1
|
Sandner P, Follmann M, Becker-Pelster E, Hahn MG, Meier C, Freitas C, Roessig L, Stasch JP. Soluble GC stimulators and activators: Past, present and future. Br J Pharmacol 2024; 181:4130-4151. [PMID: 34600441 DOI: 10.1111/bph.15698] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022] Open
Abstract
The discovery of soluble GC (sGC) stimulators and sGC activators provided valuable tools to elucidate NO-sGC signalling and opened novel pharmacological opportunities for cardiovascular indications and beyond. The first-in-class sGC stimulator riociguat was approved for pulmonary hypertension in 2013 and vericiguat very recently for heart failure. sGC stimulators enhance sGC activity independent of NO and also act synergistically with endogenous NO. The sGC activators specifically bind to, and activate, the oxidised haem-free form of sGC. Substantial research efforts improved on the first-generation sGC activators such as cinaciguat, culminating in the discovery of runcaciguat, currently in clinical Phase II trials for chronic kidney disease and diabetic retinopathy. Here, we highlight the discovery and development of sGC stimulators and sGC activators, their unique modes of action, their preclinical characteristics and the clinical studies. In the future, we expect to see more sGC agonists in new indications, reflecting their unique therapeutic potential.
Collapse
Affiliation(s)
- Peter Sandner
- Pharmaceuticals Research & Development, Bayer AG, Wuppertal, Germany
- Institute of Pharmacology, Hannover Medical School, Hanover, Germany
| | - Markus Follmann
- Pharmaceuticals Research & Development, Bayer AG, Wuppertal, Germany
| | | | - Michael G Hahn
- Pharmaceuticals Research & Development, Bayer AG, Wuppertal, Germany
| | - Christian Meier
- Pharmaceuticals Medical Affairs and Pharmacovigilance, Bayer AG, Berlin, Germany
| | - Cecilia Freitas
- Pharmaceuticals Research & Development, Bayer AG, Wuppertal, Germany
| | - Lothar Roessig
- Pharmaceuticals Research & Development, Bayer AG, Wuppertal, Germany
| | - Johannes-Peter Stasch
- Pharmaceuticals Research & Development, Bayer AG, Wuppertal, Germany
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
2
|
Nelissen E, Schepers M, Ponsaerts L, Foulquier S, Bronckaers A, Vanmierlo T, Sandner P, Prickaerts J. Soluble guanylyl cyclase: A novel target for the treatment of vascular cognitive impairment? Pharmacol Res 2023; 197:106970. [PMID: 37884069 DOI: 10.1016/j.phrs.2023.106970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Vascular cognitive impairment (VCI) describes neurodegenerative disorders characterized by a vascular component. Pathologically, it involves decreased cerebral blood flow (CBF), white matter lesions, endothelial dysfunction, and blood-brain barrier (BBB) impairments. Molecularly, oxidative stress and inflammation are two of the major underlying mechanisms. Nitric oxide (NO) physiologically stimulates soluble guanylate cyclase (sGC) to induce cGMP production. However, under pathological conditions, NO seems to be at the basis of oxidative stress and inflammation, leading to a decrease in sGC activity and expression. The native form of sGC needs a ferrous heme group bound in order to be sensitive to NO (Fe(II)sGC). Oxidation of sGC leads to the conversion of ferrous to ferric heme (Fe(III)sGC) and even heme-loss (apo-sGC). Both Fe(III)sGC and apo-sGC are insensitive to NO, and the enzyme is therefore inactive. sGC activity can be enhanced either by targeting the NO-sensitive native sGC (Fe(II)sGC), or the inactive, oxidized sGC (Fe(III)sGC) and the heme-free apo-sGC. For this purpose, sGC stimulators acting on Fe(II)sGC and sGC activators acting on Fe(III)sGC/apo-sGC have been developed. These sGC agonists have shown their efficacy in cardiovascular diseases by restoring the physiological and protective functions of the NO-sGC-cGMP pathway, including the reduction of oxidative stress and inflammation, and improvement of vascular functioning. Yet, only very little research has been performed within the cerebrovascular system and VCI pathology when focusing on sGC modulation and its potential protective mechanisms on vascular and neural function. Therefore, within this review, the potential of sGC as a target for treating VCI is highlighted.
Collapse
Affiliation(s)
- Ellis Nelissen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands.
| | - Melissa Schepers
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands; Neuro-immune connect and repair lab, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium
| | - Laura Ponsaerts
- Neuro-immune connect and repair lab, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium; Department of Cardio & Organ Systems (COS), Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Sébastien Foulquier
- Department of Pharmacology and Toxicology, School for Mental Health and Neuroscience (MHeNS), School for Cardiovascular Diseases (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | - Annelies Bronckaers
- Department of Cardio & Organ Systems (COS), Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Tim Vanmierlo
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands; Neuro-immune connect and repair lab, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium
| | - Peter Sandner
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, 42113 Wuppertal, Germany; Hannover Medical School, 30625 Hannover, Germany
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| |
Collapse
|
3
|
McChord J, Pereyra VM, Froebel S, Bekeredjian R, Schwab M, Ong P. Drug repurposing-a promising approach for patients with angina but non-obstructive coronary artery disease (ANOCA). Front Cardiovasc Med 2023; 10:1156456. [PMID: 37396593 PMCID: PMC10313125 DOI: 10.3389/fcvm.2023.1156456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
In today's era of individualized precision medicine drug repurposing represents a promising approach to offer patients fast access to novel treatments. Apart from drug repurposing in cancer treatments, cardiovascular pharmacology is another attractive field for this approach. Patients with angina pectoris without obstructive coronary artery disease (ANOCA) report refractory angina despite standard medications in up to 40% of cases. Drug repurposing also appears to be an auspicious option for this indication. From a pathophysiological point of view ANOCA patients frequently suffer from vasomotor disorders such as coronary spasm and/or impaired microvascular vasodilatation. Consequently, we carefully screened the literature and identified two potential therapeutic targets: the blockade of the endothelin-1 (ET-1) receptor and the stimulation of soluble guanylate cyclase (sGC). Genetically increased endothelin expression results in elevated levels of ET-1, justifying ET-1 receptor blockers as drug candidates to treat coronary spasm. sGC stimulators may be beneficial as they stimulate the NO-sGC-cGMP pathway leading to GMP-mediated vasodilatation.
Collapse
Affiliation(s)
- Johanna McChord
- Department of Cardiology and Angiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | | | - Sarah Froebel
- Department of Cardiology and Angiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Raffi Bekeredjian
- Department of Cardiology and Angiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- Departments of Clinical Pharmacology, and Biochemistry and Pharmacy, University Tübingen, Tübingen, Germany
| | - Peter Ong
- Department of Cardiology and Angiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| |
Collapse
|
4
|
Chen L, Zhou X, Deng Y, Yang Y, Chen X, Chen Q, Liu Y, Fu X, Kwan HY, You Y, Jin W, Zhao X. Zhenwu decoction ameliorates cardiac hypertrophy through activating sGC (soluble guanylate cyclase) - cGMP (cyclic guanosine monophosphate) - PKG (protein kinase G) pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115705. [PMID: 36099983 DOI: 10.1016/j.jep.2022.115705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhenwu Decoction (ZWD) is a traditional Chinese medicine (TCM) formula which has wide scope of indications related to Yang deficiency and dampness retention in TCM syndrome. Cardiac hypertrophy can induce similar symptoms and signs to the clinical features of Yang deficiency and dampness retention syndrome. ZWD can increase the left ventricular ejection fraction, reduce cardiac hypertrophy of patients with chronic heart failure. However, its underlying pharmacological mechanism remains unclear. AIM OF THE STUDY The study aimed to confirm the protective effects of ZWD on cardiac hypertrophy and explore the underlying mechanisms. MATERIALS AND METHODS The potential targets and pathways of ZWD in cardiac hypertrophy were highlighted by network pharmacology and validated by mechanistic and functional studies. RESULTS Our network pharmacology analysis suggests that the protective effects of ZWD on cardiac hypertrophy are related to cyclic guanosine monophosphate (cGMP) - protein kinase G (PKG) pathway. Subsequent animal studies showed that ZWD significantly ameliorated cardiac function decline, cardiac hypertrophy, cardiac fibrosis and cardiomyocyte apoptosis. To explore the underlying mechanisms of action, we performed Western blotting, immunohistochemical analysis, and detection of inflammatory response and oxidative stress. Our results showed that ZWD activated the soluble guanylate cyclase (sGC) - cGMP - PKG signaling pathway. The sGC inhibitor ODQ that blocks the sGC-cGMP-PKG signaling pathway in zebrafish abolished the protective effects of ZWD, suggesting sGC-cGMP-PKG is the main signaling pathway mediates the protective effect of ZWD in cardiac hypertrophy. In addition, three major ingredients from ZWD, poricoic acid C, hederagenin and dehydrotumulosic acid, showed a high binding energy with prototype sGC. CONCLUSION ZWD reduces oxidative stress and inflammation and exerts cardioprotective effects by activating the sGC-cGMP-PKG signaling pathway.
Collapse
Affiliation(s)
- Liqian Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Xinghong Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Yijian Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Ying Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Xiaohu Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Qinghong Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Yanyan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Xiuqiong Fu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Yanting You
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Wen Jin
- Department of Cardiac Intensive Care Unit, Cardiovascular Hospital, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, 510317, China.
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
5
|
Petraina A, Nogales C, Krahn T, Mucke H, Lüscher TF, Fischmeister R, Kass DA, Burnett JC, Hobbs AJ, Schmidt HHHW. Cyclic GMP modulating drugs in cardiovascular diseases: mechanism-based network pharmacology. Cardiovasc Res 2022; 118:2085-2102. [PMID: 34270705 PMCID: PMC9302891 DOI: 10.1093/cvr/cvab240] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Mechanism-based therapy centred on the molecular understanding of disease-causing pathways in a given patient is still the exception rather than the rule in medicine, even in cardiology. However, recent successful drug developments centred around the second messenger cyclic guanosine-3'-5'-monophosphate (cGMP), which is regulating a number of cardiovascular disease modulating pathways, are about to provide novel targets for such a personalized cardiovascular therapy. Whether cGMP breakdown is inhibited or cGMP synthesis is stimulated via guanylyl cyclases or their upstream regulators in different cardiovascular disease phenotypes, the outcomes seem to be so far uniformly protective. Thus, a network of cGMP-modulating drugs has evolved that act in a mechanism-based, possibly causal manner in a number of cardiac conditions. What remains a challenge is the detection of cGMPopathy endotypes amongst cardiovascular disease phenotypes. Here, we review the growing clinical relevance of cGMP and provide a glimpse into the future on how drugs interfering with this pathway may change how we treat and diagnose cardiovascular diseases altogether.
Collapse
Affiliation(s)
- Alexandra Petraina
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Cristian Nogales
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Thomas Krahn
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Hermann Mucke
- H.M. Pharma Consultancy, Enenkelstrasse 28/32, A-1160, Vienna, Austria
| | - Thomas F Lüscher
- Royal Brompton & Harefield Hospitals, Heart Division and National Heart and Lung Institute, Guy Scadding Building, Imperial College, Dovehouse Street London SW3 6LY, United Kingdom
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistreet 12, CH-8952 Schlieren, Switzerland
| | - Rodolphe Fischmeister
- INSERM UMR-S 1180, Faculty of Pharmacy, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - David A Kass
- Division of Cardiology, Department of Medicine, Ross Research Building, Rm 858, Johns Hopkins Medical Institutions, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - John C Burnett
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, EC1M 6BQ, London, UK
| | - Harald H H W Schmidt
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
6
|
Tawa M, Okamura T. Factors influencing the soluble guanylate cyclase heme redox state in blood vessels. Vascul Pharmacol 2022; 145:107023. [PMID: 35718342 DOI: 10.1016/j.vph.2022.107023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 11/15/2022]
Abstract
Soluble guanylate cyclase (sGC) plays an important role in maintaining vascular homeostasis, as an acceptor for the biological messenger nitric oxide (NO). However, only reduced sGC (with a ferrous heme) can be activated by NO; oxidized (ferric heme) and apo (absent heme) sGC cannot. In addition, the proportions of reduced, oxidized, and apo sGC change under pathological conditions. Although diseased blood vessels often show decreased NO bioavailability in the vascular wall, a shift of sGC heme redox balance in favor of the oxidized/apo forms can also occur. Therefore, sGC is of growing interest as a drug target for various cardiovascular diseases. Notably, the balance between NO-sensitive reduced sGC and NO-insensitive oxidized/apo sGC in the body is regulated in a reversible manner by various biological molecules and proteins. Many studies have attempted to identify endogenous factors and determinants that influence this redox state. For example, various reactive nitrogen and oxygen species are capable of inducing the oxidation of sGC heme. Conversely, a heme reductase and some antioxidants reduce the ferric heme in sGC to the ferrous state. This review summarizes the factors and mechanisms identified by these studies that operate to regulate the sGC heme redox state.
