1
|
Casula M, Marchetti D, Trevisan L, Pezzoli L, Bellini M, Patrone S, Zingarelli A, Gotta F, Iascone M, Mandich P. Genetics architecture of spontaneous coronary artery dissection in an Italian cohort. Front Cardiovasc Med 2024; 11:1486273. [PMID: 39654947 PMCID: PMC11625805 DOI: 10.3389/fcvm.2024.1486273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/01/2024] [Indexed: 12/12/2024] Open
Abstract
Spontaneous coronary artery dissection (SCAD) is a relevant non-atherosclerotic cause of acute coronary syndrome with a complex genetic architecture. Recent discoveries have highlighted the potential role of miRNAs and protein-coding genes involved in the processing of small RNAs in the pathogenesis of SCAD. Furthermore, there may be a connection between SCAD and the increased cardiovascular risk observed in fragile X premutation carriers as well as a correlation with pathogenetic variants in genes encoding for collagen and extracellular matrix, which are related to connective tissue disorders (CTDs). In our cohort of 15 Italian SCAD patients, a total of 37 rare variants were identified in 34 genes using whole exome sequencing (WES) and TRIO-WES analysis when both parents were available. Three likely pathogenic/pathogenetic variants were found in genes previously associated with SCAD and CTDs (COL3A1, COL1A2, and SMAD3) and 26 variants of uncertain significance in genes previously associated with SCAD and CTDs. TRIO-WES analysis revealed 7 de novo variants, 1 of which was found in a potential novel candidate gene (DROSHA). In addition, a premutation allele of 55 ± 2 CGG repeats in the promoter of the FMR1 gene was identified in two related SCAD patients by test for CGG-repeat expansions in the 5'-UTR of the FMR1 gene. Our findings suggest various potential mechanisms such as mRNA toxicity, miRNA regulation, alteration of collagen, and the extracellular matrix architecture, all of which could disrupt vascular homeostasis, and finally, WES and TRIO-WES have proven to be the most powerful approaches for characterizing the genetic background of SCAD.
Collapse
Affiliation(s)
- Marta Casula
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Daniela Marchetti
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Lucia Trevisan
- Medical Genetics Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Laura Pezzoli
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Matteo Bellini
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Serena Patrone
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Antonio Zingarelli
- Cardiological Unit, Ospedale Policlinico IRCSS San Martino, Genoa, Italy
| | - Fabio Gotta
- Medical Genetics Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Maria Iascone
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Paola Mandich
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Medical Genetics Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
2
|
Carabetta N, Siracusa C, Leo I, Panuccio G, Strangio A, Sabatino J, Torella D, De Rosa S. Cardiomyopathies: The Role of Non-Coding RNAs. Noncoding RNA 2024; 10:53. [PMID: 39449507 PMCID: PMC11503404 DOI: 10.3390/ncrna10060053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024] Open
Abstract
Cardiomyopathies are the structural and functional disorders of the myocardium. Etiopathogenesis is complex and involves an interplay of genetic, environmental, and lifestyle factors eventually leading to myocardial abnormalities. It is known that non-coding (Nc) RNAs, including micro (mi)-RNAs and long non-coding (lnc) RNAs, play a crucial role in regulating gene expression. Several studies have explored the role of miRNAs in the development of various pathologies, including heart diseases. In this review, we analyzed various patterns of ncRNAs expressed in the most common cardiomyopathies: dilated cardiomyopathy, hypertrophic cardiomyopathy and arrhythmogenic cardiomyopathy. Understanding the role of different ncRNAs implicated in cardiomyopathic processes may contribute to the identification of potential therapeutic targets and novel risk stratification models based on gene expression. The analysis of ncRNAs may also be helpful to unveil the molecular mechanisms subtended to these diseases.
Collapse
Affiliation(s)
- Nicole Carabetta
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.C.); (C.S.)
| | - Chiara Siracusa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.C.); (C.S.)
