1
|
Hernández R, Jiménez-Luna C, Ortiz R, Setién F, López M, Perazzoli G, Esteller M, Berdasco M, Prados J, Melguizo C. Impact of the Epigenetically Regulated Hoxa-5 Gene in Neural Differentiation from Human Adipose-Derived Stem Cells. BIOLOGY 2021; 10:biology10080802. [PMID: 34440035 PMCID: PMC8389620 DOI: 10.3390/biology10080802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/31/2022]
Abstract
Human adipose-derived mesenchymal stem cells (hASCs) may be used in some nervous system pathologies, although obtaining an adequate degree of neuronal differentiation is an important barrier to their applicability. This requires a deep understanding of the expression and epigenetic changes of the most important genes involved in their differentiation. We used hASCs from human lipoaspirates to induce neuronal-like cells through three protocols (Neu1, 2, and 3), determined the degree of neuronal differentiation using specific biomarkers in culture cells and neurospheres, and analyzed epigenetic changes of genes involved in this differentiation. Furthermore, we selected the Hoxa-5 gene to determine its potential to improve neuronal differentiation. Our results showed that an excellent hASC neuronal differentiation process using Neu1 which efficiently modulated NES, CHAT, SNAP25, or SCN9A neuronal marker expression. In addition, epigenetic studies showed relevant changes in Hoxa-5, GRM4, FGFR1, RTEL1, METRN, and PAX9 genes. Functional studies of the Hoxa-5 gene using CRISPR/dCas9 and lentiviral systems showed that its overexpression induced hASCs neuronal differentiation that was accelerated with the exposure to Neu1. These results suggest that Hoxa-5 is an essential gene in hASCs neuronal differentiation and therefore, a potential candidate for the development of cell therapy strategies in neurological disorders.
Collapse
Affiliation(s)
- Rosa Hernández
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain; (R.H.); (C.J.-L.); (R.O.); (G.P.); (C.M.)
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Cristina Jiménez-Luna
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain; (R.H.); (C.J.-L.); (R.O.); (G.P.); (C.M.)
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Raúl Ortiz
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain; (R.H.); (C.J.-L.); (R.O.); (G.P.); (C.M.)
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Fernando Setién
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (F.S.); (M.L.); (M.E.); (M.B.)
- Cancer Epigenetics Group, Cancer and Leukemia Epigenetics and Biology Program (PEBCL), Josep Carreras Leukemia Research Institute (IJC), 08916 Barcelona, Spain
| | - Miguel López
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (F.S.); (M.L.); (M.E.); (M.B.)
- Epigenetic Therapies Group, Experimental and Clinical Hematology Program (PHEC), Josep Carreras Leukemia Research Institute, 08916 Barcelona, Spain
| | - Gloria Perazzoli
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain; (R.H.); (C.J.-L.); (R.O.); (G.P.); (C.M.)
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (F.S.); (M.L.); (M.E.); (M.B.)
- Cancer Epigenetics Group, Cancer and Leukemia Epigenetics and Biology Program (PEBCL), Josep Carreras Leukemia Research Institute (IJC), 08916 Barcelona, Spain
| | - María Berdasco
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (F.S.); (M.L.); (M.E.); (M.B.)
- Epigenetic Therapies Group, Experimental and Clinical Hematology Program (PHEC), Josep Carreras Leukemia Research Institute, 08916 Barcelona, Spain
| | - Jose Prados
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain; (R.H.); (C.J.-L.); (R.O.); (G.P.); (C.M.)
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Correspondence:
| | - Consolación Melguizo
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain; (R.H.); (C.J.-L.); (R.O.); (G.P.); (C.M.)
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| |
Collapse
|
2
|
Yu J, Du Q, Hu M, Zhang J, Chen J. Endothelial Progenitor Cells in Moyamoya Disease: Current Situation and Controversial Issues. Cell Transplant 2021; 29:963689720913259. [PMID: 32193953 PMCID: PMC7444216 DOI: 10.1177/0963689720913259] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Due to the lack of animal models and difficulty in obtaining specimens, the study of pathogenesis of moyamoya disease (MMD) almost stagnated. In recent years, endothelial progenitor cells (EPCs) have attracted more and more attention in vascular diseases due to their important role in neovascularization. With the aid of paradigms and methods in cardiovascular diseases research, people began to explore the role of EPCs in the processing of MMD. In the past decade, studies have shown that abnormalities in cell amounts and functions of EPCs were closely related to the vascular pathological changes in MMD. However, the lack of consistent criteria, such as isolation, cultivation, and identification standards, is also blocking the way forward. The goal of this review is to provide an overview of the current situation and controversial issues relevant to studies about EPCs in the pathogenesis and etiology of MMD.
Collapse
Affiliation(s)
- Jin Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qian Du
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Miao Hu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianjian Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Aquino JB, Sierra R, Montaldo LA. Diverse cellular origins of adult blood vascular endothelial cells. Dev Biol 2021; 477:117-132. [PMID: 34048734 DOI: 10.1016/j.ydbio.2021.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022]
Abstract
During embryonic stages, vascular endothelial cells (ECs) originate from the mesoderm, at specific extraembryonic and embryonic regions, through a process called vasculogenesis. In the adult, EC renewal/replacement mostly depend on local resident ECs or endothelial progenitor cells (EPCs). Nevertheless, contribution from circulating ECs/EPCs was also reported. In addition, cells lacking from EC/EPC markers with in vitro extended plasticity were shown to originate endothelial-like cells (ELCs). Most of these cells consist of mesenchymal stromal progenitors, which would eventually get mobilized from the bone marrow after injury. Based on that, current knowledge on different mouse and human bone marrow stromal cell (BM-SC) subpopulations, able to contribute with mesenchymal stromal/stem cells (MSCs), is herein reviewed. Such analyses underline an unexpected heterogeneity among sinusoidal LepR+ stromal/CAR cells. For instance, in a recent report a subgroup of LepR+ stromal/CAR progenitors, which express GLAST and is traced in Wnt1Cre;R26RTom mice, was found to contribute with ELCs in vivo. These GLAST + Wnt1+ BM-SCs were shown to get mobilized to the peripheral blood and to contribute with liver regeneration. Other sources of ELCs, such as adipose, neural and dental pulp tissues, were also published. Finally, mechanisms likely involved in the enhanced cellular plasticity properties of bone marrow/adipose tissue stromal cells, able to originate ELCs, are assessed. In the future, strategies to analyze the in vivo expression profile of stromal cells, with MSC properties, in combination with screening of active genomic regions at the single cell-level, during early postnatal development and/or after injury, will likely help understanding properties of these ELC sources.
Collapse
Affiliation(s)
- Jorge B Aquino
- CONICET-Universidad Austral, Instituto de Investigaciones en Medicina Traslacional (IIMT), Developmental Biology & Regenerative Medicine Laboratory, Argentina.
| | - Romina Sierra
- CONICET-Universidad Austral, Instituto de Investigaciones en Medicina Traslacional (IIMT), Developmental Biology & Regenerative Medicine Laboratory, Argentina
| | - Laura A Montaldo
- CONICET-Universidad Austral, Instituto de Investigaciones en Medicina Traslacional (IIMT), Developmental Biology & Regenerative Medicine Laboratory, Argentina
| |
Collapse
|
4
|
Sobrino V, Annese V, Navarro-Guerrero E, Platero-Luengo A, Pardal R. The carotid body: a physiologically relevant germinal niche in the adult peripheral nervous system. Cell Mol Life Sci 2019; 76:1027-1039. [PMID: 30498994 PMCID: PMC11105339 DOI: 10.1007/s00018-018-2975-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/05/2018] [Accepted: 11/22/2018] [Indexed: 12/26/2022]
Abstract
Oxygen constitutes a vital element for the survival of every single cell in multicellular aerobic organisms like mammals. A complex homeostatic oxygen-sensing system has evolved in these organisms, including detectors and effectors, to guarantee a proper supply of the element to every cell. The carotid body represents the most important peripheral arterial chemoreceptor organ in mammals and informs about hypoxemic situations to the effectors at the brainstem cardiorespiratory centers. To optimize organismal adaptation to maintained hypoxemic situations, the carotid body has evolved containing a niche of adult tissue-specific stem cells with the capacity to differentiate into both neuronal and vascular cell types in response to hypoxia. These neurogenic and angiogenic processes are finely regulated by the niche and by hypoxia itself. Our recent data on the cellular and molecular mechanisms underlying the functioning of this niche might help to comprehend a variety of different diseases coursing with carotid body failure, and might also improve our capacity to use these stem cells for the treatment of neurological disease. Herein, we review those data about the recent characterization of the carotid body niche, focusing on the study of the phenotype and behavior of multipotent stem cells within the organ, comparing them with other well-documented neural stem cells within the adult nervous system.