Collapse
Affiliation(s)
- Masashi Tawa
- Department of Pathological and Molecular Pharmacology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-1094, Japan.
| | - Tomio Okamura
- Emeritus Professor, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
7
|
de Oliveira Neto J, Marinho MM, Silveira JADM, Rocha DG, Lima NCB, Gouveia Júnior FS, Lopes LGDF, de Sousa EHS, Martins AMC, Marinho AD, Jorge RJB, Monteiro HSA. Synthesis and potential vasorelaxant effect of a novel ruthenium-based nitro complex. J Inorg Biochem 2021; 228:111666. [PMID: 34923187 DOI: 10.1016/j.jinorgbio.2021.111666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022]
Abstract
This study aimed to investigate the synthesis and potential vasodilator effect of a novel ruthenium complex, cis-[Ru(bpy)2(2-MIM)(NO2)]PF6 (bpy = 2,2'-bipyridine and 2-MIM = 2-methylimidazole) (FOR711A), containing an imidazole derivative via an in silico molecular docking model using β1 H-NOX (Heme-nitric oxide/oxygen binding) domain proteins of reduced and oxidized soluble guanylate cyclase (sGC). In addition, pharmacokinetic properties in the human organism were predicted through computational simulations and the potential for acute irritation of FOR711A was also investigated in vitro using the hen's egg chorioallantoic membrane (HET-CAM). FOR711A interacted with sites of the β1 H-NOX domain of reduced and oxidized sGC, demonstrating shorter bond distances to several residues and negative values of total energy. The predictive study revealed molar refractivity (RM): 127.65; Log Po/w = 1.29; topological polar surface area (TPSA): 86.26 Å2; molar mass (MM) = 541.55 g/mol; low solubility, high unsaturation index, high gastrointestinal absorption; toxicity class 4; failure to cross the blood-brain barrier and to react with cytochrome P450 (CYP) enzymes CYP1A2, CYP2C19, CYP2C9, CYP2D6 and CYP3A4. After the HET-CAM assay, the FOR711A complex was classified as non-irritant (N.I.) and its vasodilator effect was confirmed through greater evidence of blood vessels after the administration and ending of the observation period of 5 min. These results suggest that FOR711A presented a potential stimulator/activator effect of sGC via NO/sGC/cGMP. However, results indicate it needs a vehicle for oral administration.
Collapse
Affiliation(s)
- Joselito de Oliveira Neto
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Coronel Nunes de Melo St., 1127, 60.430-275 Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St., 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Márcia Machado Marinho
- State University of Ceará, Iguatu Faculty of Education, Science and Letters, Iguatu, CE, Brazil
| | - João Alison de Moraes Silveira
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Coronel Nunes de Melo St., 1127, 60.430-275 Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St., 1000, 60.430-275 Fortaleza, CE, Brazil.
| | - Danilo Galvão Rocha
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Coronel Nunes de Melo St., 1127, 60.430-275 Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St., 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Natália Cavalcante Barbosa Lima
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Coronel Nunes de Melo St., 1127, 60.430-275 Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St., 1000, 60.430-275 Fortaleza, CE, Brazil
| | | | | | | | - Alice Maria Costa Martins
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Aline Diogo Marinho
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Coronel Nunes de Melo St., 1127, 60.430-275 Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St., 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Roberta Jeane Bezerra Jorge
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Coronel Nunes de Melo St., 1127, 60.430-275 Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St., 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Helena Serra Azul Monteiro
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Coronel Nunes de Melo St., 1127, 60.430-275 Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St., 1000, 60.430-275 Fortaleza, CE, Brazil
| |
Collapse
|
8
|
Dent MR, DeMartino AW, Tejero J, Gladwin MT. Endogenous Hemoprotein-Dependent Signaling Pathways of Nitric Oxide and Nitrite. Inorg Chem 2021; 60:15918-15940. [PMID: 34313417 PMCID: PMC9167621 DOI: 10.1021/acs.inorgchem.1c01048] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interdisciplinary research at the interface of chemistry, physiology, and biomedicine have uncovered pivotal roles of nitric oxide (NO) as a signaling molecule that regulates vascular tone, platelet aggregation, and other pathways relevant to human health and disease. Heme is central to physiological NO signaling, serving as the active site for canonical NO biosynthesis in nitric oxide synthase (NOS) enzymes and as the highly selective NO binding site in the soluble guanylyl cyclase receptor. Outside of the primary NOS-dependent biosynthetic pathway, other hemoproteins, including hemoglobin and myoglobin, generate NO via the reduction of nitrite. This auxiliary hemoprotein reaction unlocks a "second axis" of NO signaling in which nitrite serves as a stable NO reservoir. In this Forum Article, we highlight these NO-dependent physiological pathways and examine complex chemical and biochemical reactions that govern NO and nitrite signaling in vivo. We focus on hemoprotein-dependent reaction pathways that generate and consume NO in the presence of nitrite and consider intermediate nitrogen oxides, including NO2, N2O3, and S-nitrosothiols, that may facilitate nitrite-based signaling in blood vessels and tissues. We also discuss emergent therapeutic strategies that leverage our understanding of these key reaction pathways to target NO signaling and treat a wide range of diseases.
Collapse
Affiliation(s)
- Matthew R Dent
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Anthony W DeMartino
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jesús Tejero
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Mark T Gladwin
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
9
|
Bayarri MA, Milara J, Estornut C, Cortijo J. Nitric Oxide System and Bronchial Epithelium: More Than a Barrier. Front Physiol 2021; 12:687381. [PMID: 34276407 PMCID: PMC8279772 DOI: 10.3389/fphys.2021.687381] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022] Open
Abstract
Airway epithelium forms a physical barrier that protects the lung from the entrance of inhaled allergens, irritants, or microorganisms. This epithelial structure is maintained by tight junctions, adherens junctions and desmosomes that prevent the diffusion of soluble mediators or proteins between apical and basolateral cell surfaces. This apical junctional complex also participates in several signaling pathways involved in gene expression, cell proliferation and cell differentiation. In addition, the airway epithelium can produce chemokines and cytokines that trigger the activation of the immune response. Disruption of this complex by some inflammatory, profibrotic, and carcinogens agents can provoke epithelial barrier dysfunction that not only contributes to an increase of viral and bacterial infection, but also alters the normal function of epithelial cells provoking several lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF) or lung cancer, among others. While nitric oxide (NO) molecular pathway has been linked with endothelial function, less is known about the role of the NO system on the bronchial epithelium and airway epithelial cells function in physiological and different pathologic scenarios. Several data indicate that the fraction of exhaled nitric oxide (FENO) is altered in lung diseases such as asthma, COPD, lung fibrosis, and cancer among others, and that reactive oxygen species mediate uncoupling NO to promote the increase of peroxynitrite levels, thus inducing bronchial epithelial barrier dysfunction. Furthermore, iNOS and the intracellular pathway sGC-cGMP-PKG are dysregulated in bronchial epithelial cells from patients with lung inflammation, fibrosis, and malignancies which represents an attractive drug molecular target. In this review we describe in detail current knowledge of the effect of NOS-NO-GC-cGMP-PKG pathway activation and disruption in bronchial epithelial cells barrier integrity and its contribution in different lung diseases, focusing on bronchial epithelial cell permeability, inflammation, transformation, migration, apoptosis/necrosis, and proliferation, as well as the specific NO molecular pathways involved.
Collapse
Affiliation(s)
- María Amparo Bayarri
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
- Pharmacy Unit, University General Hospital Consortium of Valencia, Valencia, Spain
| | - Cristina Estornut
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
- Research and Teaching Unit, University General Hospital Consortium of Valencia, Valencia, Spain
| |
Collapse
|
10
|
Sharina I, Lezgyieva K, Krutsenko Y, Martin E. Higher susceptibility to heme oxidation and lower protein stability of the rare α 1C517Yβ 1 sGC variant associated with moyamoya syndrome. Biochem Pharmacol 2021; 186:114459. [PMID: 33571505 PMCID: PMC8052303 DOI: 10.1016/j.bcp.2021.114459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/22/2020] [Accepted: 01/29/2021] [Indexed: 12/20/2022]
Abstract
NO sensitive soluble guanylyl cyclase (sGC) plays a key role in mediating physiological functions of NO. Genetic alterations of the GUCY1A3 gene, coding for the α1 subunit of sGC, are associated with several cardiovascular dysfunctions. A rare sGC variant with Cys517 → Tyr substitution in the α1subunit, has been associated with moyamoya disease and achalasia. In this report we characterize the properties of this rare sGC variant. Purified α1C517Yβ1 sGC preserved only ~25% of its cGMP-forming activity and showed an elevated Km for GTP substrate. However, the mutant enzyme retained a high affinity for and robust activation by NO, similar to wild type sGC. Purified α1C517Yβ1 enzyme was more sensitive to specific sGC heme oxidizers and less responsive to heme reducing agents. When expressed in COS7 cells, α1C517Yβ1 sGC showed a much stronger response to cinaciguat or gemfibrozil, which targets apo-sGC or sGC with ferric heme, as compared to its NO response or the relative response of the wild type sGC. A stronger response to cinaciguat was also observed for purified α1C517Yβ1 in the absence of reducing agents. In COS7 cells, αCys517β sGC was less stable than the wild type enzyme under normal conditions and exhibited accelerated degradation upon induction of cellular oxidative stress. We conclude that diminished cGMP-forming activity of this sGC variant is aggravated by its high susceptibility to oxidative stress and diminished protein stability. The combination of these deficiencies contributes to the severity of observed moyamoya and achalasia symptoms in human carriers of this rare α1C517Yβ1 sGC variant.
Collapse
Affiliation(s)
- Iraida Sharina
- University of Texas Health Science Center, McGovern Medical School, Department of Internal Medicine, Division of Cardiology, United States
| | - Karina Lezgyieva
- School of Science and Technology, Nazarbayev University, Astana, Kazakhstan
| | | | - Emil Martin
- University of Texas Health Science Center, McGovern Medical School, Department of Internal Medicine, Division of Cardiology, United States.
| |
Collapse
|
11
|
Fleischmann D, Harloff M, Maslanka Figueroa S, Schlossmann J, Goepferich A. Targeted Delivery of Soluble Guanylate Cyclase (sGC) Activator Cinaciguat to Renal Mesangial Cells via Virus-Mimetic Nanoparticles Potentiates Anti-Fibrotic Effects by cGMP-Mediated Suppression of the TGF-β Pathway. Int J Mol Sci 2021; 22:ijms22052557. [PMID: 33806499 PMCID: PMC7961750 DOI: 10.3390/ijms22052557] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 01/01/2023] Open
Abstract
Diabetic nephropathy (DN) ranks among the most detrimental long-term effects of diabetes, affecting more than 30% of all patients. Within the diseased kidney, intraglomerular mesangial cells play a key role in facilitating the pro-fibrotic turnover of extracellular matrix components and a progredient glomerular hyperproliferation. These pathological effects are in part caused by an impaired functionality of soluble guanylate cyclase (sGC) and a consequentially reduced synthesis of anti-fibrotic messenger 3′,5′-cyclic guanosine monophosphate (cGMP). Bay 58-2667 (cinaciguat) is able to re-activate defective sGC; however, the drug suffers from poor bioavailability and its systemic administration is linked to adverse events such as severe hypotension, which can hamper the therapeutic effect. In this study, cinaciguat was therefore efficiently encapsulated into virus-mimetic nanoparticles (NPs) that are able to specifically target renal mesangial cells and therefore increase the intracellular drug accumulation. NP-assisted drug delivery thereby increased in vitro potency of cinaciguat-induced sGC stabilization and activation, as well as the related downstream signaling 4- to 5-fold. Additionally, administration of drug-loaded NPs provided a considerable suppression of the non-canonical transforming growth factor β (TGF-β) signaling pathway and the resulting pro-fibrotic remodeling by 50–100%, making the system a promising tool for a more refined therapy of DN and other related kidney pathologies.
Collapse
Affiliation(s)
- Daniel Fleischmann
- Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Germany; (D.F.); (S.M.F.)
| | - Manuela Harloff
- Department of Pharmacology and Toxicology, University of Regensburg, 93053 Regensburg, Germany; (M.H.); (J.S.)
| | - Sara Maslanka Figueroa
- Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Germany; (D.F.); (S.M.F.)
| | - Jens Schlossmann
- Department of Pharmacology and Toxicology, University of Regensburg, 93053 Regensburg, Germany; (M.H.); (J.S.)
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Germany; (D.F.); (S.M.F.)
- Correspondence:
| |
Collapse
|
12
|
Sandner P, Zimmer DP, Milne GT, Follmann M, Hobbs A, Stasch JP. Soluble Guanylate Cyclase Stimulators and Activators. Handb Exp Pharmacol 2021; 264:355-394. [PMID: 30689085 DOI: 10.1007/164_2018_197] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
When Furchgott, Murad, and Ignarro were honored with the Nobel prize for the identification of nitric oxide (NO) in 1998, the therapeutic implications of this discovery could not be fully anticipated. This was due to the fact that available therapeutics like NO donors did not allow a constant and long-lasting cyclic guanylyl monophosphate (cGMP) stimulation and had a narrow therapeutic window. Now, 20 years later, the stimulator of soluble guanylate cyclase (sGC), riociguat, is on the market and is the only drug approved for the treatment of two forms of pulmonary hypertension (PAH/CTEPH), and a variety of other sGC stimulators and sGC activators are in preclinical and clinical development for additional indications. The discovery of sGC stimulators and sGC activators is a milestone in the field of NO/sGC/cGMP pharmacology. The sGC stimulators and sGC activators bind directly to reduced, heme-containing and oxidized, heme-free sGC, respectively, which results in an increase in cGMP production. The action of sGC stimulators at the heme-containing enzyme is independent of NO but is enhanced in the presence of NO whereas the sGC activators interact with the heme-free form of sGC. These highly innovative pharmacological principles of sGC stimulation and activation seem to have a very broad therapeutic potential. Therefore, in both academia and industry, intensive research and development efforts have been undertaken to fully exploit the therapeutic benefit of these new compound classes. Here we summarize the discovery of sGC stimulators and sGC activators and the current developments in both compound classes, including the mode of action, the chemical structures, and the genesis of the terminology and nomenclature. In addition, preclinical studies exploring multiple aspects of their in vitro, ex vivo, and in vivo pharmacology are reviewed, providing an overview of multiple potential applications. Finally, the clinical developments, investigating the treatment potential of these compounds in various diseases like heart failure, diabetic kidney disease, fibrotic diseases, and hypertension, are reported. In summary, sGC stimulators and sGC activators have a unique mode of action with a broad treatment potential in cardiovascular diseases and beyond.