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
| | - Giuseppe Panuccio
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité Berlin, 12200 Berlin, Germany
| | - Antonio Strangio
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
| | - Jolanda Sabatino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.C.); (C.S.)
| |
Collapse
|
3
|
Wang K, Li K, Li Z, Yan X. Circulating miRNA-21 as early potential diagnostic biomarker for acute myocardial infarction: a meta-analysis. Front Cardiovasc Med 2024; 11:1330884. [PMID: 39238499 PMCID: PMC11374624 DOI: 10.3389/fcvm.2024.1330884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Introduction There exists a knowledge gap concerning the clinical significance of miRNA-21; therefore, in the present study, we aimed to estimate the diagnostic and prognostic accuracy and sensitivity of miRNA-21 in acute myocardial infarction (AMI) by performing an evidence-based meta-analysis of previous AMI-related clinical studies. Methods Chinese and English literature published before April 2024 were searched, and data were reviewed and extracted. After quality appraisal, the STATA 16.0 software was used for the effect size analysis of the various treatments described in the literature. Results A total of 14 valid documents were retrieved from 562 studies. The results of the systematic review revealed that for the patients with AMI vs. those without non-AMI, the aggregated odds ratio reached 5.37 (95% confidence interval 3.70-7.04). The general sensitivity and specificity for the circulating miRNA-21 levels in diagnosing AMI were 0.83 and 0.81, respectively. Discussion Thus, the meta-analysis of 14 AMI-related clinical trials highlighted that miRNA-21 may serve as a promising biomarker for diagnosing AMI.
Collapse
Affiliation(s)
- Ke Wang
- Department of Clinical Medicine, Xi'an Medical University, Xi'an, Shannxi, China
- Department of the Project of Prevention and Treatment of Respiratory Diseases, Xi'an Medical University, Xi'an, Shannxi, China
| | - Kai Li
- Department of Emergency, Hanjiang Hospital Affiliated to Xi'an Medical University, Hanzhong, Shannxi, China
| | - Zhuoyuan Li
- Department of Clinical Medicine, Xi'an Medical University, Xi'an, Shannxi, China
- Department of the Project of Prevention and Treatment of Respiratory Diseases, Xi'an Medical University, Xi'an, Shannxi, China
| | - Xizhang Yan
- Department of Clinical Medicine, Xi'an Medical University, Xi'an, Shannxi, China
| |
Collapse
|
4
|
Marketou M, Kontaraki J, Zacharis E, Maragkoudakis S, Fragkiadakis K, Kampanieris E, Plevritaki A, Savva E, Malikides O, Chlouverakis G, Kochiadakis G. Peripheral Blood MicroRNA-21 as a Predictive Biomarker for Heart Failure With Preserved Ejection Fraction in Old Hypertensives. Am J Hypertens 2024; 37:298-305. [PMID: 37976292 DOI: 10.1093/ajh/hpad109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/22/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is a major health issue with high morbidity and mortality. The epidemiology and the factors that cause HFpEF have not been fully clarified, while accurate predictive biomarkers are lacking. Our aim was to determine whether levels of microRNA-21 (miR-21) in peripheral blood monocytes, which play a critical role in many pathophysiological pathways of hypertensive heart disease, can predict the occurrence of HFpEF in older hypertensives, as well as the associated mortality and morbidity. METHODS We enrolled 151 elderly patients >60 years old with essential hypertension but without HF at baseline. miRs expression levels in peripheral blood mononuclear cells had been quantified by real-time reverse transcription polymerase chain reaction. RESULTS During a median follow-up of 8.2 years, 56 patients (37%) had an event. Levels of miR-21 in peripheral mononuclear blood cells proved to be significantly associated with the occurrence of HFpEF. More specifically, the median HFpEF-free period was 110 months for those with miR-21 >2.1 and 114 months for those with miR-21 <2.1. In addition, multivariate analysis showed that miR-21 (hazard ratio 11.14), followed by hemoglobin (Hg) (hazard ratio 0.56 for Hg >13.6 g/dl, a 45% risk reduction), were independent and the most significant predictors of HFpEF events. CONCLUSIONS miR-21 levels in peripheral blood monocytes are associated with the development of future HFpEF. Our findings may alter the risk models of HFpEF and support the rationale for further research into the modulation of miRs as biomarkers and treatment targets for HFpEF.