Collapse
Affiliation(s)
- Verónica Sobrino
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Valentina Annese
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Elena Navarro-Guerrero
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Aida Platero-Luengo
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Ricardo Pardal
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain.
| |
Collapse
|
5
|
Insights into Endothelial Progenitor Cells: Origin, Classification, Potentials, and Prospects. Stem Cells Int 2018; 2018:9847015. [PMID: 30581475 PMCID: PMC6276490 DOI: 10.1155/2018/9847015] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/27/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
With the discovery of endothelial progenitor cells (EPCs) in the late 1990s, a paradigm shift in the concept of neoangiogenesis occurred. The identification of circulating EPCs in peripheral blood marked the beginning of a new era with enormous potential in the rapidly transforming regenerative field. Overwhelmed with the revelation, researchers across the globe focused on isolating, defining, and interpreting the role of EPCs in various physiological and pathological conditions. Consequently, controversies emerged regarding the isolation techniques and classification of EPCs. Nevertheless, the potential of using EPCs in tissue engineering as an angiogenic source has been extensively explored. Concomitantly, the impact of EPCs on various diseases, such as diabetes, cancer, and cardiovascular diseases, has been studied. Within the limitations of the current knowledge, this review attempts to delineate the concept of EPCs in a sequential manner from the speculative history to a definitive presence (origin, sources of EPCs, isolation, and identification) and significance of these EPCs. Additionally, this review is aimed at serving as a guide for investigators, identifying potential research gaps, and summarizing our current and future prospects regarding EPCs.
Collapse
|
6
|
Spinal cord organogenesis model reveals role of Flk1 + cells in self-organization of neural progenitor cells into complex spinal cord tissue. Stem Cell Res 2018; 33:156-165. [PMID: 30368192 DOI: 10.1016/j.scr.2018.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/02/2018] [Accepted: 09/05/2018] [Indexed: 12/15/2022] Open
Abstract
A platform for studying spinal cord organogenesis in vivo where embryonic stem cell (ESC)-derived neural progenitor cells (NPC) self-organize into spinal cord-like tissue after transplantation in subarachnoid space of the spinal cord has been described. We advance the applicability of this platform by imaging in vivo the formed graft through T2w magnetic resonance imaging (MRI). Furthermore, we used diffusion tensor imaging (DTI) to verify the stereotypical organization of the graft showing that it mimics the host spinal cord. Within the graft white matter (WM) we identified astrocytes that form glial limitans, myelinating oligodendrocytes, and myelinated axons with paranodes. Within the graft grey matter (GM) we identified cholinergic, glutamatergic, serotonergic and dopaminergic neurons. Furthermore, we demonstrate the presence of ESC-derived complex vasculature that includes the presence of blood brain barrier. In addition to the formation of mature spinal cord tissue, we describe factors that drive this process. Specifically, we identify Flk1+ cells as necessary for spinal cord formation, and synaptic connectivity with the host spinal cord and formation of host-graft chimeric vasculature as contributing factors. This model can be used to study spinal cord organogenesis, and as an in vivo drug discovery platform for screening potential therapeutic compounds and their toxicity.
Collapse
|
7
|
Paragangliomas arise through an autonomous vasculo-angio-neurogenic program inhibited by imatinib. Acta Neuropathol 2018; 135:779-798. [PMID: 29305721 PMCID: PMC5904229 DOI: 10.1007/s00401-017-1799-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/16/2017] [Accepted: 12/21/2017] [Indexed: 12/26/2022]
Abstract
Tumours can be viewed as aberrant tissues or organs sustained by tumorigenic stem-like cells that engage into dysregulated histo/organogenetic processes. Paragangliomas, prototypical organoid tumours constituted by dysmorphic variants of the vascular and neural tissues found in normal paraganglia, provide a model to test this hypothesis. To understand the origin of paragangliomas, we built a biobank comprising 77 cases, 18 primary cultures, 4 derived cell lines, 80 patient-derived xenografts and 11 cell-derived xenografts. We comparatively investigated these unique complementary materials using morphofunctional, ultrastructural and flow cytometric assays accompanied by microRNA studies. We found that paragangliomas contain stem-like cells with hybrid mesenchymal/vasculoneural phenotype, stabilized and expanded in the derived cultures. The viability and growth of such cultures depended on the downregulation of the miR-200 and miR-34 families, which allowed high PDGFRA and ZEB1 protein expression levels. Both tumour tissue- and cell culture-derived xenografts recapitulated the vasculoneural paraganglioma structure and arose from mesenchymal-like cells through a fixed developmental sequence. First, vasculoangiogenesis organized the microenvironment, building a perivascular niche which in turn supported neurogenesis. Neuroepithelial differentiation was associated with severe mitochondrial dysfunction, not present in cultured paraganglioma cells, but acquired in vivo during xenograft formation. Vasculogenesis was the Achilles’ heel of xenograft development. In fact, imatinib, that targets endothelial-mural signalling, blocked paraganglioma xenograft formation (11 xenografts from 12 cell transplants in the control group versus 2 out of 10 in the treated group, P = 0.0015). Overall our key results were unaffected by the SDHx gene carrier status of the patient, characterized for 70 out of 77 cases. In conclusion, we explain the biphasic vasculoneural structure of paragangliomas and identify an early and pharmacologically actionable phase of paraganglioma organization.
Collapse
|
8
|
Calderone A. The Biological Role of Nestin (+)-Cells in Physiological and Pathological Cardiovascular Remodeling. Front Cell Dev Biol 2018; 6:15. [PMID: 29492403 PMCID: PMC5817075 DOI: 10.3389/fcell.2018.00015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 01/31/2018] [Indexed: 01/02/2023] Open
Abstract
The intermediate filament protein nestin was identified in diverse populations of cells implicated in cardiovascular remodeling. Cardiac resident neural progenitor/stem cells constitutively express nestin and following an ischemic insult migrate to the infarct region and participate in angiogenesis and neurogenesis. A modest number of normal adult ventricular fibroblasts express nestin and the intermediate filament protein is upregulated during the progression of reparative and reactive fibrosis. Nestin depletion attenuates cell cycle re-entry suggesting that increased expression of the intermediate filament protein in ventricular fibroblasts may represent an activated phenotype accelerating the biological impact during fibrosis. Nestin immunoreactivity is absent in normal adult rodent ventricular cardiomyocytes. Following ischemic damage, the intermediate filament protein is induced in a modest population of pre-existing adult ventricular cardiomyocytes bordering the peri-infarct/infarct region and nestin(+)-ventricular cardiomyocytes were identified in the infarcted human heart. The appearance of nestin(+)-ventricular cardiomyocytes post-myocardial infarction (MI) recapitulates an embryonic phenotype and depletion of the intermediate filament protein inhibits cell cycle re-entry. Recruitment of the serine/threonine kinase p38 MAPK secondary to an overt inflammatory response after an ischemic insult may represent a seminal event limiting the appearance of nestin(+)-ventricular cardiomyocytes and concomitantly suppressing cell cycle re-entry. Endothelial and vascular smooth muscle cells (VSMCs) express nestin and upregulation of the intermediate filament protein may directly contribute to vascular remodeling. This review will highlight the biological role of nestin(+)-cells during physiological and pathological remodeling of the heart and vasculature and discuss the phenotypic advantage attributed to the intermediate filament protein.