Collapse
Affiliation(s)
- Peter Sandner
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, Wuppertal, Germany. .,Department of Pharmacology, Hannover Medical School, Hannover, Germany.
| | | | | | - Markus Follmann
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, Wuppertal, Germany
| | - Adrian Hobbs
- Barts and the London School of Medicine and Dentistry QMUL, London, UK
| | - Johannes-Peter Stasch
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, Wuppertal, Germany.,Institute of Pharmacy, University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
13
|
Khalid RR, Maryam A, Çınaroğlu SS, Siddiqi AR, Sezerman OU. A recursive molecular docking coupled with energy-based pose-rescoring and MD simulations to identify hsGC βH-NOX allosteric modulators for cardiovascular dysfunctions. J Biomol Struct Dyn 2021; 40:6128-6150. [PMID: 33522438 DOI: 10.1080/07391102.2021.1877818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Modulating the activity of human soluble guanylate cyclase (hsGC) through allosteric regulation of the βH-NOX domain has been considered as an immediate treatment for cardiovascular disorder (CVDs). Currently available βH-NOX domain-specific agonists including cinaciguat are unable to deal with the conundrum raised due to oxidative stress in the case of CVDs and their associated comorbidities. Therefore, the idea of investigating novel compounds for allosteric regulation of hsGC activation has been rekindled to circumvent CVDs. Current study aims to identify novel βH-NOX domain-specific compounds that can selectively turn on sGC functions by modulating the conformational dynamics of the target protein. Through a comprehensive computational drug-discovery approach, we first executed a target-based performance assessment of multiple docking (PLANTS, QVina, LeDock, Vinardo, Smina) scoring functions based on multiple performance metrices. QVina showed the highest capability of selecting true-positive ligands over false positives thus, used to screen 4.8 million ZINC15 compounds against βH-NOX domain. The docked ligands were further probed in terms of contact footprint and pose reassessment through clustering analysis and PLANTS docking, respectively. Subsequently, energy-based AMBER rescoring of top 100 low-energy complexes, per-residue energy decomposition analysis, and ADME-Tox analysis yielded the top three compounds i.e. ZINC000098973660, ZINC001354120371, and ZINC000096022607. The impact of three selected ligands on the internal structural dynamics of the βH-NOX domain was also investigated through molecular dynamics simulations. The study revealed potential electrostatic interactions for better conformational dialogue between βH-NOX domain and allosteric ligands that are critical for the activation of hsGC as compared to the reference compound.
Collapse
Affiliation(s)
- Rana Rehan Khalid
- Department of Biosciences, COMSATS University, Islamabad, Pakistan.,Department of Biostatistics and Medical Informatics, Acibadem M. A. A. University, Istanbul, Turkey
| | - Arooma Maryam
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Süleyman Selim Çınaroğlu
- Department of Biostatistics and Medical Informatics, Acibadem M. A. A. University, Istanbul, Turkey.,Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Osman Ugur Sezerman
- Department of Biostatistics and Medical Informatics, Acibadem M. A. A. University, Istanbul, Turkey
| |
Collapse
|
14
|
Maturation, inactivation, and recovery mechanisms of soluble guanylyl cyclase. J Biol Chem 2021; 296:100336. [PMID: 33508317 PMCID: PMC7949132 DOI: 10.1016/j.jbc.2021.100336] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 11/22/2022] Open
Abstract
Soluble guanylate cyclase (sGC) is a heme-containing heterodimeric enzyme that generates many molecules of cGMP in response to its ligand nitric oxide (NO); sGC thereby acts as an amplifier in NO-driven biological signaling cascades. Because sGC helps regulate the cardiovascular, neuronal, and gastrointestinal systems through its cGMP production, boosting sGC activity and preventing or reversing sGC inactivation are important therapeutic and pharmacologic goals. Work over the last two decades is uncovering the processes by which sGC matures to become functional, how sGC is inactivated, and how sGC is rescued from damage. A diverse group of small molecules and proteins have been implicated in these processes, including NO itself, reactive oxygen species, cellular heme, cell chaperone Hsp90, and various redox enzymes as well as pharmacologic sGC agonists. This review highlights their participation and provides an update on the processes that enable sGC maturation, drive its inactivation, or assist in its recovery in various settings within the cell, in hopes of reaching a better understanding of how sGC function is regulated in health and disease.
Collapse
|
15
|
Korkmaz Y, Puladi B, Galler K, Kämmerer PW, Schröder A, Gölz L, Sparwasser T, Bloch W, Friebe A, Deschner J. Inflammation in the Human Periodontium Induces Downregulation of the α 1- and β 1-Subunits of the sGC in Cementoclasts. Int J Mol Sci 2021; 22:ijms22020539. [PMID: 33430449 PMCID: PMC7827426 DOI: 10.3390/ijms22020539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 11/23/2022] Open
Abstract
Nitric oxide (NO) binds to soluble guanylyl cyclase (sGC), activates it in a reduced oxidized heme iron state, and generates cyclic Guanosine Monophosphate (cGMP), which results in vasodilatation and inhibition of osteoclast activity. In inflammation, sGC is oxidized and becomes insensitive to NO. NO- and heme-independent activation of sGC requires protein expression of the α1- and β1-subunits. Inflammation of the periodontium induces the resorption of cementum by cementoclasts and the resorption of the alveolar bone by osteoclasts, which can lead to tooth loss. As the presence of sGC in cementoclasts is unknown, we investigated the α1- and β1-subunits of sGC in cementoclasts of healthy and inflamed human periodontium using double immunostaining for CD68 and cathepsin K and compared the findings with those of osteoclasts from the same sections. In comparison to cementoclasts in the healthy periodontium, cementoclasts under inflammatory conditions showed a decreased staining intensity for both α1- and β1-subunits of sGC, indicating reduced protein expression of these subunits. Therefore, pharmacological activation of sGC in inflamed periodontal tissues in an NO- and heme-independent manner could be considered as a new treatment strategy to inhibit cementum resorption.
Collapse
Affiliation(s)
- Yüksel Korkmaz
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
- Correspondence: ; Tel.: +49-6131-17-7247
| | - Behrus Puladi
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany;
| | - Kerstin Galler
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93042 Regensburg, Germany;
| | - Peer W. Kämmerer
- Department of Oral- and Maxillofacial and Plastic Surgery, University Medical Center Mainz, 55131 Mainz, Germany;
| | - Agnes Schröder
- Department of Orthodontics, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Lina Gölz
- Department of Orthodontics and Orofacial Orthopedics, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, 91054 Erlangen, Germany;
| | - Tim Sparwasser
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, 50933 Cologne, Germany;
| | - Andreas Friebe
- Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany;
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
| |
Collapse
|
16
|
Ghosh A, Koziol-White CJ, Jester WF, Erzurum SC, Asosingh K, Panettieri RA, Stuehr DJ. An inherent dysfunction in soluble guanylyl cyclase is present in the airway of severe asthmatics and is associated with aberrant redox enzyme expression and compromised NO-cGMP signaling. Redox Biol 2020; 39:101832. [PMID: 33360351 PMCID: PMC7772568 DOI: 10.1016/j.redox.2020.101832] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022] Open
Abstract
A subset of asthmatics develop a severe form of the disease whose etiology involves airway inflammation along with inherent drivers that remain ill-defined. To address this, we studied human airway smooth muscle cells (HASMC), whose relaxation drives airway bronchodilation and whose dysfunction contributes to airway obstruction and hypersensitivity in severe asthma. Because HASMC relaxation can be driven by the NO-soluble guanylyl cyclase (sGC)-cGMP signaling pathway, we questioned if HASMC from severe asthma donors might possess inherent defects in their sGC or in redox enzymes that support sGC function. We analyzed HASMC primary lines derived from 17 severe asthma and 16 normal donors and corresponding lung tissue samples regarding sGC activation by NO or by pharmacologic agonists, and also determined expression levels of sGC α1 and β1 subunits, supporting redox enzymes, and related proteins. We found a majority of the severe asthma donor HASMC (12/17) and lung samples primarily expressed a dysfunctional sGC that was NO-unresponsive and had low heterodimer content and high Hsp90 association. This sGC phenotype correlated with lower expression levels of the supporting redox enzymes cytochrome b5 reductase, catalase, and thioredoxin-1, and higher expression of heme oxygenases 1 and 2. Together, our work reveals that severe asthmatics are predisposed toward defective NO-sGC-cGMP signaling in their airway smooth muscle due to an inherent sGC dysfunction, which in turn is associated with inherent changes in the cell redox enzymes that impact sGC maturation and function. The etiology of severe asthma involves airway inflammation and inherent drivers that remain ill-defined. Airway smooth muscle cells of severe asthmatics display a NO-unresponsive and dysfunctional sGC which persists in culture. Their inherent sGC dysfunction is associated with low CYB5R3 expression and altered expression of other redox enzymes. That airway sGC dysfunction and redox enzyme changes cluster within severe asthma is unexpected and may help guide therapy.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Cynthia J Koziol-White
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, NJ, 08901, USA
| | - William F Jester
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Serpil C Erzurum
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Kewal Asosingh
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
17
|
Casas AI, Nogales C, Mucke HAM, Petraina A, Cuadrado A, Rojo AI, Ghezzi P, Jaquet V, Augsburger F, Dufrasne F, Soubhye J, Deshwal S, Di Sante M, Kaludercic N, Di Lisa F, Schmidt HHHW. On the Clinical Pharmacology of Reactive Oxygen Species. Pharmacol Rev 2020; 72:801-828. [DOI: 10.1124/pr.120.019422] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
18
|
Dao VTV, Elbatreek MH, Deile M, Nedvetsky PI, Güldner A, Ibarra-Alvarado C, Gödecke A, Schmidt HHHW. Non-canonical chemical feedback self-limits nitric oxide-cyclic GMP signaling in health and disease. Sci Rep 2020; 10:10012. [PMID: 32561822 PMCID: PMC7305106 DOI: 10.1038/s41598-020-66639-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/22/2020] [Indexed: 12/31/2022] Open
Abstract
Nitric oxide (NO)-cyclic GMP (cGMP) signaling is a vasoprotective pathway therapeutically targeted, for example, in pulmonary hypertension. Its dysregulation in disease is incompletely understood. Here we show in pulmonary artery endothelial cells that feedback inhibition by NO of the NO receptor, the cGMP forming soluble guanylate cyclase (sGC), may contribute to this. Both endogenous NO from endothelial NO synthase and exogenous NO from NO donor compounds decreased sGC protein and activity. This effect was not mediated by cGMP as the NO-independent sGC stimulator, or direct activation of cGMP-dependent protein kinase did not mimic it. Thiol-sensitive mechanisms were also not involved as the thiol-reducing agent N-acetyl-L-cysteine did not prevent this feedback. Instead, both in-vitro and in-vivo and in health and acute respiratory lung disease, chronically elevated NO led to the inactivation and degradation of sGC while leaving the heme-free isoform, apo-sGC, intact or even increasing its levels. Thus, NO regulates sGC in a bimodal manner, acutely stimulating and chronically inhibiting, as part of self-limiting direct feedback that is cGMP independent. In high NO disease conditions, this is aggravated but can be functionally recovered in a mechanism-based manner by apo-sGC activators that re-establish cGMP formation.
Collapse
Affiliation(s)
- Vu Thao-Vi Dao
- Department of Pharmacology and Personalised Medicine, MeHNS, FHML, Maastricht University, Maastricht, The Netherlands
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Mahmoud H Elbatreek
- Department of Pharmacology and Personalised Medicine, MeHNS, FHML, Maastricht University, Maastricht, The Netherlands.
