depolarization have not yet been reported in human isolated cardiac preparations. The same applies to large animals close to human in heart size and spontaneous frequency. Using microelectrode technique action potential characteristics and by applying patch-clamp technique ionic currents were studied. Ivabradine exerted concentration-dependent (0.1-10 μM) decrease in the amplitude of spontaneous diastolic depolarization and reduction in spontaneous rate of firing of action potentials and produced a concentration- and frequency-dependent V(max) block in dog Purkinje fibers while action potential duration measured at 50% of repolarization was shortened. In the presence of ivabradine, at 400 ms cycle length, V(max) block developed with an onset kinetic rate constant of 13.9 ± 3.2 beat(-1) in dog ventricular muscle. In addition to a fast recovery of V(max) from inactivation (τ=41-46 ms) observed in control, a second slow component for recovery of V(max) was expressed (offset kinetics of V(max) block) having a time constant of 8.76 ± 1.34 s. In dog after attenuation of the repolarization reserve ivabradine moderately but significantly lengthened the repolarization. In human, significant prolongation of repolarization was only observed at 10 μM ivabradine. Ivabradine in addition to the Class V antiarrhythmic effect also has Class I/C and Class III antiarrhythmic properties, which can be advantageous in the treatment of patients with ischemic heart disease liable to disturbances of cardiac rhythm.
Collapse
Affiliation(s)
- István Koncz
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mueller EE, Momen A, Massé S, Zhou YQ, Liu J, Backx PH, Henkelman RM, Nanthakumar K, Stewart DJ, Husain M. Electrical remodelling precedes heart failure in an endothelin-1-induced model of cardiomyopathy. Cardiovasc Res 2011; 89:623-33. [PMID: 21062919 DOI: 10.1093/cvr/cvq351] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
AIMS Binary transgenic (BT) mice with doxycycline (DOX)-suppressible cardiac-specific overexpression of endothelin-1 (ET-1) exhibit progressive heart failure (HF), QRS prolongation, and death following DOX withdrawal. However, the molecular basis and reversibility of the electrophysiological abnormalities in this model were not known. Here, we assess the mechanisms underlying ET-1-mediated electrical remodelling, and its role in HF. METHODS AND RESULTS BT vs. non-BT littermate controls were withdrawn from DOX and serially studied with ultrasound biomicroscopy, octapolar catheters, multielectrode epicardial mapping, histopathology, western blot, immunohistochemistry, and qRT-PCR. Abnormalities in ventricular activation and -dV/dt were detected as early as 4 weeks after transgene activation, when the structure and function of the heart remained unaffected. By 8 weeks of ET-1 overexpression, biventricular systolic and diastolic dysfunction, myocardial fibrosis, and cardiomyocyte hypertrophy were observed. Intracardiac and epicardial electrograms revealed prolonged conduction and ventricular activation, reduced -dV/dt, and abnormal atrioventricular nodal function. Within 4 weeks of ET-1 induction, connexin 40 (Cx40) protein and Cx43 mRNA, protein, and phosphorylation levels were reduced by 36, 64, 93, and 69%, respectively; Na(v)1.5 mRNA and protein levels were reduced by 30 and 50%, respectively, as was Na(+) channel conductance. Importantly, the associated electrophysiological abnormalities at this time point were reversible upon suppression of ET-1 overexpression and completely prevented the development of structural and functional remodelling. CONCLUSION ET-1-mediated electrical remodelling correlates with reduced Cx40, Cx43, and Na(v)1.5 expression and decreased Na(+) channel conductance and precedes HF. The sequence and reversibility of this phenotype suggest that a primary abnormality in electrical remodelling may contribute to the pathogenesis of HF.
Collapse
Affiliation(s)
- Erin E Mueller
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
This article serves as an introductory overview to a thematic review series that will present the latest advancements in the field of inherited arrhythmias. This area of cardiac electrophysiology started approximately 15 years ago thanks to the contribution of Mark Keating and coworkers, who discovered the molecular basis of long QT syndrome. The field rapidly expanded when clinicians, molecular biologists, geneticists, and cellular electrophysiologists, who undertook an impressive collaborative effort to clarify the genetic basis of "cardiac channelopathies." As a result of this hard work, the paradigms for diagnosis and management of patients with inherited arrhythmogenic diseases were substantially modified, demonstrating once more the value of "translational research." As more and more genes have been implicated in the genesis of inherited arrhythmias, we keep broadening our understanding of the complexity of ion channels and their multifaceted regulatory processes. Despite the fact that several discoveries have already been made, the field is facing new challenges that are attracting young investigators who share with the pioneers the ambitious goal of finding new therapies and even a cure for these conditions.
Collapse
Affiliation(s)
- Silvia G Priori
- Division of Cardiology and Molecular Cardiology, Fondazione Salvatore Maugeri, Via S Maugeri 10/10 degrees, 27100 Pavia, Italy.
| |
Collapse
|
37
|
Marcus GM, Scheinman MM, Keung E. The Year in Clinical Cardiac Electrophysiology. J Am Coll Cardiol 2010; 56:667-76. [DOI: 10.1016/j.jacc.2010.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 05/24/2010] [Accepted: 05/25/2010] [Indexed: 01/18/2023]
|
38
|
The year in arrhythmias—2009 Part II. Heart Rhythm 2010; 7:538-48. [DOI: 10.1016/j.hrthm.2010.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Indexed: 11/21/2022]
|
39
|
Aiba T, Tomaselli GF, Shimizu W. Electrophysiological Remodeling in Heart Failure Dyssynchrony vs. Resynchronization. J Arrhythm 2010. [DOI: 10.1016/s1880-4276(10)80011-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
40
|
Abstract
Purkinje cells are specialized for rapid propagation in the heart. Furthermore, Purkinje fibers as the source as well as the perpetuator of arrhythmias is a familiar finding. This is not surprising considering their location in the heart and their unique cell ultrastructure, cell electrophysiology, and mode of excitation-contraction coupling. This review touches on each of these points as we outline what is known today about Purkinje fibers/cells.
Collapse
|