Collapse
Affiliation(s)
- Angelino Calderone
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada.,Montreal Heart Institute, Montréal, QC, Canada
| |
Collapse
|
9
|
Annese V, Navarro-Guerrero E, Rodríguez-Prieto I, Pardal R. Physiological Plasticity of Neural-Crest-Derived Stem Cells in the Adult Mammalian Carotid Body. Cell Rep 2017; 19:471-478. [PMID: 28423311 PMCID: PMC5409929 DOI: 10.1016/j.celrep.2017.03.065] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/21/2017] [Accepted: 03/27/2017] [Indexed: 12/22/2022] Open
Abstract
Adult stem cell plasticity, or the ability of somatic stem cells to cross boundaries and differentiate into unrelated cell types, has been a matter of debate in the last decade. Neural-crest-derived stem cells (NCSCs) display a remarkable plasticity during development. Whether adult populations of NCSCs retain this plasticity is largely unknown. Herein, we describe that neural-crest-derived adult carotid body stem cells (CBSCs) are able to undergo endothelial differentiation in addition to their reported role in neurogenesis, contributing to both neurogenic and angiogenic processes taking place in the organ during acclimatization to hypoxia. Moreover, CBSC conversion into vascular cell types is hypoxia inducible factor (HIF) dependent and sensitive to hypoxia-released vascular cytokines such as erythropoietin. Our data highlight a remarkable physiological plasticity in an adult population of tissue-specific stem cells and could have impact on the use of these cells for cell therapy. Adult carotid body stem cells display multipotency during organ adaptation to hypoxia Neural-crest-derived stem cells contribute to angiogenesis in the adult carotid body Endothelial differentiation from carotid body stem cells is HIF2α and EPO dependent
Collapse
Affiliation(s)
- Valentina Annese
- Departamento de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain.
| | - Elena Navarro-Guerrero
- Departamento de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain
| | - Ismael Rodríguez-Prieto
- Departamento de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain
| | - Ricardo Pardal
- Departamento de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain.
| |
Collapse
|
10
|
Huang Z, Wu T, Liu AY, Ouyang G. Differentiation and transdifferentiation potentials of cancer stem cells. Oncotarget 2016; 6:39550-63. [PMID: 26474460 PMCID: PMC4741845 DOI: 10.18632/oncotarget.6098] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/05/2015] [Indexed: 12/11/2022] Open
Abstract
Tumor cells actively contribute to constructing their own microenvironment during tumorigenesis and tumor progression. The tumor microenvironment contains multiple types of stromal cells that work together with the extracellular matrix and local and systemic factors to coordinately contribute to tumor initiation and progression. Tumor cells and their stromal compartments acquire many genetic and/or epigenetic alternations to facilitate tumor growth and metastasis. The cancer stem cell (CSC) concept has been widely applied to interpreting tumor initiation, growth, metastasis, dormancy and relapse. CSCs have differentiation abilities to generate the original lineage cells that are similar to their normal stem cell counterparts. Interestingly, recent evidence demonstrates that CSCs also have the potential to transdifferentiate into vascular endothelial cells and pericytes, indicating that CSCs can transdifferentiate into other lineage cells for promoting tumor growth and metastasis in some tissue contexts instead of only recruiting stromal cells from local or distant tissues. Although the transdifferentiation of CSCs into tumor stromal cells provides a new dimension that explains tumor heterogeneity, many aspects of CSC transdifferentiation remain elusive. In this review, we summarize the multi-lineage differentiation and transdifferentiation potentials of CSCs as well as discuss their potential contributions to tumor heterogeneity and tumor microenvironment in tumor progression.
Collapse
Affiliation(s)
- Zhengjie Huang
- Department of Surgical Oncology, First Affiliated Hospital of Xiamen University, Xiamen, China.,State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Tiantian Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Allan Yi Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Gaoliang Ouyang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
11
|
Development of a cell line from the American eel brain expressing endothelial cell properties. In Vitro Cell Dev Biol Anim 2015; 52:395-409. [DOI: 10.1007/s11626-015-9986-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 11/29/2015] [Indexed: 11/30/2022]
|
12
|
Hill J, Cave J. Targeting the vasculature to improve neural progenitor transplant survival. Transl Neurosci 2015; 6:162-167. [PMID: 28123800 PMCID: PMC4936624 DOI: 10.1515/tnsci-2015-0016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/05/2015] [Indexed: 12/18/2022] Open
Abstract
Neural progenitor transplantation is a promising therapeutic option for several neurological diseases and injuries. In nearly all human clinical trials and animal models that have tested this strategy, the low survival rate of progenitors after engraftment remains a significant challenge to overcome. Developing methods to improve the survival rate will reduce the number of cells required for transplant and will likely enhance functional improvements produced by the procedure. Here we briefly review the close relationship between the blood vasculature and neural progenitors in both the embryo and adult nervous system. We also discuss previous studies that have explored the role of the vasculature and hypoxic pre-conditioning in neural transplants. From these studies, we suggest that hypoxic pre-conditioning of a progenitor pool containing both neural and endothelial cells will improve engrafted transplanted neuronal survival rates.
Collapse
Affiliation(s)
- Justin Hill
- Burke Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Burke Rehabilitation Hospital, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Ave, New York, NY 10605, USA
| | - John Cave
- Burke Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Ave, New York, NY 10605, USA
| |
Collapse
|
13
|
Nakagomi T, Nakano-Doi A, Kawamura M, Matsuyama T. Do Vascular Pericytes Contribute to Neurovasculogenesis in the Central Nervous System as Multipotent Vascular Stem Cells? Stem Cells Dev 2015; 24:1730-9. [PMID: 25900222 DOI: 10.1089/scd.2015.0039] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence suggests that multipotent stem cells are harbored within a vascular niche inside various organs. Although a precise phenotype of resident vascular stem cells (VSCs) that can function as multipotent stem cells remains unclear, accumulating evidence shows that multipotent VSCs are likely vascular pericytes (PCs) that localize within blood vessels. These PCs are multipotent, possessing the ability to differentiate into various cell types, including vascular lineage cells. In addition, brain PCs are unique: They are derived from neural crest and can differentiate into neural lineage cells. Because PCs in the central nervous system (CNS) can contribute to both neurogenesis and vasculogenesis, they may mediate the reparative process of neurovascular units that are constructed by neural and vascular cells. Here, we describe the activity of PCs when viewed as multipotent VSCs, primarily regarding their neurogenic and vasculogenic potential in the CNS. We also discuss similarities between PCs and other candidates for multipotent VSCs, including perivascular mesenchymal stem cells, neural crest-derived stem cells, adventitial progenitor cells, and adipose-derived stem cells.
Collapse
Affiliation(s)
- Takayuki Nakagomi
- 1 Institute for Advanced Medical Sciences, Hyogo College of Medicine , Hyogo, Japan
| | - Akiko Nakano-Doi
- 1 Institute for Advanced Medical Sciences, Hyogo College of Medicine , Hyogo, Japan
| | - Miki Kawamura
- 1 Institute for Advanced Medical Sciences, Hyogo College of Medicine , Hyogo, Japan .,2 Department of Neurology, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Tomohiro Matsuyama
- 1 Institute for Advanced Medical Sciences, Hyogo College of Medicine , Hyogo, Japan
| |
Collapse
|
14
|
Nakagomi T, Kubo S, Nakano-Doi A, Sakuma R, Lu S, Narita A, Kawahara M, Taguchi A, Matsuyama T. Brain vascular pericytes following ischemia have multipotential stem cell activity to differentiate into neural and vascular lineage cells. Stem Cells 2015; 33:1962-74. [PMID: 25694098 DOI: 10.1002/stem.1977] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 01/27/2015] [Indexed: 01/01/2023]
Abstract
Brain vascular pericytes (PCs) are a key component of the blood-brain barrier (BBB)/neurovascular unit, along with neural and endothelial cells. Besides their crucial role in maintaining the BBB, increasing evidence shows that PCs have multipotential stem cell activity. However, their multipotency has not been considered in the pathological brain, such as after an ischemic stroke. Here, we examined whether brain vascular PCs following ischemia (iPCs) have multipotential stem cell activity and differentiate into neural and vascular lineage cells to reconstruct the BBB/neurovascular unit. Using PCs extracted from ischemic regions (iPCs) from mouse brains and human brain PCs cultured under oxygen/glucose deprivation, we show that PCs developed stemness presumably through reprogramming. The iPCs revealed a complex phenotype of angioblasts, in addition to their original mesenchymal properties, and multidifferentiated into cells from both a neural and vascular lineage. These data indicate that under ischemic/hypoxic conditions, PCs can acquire multipotential stem cell activity and can differentiate into major components of the BBB/neurovascular unit. Thus, these findings support the novel concept that iPCs can contribute to both neurogenesis and vasculogenesis at the site of brain injuries.