- Department for Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Martin Deile
- Primary Care Center, Altenberger Str. 27, 01277, Dresden, Germany
| | - Pavel I Nedvetsky
- Universitätsklinikum Münster, Medical Clinic D, Medical Cell Biology, Münster, Germany
| | - Andreas Güldner
- Residency Anesthesiology, Department of Anesthesiology and Critical Care Medicine, Technische Universität, Dresden, Germany
| | - César Ibarra-Alvarado
- Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico
| | - Axel Gödecke
- Institut für Herz- und Kreislaufphysiologie Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Harald H H W Schmidt
- Department of Pharmacology and Personalised Medicine, MeHNS, FHML, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
19
|
Velagic A, Qin C, Woodman OL, Horowitz JD, Ritchie RH, Kemp-Harper BK. Nitroxyl: A Novel Strategy to Circumvent Diabetes Associated Impairments in Nitric Oxide Signaling. Front Pharmacol 2020; 11:727. [PMID: 32508651 PMCID: PMC7248192 DOI: 10.3389/fphar.2020.00727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022] Open
Abstract
Diabetes is associated with an increased mortality risk due to cardiovascular complications. Hyperglycemia-induced oxidative stress underlies these complications, leading to an impairment in endogenous nitric oxide (NO•) generation, together with reductions in NO• bioavailability and NO• responsiveness in the vasculature, platelets and myocardium. The latter impairment of responsiveness to NO•, termed NO• resistance, compromises the ability of traditional NO•-based therapeutics to improve hemodynamic status during diabetes-associated cardiovascular emergencies, such as acute myocardial infarction. Whilst a number of agents can ameliorate (e.g. angiotensin converting enzyme [ACE] inhibitors, perhexiline, statins and insulin) or circumvent (e.g. nitrite and sGC activators) NO• resistance, nitroxyl (HNO) donors offer a novel opportunity to circumvent NO• resistance in diabetes. With a suite of vasoprotective properties and an ability to enhance cardiac inotropic and lusitropic responses, coupled with preserved efficacy in the setting of oxidative stress, HNO donors have intact therapeutic potential in the face of diminished NO• signaling. This review explores the major mechanisms by which hyperglycemia-induced oxidative stress drives NO• resistance, and the therapeutic potential of HNO donors to circumvent this to treat cardiovascular complications in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Anida Velagic
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Chengxue Qin
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Owen L. Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - John D. Horowitz
- Basil Hetzel Institute, Queen Elizabeth Hospital, University of Adelaide, Adelaide, SA, Australia
| | - Rebecca H. Ritchie
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Barbara K. Kemp-Harper
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Tawa M, Shimosato T, Sakonjo H, Masuoka T, Nishio M, Ishibashi T, Okamura T. Chronological Change of Vascular Reactivity to cGMP Generators in the Balloon-Injured Rat Carotid Artery. J Vasc Res 2019; 56:109-116. [PMID: 31085923 DOI: 10.1159/000498896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/13/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Soluble guanylate cyclase (sGC) exists as reduced, oxidized, and heme-free forms. Currently, it is unclear whether endovascular mechanical stenosis has an impact on vascular tone control by drugs targeting sGC, namely cGMP generators. METHODS Pharmacological responses to acidified sodium nitrite (reduced sGC stimulant) and BAY 60-2770 (oxidized/heme-free sGC stimulant) were studied in balloon-injured rat carotid arteries at several time points. In addition, sGC expression was detected by immunohistochemistry. RESULTS At 1 day after injury, acidified sodium nitrite-induced relaxation was attenuated in the injured artery, whereas BAY 60-2770-induced relaxation was augmented. Similar attenuation of response to acidified sodium nitrite was seen at 7 and 14 days after injury. On the other hand, the augmentation of response to BAY 60-2770 disappeared at 7 and 14 days after injury. At 1 day after injury, the immunohistochemical expression pattern of sGC in the smooth muscle layer of the injured artery was not different from that of the uninjured artery. However, in the injured artery, the intensity of sGC staining was weak at 7 and 14 days after injury. CONCLUSION Balloon injury alters vascular responsiveness to cGMP generators, which seems to be associated with the form and/or expression of sGC.
Collapse
Affiliation(s)
- Masashi Tawa
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Japan, .,Department of Pharmacology, Kanazawa Medical University, Kahoku, Japan,
| | | | | | - Takayoshi Masuoka
- Department of Pharmacology, Kanazawa Medical University, Kahoku, Japan
| | - Matomo Nishio
- Department of Pharmacology, Kanazawa Medical University, Kahoku, Japan
| | | | - Tomio Okamura
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
21
|
Elbatreek MH, Pachado MP, Cuadrado A, Jandeleit-Dahm K, Schmidt HHHW. Reactive Oxygen Comes of Age: Mechanism-Based Therapy of Diabetic End-Organ Damage. Trends Endocrinol Metab 2019; 30:312-327. [PMID: 30928357 DOI: 10.1016/j.tem.2019.02.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/12/2019] [Accepted: 02/28/2019] [Indexed: 12/29/2022]
Abstract
Reactive oxygen species (ROS) have been mainly viewed as unwanted by-products of cellular metabolism, oxidative stress, a sign of a cellular redox imbalance, and potential disease mechanisms, such as in diabetes mellitus (DM). Antioxidant therapies, however, have failed to provide clinical benefit. This paradox can be explained by recent discoveries that ROS have mainly essential signaling and metabolic functions and evolutionally conserved physiological enzymatic sources. Disease can occur when ROS accumulate in nonphysiological concentrations, locations, or forms. By focusing on disease-relevant sources and targets of ROS, and leaving ROS physiology intact, precise therapeutic interventions are now possible and are entering clinical trials. Their outcomes are likely to profoundly change our concepts of ROS in DM and in medicine in general.
Collapse
Affiliation(s)
- Mahmoud H Elbatreek
- Department of Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Mayra P Pachado
- Department of Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Antonio Cuadrado
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Instituto de Investigaciones Biomédicas UAM-CSIC, Ciber sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
| | - Karin Jandeleit-Dahm
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Harald H H W Schmidt
- Department of Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
22
|
Galley JC, Durgin BG, Miller MP, Hahn SA, Yuan S, Wood KC, Straub AC. Antagonism of Forkhead Box Subclass O Transcription Factors Elicits Loss of Soluble Guanylyl Cyclase Expression. Mol Pharmacol 2019; 95:629-637. [PMID: 30988014 PMCID: PMC6527398 DOI: 10.1124/mol.118.115386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/31/2019] [Indexed: 01/12/2023] Open
Abstract
Nitric oxide (NO) stimulates soluble guanylyl cyclase (sGC) activity, leading to elevated intracellular cyclic guanosine 3',5'-monophosphate (cGMP) and subsequent vascular smooth muscle relaxation. It is known that downregulation of sGC expression attenuates vascular dilation and contributes to the pathogenesis of cardiovascular disease. However, it is not well understood how sGC transcription is regulated. Here, we demonstrate that pharmacological inhibition of Forkhead box subclass O (FoxO) transcription factors using the small-molecule inhibitor AS1842856 significantly blunts sGC α and β mRNA expression by more than 90%. These effects are concentration-dependent and concomitant with greater than 90% reduced expression of the known FoxO transcriptional targets, glucose-6-phosphatase and growth arrest and DNA damage protein 45 α (Gadd45α). Similarly, sGC α and sGC β protein expression showed a concentration-dependent downregulation. Consistent with the loss of sGC α and β mRNA and protein expression, pretreatment of vascular smooth muscle cells with the FoxO inhibitor decreased sGC activity measured by cGMP production following stimulation with an NO donor. To determine if FoxO inhibition resulted in a functional impairment in vascular relaxation, we cultured mouse thoracic aortas with the FoxO inhibitor and conducted ex vivo two-pin myography studies. Results showed that aortas have significantly blunted sodium nitroprusside-induced (NO-dependent) vasorelaxation and a 42% decrease in sGC expression after 48-hour FoxO inhibitor treatment. Taken together, these data are the first to identify that FoxO transcription factor activity is necessary for sGC expression and NO-dependent relaxation.
Collapse
Affiliation(s)
- Joseph C Galley
- Heart, Lung, Blood and Vascular Medicine Institute (J.C.G., B.G.D., M.P.M., S.A.H., S.Y., K.C.W., A.C.S.) and Department of Pharmacology and Chemical Biology (J.C.G., A.C.S.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brittany G Durgin
- Heart, Lung, Blood and Vascular Medicine Institute (J.C.G., B.G.D., M.P.M., S.A.H., S.Y., K.C.W., A.C.S.) and Department of Pharmacology and Chemical Biology (J.C.G., A.C.S.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Megan P Miller
- Heart, Lung, Blood and Vascular Medicine Institute (J.C.G., B.G.D., M.P.M., S.A.H., S.Y., K.C.W., A.C.S.) and Department of Pharmacology and Chemical Biology (J.C.G., A.C.S.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Scott A Hahn
- Heart, Lung, Blood and Vascular Medicine Institute (J.C.G., B.G.D., M.P.M., S.A.H., S.Y., K.C.W., A.C.S.) and Department of Pharmacology and Chemical Biology (J.C.G., A.C.S.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shuai Yuan
- Heart, Lung, Blood and Vascular Medicine Institute (J.C.G., B.G.D., M.P.M., S.A.H., S.Y., K.C.W., A.C.S.) and Department of Pharmacology and Chemical Biology (J.C.G., A.C.S.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Katherine C Wood
- Heart, Lung, Blood and Vascular Medicine Institute (J.C.G., B.G.D., M.P.M., S.A.H., S.Y., K.C.W., A.C.S.) and Department of Pharmacology and Chemical Biology (J.C.G., A.C.S.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute (J.C.G., B.G.D., M.P.M., S.A.H., S.Y., K.C.W., A.C.S.) and Department of Pharmacology and Chemical Biology (J.C.G., A.C.S.), University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
23
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 PMCID: PMC6442925 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 305] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/30/2018] [Accepted: 05/06/2018] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
24
|
Guo Y, Xu C, Man AWC, Bai B, Luo C, Huang Y, Xu A, Vanhoutte PM, Wang Y. Endothelial SIRT1 prevents age-induced impairment of vasodilator responses by enhancing the expression and activity of soluble guanylyl cyclase in smooth muscle cells. Cardiovasc Res 2018; 115:678-690. [DOI: 10.1093/cvr/cvy212] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/02/2018] [Accepted: 08/24/2018] [Indexed: 12/13/2022] Open
Abstract
Abstract
Aims
Aged arteries are characterized by attenuated vasodilator and enhanced vasoconstrictor responses, which contribute to the development of diseases such as arterial hypertension, atherosclerosis, and heart failure. SIRT1 is a longevity regulator exerting protective functions against vascular ageing, although the underlying mechanisms remain largely unknown. This study was designed to elucidate the signalling pathways involved in endothelial SIRT1-mediated vasodilator responses in the arteries of young and old mice. In particular, the contributions of nitric oxide (NO), endothelial NO synthase (eNOS), cyclooxygenase (COX), and/or soluble guanylyl cyclase (sGC) were examined.
Methods and results
Wild type (WT) or eNOS knockout (eKO) mice were cross-bred with those overexpressing human SIRT1 selectively in the vascular endothelium (EC-SIRT1). Arteries were collected from the four groups of mice (WT, EC-SIRT1, eKO, and eKO-SIRT1) to measure isometric relaxations/contractions in response to various pharmacological agents. Reduction of NO bioavailability, hyper-activation of COX signalling, and down-regulation of sGC collectively contributed to the decreased vasodilator and increased vasoconstrictor responses in arteries of old WT mice. Overexpression of endothelial SIRT1 did not block the reduction in NO bioavailability but attenuated the hyper-activation of COX-2, thus protecting mice from age-induced vasoconstrictor responses in arteries of EC-SIRT1 mice. Deficiency of eNOS did not affect endothelial SIRT1-mediated anti-contractile activities in arteries of eKO-SIRT1 mice. Mechanistic studies revealed that overexpression of endothelial SIRT1 enhanced Notch signalling to up-regulate sGCβ1 in smooth muscle cells. Increased expression and activity of sGC prevented age-induced hyper-activation of COX-2 as well as the conversion of endothelium-dependent relaxations to contractions in arteries of EC-SIRT1 mice.
Conclusion
Age-induced down-regulation of sGC and up-regulation of COX-2 in arteries are at least partly attributable to the loss-of-endothelial SIRT1 function. Enhancing the endothelial expression and function of SIRT1 prevents early vascular ageing and maintains vasodilator responses, thus representing promising drug targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Yumeng Guo
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Cheng Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Andy W C Man
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Bo Bai
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Cuiting Luo
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Yu Huang
- Institute of Vascular Medicine, Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Paul M Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| |
Collapse
|
25
|
de Oliveira TS, de Oliveira LM, de Oliveira LP, Costa RMD, Tostes RDC, Georg RDC, Costa EA, Lobato NDS, Filgueira FP, Ghedini PC. Activation of PI3K/Akt pathway mediated by estrogen receptors accounts for estrone-induced vascular activation of cGMP signaling. Vascul Pharmacol 2018; 110:42-48. [PMID: 30075228 DOI: 10.1016/j.vph.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 05/08/2018] [Accepted: 07/29/2018] [Indexed: 01/13/2023]
Abstract
Estrone (E1) produces remarkable vascular effects, including relaxation, modulation of proliferation, apoptosis and cell adhesion. This study investigated the role of estrogen receptors and endothelial signaling pathways in the vascular relaxation promoted by E1. Aortic rings from male Wistar rats (250-300 g) were contracted with phenylephrine and stimulated with graded concentrations of E1. The concentration-dependent relaxation induced by E1 was abolished after removal of the endothelium or incubation with the estrogen receptor antagonist ICI 182,780. G protein-coupled estrogen receptor antagonism did not alter the E1 effect. Pretreatment of endothelium-intact arteries with inhibitors of nitric oxide synthase, guanylyl cyclase, calmodulin (CaM) and PI3K reduced the E1-induced vasorelaxation. Incubation with inhibitors of the MEK/ERK1/2 or p38MAPK pathways did not alter the E1 vasorelaxation. Similarly, inhibition of cyclooxygenase or blockade of potassium channels did not change the E1 effect. Western blot analysis evidenced that E1 induces phosphorylation of eNOS, PI3K and Akt in rat aorta. Our data demonstrate that E1 induces aortic vascular relaxation through classic estrogen receptors activation on the endothelium. We also identify CaM and PI3K/Akt pathways as critical mediators of the NO-cGMP signaling activation by E1. These findings contribute to the notion that this estrogen regulates arterial function and represents another link, besides 17β-estradiol (E2), between postmenopause and vascular dysfunction.