Collapse
Affiliation(s)
- Maria Marketou
- Cardiology Department, Heraklion University General Hospital, Crete, Greece
- Cardiology Department, School of Medicine, University of Crete, Crete, Greece
| | - Joanna Kontaraki
- Cardiology Department, School of Medicine, University of Crete, Crete, Greece
| | - Evangelos Zacharis
- Cardiology Department, Heraklion University General Hospital, Crete, Greece
| | | | | | | | | | - Eirini Savva
- Cardiology Department, Heraklion University General Hospital, Crete, Greece
| | | | - Gregory Chlouverakis
- Division of Biostatistics, School of Medicine, University of Crete, Crete, Greece
| | - George Kochiadakis
- Cardiology Department, Heraklion University General Hospital, Crete, Greece
- Cardiology Department, School of Medicine, University of Crete, Crete, Greece
| |
Collapse
|
5
|
Aranega AE, Franco D. Posttranscriptional Regulation by Proteins and Noncoding RNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:313-339. [PMID: 38884719 DOI: 10.1007/978-3-031-44087-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Posttranscriptional regulation comprises those mechanisms occurring after the initial copy of the DNA sequence is transcribed into an intermediate RNA molecule (i.e., messenger RNA) until such a molecule is used as a template to generate a protein. A subset of these posttranscriptional regulatory mechanisms essentially are destined to process the immature mRNA toward its mature form, conferring the adequate mRNA stability, providing the means for pertinent introns excision, and controlling mRNA turnover rate and quality control check. An additional layer of complexity is added in certain cases, since discrete nucleotide modifications in the mature RNA molecule are added by RNA editing, a process that provides large mature mRNA diversity. Moreover, a number of posttranscriptional regulatory mechanisms occur in a cell- and tissue-specific manner, such as alternative splicing and noncoding RNA-mediated regulation. In this chapter, we will briefly summarize current state-of-the-art knowledge of general posttranscriptional mechanisms, while major emphases will be devoted to those tissue-specific posttranscriptional modifications that impact on cardiac development and congenital heart disease.
Collapse
Affiliation(s)
- Amelia E Aranega
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Diego Franco
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, Jaén, Spain.
| |
Collapse
|
6
|
Zhang M, Wang X, Chen W, Liu W, Xin J, Yang D, Zhang Z, Zheng X. Integrated bioinformatics analysis for identifying key genes and pathways in female and male patients with dilated cardiomyopathy. Sci Rep 2023; 13:8977. [PMID: 37268658 DOI: 10.1038/s41598-023-36117-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/30/2023] [Indexed: 06/04/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a common cause of heart failure, and males are more likely to suffer from DCM than females. This research aimed at exploring possible DCM-associated genes and their latent regulatory effects in female and male patients. WGCNA analysis found that in the yellow module, 341 and 367 key DEGs were identified in females and males, respectively. A total of 22 hub genes in females and 17 hub genes in males were identified from the PPI networks of the key DEGs based on Metascape database. And twelve and eight potential TFs of the key DEGs were also identified in females and males, respectively. Eight miRNAs of 15 key DEGs were screened in both females and males, which may be differentially expressed in females and males. Dual-luciferase reporter assay demonstrated that miR-21-5P could directly target the key gene MATN2. Furthermore, Sex differences in KEGG pathways were identified. Both KOBAS and GSEA analysis identified 19 significantly enriched pathways related to immune response in both females and males, and the TGF-β signaling pathway was exclusively identified in males. Network pharmacology analysis revealed that seven key DEGs were potential targets for the treatment of DCM, of which the OLR1 gene was only identified in males, the expression levels of the seven genes were verified by RT-PCR. The above results could offer a novel understanding of sex differences in key genes and pathways in DCM progression.
Collapse
Affiliation(s)
- Min Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xinzhou Wang
- The Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Wenbo Chen
- School of Medicine, Henan Polytechnic University, Jiaozuo, 454000, Henan, China
| | - Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jile Xin
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Debao Yang
- The Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Zhongyuan Zhang
- The Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|
7
|
Alonso-Villa E, Bonet F, Hernandez-Torres F, Campuzano Ó, Sarquella-Brugada G, Quezada-Feijoo M, Ramos M, Mangas A, Toro R. The Role of MicroRNAs in Dilated Cardiomyopathy: New Insights for an Old Entity. Int J Mol Sci 2022; 23:ijms232113573. [PMID: 36362356 PMCID: PMC9659086 DOI: 10.3390/ijms232113573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a clinical diagnosis characterized by left ventricular or biventricular dilation and systolic dysfunction. In most cases, DCM is progressive, leading to heart failure (HF) and death. This cardiomyopathy has been considered a common and final phenotype of several entities. DCM occurs when cellular pathways fail to maintain the pumping function. The etiology of this disease encompasses several factors, such as ischemia, infection, autoimmunity, drugs or genetic susceptibility. Although the prognosis has improved in the last few years due to red flag clinical follow-up, early familial diagnosis and ongoing optimization of treatment, due to its heterogeneity, there are no targeted therapies available for DCM based on each etiology. Therefore, a better understanding of the mechanisms underlying the pathophysiology of DCM will provide novel therapeutic strategies against this cardiac disease and their different triggers. MicroRNAs (miRNAs) are a group of small noncoding RNAs that play key roles in post-transcriptional gene silencing by targeting mRNAs for translational repression or, to a lesser extent, degradation. A growing number of studies have demonstrated critical functions of miRNAs in cardiovascular diseases (CVDs), including DCM, by regulating mechanisms that contribute to the progression of the disease. Herein, we summarize the role of miRNAs in inflammation, endoplasmic reticulum (ER) stress, oxidative stress, mitochondrial dysfunction, autophagy, cardiomyocyte apoptosis and fibrosis, exclusively in the context of DCM.