Collapse
Affiliation(s)
| | - Shuji Kubo
- Department of Genetics, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Akiko Nakano-Doi
- Institute for Advanced Medical Sciences, Nishinomiya, Hyogo, Japan
| | - Rika Sakuma
- Institute for Advanced Medical Sciences, Nishinomiya, Hyogo, Japan
| | - Shan Lu
- Institute for Advanced Medical Sciences, Nishinomiya, Hyogo, Japan.,Department of Neurology of Hangzhou First People's Hospital, Hangzhou, People's Republic of China
| | - Aya Narita
- Institute for Advanced Medical Sciences, Nishinomiya, Hyogo, Japan
| | - Maiko Kawahara
- Institute for Advanced Medical Sciences, Nishinomiya, Hyogo, Japan.,Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
| | | |
Collapse
|
15
|
Li QQ, Qiao GQ, Ma J, Fan HW, Li YB. Cortical neurogenesis in adult rats after ischemic brain injury: most new neurons fail to mature. Neural Regen Res 2015; 10:277-85. [PMID: 25883628 PMCID: PMC4392677 DOI: 10.4103/1673-5374.152383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2014] [Indexed: 11/04/2022] Open
Abstract
The present study examines the hypothesis that endogenous neural progenitor cells isolated from the neocortex of ischemic brain can differentiate into neurons or glial cells and contribute to neural regeneration. We performed middle cerebral artery occlusion to establish a model of cerebral ischemia/reperfusion injury in adult rats. Immunohistochemical staining of the cortex 1, 3, 7, 14 or 28 days after injury revealed that neural progenitor cells double-positive for nestin and sox-2 appeared in the injured cortex 1 and 3 days post-injury, and were also positive for glial fibrillary acidic protein. New neurons were labeled using bromodeoxyuridine and different stages of maturity were identified using doublecortin, microtubule-associated protein 2 and neuronal nuclei antigen immunohistochemistry. Immature new neurons coexpressing doublecortin and bromodeoxyuridine were observed in the cortex at 3 and 7 days post-injury, and semi-mature and mature new neurons double-positive for microtubule-associated protein 2 and bromodeoxyuridine were found at 14 days post-injury. A few mature new neurons coexpressing neuronal nuclei antigen and bromodeoxyuridine were observed in the injured cortex 28 days post-injury. Glial fibrillary acidic protein/bromodeoxyuridine double-positive astrocytes were also found in the injured cortex. Our findings suggest that neural progenitor cells are present in the damaged cortex of adult rats with cerebral ischemic brain injury, and that they differentiate into astrocytes and immature neurons, but most neurons fail to reach the mature stage.
Collapse
Affiliation(s)
- Qing-Quan Li
- Department of Neurosurgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Guan-Qun Qiao
- Department of Neurosurgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jun Ma
- Department of Neurosurgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hong-Wei Fan
- Department of Neurosurgery, the First Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ying-Bin Li
- Department of Neurosurgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
16
|
Concise Review: Are Stimulated Somatic Cells Truly Reprogrammed into an ES/iPS-Like Pluripotent State? Better Understanding by Ischemia-Induced Multipotent Stem Cells in a Mouse Model of Cerebral Infarction. Stem Cells Int 2015; 2015:630693. [PMID: 25945100 PMCID: PMC4402558 DOI: 10.1155/2015/630693] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/22/2015] [Indexed: 02/07/2023] Open
Abstract
Following the discovery of pluripotent stem (PS) cells such as embryonic stem (ES) and induced pluripotent stem (iPS) cells, there has been a great hope that injured tissues can be repaired by transplantation of ES/iPS-derived various specific types of cells such as neural stem cells (NSCs). Although PS cells can be induced by ectopic expression of Yamanaka's factors, it is known that several stimuli such as ischemia/hypoxia can increase the stemness of somatic cells via reprogramming. This suggests that endogenous somatic cells acquire stemness during natural regenerative processes following injury. In this study, we describe whether somatic cells are converted into pluripotent stem cells by pathological stimuli without ectopic expression of reprogramming factors based on the findings of ischemia-induced multipotent stem cells in a mouse model of cerebral infarction.
Collapse
|
17
|
Petrova ES, Isaeva EN, Korzhevskii DE. Effect of allotransplants containing dissociated cells of rat embryonic spinal cord on nerve fiber regeneration in a recipient. Bull Exp Biol Med 2014; 158:123-6. [PMID: 25403413 DOI: 10.1007/s10517-014-2707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Indexed: 11/29/2022]
Abstract
Regeneration of nerve fibers in rat sciatic nerve was quantitatively assessed after injury (ligation) and injection of dissociated cells derived from embryonic spinal cord. A suspension of dissociated spinal cord cells from rat embryos was transplanted under the perineurium of a nerve trunk. After transplantation, bromodeoxyuridine-labeled precursor cells survived and retained the label for more than 2 months; some of these cells differentiated into NeuNpositive neurons. Analysis of semithin sections of the distal nerve segment from the recipient taken at a distance of 0.5 cm from the site of injury showed that transplantation of dissociated cells of embryonic spinal cord led to an increase in the number of myelinated nerve fibers in the recipient nerve.
Collapse
Affiliation(s)
- E S Petrova
- Laboratory of Functional Morphology of Central and Peripheral Nervous System, Department of General and Special Morphology, Research Institute of Experimental Medicine, North-Western Division of the Russian Academy of Medical Sciences, St. Petersburg, Russia,
| | | | | |
Collapse
|
18
|
Petrova ES, Isaeva EN. Study of effect of embryonic anlage allografts of the rat spinal cord on growth of regenerating fibers of the recipient nerve. BIOL BULL+ 2014. [DOI: 10.1134/s1062359014060089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Qiao LY, Huang FJ, Zhao M, Xie JH, Shi J, Wang J, Lin XZ, Zuo H, Wang YL, Geng TC. A two-year follow-up study of cotransplantation with neural stem/progenitor cells and mesenchymal stromal cells in ischemic stroke patients. Cell Transplant 2014; 23 Suppl 1:S65-72. [PMID: 25333752 DOI: 10.3727/096368914x684961] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Stem cell therapy is an emerging therapeutic modality in the treatment of stroke. We assessed the safety and feasibility of the cotransplantation of neural stem/progenitor cells (NSPCs) and mesenchymal stromal cells (MSCs) in patients with ischemic stroke. Eight patients were enrolled in this study. All patients had a hemisphere with infarct lesions located on one side of the territories of the cerebral middle or anterior arteries as revealed with cranial magnetic resonance imaging (MRI). The patients received one of the following two types of treatment: the first treatment involved four intravenous injections of MSCs at 0.5 × 10(6)/kg body weight; the second treatment involved one intravenous injection of MSCs at 0.5 × 10(6)/kg weight followed by three injections of MSCs at 5 × 10(6)/patient and NSPCs at 6 × 10(6)/patient through the cerebellomedullary cistern. The patients' clinical statuses were evaluated with the National Institutes of Health Stroke Scale (NIHSS), the modified Rankin Scale (mRS), and the Barthel index (BI). Six patients were given four cell transplantations. The most common side effect of stem cell transplantation in these six cases was low fever that usually lasted 2-4 days after each therapy. One patient exhibited minor dizziness. All side effects appeared within the first 2-24 h of cell transplantation, and they resolved without special treatment. There was no evidence of neurological deterioration or neurological infection. Most importantly, no tumorigenesis was found at a 2-year follow-up. The neurological functions, disability levels, and daily living abilities of the patients in this study were improved. While these observations support the use of the combination transplantation of NSPCs and MSCs as a safe and feasible method of improving neurological function, further studies that include larger samples, longer follow-ups, and control groups are still needed. This manuscript is published as part of the International Association of Neurorestoratology (IANR) special issue of Cell Transplantation.