Collapse
Affiliation(s)
| | - Lais Moraes de Oliveira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Goias, Goiania, Brazil
| | | | - Rafael Menezes da Costa
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Faculty of Medicine, Federal University of Jatai, Jatai, Brazil
| | - Rita de Cássia Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Raphaela de Castro Georg
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goias, Goiania, Brazil
| | - Elson Alves Costa
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Goias, Goiania, Brazil
| | | | | | - Paulo César Ghedini
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Goias, Goiania, Brazil
| |
Collapse
|
26
|
Inhibition of ferrochelatase impairs vascular eNOS/NO and sGC/cGMP signaling. PLoS One 2018; 13:e0200307. [PMID: 29985945 PMCID: PMC6037352 DOI: 10.1371/journal.pone.0200307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/22/2018] [Indexed: 01/14/2023] Open
Abstract
Ferrochelatase (FECH) is an enzyme necessary for heme synthesis, which is essential for maintaining normal functions of endothelial nitric oxide synthase (eNOS) and soluble guanylyl cyclase (sGC). We tested the hypothesis that inhibition of vascular FECH to attenuate heme synthesis downregulates eNOS and sGC expression, resulting in impaired NO/cGMP-dependent relaxation. To this end, isolated bovine coronary arteries (BCAs) were in vitro incubated without (as controls) or with N-methyl protoporphyrin (NMPP; 10−5–10-7M; a selective FECH antagonist) for 24 and 72 hours respectively. Tissue FECH activity, heme, nitrite/NO and superoxide levels were sequentially measured. Protein expression of FECH, eNOS and sGC was detected by western blot analysis. Vascular responses to various vasoactive agents were evaluated via isometric tension studies. Treatment of BCAs with NMPP initiated a time- and dose-dependent attenuation of FECH activity without changes in its protein expression, followed by significant reduction in the heme level. Moreover, ACh-induced relaxation and ACh-stimulated release of NO were significant reduced, associated with suppression of eNOS protein expression in NMPP-treated groups. Decreased relaxation to NO donor spermine-NONOate reached the statistical significance in BCAs incubated with NMPP for 72 hours, concomitantly with downregulation of sGCβ1 expression that was independent of heat shock protein 90 (HSP90), nor did it significantly affect BCA relaxation caused by BAY 58–2667 that activates sGC in the heme-deficiency. Neither vascular responses to non-NO/sGC-mediators nor production of superoxide was affected by NMPP-treatment. In conclusion, deletion of vascular heme production via inhibiting FECH elicits downregulation of eNOS and sGC expression, leading to an impaired NO-mediated relaxation in an oxidative stress-independent manner.
Collapse
|
27
|
Korkmaz Y, Roggendorf HC, Siefer OG, Seehawer J, Imhof T, Plomann M, Bloch W, Friebe A, Huebbers CU. Downregulation of the α 1- and β 1-subunit of sGC in Arterial Smooth Muscle Cells of OPSCC Is HPV-Independent. J Dent Res 2018; 97:1214-1221. [PMID: 29775416 DOI: 10.1177/0022034518774531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The nitric oxide (NO)-sensitive soluble guanylyl cyclase (sGC) is a heterodimeric enzyme with an α and β subunit. NO binds to heme of the β1-subunit of sGC, activates the enzyme in the reduced heme iron state in vascular smooth muscle cells (VSMCs), and generates cGMP-inducing vasodilatation and suppression of VSMC proliferation. In the complex tumor milieu with higher levels of reactive oxygen species (ROS), sGC heme iron may become oxidized and insensitive to NO. To change sGC from an NO-insensitive to NO-sensitive state or NO-independent manner, protein expression of sGC in VSMC is required. Whether sGCα1β1 exists at the protein level in arterial VSMCs of oropharyngeal squamous cell carcinoma (OPSCC) is unknown. In addition, whether differences in the genetic profile between human papillomavirus (HPV)-positive and HPV-negative OPSCC contributes to the regulation of sGCα1β1 is unclear. Therefore, we compared the effects of HPV-positive and HPV-negative OPSCC on the expression of sGCα1β1 in arterial VSMCs from tumor-free and tumor-containing regions of human tissue sections using quantitative immunohistochemistry. In comparison to the tumor-free region, we found a decrease in expression of both α1- and β1-subunits in the arterial VSMC layer of the tumor-containing areas. The OPSCC-induced significant downregulation of the α1- and β1-subunits of sGC in arterial VSMC was HPV-independent. We conclude that the response of sGC to NO in tumor arterial VSMCs may be impaired by oxidation of the heme of the β1-subunit, and thus, α1- and β1-subunits of sGC could be targeted to degradation under oxidative stress in OPSCC in an HPV-independent manner. The degradation of sGCα1β1 in VSMCs may result in increased proliferation of VSMCs, promoting tumor arteriogenesis in OPSCC. This can be interrupted by preserving the active heterodimer sGCα1β1 in arterial VSMCs.
Collapse
Affiliation(s)
- Y Korkmaz
- 1 Institute for Experimental Dental Research and Oral Musculoskeletal Biology, University of Cologne, Cologne, Germany.,2 Department I of Anatomy, University of Cologne, Cologne, Germany.,3 Center for Biochemistry, University of Cologne, Cologne, Germany
| | - H C Roggendorf
- 4 Department of Operative Craniomaxillofacial and Plastic Surgery, University of Cologne, Cologne, Germany
| | - O G Siefer
- 5 Jean-Uhrmacher-Institute for Otorhinolaryngological Research, University of Cologne, Cologne, Germany
| | - J Seehawer
- 6 Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, Germany
| | - T Imhof
- 1 Institute for Experimental Dental Research and Oral Musculoskeletal Biology, University of Cologne, Cologne, Germany
| | - M Plomann
- 3 Center for Biochemistry, University of Cologne, Cologne, Germany
| | - W Bloch
- 7 Department of Molecular and Cellular Sport Medicine, German Sport University, Cologne, Germany
| | - A Friebe
- 8 Institute of Physiology, Julius-Maximilians-University, Würzburg, Germany
| | - C U Huebbers
- 5 Jean-Uhrmacher-Institute for Otorhinolaryngological Research, University of Cologne, Cologne, Germany
| |
Collapse
|
28
|
Redox Mechanisms Influencing cGMP Signaling in Pulmonary Vascular Physiology and Pathophysiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:227-240. [PMID: 29047089 DOI: 10.1007/978-3-319-63245-2_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The soluble form of guanylate cyclase (sGC) and cGMP signaling are major regulators of pulmonary vasodilation and vascular remodeling that protect the pulmonary circulation from hypertension development. Nitric oxide, reactive oxygen species, thiol and heme redox, and heme biosynthesis control mechanisms regulating the production of cGMP by sGC. In addition, a cGMP-independent mechanism regulates protein kinase G through thiol oxidation in manner controlled by peroxide metabolism and NADPH redox. Multiple aspects of these regulatory processes contribute to physiological and pathophysiological regulation of the pulmonary circulation, and create potentially novel therapeutic targets for the treatment of pulmonary vascular disease.
Collapse
|
29
|
A diseasome cluster-based drug repurposing of soluble guanylate cyclase activators from smooth muscle relaxation to direct neuroprotection. NPJ Syst Biol Appl 2018; 4:8. [PMID: 29423274 PMCID: PMC5799370 DOI: 10.1038/s41540-017-0039-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 12/24/2022] Open
Abstract
Network medicine utilizes common genetic origins, markers and co-morbidities to uncover mechanistic links between diseases. These links can be summarized in the diseasome, a comprehensive network of disease–disease relationships and clusters. The diseasome has been influential during the past decade, although most of its links are not followed up experimentally. Here, we investigate a high prevalence unmet medical need cluster of disease phenotypes linked to cyclic GMP. Hitherto, the central cGMP-forming enzyme, soluble guanylate cyclase (sGC), has been targeted pharmacologically exclusively for smooth muscle modulation in cardiology and pulmonology. Here, we examine the disease associations of sGC in a non-hypothesis based manner in order to identify possibly previously unrecognized clinical indications. Surprisingly, we find that sGC, is closest linked to neurological disorders, an application that has so far not been explored clinically. Indeed, when investigating the neurological indication of this cluster with the highest unmet medical need, ischemic stroke, pre-clinically we find that sGC activity is virtually absent post-stroke. Conversely, a heme-free form of sGC, apo-sGC, was now the predominant isoform suggesting it may be a mechanism-based target in stroke. Indeed, this repurposing hypothesis could be validated experimentally in vivo as specific activators of apo-sGC were directly neuroprotective, reduced infarct size and increased survival. Thus, common mechanism clusters of the diseasome allow direct drug repurposing across previously unrelated disease phenotypes redefining them in a mechanism-based manner. Specifically, our example of repurposing apo-sGC activators for ischemic stroke should be urgently validated clinically as a possible first-in-class neuroprotective therapy. Systems medicine utilizes common genetic origins and co-morbidities to uncover mechanistic links between diseases, which are summarized in the diseasome. Shared pathomechanisms may also allow for drug repurposing within these disease clusters. Here, Schmidt and co-workers show indeed that, based on this principle, a cardio-pulmonary drug can be surprisingly repurposed for a previously not recognised application as a direct neuroprotectant. They find that the cyclic GMP forming soluble guanylate cyclase becomes dysfunctional upon stroke but regains catalytic activity in the presence of specific activator compounds. This new mechanism-based therapy should be urgently validated clinically as a possible first-in-class treatment in stroke.
Collapse
|
30
|
Czirok S, Fang L, Radovits T, Szabó G, Szénási G, Rosivall L, Merkely B, Kökény G. Cinaciguat ameliorates glomerular damage by reducing ERK1/2 activity and TGF-ß expression in type-1 diabetic rats. Sci Rep 2017; 7:11218. [PMID: 28894114 PMCID: PMC5593847 DOI: 10.1038/s41598-017-10125-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/03/2017] [Indexed: 01/07/2023] Open
Abstract
Decreased soluble guanylate cyclase activity and cGMP levels in diabetic kidneys were shown to influence the progression of nephropathy. The regulatory effects of soluble guanylate cyclase activators on renal signaling pathways are still unknown, we therefore investigated the renal molecular effects of the soluble guanylate cyclase activator cinaciguat in type-1 diabetic (T1DM) rats. Male adult Sprague-Dawley rats were divided into 2 groups after induction of T1DM with 60 mg/kg streptozotocin: DM, untreated (DM, n = 8) and 2) DM + cinaciguat (10 mg/kg per os daily, DM-Cin, n = 8). Non-diabetic untreated and cinaciguat treated rats served as controls (Co (n = 10) and Co-Cin (n = 10), respectively). Rats were treated for eight weeks, when renal functional and molecular analyses were performed. Cinaciguat attenuated the diabetes induced proteinuria, glomerulosclerosis and renal collagen-IV expression accompanied by 50% reduction of TIMP-1 expression. Cinaciguat treatment restored the glomerular cGMP content and soluble guanylate cyclase expression, and ameliorated the glomerular apoptosis (TUNEL positive cell number) and podocyte injury. These effects were accompanied by significantly reduced TGF-ß overexpression and ERK1/2 phosphorylation in cinaciguat treated diabetic kidneys. We conclude that the soluble guanylate cyclase activator cinaciguat ameliorated diabetes induced glomerular damage, apoptosis, podocyte injury and TIMP-1 overexpression by suppressing TGF-ß and ERK1/2 signaling.
Collapse
Affiliation(s)
- Szabina Czirok
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Lilla Fang
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Gábor Szabó
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Gábor Szénási
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - László Rosivall
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Gábor Kökény
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
31
|
Decaluwé K, Pauwels B, Boydens C, Thoonen R, Buys ES, Brouckaert P, Van de Voorde J. Erectile Dysfunction in Heme-Deficient Nitric Oxide-Unresponsive Soluble Guanylate Cyclase Knock-In Mice. J Sex Med 2017; 14:196-204. [PMID: 28161078 DOI: 10.1016/j.jsxm.2016.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/29/2016] [Accepted: 12/06/2016] [Indexed: 12/23/2022]
Abstract
INTRODUCTION The nitric oxide (NO), soluble guanylate cyclase (sGC), and cyclic guanosine monophosphate (cGMP) pathway is the leading pathway in penile erection. AIM To assess erectile function in a mouse model in which sGC is deficient in heme (apo-sGC) and unresponsive to NO. METHODS Mutant mice (sGCβ1ki/ki) that express an sGC enzyme that retains basal activity but fails to respond to NO because of heme deficiency (apo-sGC) were used. Isolated corpora cavernosa from sGCβ1ki/ki and wild-type mice were mounted in vitro for isometric tension recordings in response to sGC-dependent and -independent vasorelaxant agents. In addition, the erectile effects of some of these agents were tested in vivo at intracavernosal injection. MAIN OUTCOME MEASURES In vitro and in vivo recordings of erectile responses in sGCβ1ki/ki and wild-type mice after stimulation with sGC-dependent and -independent vasorelaxant agents. RESULTS NO-induced responses were abolished in sGCβ1ki/ki mice in vitro and in vivo. The ability of the heme-dependent, NO-independent sGC stimulator BAY 41-2272 to relax the corpora cavernosa was markedly attenuated in sGCβ1ki/ki mice. In contrast, the relaxation response to the heme- and NO-independent sGC activator BAY 58-2667 was significantly enhanced in sGCβ1ki/ki mice. The relaxing effect of sGC-independent vasorelaxant agents was similar in wild-type and sGCβ1ki/ki mice, illustrating that the observed alterations in vasorelaxation are limited to NO-sGC-cGMP-mediated processes. CONCLUSION Our results suggest that sGC is the sole target of NO in erectile physiology. Furthermore, this study provides indirect evidence that, in addition to sGCα1β1, sGCα2β1 is important for erectile function. In addition, the significant relaxation observed in sGCβ1ki/ki mice with the cumulative addition of the sGC activator BAY 58-2667 indicates that sGC activators might offer value in treating erectile dysfunction.