Collapse
Affiliation(s)
- Elena Alonso-Villa
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
- Correspondence: (E.A.-V.); (R.T.)
| | - Fernando Bonet
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
| | - Francisco Hernandez-Torres
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Óscar Campuzano
- Cardiology Service, Hospital Josep Trueta, University of Girona, 17007 Girona, Spain
- Cardiovascular Genetics Center, Institut d’Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Georgia Sarquella-Brugada
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain
| | - Maribel Quezada-Feijoo
- Cardiology Department, Hospital Central de la Cruz Roja, 28003 Madrid, Spain
- Medicine School, Alfonso X el Sabio University, 28007 Madrid, Spain
| | - Mónica Ramos
- Cardiology Department, Hospital Central de la Cruz Roja, 28003 Madrid, Spain
- Medicine School, Alfonso X el Sabio University, 28007 Madrid, Spain
| | - Alipio Mangas
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
- Internal Medicine Department, Puerta del Mar University Hospital, School of Medicine, University of Cadiz, 11009 Cadiz, Spain
| | - Rocío Toro
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
- Correspondence: (E.A.-V.); (R.T.)
| |
Collapse
|
8
|
Xu R, Fu J, Hu Y, Yang X, Tao X, Chen L, Huang K, Fu Q. Roflumilast-Mediated Phosphodiesterase 4D Inhibition Reverses Diabetes-Associated Cardiac Dysfunction and Remodeling: Effects Beyond Glucose Lowering. Diabetes 2022; 71:1660-1678. [PMID: 35594380 DOI: 10.2337/db21-0898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/02/2022] [Indexed: 11/13/2022]
Abstract
Patients with type 2 diabetes have a substantial risk of developing cardiovascular disease. Phosphodiesterase 4 (PDE4) dysregulation is of pathophysiological importance in metabolic disorders. For determination of the role of PDE4 in diabetic cardiac dysfunction, mice fed with a high-fat diet (HFD) were treated by pharmacological inhibition of PDE4 or cardiac specific knocking down of PDE4D. Mice on HFD developed diabetes and cardiac dysfunction with increased cardiac PDE4D5 expression. PDE4 inhibitor roflumilast can reverse hyperglycemia and cardiac dysfunction, accompanied by the decrease of PDE4D expression and increase of muscle specific miRNA miR-1 level in hearts. Either cardiac specific PDE4D knockdown or miR-1 overexpression significantly reversed cardiac dysfunction in HFD mice, despite persistence of hyperglycemia. Findings of gain- and loss-of-function studies of PDE4D in cardiomyocytes indicated that inhibition of insulin-induced PDE4D protected cardiac hypertrophy by preserving miR-1 expression in cardiomyocytes through promoting cAMP-CREB-Sirt1 signaling-induced SERCA2a expression. We further revealed that insulin also induced PDE4D expression in cardiac fibroblasts, which causes cardiac fibrosis through TGF-β1 signaling-mediated miR-1 reduction. Importantly, the expression of PDE4D5 was increased in human failing hearts of individuals with diabetes. These studies elucidate a novel mechanism by which hyperinsulinemia-induced cardiac PDE4D expression contributes to diabetic cardiac remodeling through reducing the expression of miR-1 and upregulation of miR-1 target hypertrophy and fibrosis-associated genes. Our study suggests a therapeutic potential of PDE4 inhibitor roflumilast in preventing or treating cardiac dysfunction in diabetes in addition to lowering glucose.