Collapse
Affiliation(s)
- Li-yan Qiao
- Department of Neurology, Yuquan Hospital of Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jang IH, Heo SC, Kwon YW, Choi EJ, Kim JH. Role of formyl peptide receptor 2 in homing of endothelial progenitor cells and therapeutic angiogenesis. Adv Biol Regul 2014; 57:162-72. [PMID: 25304660 DOI: 10.1016/j.jbior.2014.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 09/03/2014] [Indexed: 12/30/2022]
Abstract
Endothelial progenitor cells (EPCs) hold a great promise as a therapeutic mediator in treatment of ischemic disease conditions. The discovery of EPCs in adult blood has been a cause of significant enthusiasm in the field of endothelial cell research and numerous clinical trials have been expedited. After more than a decade of research in basic science and clinical applications, limitations and new strategies of EPC therapeutics have emerged. With various phenotypes, vague definitions, and uncertain distinction from hematopoietic cells, understanding EPC biology remains challenging. However, EPCs, still hold great hope for treatment of critical ischemic injury as low concern regarding safety can accelerate the clinical applications from basic findings. This review provides an introduction to EPC as cellular therapeutics, which highlights a recent finding that EPC homing was promoted through FPR2 signaling.
Collapse
Affiliation(s)
- Il Ho Jang
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Soon Chul Heo
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Yang Woo Kwon
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Eun Jung Choi
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Republic of Korea; Research Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 626-770, Gyeongsangnam-do, Republic of Korea.
| |
Collapse
|
21
|
Wen X, Wang Y, Zhang F, Zhang X, Lu L, Shuai X, Shen J. In vivo monitoring of neural stem cells after transplantation in acute cerebral infarction with dual-modal MR imaging and optical imaging. Biomaterials 2014; 35:4627-35. [DOI: 10.1016/j.biomaterials.2014.02.042] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 02/21/2014] [Indexed: 01/07/2023]
|
22
|
Vissapragada R, Contreras MA, da Silva CG, Kumar VA, Ochoa A, Vasudevan A, Selim MH, Ferran C, Thomas AJ. Bidirectional crosstalk between periventricular endothelial cells and neural progenitor cells promotes the formation of a neurovascular unit. Brain Res 2014; 1565:8-17. [PMID: 24675025 DOI: 10.1016/j.brainres.2014.03.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 02/17/2014] [Accepted: 03/15/2014] [Indexed: 12/17/2022]
Abstract
Interactions between neural progenitor cells (NPC) and endothelial cells (EC) from adult vascular beds have been well explored previously. However, the factors and signaling mechanisms that regulate neurogenesis and angiogenesis are most prevalent during embryonic development. This study aimed to determine whether embryonic brain endothelial cells from the periventricular region (PVEC) present an advantage over adult brain EC in supporting NPC growth and differentiation. PVEC were isolated from E15 mouse brains, processed, and sorted with immunomagnetic beads using antibodies against CD31/PECAM. On immunofluorescence (IF) staining, nearly all cells were positive for EC markers CD31 and CD144/VE-Cadherin. In proliferation studies, NPC proliferation was highest in transwell co-culture with PVEC, approximately 2.3 fold increase compared to baseline versus 1.4 fold increase when co-cultured with adult brain endothelial cells (ABEC). These results correlated with the PVEC mediated delay in NPC differentiation, evidenced by high expression of progenitor marker Nestin evaluated by IF staining. Upon further characterization of PVEC in an angiogenesis assay measuring cord length, PVEC exhibited a high capacity to form cords in basal conditions compared to ABEC. This was enhanced in the presence of NPC, with both cell types displaying a preferential structural alignment resembling neurovascular networks. PVEC also expressed high Vegfa levels at baseline in comparison to NPC and ABEC. Vegfa levels increased when co-cultured with NPC. We demonstrate that PVEC and NPC co-cultures act synergistically to promote the formation of a neurovascular unit through dynamic and reciprocal communication. Our results suggest that PVEC/NPC could provide promising neuro-regenerative therapies for patients suffering brain injuries.
Collapse
Affiliation(s)
- Ravi Vissapragada
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Mauricio A Contreras
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America; Division of Vascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Cleide G da Silva
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Vivek A Kumar
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Angelica Ochoa
- College of Engineering, Boston University, Boston, MA, United States of America
| | - Anju Vasudevan
- Department of Psychiatry, Harvard Medical School and Angiogenesis and Brain Development Laboratory, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, United States of America
| | - Magdy H Selim
- Stroke Division, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Christiane Ferran
- Division of Vascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America; The Transplant Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America; Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Ajith J Thomas
- Division of Neurosurgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States of America.
| |
Collapse
|
23
|
Abstract
Glioblastoma stem cells have been reported to directly contribute to the tumor vasculature by endothelial cell differentiation. Interestingly, a recent study demonstrates that glioblastoma stem cells preferentially differentiate into vascular pericytes to support vasculature function and tumor growth.
Collapse
Affiliation(s)
- Allan Yi Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | | |
Collapse
|
24
|
Yang Q, Du X, Fang Z, Xiong W, Li G, Liao H, Xiao J, Wang G, Li F. Effect of calcitonin gene-related peptide on the neurogenesis of rat adipose-derived stem cells in vitro. PLoS One 2014; 9:e86334. [PMID: 24466033 PMCID: PMC3897681 DOI: 10.1371/journal.pone.0086334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/09/2013] [Indexed: 01/15/2023] Open
Abstract
Calcitonin gene-related peptide (CGRP) promotes neuron recruitment and neurogenic activity. However, no evidence suggests that CGRP affects the ability of stem cells to differentiate toward neurogenesis. In this study, we genetically modified rat adipose-derived stem cells (ADSCs) with the CGRP gene (CGRP-ADSCs) and subsequently cultured in complete neural-induced medium. The formation of neurospheres, cellular morphology, and proliferative capacity of ADSCs were observed. In addition, the expression of the anti-apoptotic protein Bcl-2 and special markers of neural cells, such as Nestin, MAP2, RIP and GFAP, were evaluated using Western blot and immunocytochemistry analysis. The CGRP-ADSCs displayed a greater proliferation than un-transduced (ADSCs) and Vector-transduced (Vector-ADSCs) ADSCs (p<0.05), and lower rates of apoptosis, associated with the incremental expression of Bcl-2, were also observed for CGRP-ADSCs. Moreover, upon neural induction, CGRP-ADSCs formed markedly more and larger neurospheres and showed round cell bodies with more branching extensions contacted with neighboring cells widely. Furthermore, the expression levels of Nestin, MAP2, and RIP in CGRP-ADSCs were markedly increased, resulting in higher levels than the other groups (p<0.05); however, GFAP was distinctly undetectable until day 7, when slight GFAP expression was detected among all groups. Wnt signals, primarily Wnt 3a, Wnt 5a and β-catenin, regulate the neural differentiation of ADSCs, and CGRP gene expression apparently depends on canonical Wnt signals to promote the neurogenesis of ADSCs. Consequently, ADSCs genetically modified with CGRP exhibit stronger potential for differentiation and neurogenesis in vitro, potentially reflecting the usefulness of ADSCs as seed cells in therapeutic strategies for spinal cord injury.