Collapse
Affiliation(s)
- Kelly Decaluwé
- Department of Pharmacology, Ghent University, Ghent, Belgium
| | - Bart Pauwels
- Department of Pharmacology, Ghent University, Ghent, Belgium
| | | | - Robrecht Thoonen
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emmanuel S Buys
- Anesthesia Center for Critical Care Research, Department of Anesthesia and Critical Care and Pain Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA, USA
| | - Peter Brouckaert
- Inflammation Research Center, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | |
Collapse
|
32
|
Rahaman MM, Nguyen AT, Miller MP, Hahn SA, Sparacino-Watkins C, Jobbagy S, Carew NT, Cantu-Medellin N, Wood KC, Baty CJ, Schopfer FJ, Kelley EE, Gladwin MT, Martin E, Straub AC. Cytochrome b5 Reductase 3 Modulates Soluble Guanylate Cyclase Redox State and cGMP Signaling. Circ Res 2017; 121:137-148. [PMID: 28584062 DOI: 10.1161/circresaha.117.310705] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/17/2022]
Abstract
RATIONALE Soluble guanylate cyclase (sGC) heme iron, in its oxidized state (Fe3+), is desensitized to NO and limits cGMP production needed for downstream activation of protein kinase G-dependent signaling and blood vessel dilation. OBJECTIVE Although reactive oxygen species are known to oxidize the sGC heme iron, the basic mechanism(s) governing sGC heme iron recycling to its NO-sensitive, reduced state remain poorly understood. METHODS AND RESULTS Oxidant challenge studies show that vascular smooth muscle cells have an intrinsic ability to reduce oxidized sGC heme iron and form protein-protein complexes between cytochrome b5 reductase 3, also known as methemoglobin reductase, and oxidized sGC. Genetic knockdown and pharmacological inhibition in vascular smooth muscle cells reveal that cytochrome b5 reductase 3 expression and activity is critical for NO-stimulated cGMP production and vasodilation. Mechanistically, we show that cytochrome b5 reductase 3 directly reduces oxidized sGC required for NO sensitization as assessed by biochemical, cellular, and ex vivo assays. CONCLUSIONS Together, these findings identify new insights into NO-sGC-cGMP signaling and reveal cytochrome b5 reductase 3 as the first identified physiological sGC heme iron reductase in vascular smooth muscle cells, serving as a critical regulator of cGMP production and protein kinase G-dependent signaling.
Collapse
Affiliation(s)
- Mizanur M Rahaman
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Anh T Nguyen
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Megan P Miller
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Scott A Hahn
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Courtney Sparacino-Watkins
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Soma Jobbagy
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Nolan T Carew
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Nadiezhda Cantu-Medellin
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Katherine C Wood
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Catherine J Baty
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Francisco J Schopfer
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Eric E Kelley
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Mark T Gladwin
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Emil Martin
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Adam C Straub
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.).
| |
Collapse
|
33
|
Ghosh A, Stuehr DJ. Regulation of sGC via hsp90, Cellular Heme, sGC Agonists, and NO: New Pathways and Clinical Perspectives. Antioxid Redox Signal 2017; 26:182-190. [PMID: 26983679 PMCID: PMC5278824 DOI: 10.1089/ars.2016.6690] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Soluble guanylate cyclase (sGC) is an intracellular enzyme that plays a primary role in sensing nitric oxide (NO) and transducing its multiple signaling effects in mammals. Recent Advances: The chaperone heat shock protein 90 (hsp90) associates with signaling proteins in cells, including sGC, where it helps to drive heme insertion into the sGC-β1 subunit. This allows sGC-β1 to associate with a partner sGC-α1 subunit and mature into an NO-responsive active form. CRITICAL ISSUES In this article, we review evidence to date regarding the mechanisms that modulate sGC activity by a pathway where binding of hsp90 or sGC agonist to heme-free sGC dictates the assembly and fate of an active sGC heterodimer, both by NO and heme-dependent or heme-independent pathways. FUTURE DIRECTIONS We discuss some therapeutic implications of the NO-sGC-hsp90 nexus and its potential as a marker of inflammatory disease. Antioxid. Redox Signal. 26, 182-190.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department of Pathobiology, Lerner Research Institute , Cleveland Clinic, Cleveland, Ohio
| | - Dennis J Stuehr
- Department of Pathobiology, Lerner Research Institute , Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
34
|
Sharina IG, Martin E. The Role of Reactive Oxygen and Nitrogen Species in the Expression and Splicing of Nitric Oxide Receptor. Antioxid Redox Signal 2017; 26:122-136. [PMID: 26972233 PMCID: PMC7061304 DOI: 10.1089/ars.2016.6687] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Nitric oxide (NO)-dependent signaling is critical to many cellular functions and physiological processes. Soluble guanylyl cyclase (sGC) acts as an NO receptor and mediates the majority of NO functions. The signaling between NO and sGC is strongly altered by reactive oxygen and nitrogen species. Recent Advances: Besides NO scavenging, sGC is affected by oxidation/loss of sGC heme, oxidation, or nitrosation of cysteine residues and phosphorylation. Apo-sGC or sGC containing oxidized heme is targeted for degradation. sGC transcription and the stability of sGC mRNA are also affected by oxidative stress. CRITICAL ISSUES Studies cited in this review suggest the existence of compensatory processes that adapt cellular processes to diminished sGC function under conditions of short-term or moderate oxidative stress. Alternative splicing of sGC transcripts is discussed as a mechanism with the potential to both enhance and reduce sGC function. The expression of α1 isoform B, a functional and stable splice variant of human α1 sGC subunit, is proposed as one of such compensatory mechanisms. The expression of dysfunctional splice isoforms is discussed as a contributor to decreased sGC function in vascular disease. FUTURE DIRECTIONS Targeting the process of sGC splicing may be an important approach to maintain the composition of sGC transcripts that are expressed in healthy tissues under normal conditions. Emerging new strategies that allow for targeted manipulations of RNA splicing offer opportunities to use this approach as a preventive measure and to control the composition of sGC splice isoforms. Rational management of expressed sGC splice forms may be a valuable complementary treatment strategy for existing sGC-directed therapies. Antioxid. Redox Signal. 26, 122-136.
Collapse
Affiliation(s)
- Iraida G Sharina
- 1 Division of Cardiology, Department of Internal Medicine, The University of Texas Health Science Center in Houston Medical School , Houston, Texas
| | - Emil Martin
- 1 Division of Cardiology, Department of Internal Medicine, The University of Texas Health Science Center in Houston Medical School , Houston, Texas.,2 School of Science and Technology, Nazarbayev University , Astana, Kazakhstan
| |
Collapse
|
35
|
Montfort WR, Wales JA, Weichsel A. Structure and Activation of Soluble Guanylyl Cyclase, the Nitric Oxide Sensor. Antioxid Redox Signal 2017; 26:107-121. [PMID: 26979942 PMCID: PMC5240008 DOI: 10.1089/ars.2016.6693] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Soluble guanylyl/guanylate cyclase (sGC) is the primary receptor for nitric oxide (NO) and is central to the physiology of blood pressure regulation, wound healing, memory formation, and other key physiological activities. sGC is increasingly implicated in disease and is targeted by novel therapeutic compounds. The protein displays a rich evolutionary history and a fascinating signal transduction mechanism, with NO binding to an N-terminal heme-containing domain, which activates the C-terminal cyclase domains. Recent Advances: Crystal structures of individual sGC domains or their bacterial homologues coupled with small-angle x-ray scattering, electron microscopy, chemical cross-linking, and Förster resonance energy transfer measurements are yielding insight into the overall structure for sGC, which is elongated and likely quite dynamic. Transient kinetic measurements reveal a role for individual domains in lowering NO affinity for heme. New sGC stimulatory drugs are now in the clinic and appear to function through binding near or directly to the sGC heme domain, relieving inhibitory contacts with other domains. New sGC-activating drugs show promise for recovering oxidized sGC in diseases with high inflammation by replacing lost heme. CRITICAL ISSUES Despite the many recent advances, sGC regulation, NO activation, and mechanisms of drug binding remain unclear. Here, we describe the molecular evolution of sGC, new molecular models, and the linked equilibria between sGC NO binding, drug binding, and catalytic activity. FUTURE DIRECTIONS Recent results and ongoing studies lay the foundation for a complete understanding of structure and mechanism, and they open the door for new drug discovery targeting sGC. Antioxid. Redox Signal. 26, 107-121.
Collapse
Affiliation(s)
- William R Montfort
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona
| | - Jessica A Wales
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona
| | - Andrzej Weichsel
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona
| |
Collapse
|
36
|
The opposing roles of NO and oxidative stress in cardiovascular disease. Pharmacol Res 2016; 116:57-69. [PMID: 27988384 DOI: 10.1016/j.phrs.2016.12.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/15/2016] [Accepted: 12/13/2016] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) plays a pivotal role in the maintenance of cardiovascular homeostasis. A reduction in the bioavailability of endogenous NO, manifest as a decrease in the production and/or impaired signaling, is associated with many cardiovascular diseases including hypertension, atherosclerosis, stroke and heart failure. There is substantial evidence that reactive oxygen species (ROS), generated predominantly from NADPH oxidases (Nox), are responsible for the reduced NO bioavailability in vascular and cardiac pathologies. ROS can compromise NO function via a direct inactivation of NO, together with a reduction in NO synthesis and oxidation of its receptor, soluble guanylyl cyclase. Whilst nitrovasodilators are administered to compensate for the ROS-mediated loss in NO bioactivity, their clinical utility is limited due to the development of tolerance and resistance and systemic hypotension. Moreover, efforts to directly scavenge ROS with antioxidants has had limited clinical efficacy. This review outlines the therapeutic utility of NO-based therapeutics in cardiovascular diseases and describes the source and impact of ROS in these pathologies, with particular focus on the interaction with NO. Future therapeutic approaches in the treatment of cardiovascular diseases are highlighted with a focus on nitroxyl (HNO) donors as an alternative to traditional NO donors and the development of novel Nox inhibitors.
Collapse
|
37
|
Yao B, Xu Y, Wang J, Qiao Y, Zhang Y, Zhang X, Chen Y, Wu Q, Zhao Y, Zhu G, Sun F, Li Z, Yuan H. Reciprocal regulation between O-GlcNAcylation and tribbles pseudokinase 2 (TRIB2) maintains transformative phenotypes in liver cancer cells. Cell Signal 2016; 28:1703-12. [DOI: 10.1016/j.cellsig.2016.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/17/2016] [Accepted: 08/07/2016] [Indexed: 02/07/2023]
|
38
|
Tawa M, Okamura T. Soluble guanylate cyclase redox state under oxidative stress conditions in isolated monkey coronary arteries. Pharmacol Res Perspect 2016; 4:e00261. [PMID: 27713826 PMCID: PMC5045941 DOI: 10.1002/prp2.261] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 08/10/2016] [Accepted: 08/10/2016] [Indexed: 12/23/2022] Open
Abstract
Coronary artery disease is associated with oxidative stress due to the excessive generation of free radicals in the vascular wall. This study investigated the impact of tert‐butyl hydroperoxide (t‐BuOOH), a peroxyl radical generator, on the redox state of soluble guanylate cyclase (sGC) in isolated monkey coronary arteries. Helically cut strips of endothelium‐intact monkey coronary arteries treated with the nitric oxide synthase inhibitor NG‐nitro‐L‐arginine (10 μmol/L) were exposed for approximately 60 min to either no drug or t‐BuOOH (100 μmol/L) in the presence and absence of α‐tocopherol (300 μmol/L). Relaxation and cGMP levels in response to the sGC stimulator BAY 41‐2272 and the sGC activator BAY 60‐2770 were assessed by organ chamber technique and enzyme immunoassay, respectively. The relaxant response to BAY 41‐2272 was significantly impaired by the exposure to t‐BuOOH, whereas the response to BAY 60‐2770 was significantly augmented. In addition, vascular cGMP accumulation caused by BAY 41‐2272 was decreased by the exposure to t‐BuOOH, whereas for BAY 60‐2770, it was increased. These effects of t‐BuOOH were abolished by coincubation with α‐tocopherol. Furthermore, correlations were observed between BAY compound‐induced relaxant magnitudes and cGMP levels. Therefore, it is concluded that increased oxidative stress leads to disruption of the sGC redox state in monkey coronary arteries. This finding is of great importance for understanding coronary physiology in primates.
Collapse
Affiliation(s)
- Masashi Tawa
- Department of Pharmacology Shiga University of Medical Science Otsu Shiga Japan
| | - Tomio Okamura
- Department of Pharmacology Shiga University of Medical Science Otsu Shiga Japan
| |
Collapse
|
39
|
Zhou Z, Martin E, Sharina I, Esposito I, Szabo C, Bucci M, Cirino G, Papapetropoulos A. Regulation of soluble guanylyl cyclase redox state by hydrogen sulfide. Pharmacol Res 2016; 111:556-562. [PMID: 27378567 DOI: 10.1016/j.phrs.2016.06.029] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/07/2016] [Accepted: 06/30/2016] [Indexed: 01/09/2023]
Abstract
Soluble guanylate cyclase (sGC) is a receptor for nitric oxide (NO). Binding of NO to ferrous (Fe(2+)) heme increases its catalytic activity, leading to the production of cGMP from GTP. Hydrogen sulfide (H2S) is a signaling molecule that exerts both direct and indirect anti-oxidant effects. In the present, study we aimed to determine whether H2S could regulate sGC redox state and affect its responsiveness to NO-releasing agents and sGC activators. Using cultured rat aortic smooth muscle cells, we observed that treatment with H2S augmented the response to the NO donor DEA/NO, while attenuating the response to the heme-independent activator BAY58-2667 that targets oxidized sGC. Similarly, overexpression of H2S-synthesizing enzyme cystathionine-γ lyase reduced the ability of BAY58-2667 to promote cGMP accumulation. In experiments with phenylephrine-constricted mouse aortic rings, treatment with rotenone (a compound that increases ROS production), caused a rightward shift of the DEA/NO concentration-response curve, an effect partially restored by H2S. When rings were pre-treated with H2S, the concentration-response curve to BAY 58-2667 shifted to the right. Using purified recombinant human sGC, we observed that treatment with H2S converted ferric to ferrous sGC enhancing NO-donor-stimulated sGC activity and reducing BAY 58-2667-triggered cGMP formation. The present study identified an additional mechanism of cross-talk between the NO and H2S pathways at the level of redox regulation of sGC. Our results provide evidence that H2S reduces sGC heme Fe, thus, facilitating NO-mediated cellular signaling events.
Collapse
Affiliation(s)
- Zongmin Zhou
- 1st Department of Critical Care and Pulmonary Services, Faculty of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, Greece
| | - Emil Martin
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical School at Houston, TX, USA
| | - Iraida Sharina
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical School at Houston, TX, USA
| | - Iolanda Esposito
- Department of Experimental Pharmacology, Faculty of Pharmacy, University of NaplesFederico II, Italy
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mariarosaria Bucci
- Department of Experimental Pharmacology, Faculty of Pharmacy, University of NaplesFederico II, Italy
| | - Giuseppe Cirino
- Department of Experimental Pharmacology, Faculty of Pharmacy, University of NaplesFederico II, Italy
| | - Andreas Papapetropoulos
- 1st Department of Critical Care and Pulmonary Services, Faculty of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, Greece; Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece; Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece.
| |
Collapse
|
40
|
de Oliveira MG, Calmasini FB, Alexandre EC, De Nucci G, Mónica FZ, Antunes E. Activation of soluble guanylyl cyclase by BAY 58-2667 improves bladder function in cyclophosphamide-induced cystitis in mice. Am J Physiol Renal Physiol 2016; 311:F85-93. [PMID: 27122537 DOI: 10.1152/ajprenal.00041.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/19/2016] [Indexed: 01/15/2023] Open
Abstract
Activators of soluble guanylyl cyclase (sGC) interact directly with its prosthetic heme group, enhancing the enzyme responsiveness in pathological conditions. This study aimed to evaluate the effects of the sGC activator BAY 58-2667 on voiding dysfunction, protein expressions of α1 and β1 sGC subunits and cGMP levels in the bladder tissues after cyclophosphamide (CYP) exposure. Female C57BL/6 mice (20-25 g) were injected with CYP (300 mg/kg ip) to induce cystitis. Mice were pretreated or not with BAY 58-2667 (1 mg/kg, gavage), given 1 h before CYP injection. The micturition patterns and in vitro bladder contractions were evaluated at 24 h. In freely moving mice, the CYP injection produced reduced the micturition volume and increased the number of urine spots. Cystometric recordings in CYP-injected mice revealed significant increases in basal pressure, voiding frequency, and nonvoiding contractions (NVCs), along with decreases in bladder capacity, intercontraction interval, and compliance. BAY 58-2667 significantly prevented the micturition alterations observed in both freely moving mice and cystometry and normalized the reduced in vitro carbachol-induced contractions in the CYP group. Reduced protein expressions of α1 and β1 sGC subunits and of cGMP levels were observed in the CYP group, all of which were prevented by BAY 58-2667. CYP exposure significantly increased reactive-oxygen species (ROS) generation in both detrusor and urothelium, and this was normalized by BAY 58-2667. The increased myeloperoxidase and cyclooxygenase-2 activities in the bladders of the CYP group remained unchanged by BAY 58-2667. Activators of sGC may constitute a novel and promising therapeutic approach for management of interstitial cystitis.
Collapse
Affiliation(s)
- Mariana G de Oliveira
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Fabiano B Calmasini
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Eduardo C Alexandre
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Gilberto De Nucci
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Fabíola Z Mónica
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| |
Collapse
|
41
|
Pan J, Zhang X, Yuan H, Xu Q, Zhang H, Zhou Y, Huang ZX, Tan X. The molecular mechanism of heme loss from oxidized soluble guanylate cyclase induced by conformational change. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:488-500. [PMID: 26876536 DOI: 10.1016/j.bbapap.2016.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/05/2016] [Accepted: 02/10/2016] [Indexed: 11/25/2022]
Abstract
Heme oxidation and loss of soluble guanylate cyclase (sGC) is thought to be an important contributor to the development of cardiovascular diseases. Nevertheless, it remains unknown why the heme loses readily in oxidized sGC. In the current study, the conformational change of sGC upon heme oxidation by ODQ was studied based on the fluorescence resonance energy transfer (FRET) between the heme and a fluorophore fluorescein arsenical helix binder (FlAsH-EDT2) labeled at different domains of sGC β1. This study provides an opportunity to monitor the domain movement of sGC relative to the heme. The results indicated that heme oxidation by ODQ in truncated sCC induced the heme-associated αF helix moving away from the heme, the Per/Arnt/Sim domain (PAS) domain moving closer to the heme, but led the helical domain going further from the heme. We proposed that the synergistic effect of these conformational changes of the discrete region upon heme oxidation forces the heme pocket open, and subsequent heme loss readily. Furthermore, the kinetic studies suggested that the heme oxidation was a fast process and the conformational change was a relatively slow process. The kinetics of heme loss from oxidized sGC was monitored by a new method based on the heme group de-quenching the fluorescence of FlAsH-EDT2.
Collapse
Affiliation(s)
- Jie Pan
- Department of Chemistry & Shanghai Key laboratory of Chemical Biology for Protein Science, Fudan University, Shanghai 200433, China
| | - Xiaoxue Zhang
- Department of Chemistry & Shanghai Key laboratory of Chemical Biology for Protein Science, Fudan University, Shanghai 200433, China
| | - Hong Yuan
- Department of Chemistry & Shanghai Key laboratory of Chemical Biology for Protein Science, Fudan University, Shanghai 200433, China
| | - Qiming Xu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Huijuan Zhang
- Department of Chemistry & Shanghai Key laboratory of Chemical Biology for Protein Science, Fudan University, Shanghai 200433, China
| | - Yajun Zhou
- Department of Chemistry & Shanghai Key laboratory of Chemical Biology for Protein Science, Fudan University, Shanghai 200433, China
| | - Zhong-Xian Huang
- Department of Chemistry & Shanghai Key laboratory of Chemical Biology for Protein Science, Fudan University, Shanghai 200433, China
| | - Xiangshi Tan
- Department of Chemistry & Shanghai Key laboratory of Chemical Biology for Protein Science, Fudan University, Shanghai 200433, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.
| |
Collapse
|
42
|
Hoffmann LS, Kretschmer A, Lawrenz B, Hocher B, Stasch JP. Chronic Activation of Heme Free Guanylate Cyclase Leads to Renal Protection in Dahl Salt-Sensitive Rats. PLoS One 2015; 10:e0145048. [PMID: 26717150 PMCID: PMC4700984 DOI: 10.1371/journal.pone.0145048] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/29/2015] [Indexed: 12/31/2022] Open
Abstract
The nitric oxide (NO)/soluble guanylate cyclase (sGC)/cyclic guanosine monophasphate (cGMP)-signalling pathway is impaired under oxidative stress conditions due to oxidation and subsequent loss of the prosthetic sGC heme group as observed in particular in chronic renal failure. Thus, the pool of heme free sGC is increased under pathological conditions. sGC activators such as cinaciguat selectively activate the heme free form of sGC and target the disease associated enzyme. In this study, a therapeutic effect of long-term activation of heme free sGC by the sGC activator cinaciguat was investigated in an experimental model of salt-sensitive hypertension, a condition that is associated with increased oxidative stress, heme loss from sGC and development of chronic renal failure. For that purpose Dahl/ss rats, which develop severe hypertension upon high salt intake, were fed a high salt diet (8% NaCl) containing either placebo or cinaciguat for 21 weeks. Cinaciguat markedly improved survival and ameliorated the salt-induced increase in blood pressure upon treatment with cinaciguat compared to placebo. Renal function was significantly improved in the cinaciguat group compared to the placebo group as indicated by a significantly improved glomerular filtration rate and reduced urinary protein excretion. This was due to anti-fibrotic and anti-inflammatory effects of the cinaciguat treatment. Taken together, this is the first study showing that long-term activation of heme free sGC leads to renal protection in an experimental model of hypertension and chronic kidney disease. These results underline the promising potential of cinaciguat to treat renal diseases by targeting the disease associated heme free form of sGC.
Collapse
Affiliation(s)
- Linda S. Hoffmann
- Pharma Research Centre, Bayer HealthCare, Wuppertal, Germany
- * E-mail:
| | - Axel Kretschmer
- Pharma Research Centre, Bayer HealthCare, Wuppertal, Germany
| | - Bettina Lawrenz
- Pharma Research Centre, Bayer HealthCare, Wuppertal, Germany
| | - Berthold Hocher
- Instute of Nutritional Science, University of Potsdam, Potsdam, Germany, and IFLb Laboratoriumsmedizin Berlin GmbH, Berlin, Germany
| | - Johannes-Peter Stasch
- Pharma Research Centre, Bayer HealthCare, Wuppertal, Germany
- School of Pharmacy, Martin-Luther-University, Halle an der Saale, Germany
| |
Collapse
|
43
|
Dao VTV, Casas AI, Maghzal GJ, Seredenina T, Kaludercic N, Robledinos-Anton N, Di Lisa F, Stocker R, Ghezzi P, Jaquet V, Cuadrado A, Schmidt HH. Pharmacology and Clinical Drug Candidates in Redox Medicine. Antioxid Redox Signal 2015; 23:1113-29. [PMID: 26415051 PMCID: PMC4657508 DOI: 10.1089/ars.2015.6430] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE Oxidative stress is suggested to be a disease mechanism common to a wide range of disorders affecting human health. However, so far, the pharmacotherapeutic exploitation of this, for example, based on chemical scavenging of pro-oxidant molecules, has been unsuccessful. RECENT ADVANCES An alternative emerging approach is to target the enzymatic sources of disease-relevant oxidative stress. Several such enzymes and isoforms have been identified and linked to different pathologies. For some targets, the respective pharmacology is quite advanced, that is, up to late-stage clinical development or even on the market; for others, drugs are already in clinical use, although not for indications based on oxidative stress, and repurposing seems to be a viable option. CRITICAL ISSUES For all other targets, reliable preclinical validation and drug ability are key factors for any translation into the clinic. In this study, specific pharmacological agents with optimal pharmacokinetic profiles are still lacking. Moreover, these enzymes also serve largely unknown physiological functions and their inhibition may lead to unwanted side effects. FUTURE DIRECTIONS The current promising data based on new targets, drugs, and drug repurposing are mainly a result of academic efforts. With the availability of optimized compounds and coordinated efforts from academia and industry scientists, unambiguous validation and translation into proof-of-principle studies seem achievable in the very near future, possibly leading towards a new era of redox medicine.
Collapse
Affiliation(s)
- V. Thao-Vi Dao
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Ana I. Casas
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Ghassan J. Maghzal
- Victor Chang Cardiac Research Institute, and School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Tamara Seredenina
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland
| | | | - Natalia Robledinos-Anton
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Fabio Di Lisa
- Neuroscience Institute, CNR, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Roland Stocker
- Victor Chang Cardiac Research Institute, and School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Pietro Ghezzi
- Division of Clinical and Laboratory Investigation, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Vincent Jaquet
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland
| | - Antonio Cuadrado
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Harald H.H.W. Schmidt
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
44
|
Casas AI, Dao VTV, Daiber A, Maghzal GJ, Di Lisa F, Kaludercic N, Leach S, Cuadrado A, Jaquet V, Seredenina T, Krause KH, López MG, Stocker R, Ghezzi P, Schmidt HHHW. Reactive Oxygen-Related Diseases: Therapeutic Targets and Emerging Clinical Indications. Antioxid Redox Signal 2015; 23:1171-85. [PMID: 26583264 PMCID: PMC4657512 DOI: 10.1089/ars.2015.6433] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Enhanced levels of reactive oxygen species (ROS) have been associated with different disease states. Most attempts to validate and exploit these associations by chronic antioxidant therapies have provided disappointing results. Hence, the clinical relevance of ROS is still largely unclear. RECENT ADVANCES We are now beginning to understand the reasons for these failures, which reside in the many important physiological roles of ROS in cell signaling. To exploit ROS therapeutically, it would be essential to define and treat the disease-relevant ROS at the right moment and leave physiological ROS formation intact. This breakthrough seems now within reach. CRITICAL ISSUES Rather than antioxidants, a new generation of protein targets for classical pharmacological agents includes ROS-forming or toxifying enzymes or proteins that are oxidatively damaged and can be functionally repaired. FUTURE DIRECTIONS Linking these target proteins in future to specific disease states and providing in each case proof of principle will be essential for translating the oxidative stress concept into the clinic.