Collapse
Affiliation(s)
- Qin Yang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P R China
| | - Xingli Du
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P R China
| | - Zhong Fang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P R China
- * E-mail:
| | - Wei Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P R China
| | - Guanghui Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P R China
| | - Hui Liao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P R China
| | - Jun Xiao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P R China
| | - Guoping Wang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P R China
| | - Feng Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P R China
| |
Collapse
|
25
|
Liu X, Ye R, Yan T, Yu SP, Wei L, Xu G, Fan X, Jiang Y, Stetler RA, Liu G, Chen J. Cell based therapies for ischemic stroke: from basic science to bedside. Prog Neurobiol 2013; 115:92-115. [PMID: 24333397 DOI: 10.1016/j.pneurobio.2013.11.007] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/11/2013] [Accepted: 11/26/2013] [Indexed: 12/20/2022]
Abstract
Cell therapy is emerging as a viable therapy to restore neurological function after stroke. Many types of stem/progenitor cells from different sources have been explored for their feasibility and efficacy for the treatment of stroke. Transplanted cells not only have the potential to replace the lost circuitry, but also produce growth and trophic factors, or stimulate the release of such factors from host brain cells, thereby enhancing endogenous brain repair processes. Although stem/progenitor cells have shown a promising role in ischemic stroke in experimental studies as well as initial clinical pilot studies, cellular therapy is still at an early stage in humans. Many critical issues need to be addressed including the therapeutic time window, cell type selection, delivery route, and in vivo monitoring of their migration pattern. This review attempts to provide a comprehensive synopsis of preclinical evidence and clinical experience of various donor cell types, their restorative mechanisms, delivery routes, imaging strategies, future prospects and challenges for translating cell therapies as a neurorestorative regimen in clinical applications.
Collapse
Affiliation(s)
- Xinfeng Liu
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
| | - Ruidong Ye
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Tao Yan
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA; Department of Neurology, Tianjin General Hospital, Tianjin University School of Medicine, Tianjin, China
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gelin Xu
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xinying Fan
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yongjun Jiang
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - R Anne Stetler
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - George Liu
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, China
| | - Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.
| |
Collapse
|
26
|
Cheng L, Huang Z, Zhou W, Wu Q, Donnola S, Liu JK, Fang X, Sloan AE, Mao Y, Lathia JD, Min W, McLendon RE, Rich JN, Bao S. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 2013; 153:139-52. [PMID: 23540695 DOI: 10.1016/j.cell.2013.02.021] [Citation(s) in RCA: 643] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 05/12/2012] [Accepted: 02/11/2013] [Indexed: 12/11/2022]
Abstract
Glioblastomas (GBMs) are highly vascular and lethal brain tumors that display cellular hierarchies containing self-renewing tumorigenic glioma stem cells (GSCs). Because GSCs often reside in perivascular niches and may undergo mesenchymal differentiation, we interrogated GSC potential to generate vascular pericytes. Here, we show that GSCs give rise to pericytes to support vessel function and tumor growth. In vivo cell lineage tracing with constitutive and lineage-specific fluorescent reporters demonstrated that GSCs generate the majority of vascular pericytes. Selective elimination of GSC-derived pericytes disrupts the neovasculature and potently inhibits tumor growth. Analysis of human GBM specimens showed that most pericytes are derived from neoplastic cells. GSCs are recruited toward endothelial cells via the SDF-1/CXCR4 axis and are induced to become pericytes predominantly by transforming growth factor β. Thus, GSCs contribute to vascular pericytes that may actively remodel perivascular niches. Therapeutic targeting of GSC-derived pericytes may effectively block tumor progression and improve antiangiogenic therapy.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kovanecz I, Rivera S, Nolazco G, Vernet D, Segura D, Gharib S, Rajfer J, Gonzalez-Cadavid NF. Separate or combined treatments with daily sildenafil, molsidomine, or muscle-derived stem cells prevent erectile dysfunction in a rat model of cavernosal nerve damage. J Sex Med 2012; 9:2814-26. [PMID: 22974131 DOI: 10.1111/j.1743-6109.2012.02913.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Long-term daily administration of phosphodiesterase type 5 (PDE5) inhibitors in the rat prevents or reverses corporal veno-occlusive dysfunction (CVOD) and smooth muscle cell (CSMC) loss and fibrosis, in both aging and bilateral cavernosal nerve resection (BCNR) models for erectile dysfunction. In the aging rat model, corporal implantation of skeletal muscle-derived stem cells (MDSC) reverses CVOD. Nitric oxide (NO) and cyclic guanosine monophosphate can modulate stem cell lineage. AIM To investigate in the BCNR model the effects of sildenafil at lower doses, alone or in combination with MDSC or the NO donor molsidomine, on CVOD and the underlying corporal histopathology. MAIN OUTCOMES MEASURES CVOD, histological, and biochemical markers in rat corporal tissue. Methods. Rats subjected to BCNR were maintained for 45 days either untreated, or received sildenafil in the water or retrolingually at 10, 2.5, and 1.25 mg/kg/day (medium, low, and very low doses), or intraperitoneal molsidomine, or MDSC implantation into the corpora cavernosa separately or in combination. Cavernosometry evaluated CVOD. Histopathology was assessed on penile sections by Masson trichrome, immunohistochemistry for α-smooth muscle actin (ASMA), or immunofluorescence for neuronal nitric oxide synthase (nNOS)/neurofilament 70, and in fresh tissue by Western blot for various markers and picrosirius red for collagen. RESULTS All treatments normalized erectile function (drop rate), and most increased the CSMC/collagen ratio and ASMA expression in corporal tissue sections, and reduced collagen content in the penile shaft. MDSC also increased nNOS and brain-derived neurotrophic factor. The combination treatment was not superior to MDSC or sildenafil given alone, and upregulated PDE5. CONCLUSIONS Lowering the dose of a continuous long-term sildenafil administration still maintained the prevention of CVOD in the BCNR rat previously observed, but it was less effective on the underlying histopathology. As in the aging rat model, MDSC also counteracted CVOD, but supplementation with very low-dose sildenafil did not improve the outcome.
Collapse
Affiliation(s)
- Istvan Kovanecz
- Department of Surgery, Division of Urology, Los Angeles Biomedical Research Institute (LABioMed) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Estradiol promotes neural stem cell differentiation into endothelial lineage and angiogenesis in injured peripheral nerve. Angiogenesis 2012; 16:45-58. [PMID: 22941227 DOI: 10.1007/s10456-012-9298-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
Abstract
Neural stem cells (NSCs) differentiate into endothelial cells (ECs) and neuronal cells. Estradiol (E2) is known to exhibit proangiogenic effects on ischemic tissues via EC activation. Therefore, we hypothesized that E2 can promote the therapeutic potential of NSC transplantation for injured nerve repair via the differentiation of NSCs into ECs during neovascularization. NSCs isolated from newborn mouse brains were transplanted into injured sciatic nerves with (NSC/E2 group) or without E2-conjugated gelatin hydrogel (E2 group). The NSC/E2 group exhibited the greatest recovery in motor nerve conduction velocity, voltage amplitude, and exercise tolerance. Histological analyses revealed increased intraneural vascularity and blood perfusion as well as striking NSC recruitment to the neovasculature in the injured nerves in the NSC/E2 group. In vitro, E2 enhanced the NSC migration and proliferation inhibiting apoptosis. Fluorescence-activated cell sorting analysis also revealed that E2 significantly increased the percentage of CD31 in NSCs, and the effect of E2 was completely neutralized by the estrogen receptor antagonist ICI. The combination of E2 administration and NSC transplantation cooperatively improved the functional recovery of injured peripheral nerves, at least in part, via E2-associated NSC differentiation into ECs. These findings provide a novel mechanistic insight into both NSC biology and the biological effects of endogenous E2.
Collapse
|
29
|
Abstract
OBJECTIVE Extensive research in the past decade has confirmed that the adult brain maintains some plasticity, including neural cell birth, migration and integration. Pre-clinical data strongly suggest that phosphodiesterase type 5 (PDE5) inhibitors promote cerebral neovascularization and neurogenesis. Animal studies of cerebral stroke suggest potential regenerative benefits following treatment with sildenafil citrate, a PDE5 inhibitor. This study reports a case in which compassionate use of sildenafil was investigated as a treatment to improve physical functioning, more than 4 decades after development of spastic quadriplegia during the 1st-2nd year of life. METHODS Sildenafil 100 mg was administered every 24 hours for 7 months. RESULTS Sildenafil treatment was associated with clinical (functional) improvement. CONCLUSIONS The activity of sildenafil on cerebral neovascularization and neurogenesis may be the mechanism for the observed functional benefits.