Collapse
Affiliation(s)
- Ana I Casas
- 1 Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - V Thao-Vi Dao
- 1 Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Andreas Daiber
- 2 2nd Medical Department, Molecular Cardiology, University Medical Center , Mainz, Germany
| | - Ghassan J Maghzal
- 3 Victor Chang Cardiac Research Institute, and School of Medical Sciences, University of New South Wales , Sydney, New South Wales, Australia
| | - Fabio Di Lisa
- 4 Department of Biomedical Sciences, University of Padova , Italy .,5 Neuroscience Institute , CNR, Padova, Italy
| | | | - Sonia Leach
- 6 Brighton and Sussex Medical School , Falmer, United Kingdom
| | - Antonio Cuadrado
- 7 Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid , Madrid, Spain
| | - Vincent Jaquet
- 8 Department of Pathology and Immunology, Medical School, University of Geneva , Geneva, Switzerland
| | - Tamara Seredenina
- 8 Department of Pathology and Immunology, Medical School, University of Geneva , Geneva, Switzerland
| | - Karl H Krause
- 8 Department of Pathology and Immunology, Medical School, University of Geneva , Geneva, Switzerland
| | - Manuela G López
- 9 Teofilo Hernando Institute, Department of Pharmacology, Faculty of Medicine. Autonomous University of Madrid , Madrid, Spain
| | - Roland Stocker
- 3 Victor Chang Cardiac Research Institute, and School of Medical Sciences, University of New South Wales , Sydney, New South Wales, Australia
| | - Pietro Ghezzi
- 6 Brighton and Sussex Medical School , Falmer, United Kingdom
| | - Harald H H W Schmidt
- 1 Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| |
Collapse
|
45
|
Thoonen R, Cauwels A, Decaluwe K, Geschka S, Tainsh RE, Delanghe J, Hochepied T, De Cauwer L, Rogge E, Voet S, Sips P, Karas RH, Bloch KD, Vuylsteke M, Stasch JP, Van de Voorde J, Buys ES, Brouckaert P. Cardiovascular and pharmacological implications of haem-deficient NO-unresponsive soluble guanylate cyclase knock-in mice. Nat Commun 2015; 6:8482. [PMID: 26442659 PMCID: PMC4699393 DOI: 10.1038/ncomms9482] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 08/27/2015] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress, a central mediator of cardiovascular disease, results in loss of the prosthetic haem group of soluble guanylate cyclase (sGC), preventing its activation by nitric oxide (NO). Here we introduce Apo-sGC mice expressing haem-free sGC. Apo-sGC mice are viable and develop hypertension. The haemodynamic effects of NO are abolished, but those of the sGC activator cinaciguat are enhanced in apo-sGC mice, suggesting that the effects of NO on smooth muscle relaxation, blood pressure regulation and inhibition of platelet aggregation require sGC activation by NO. Tumour necrosis factor (TNF)-induced hypotension and mortality are preserved in apo-sGC mice, indicating that pathways other than sGC signalling mediate the cardiovascular collapse in shock. Apo-sGC mice allow for differentiation between sGC-dependent and -independent NO effects and between haem-dependent and -independent sGC effects. Apo-sGC mice represent a unique experimental platform to study the in vivo consequences of sGC oxidation and the therapeutic potential of sGC activators. Haem-free, NO-insensitive soluble guanylate cyclase (apo-sGC) generated during oxidative stress contributes to cardiovascular pathology. By generating and characterizing apo-sGC knock-in mice, Thoonen et al. provide a scientific ground for the therapeutic concept of sGC activators, and dissect the relevance of the NO-sGC axis.
Collapse
Affiliation(s)
- Robrecht Thoonen
- Laboratory for Molecular Pathology and Experimental Therapy, Inflammation Research Center, VIB, B-9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Anje Cauwels
- Laboratory for Molecular Pathology and Experimental Therapy, Inflammation Research Center, VIB, B-9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Kelly Decaluwe
- Department of Pharmacology, Ghent University, B-9000 Ghent, Belgium
| | - Sandra Geschka
- Cardiovascular Research, Bayer Pharma AG, D-42096 Wuppertal, Germany
| | - Robert E Tainsh
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital Research Institute, Boston, Massachusetts 02114, USA
| | - Joris Delanghe
- Department of Clinical Biology, Ghent University Hospital, B-9000 Ghent, Belgium
| | - Tino Hochepied
- Laboratory for Molecular Pathology and Experimental Therapy, Inflammation Research Center, VIB, B-9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Lode De Cauwer
- Laboratory for Molecular Pathology and Experimental Therapy, Inflammation Research Center, VIB, B-9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Elke Rogge
- Laboratory for Molecular Pathology and Experimental Therapy, Inflammation Research Center, VIB, B-9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Sofie Voet
- Laboratory for Molecular Pathology and Experimental Therapy, Inflammation Research Center, VIB, B-9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Patrick Sips
- Laboratory for Molecular Pathology and Experimental Therapy, Inflammation Research Center, VIB, B-9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Richard H Karas
- Molecular Cardiology Research Center, Molecular Cardiology Research Institute, Tufts Medical Center, Boston Massachusetts 02111, USA
| | - Kenneth D Bloch
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital Research Institute, Boston, Massachusetts 02114, USA
| | - Marnik Vuylsteke
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium.,Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Johannes-Peter Stasch
- Cardiovascular Research, Bayer Pharma AG, D-42096 Wuppertal, Germany.,Department of Pharmacology, The School of Pharmacy, Martin-Luther-University, Halle, Germany
| | | | - Emmanuel S Buys
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital Research Institute, Boston, Massachusetts 02114, USA
| | - Peter Brouckaert
- Laboratory for Molecular Pathology and Experimental Therapy, Inflammation Research Center, VIB, B-9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
46
|
Pereira CA, Ferreira NS, Mestriner FL, Antunes-Rodrigues J, Evora PR, Resstel LB, Carneiro FS, Tostes RC. Chronic fluoxetine treatment increases NO bioavailability and calcium-sensitive potassium channels activation in rat mesenteric resistance arteries. Eur J Pharmacol 2015; 765:375-83. [DOI: 10.1016/j.ejphar.2015.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/26/2015] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
|
47
|
Phosphodiesterase 1 regulation is a key mechanism in vascular aging. Clin Sci (Lond) 2015; 129:1061-75. [PMID: 26464516 DOI: 10.1042/cs20140753] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 06/25/2015] [Indexed: 12/31/2022]
Abstract
Reduced nitric oxide (NO)/cGMP signalling is observed in age-related vascular disease. We hypothesize that this disturbed signalling involves effects of genomic instability, a primary causal factor in aging, on vascular smooth muscle cells (VSMCs) and that the underlying mechanism plays a role in human age-related vascular disease. To test our hypothesis, we combined experiments in mice with genomic instability resulting from the defective nucleotide excision repair gene ERCC1 (Ercc1(d/-) mice), human VSMC cultures and population genome-wide association studies (GWAS). Aortic rings of Ercc1(d/-) mice showed 43% reduced responses to the soluble guanylate cyclase (sGC) stimulator sodium nitroprusside (SNP). Inhibition of phosphodiesterase (PDE) 1 and 5 normalized SNP-relaxing effects in Ercc1(d/-) to wild-type (WT) levels. PDE1C levels were increased in lung and aorta. cGMP hydrolysis by PDE in lungs was higher in Ercc1(d/-) mice. No differences in activity or levels of cGMP-dependent protein kinase 1 or sGC were observed in Ercc1(d/-) mice compared with WT. Senescent human VSMC showed elevated PDE1A and PDE1C and PDE5 mRNA levels (11.6-, 9- and 2.3-fold respectively), which associated with markers of cellular senescence. Conversely, PDE1 inhibition lowered expression of these markers. Human genetic studies revealed significant associations of PDE1A single nucleotide polymorphisms with diastolic blood pressure (DBP; β=0.28, P=2.47×10(-5)) and carotid intima-media thickness (cIMT; β=-0.0061, P=2.89×10(-5)). In summary, these results show that genomic instability and cellular senescence in VSMCs increase PDE1 expression. This might play a role in aging-related loss of vasodilator function, VSMC senescence, increased blood pressure and vascular hypertrophy.
Collapse
|
48
|
Inserte J, Garcia-Dorado D. The cGMP/PKG pathway as a common mediator of cardioprotection: translatability and mechanism. Br J Pharmacol 2015; 172:1996-2009. [PMID: 25297462 DOI: 10.1111/bph.12959] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/16/2014] [Accepted: 09/26/2014] [Indexed: 12/24/2022] Open
Abstract
Cardiomyocyte cell death occurring during myocardial reperfusion (reperfusion injury) contributes to final infarct size after transient coronary occlusion. Different interrelated mechanisms of reperfusion injury have been identified, including alterations in cytosolic Ca(2+) handling, sarcoplasmic reticulum-mediated Ca(2+) oscillations and hypercontracture, proteolysis secondary to calpain activation and mitochondrial permeability transition. All these mechanisms occur during the initial minutes of reperfusion and are inhibited by intracellular acidosis. The cGMP/PKG pathway modulates the rate of recovery of intracellular pH, but has also direct effect on Ca(2+) oscillations and mitochondrial permeability transition. The cGMP/PKG pathway is depressed in cardiomyocytes by ischaemia/reperfusion and preserved by ischaemic postconditioning, which importantly contributes to postconditioning protection. The present article reviews the mechanisms and consequences of the effect of ischaemic postconditioning on the cGMP/PKG pathway, the different pharmacological strategies aimed to stimulate it during myocardial reperfusion and the evidence, limitations and promise of translation of these strategies to the clinical practice. Overall, the preclinical and clinical evidence suggests that modulation of the cGMP/PKG pathway may be a therapeutic target in the context of myocardial infarction.
Collapse
Affiliation(s)
- Javier Inserte
- Cardiology Department, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | |
Collapse
|
49
|
Sharina IG, Sobolevsky M, Papakyriakou A, Rukoyatkina N, Spyroulias GA, Gambaryan S, Martin E. The fibrate gemfibrozil is a NO- and haem-independent activator of soluble guanylyl cyclase: in vitro studies. Br J Pharmacol 2015; 172:2316-29. [PMID: 25536881 DOI: 10.1111/bph.13055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/03/2014] [Accepted: 12/11/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Fibrates are a class of drugs widely used to treat dyslipidaemias. They regulate lipid metabolism and act as PPARα agonists. Clinical trials demonstrate that besides changes in lipid profiles, fibrates decrease the incidence of cardiovascular events, with gemfibrozil exhibiting the most pronounced benefit. This study aims to characterize the effect of gemfibrozil on the activity and function of soluble guanylyl cyclase (sGC), the key mediator of NO signalling. EXPERIMENTAL APPROACH High-throughput screening of a drug library identified gemfibrozil as a direct sGC activator. Activation of sGC is unique to gemfibrozil and is not shared by other fibrates. KEY RESULTS Gemfibrozil activated purified sGC, induced endothelium-independent relaxation of aortic rings and inhibited platelet aggregation. Gemfibrozil-dependent activation was absent when the sGC haem domain was deleted, but was significantly enhanced when sGC haem was lacking or oxidized. Oxidation of sGC haem enhanced the vasoactive and anti-platelet effects of gemfibrozil. Gemfibrozil competed with the haem-independent sGC activators ataciguat and cinaciguat. Computational modelling predicted that gemfibrozil occupies the space of the haem group and interacts with residues crucial for haem stabilization. This is consistent with structure-activity data which revealed an absolute requirement for gemfibrozil's carboxyl group. CONCLUSIONS AND IMPLICATIONS These data suggest that in addition to altered lipid and lipoprotein state, the cardiovascular preventive benefits of gemfibrozil may derive from direct activation and protection of sGC function. A sGC-directed action may explain the more pronounced cardiovascular benefit of gemfibrozil observed over other fibrates and some of the described side effects of gemfibrozil.
Collapse
Affiliation(s)
- I G Sharina
- Department of Internal Medicine, Division of Cardiology, UT Health Science Center at Houston, Medical School, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Dasgupta A, Bowman L, D'Arsigny CL, Archer SL. Soluble guanylate cyclase: a new therapeutic target for pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Clin Pharmacol Ther 2014; 97:88-102. [PMID: 25670386 DOI: 10.1002/cpt.10] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/03/2014] [Indexed: 01/08/2023]
Abstract
Nitric oxide (NO) activates soluble guanylate cyclase (sGC) by binding its prosthetic heme group, thereby catalyzing cyclic guanosine monophosphate (cGMP) synthesis. cGMP causes vasodilation and may inhibit smooth muscle cell proliferation and platelet aggregation. The NO-sGC-cGMP pathway is disordered in pulmonary arterial hypertension (PAH), a syndrome in which pulmonary vascular obstruction, inflammation, thrombosis, and constriction ultimately lead to death from right heart failure. Expression of sGC is increased in PAH but its function is reduced by decreased NO bioavailability, sGC oxidation and the related loss of sGC's heme group. Two classes of sGC modulators offer promise in PAH. sGC stimulators (e.g., riociguat) require heme-containing sGC to catalyze cGMP production, whereas sGC activators (e.g., cinaciguat) activate heme-free sGC. Riociguat is approved for PAH and yields functional and hemodynamic benefits similar to other therapies. Its main serious adverse effect is dose-dependent hypotension. Riociguat is also approved for inoperable chronic thromboembolic pulmonary hypertension.
Collapse
Affiliation(s)
- A Dasgupta
- Department of Medicine, Queen's University, Etherington Hall, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|