Collapse
Affiliation(s)
- Antonio Cocchiarella
- Clinical Rehabilitation Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
30
|
Jing X, Miwa H, Sawada T, Nakanishi I, Kondo T, Miyajima M, Sakaguchi K. Ephrin-A1-mediated dopaminergic neurogenesis and angiogenesis in a rat model of Parkinson's disease. PLoS One 2012; 7:e32019. [PMID: 22363788 PMCID: PMC3282790 DOI: 10.1371/journal.pone.0032019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 01/17/2012] [Indexed: 11/19/2022] Open
Abstract
Cells of the neural stem cell lineage in the adult subventricular zone (SVZ) respond to brain insult by increasing their numbers and migrating through the rostral migratory stream. However, in most areas of the brain other than the SVZ and the subgranular zone of the dentate gyrus, such a regenerative response is extremely weak. Even these two neurogenic regions do not show extensive regenerative responses to repair tissue damage, suggesting the presence of an intrinsic inhibitory microenvironment (niche) for stem cells. In the present study, we assessed the effects of injection of clustered ephrin-A1-Fc into the lateral ventricle of rats with unilateral nigrostriatal dopamine depletion. Ephrin-A1-Fc clustered by anti-IgG(Fc) antibody was injected stereotaxically into the ipsilateral lateral ventricle of rats with unilateral nigrostriatal lesions induced by 6-hydroxydopamine, and histologic analysis and behavioral tests were performed. Clustered ephrin-A1-Fc transformed the subventricular niche, increasing bromodeoxyuridine-positive cells in the subventricular area, and the cells then migrated to the striatum and differentiated to dopaminergic neurons and astrocytes. In addition, clustered ephrin-A1-Fc enhanced angiogenesis in the striatum on the injected side. Along with histologic improvements, behavioral derangement improved dramatically. These findings indicate that the subventricular niche possesses a mechanism for regulating both stem cell and angiogenic responses via an EphA–mediated signal. We conclude that activation of EphA receptor–mediated signaling by clustered ephrin-A1-Fc from within the lateral ventricle could potentially be utilized in the treatment of neurodegenerative diseases such as Parkinson's disease.
Collapse
Affiliation(s)
- Xuefeng Jing
- Department of Molecular Cell Biology and Molecular Medicine, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hideto Miwa
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Takahiro Sawada
- Department of Molecular Cell Biology and Molecular Medicine, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Ichiro Nakanishi
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Tomoyoshi Kondo
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Masayasu Miyajima
- Laboratory Animal Center, Wakayama Medical University, Wakayama, Japan
| | - Kazushige Sakaguchi
- Department of Molecular Cell Biology and Molecular Medicine, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
- * E-mail:
| |
Collapse
|
31
|
Béguin PC, Gosselin H, Mamarbachi M, Calderone A. Nestin expression is lost in ventricular fibroblasts during postnatal development of the rat heart and re-expressed in scar myofibroblasts. J Cell Physiol 2012; 227:813-20. [PMID: 21503881 DOI: 10.1002/jcp.22794] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Studies have reported that the intermediate filament protein nestin was expressed in various non-stem/progenitor cells during development, downregulated during postnatal growth and re-expressed following injury. The present study tested the hypothesis that an analogous paradigm was prevalent for ventricular fibroblasts. In the neonatal rat heart, nestin protein levels were significantly higher than the adult heart and the isolation of cardiac cells revealed a selective expression in ventricular fibroblasts. In adult ventricular fibroblasts, nestin protein expression was markedly lower compared to neonatal ventricular fibroblasts. Following ischemic damage to the rat heart, nestin staining was detected in a subpopulation of scar myofibroblasts (37%) and the percentage of immunoreactive cells was greater than adult ventricular fibroblasts (7%) but significantly lower than neonatal ventricular fibroblasts (86%). Moreover, dissimilar rates of (3)H-thymidine uptake were observed among the fibroblast populations and may be related in part to the disparate percentage of nestin(+) cells. To assess the role of nestin in DNA synthesis, neonatal ventricular fibroblasts were infected with a lentivirus containing a shRNAmir directed against the intermediate filament protein. The partial depletion of nestin expression in neonatal ventricular fibroblasts significantly reduced basal DNA synthesis, in the absence of an apoptotic response. Thus, postnatal development of the rat heart was associated with a selective loss of nestin expression in ventricular fibroblasts and subsequent induction in a subpopulation of myofibroblasts following ischemic injury. The re-expression of nestin in scar myofibroblasts may represent an adaptive response to enhance their proliferative rate and accelerate the healing process.
Collapse
Affiliation(s)
- Pauline C Béguin
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
32
|
Noghero A, Arese M, Bussolino F, Gualandris A. Mature endothelium and neurons are simultaneously derived from embryonic stem cells by 2D in vitro culture system. J Cell Mol Med 2012; 15:2200-15. [PMID: 21070596 PMCID: PMC4394229 DOI: 10.1111/j.1582-4934.2010.01209.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The connections existing between vessels and nerves go beyond the structural architecture of vascular and nervous systems to comprise cell fate determination. The analysis of functional/molecular links that interconnect endothelial and neural commitments requires a model in which the two differentiation programs take place at the same time in an artificial controllable environment. To this regard, this work presents an in vitro model to differentiate embryonic stem (ES) cells simultaneously into mature neurons and endothelial cells. Murine ES cells are differentiated within an artificial environment composed of PA6 stromal cells and a serum-free medium. Upon these basal culture conditions ES cells preferentially differentiate into neurons. The addition of basic fibroblast growth factor (FGF2) to the medium allows the simultaneous maturation of neurons and endothelial cells, whereas bone morphogenetic protein (BMP)4 drives endothelial differentiation to the disadvantage of neural commitment. The responsiveness of the system to exogenous cytokines was confirmed by genes expression analysis that revealed a significant up-regulation of endothelial genes in presence of FGF2 and a massive down-regulation of the neural markers in response to BMP4. Furthermore, the role played by single genes in determining endothelial and neural fate can be easily explored by knocking down the expression of the target gene with lentiviruses carrying the corresponding shRNA sequence. The possibility to address the neural and the endothelial fate separately or simultaneously by exogenous stimuli combined with an efficient gene silencing strategy make this model an optimal tool to identify environmental signals and genes pathways involved in both endothelial and neural specification.
Collapse
Affiliation(s)
- Alessio Noghero
- Laboratory of Vascular Oncology, Institute for Cancer Research and Treatment, Candiolo, Torino, Italy
| | | | | | | |
Collapse
|
33
|
Dong J, Liu B, Song L, Lu L, Xu H, Gu Y. Neural stem cells in the ischemic and injured brain: endogenous and transplanted. Cell Tissue Bank 2011; 13:623-9. [DOI: 10.1007/s10561-011-9283-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 12/07/2011] [Indexed: 12/29/2022]
|
34
|
Minasyan AL, Aznauryan AV, Meliksetyan IB, Chavushyan VA, Sarkissian JS, Galoyan AA. A morphological-histochemical study of neurodegenerative and regenerative processes in flexor and extensor collaterals of the sciatic nerve after crushing in the presence of PRP-1. NEUROCHEM J+ 2011. [DOI: 10.1134/s181971241104012x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Hattori H, Suzuki S, Okazaki Y, Suzuki N, Kuwana M. Intracranial transplantation of monocyte-derived multipotential cells enhances recovery after ischemic stroke in rats. J Neurosci Res 2011; 90:479-88. [PMID: 22057655 DOI: 10.1002/jnr.22755] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 05/30/2011] [Accepted: 06/30/2011] [Indexed: 01/15/2023]
Abstract
Cell transplantation has emerged as a potential therapy to reduce the neurological deficits caused by ischemic stroke. We previously reported a primitive cell population, monocyte-derived multipotential cells (MOMCs), which can differentiate into mesenchymal, neuronal, and endothelial lineages. In this study, MOMCs and macrophages were prepared from rat peripheral blood and transplanted intracranially into the ischemic core of syngeneic rats that had undergone a left middle cerebral artery occlusion procedure. Neurological deficits, as evaluated by the corner test, were less severe in the MOMC-transplanted rats than in macrophage-transplanted or mock-treated rats. Histological evaluations revealed that the number of microvessels that had formed in the ischemic boundary area by 4 weeks after transplantation was significantly greater in the MOMC-transplanted rats than in the control groups. The blood vessel formation was preceded by the appearance of round CD31(+) cells, which we confirmed were derived from the transplanted MOMCs. Small numbers of bloodvessels incorporating MOMC-derived endothelial cells expressing a mature endothelial marker RECA-1 were detected at 4 weeks after transplantation. In addition, MOMCs expressed a series of angiogenic factors, including vascular endothelial growth factor, angiopoetin-1, and placenta growth factor (PlGF). These findings provide evidence that the intracranial delivery of MOMCs enhances functional recovery by promoting neovascularization in a rat model for ischemic stroke.
Collapse
Affiliation(s)
- Hidenori Hattori
- Department of Neurology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
36
|
Alev C, Ii M, Asahara T. Endothelial progenitor cells: a novel tool for the therapy of ischemic diseases. Antioxid Redox Signal 2011; 15:949-65. [PMID: 21254837 DOI: 10.1089/ars.2010.3872] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Circulating endothelial progenitor cells (EPCs) are believed to home to sites of neovascularization, contributing to vascular regeneration either directly via incorporation into newly forming vascular structures or indirectly via the secretion of pro-angiogenic growth factors, thereby enhancing the overall vascular and hemodynamic recovery of ischemic tissues. The therapeutic application of EPCs has been shown to be effective in animal models of ischemia, and we as well as other groups involved in clinical trials have demonstrated that the use of EPCs was safe and feasible for the treatment of critical limb ischemia and cardiovascular diseases. However, many issues in the field of EPC biology, especially in regard to the proper and unambiguous molecular characterization of these cells, still remain unresolved, hampering not only basic research but also the effective therapeutic use and widespread application of these cells. Further, recent evidence suggests that several diseases and pathological conditions are correlated with a reduction in the number and biological activity of EPCs, making the development of novel strategies to overcome the current limitations and shortcomings of this promising but still limited therapeutic tool by refinement and improvement of EPC purification, expansion, and administration techniques, a rather pressing issue.
Collapse
Affiliation(s)
- Cantas Alev
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation/RIKEN Center for Developmental Biology, Kobe, Japan
| | | | | |
Collapse
|
37
|
Cristini S, Alessandri G, Acerbi F, Ciusani E, Colombo A, Fascio U, Nicosia RF, Invernizzi RW, Gelati M, Parati EA, Invernici G. Three-dimensional self-organizing neural architectures: a neural stem cells reservoir and a system for neurodevelopmental studies. Tissue Eng Part C Methods 2011; 17:1109-20. [PMID: 21721991 DOI: 10.1089/ten.tec.2010.0622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Complex microenvironmental stimuli influence neural cell properties. To study this, we developed a three-dimensional (3-D) neural culture system, composed of different populations including neurons, astrocytes, and neural stem cells (NSCs). In particular, these last-mentioned cells represent a source potentially exploitable to test drugs, to study neurodevelopment and cell-therapies for neuroregenerations. On seeding on matrigel in a medium supplemented with serum and mitogens, cells obtained from human fetal brain tissue formed 3-D self-organizing neural architectures. Immunocytochemical analysis demonstrated the presence of undifferentiated nestin+ and CD133+ cells, surrounded by β-tub-III+ and GFAP+ cells, suggesting the formation of niches containing potential human NSCs (hNSCs). The presence of hNSCs was confirmed by both neurosphere assay and RT-PCR, and their multipotentiality was demonstrated by both immunofluorescent staining and RT-PCR. Flow cytometry analysis revealed that neurosphere forming cells originating from at least two different subsets expressing, respectively, CD133 and CD146 markers were endowed with different proliferative and differentiation potential. Our data implicate that the complexity of environment within niches and aggregates of heterogeneous neural cell subsets may represent an innovative platform for neurobiological and neurodevelopmental investigations and a reservoir for a rapid expansion of hNSCs.
Collapse
Affiliation(s)
- Silvia Cristini
- Laboratory of Cellular Neurobiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
PET molecular imaging in stem cell therapy for neurological diseases. Eur J Nucl Med Mol Imaging 2011; 38:1926-38. [DOI: 10.1007/s00259-011-1860-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 06/06/2011] [Indexed: 01/12/2023]
|
39
|
Béguin PC, El-Helou V, Gillis MA, Duquette N, Gosselin H, Brugada R, Villeneuve L, Lauzier D, Tanguay JF, Ribuot C, Calderone A. Nestin(+) stem cells independently contribute to neural remodelling of the ischemic heart. J Cell Physiol 2011; 226:1157-65. [DOI: 10.1002/jcp.22441] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
40
|
Huang H, Chen L, Sanberg P. Cell Therapy From Bench to Bedside Translation in CNS Neurorestoratology Era. CELL MEDICINE 2010; 1:15-46. [PMID: 21359168 DOI: 10.3727/215517910x516673] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in cell biology, neural injury and repair, and the progress towards development of neurorestorative interventions are the basis for increased optimism. Based on the complexity of the processes of demyelination and remyelination, degeneration and regeneration, damage and repair, functional loss and recovery, it would be expected that effective therapeutic approaches will require a combination of strategies encompassing neuroplasticity, immunomodulation, neuroprotection, neurorepair, neuroreplacement, and neuromodulation. Cell-based restorative treatment has become a new trend, and increasing data worldwide have strongly proven that it has a pivotal therapeutic value in CNS disease. Moreover, functional neurorestoration has been achieved to a certain extent in the CNS clinically. Up to now, the cells successfully used in preclinical experiments and/or clinical trial/treatment include fetal/embryonic brain and spinal cord tissue, stem cells (embryonic stem cells, neural stem/progenitor cells, hematopoietic stem cells, adipose-derived adult stem/precursor cells, skin-derived precursor, induced pluripotent stem cells), glial cells (Schwann cells, oligodendrocyte, olfactory ensheathing cells, astrocytes, microglia, tanycytes), neuronal cells (various phenotypic neurons and Purkinje cells), mesenchymal stromal cells originating from bone marrow, umbilical cord, and umbilical cord blood, epithelial cells derived from the layer of retina and amnion, menstrual blood-derived stem cells, Sertoli cells, and active macrophages, etc. Proof-of-concept indicates that we have now entered a new era in neurorestoratology.
Collapse
Affiliation(s)
- Hongyun Huang
- Center for Neurorestoratology, Beijing Rehabilitation Center, Beijing, P.R. China
| | | | | |
Collapse
|
41
|
Noghero A, Bussolino F, Gualandris A. Role of the microenvironment in the specification of endothelial progenitors derived from embryonic stem cells. Microvasc Res 2010; 79:178-83. [PMID: 20053368 DOI: 10.1016/j.mvr.2009.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 12/22/2009] [Accepted: 12/25/2009] [Indexed: 01/21/2023]
Abstract
Embryonic stem (ES) cells are pluripotent cells capable of differentiating in all the cell types present in a living organism. They derive from the inner cell mass of blastocysts of different species including humans. Given their unlimited potential, ES cells represent an invaluable resource of different cell types for transplantation and tissue engineering applications. However, in order to accomplish these therapeutic purposes, efficient and controlled in vitro systems of directing ES cell differentiation are mandatory. ES cell differentiation is strongly influenced by physical, chemical and cellular signals provided by the local microenvironment. Understanding the relationships occurring between differentiating cells and surrounding environment is pivotal for a successful ES cells-based therapy. This review describes three different methods of in vitro differentiation of ES cells by outlining the environmental elements required for endothelial fate specification. For each system, the efficiency of endothelial differentiation, the accessibility and the advantages are discussed. The main conclusion that arises from this analysis is that the knowledge of the role played by microenvironment in cell fate determination is essential to control and take advantage of ES cells potential.
Collapse
Affiliation(s)
- Alessio Noghero
- Division of Vascular Biology, Institute for Cancer Research and Treatment (IRCC), 10060 Candiolo, Torino, Italy
| | | | | |
Collapse
|