Collapse
Affiliation(s)
- Rui Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Jing Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Yuting Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Xiang Tao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long Chen
- Clinical Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Clinical Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| |
Collapse
|
9
|
Mahjoob G, Ahmadi Y, Fatima rajani H, khanbabaei N, Abolhasani S. Circulating microRNAs as predictive biomarkers of coronary artery diseases in type 2 diabetes patients. J Clin Lab Anal 2022; 36:e24380. [PMID: 35349731 PMCID: PMC9102494 DOI: 10.1002/jcla.24380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is an increasing metabolic disorder mostly resulting from unhealthy lifestyles. T2DM patients are prone to develop heart conditions such as coronary artery disease (CAD) which is a major cause of death in the world. Most clinical symptoms emerge at the advanced stages of CAD; therefore, establishing new biomarkers detectable in the early stages of the disease is crucial to enhance the efficiency of treatment. Recently, a significant body of evidence has shown alteration in miRNA levels associate with dysregulated gene expression occurring in T2DM and CAD, highlighting significance of circulating miRNAs in early detection of CAD arising from T2DM. Therefore, it seems crucial to establish a link between the miRNAs prognosing value and development of CAD in T2DM. AIM This study provides an overview on the alterations of the circulatory miRNAs in T2DM and various CADs and consider the potentials of miRNAs as biomarkers prognosing CADs in T2DM patients. MATERIALS AND METHODS Literature search was conducted for miRNAs involved in development of T2DM and CAD using the following key words: "miRNAs", "Biomarker", "Diabetes Mellitus Type 2 (T2DM)", "coronary artery diseases (CAD)". Articles written in the English language. RESULT There has been shown a rise in miR-375, miR-9, miR-30a-5p, miR-150, miR-9, miR-29a, miR-30d, miR-34a, miR-124a, miR-146a, miR-27a, and miR-320a in T2DM; whereas, miR-126, miR-21, miR-103, miR-28-3p, miR-15a, miR-145, miR-375, miR-223 have been shown to decrease. In addition to T2DM, some miRNAs such as mirR-1, miR-122, miR-132, and miR-133 play a part in development of subclinical aortic atherosclerosis associated with metabolic syndrome. Some miRNAs increase in both T2DM and CAD such as miR-1, miR-132, miR-133, and miR-373-3-p. More interestingly, some of these miRNAs such as miR-92a elevate years before emerging CAD in T2DM. CONCLUSION dysregulation of miRNAs plays outstanding roles in development of T2DM and CAD. Also, elevation of some miRNAs such as miR-92a in T2DM patients can efficiently prognose development of CAD in these patients, so these miRNAs can be used as biomarkers in this regard.
Collapse
Affiliation(s)
- Golnoosh Mahjoob
- Department of Clinical BiochemistrySarab Faculty of Medical Sciences.SarabIran
- Department of Clinical BiochemistryTarbiat Modares UniversityTehranIran
| | - Yasin Ahmadi
- Department of Medical Laboratory SciencesCollege of ScienceKomar University of Science and TechnologySulaimaniIraq
| | - Huda Fatima rajani
- Department of medical biotechnologySchool of advanced sciences in medicineTehran University of medical sciencesTehranIran
| | - Nafiseh khanbabaei
- Department of Clinical BiochemistrySarab Faculty of Medical Sciences.SarabIran
- Department of Clinical BiochemistryTarbiat Modares UniversityTehranIran
| | - Sakhavat Abolhasani
- Department of Clinical BiochemistrySarab Faculty of Medical Sciences.SarabIran
- Department of Clinical BiochemistryTarbiat Modares UniversityTehranIran
| |
Collapse
|
10
|
Ali F, Shen A, Islam W, Saleem MZ, Muthu R, Xie Q, Wu M, Cheng Y, Chu J, Lin W, Peng J. Role of MicroRNAs and their corresponding ACE2/Apelin signaling pathways in hypertension. Microb Pathog 2021; 162:105361. [PMID: 34919993 DOI: 10.1016/j.micpath.2021.105361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 11/28/2022]
Abstract
Hypertension is controlled via the alteration of microRNAs (miRNAs), their therapeutic targets angiotensin II type I receptor (AT1R) and cross talk of signaling pathways. The stimulation of the Ang II/AT1R pathway by deregulation of miRNAs, has also been linked to cardiac remodeling as well as the pathophysiology of high blood pressure. As miRNAs have been associated to ACE2/Apelin and Mitogen-activated protein kinases (MAPK) signaling, it has revealed an utmost protective impact over hypertension and cardiovascular system. The ACE2-coupled intermodulation between RAAS, Apelin system, MAPK signaling pathways, and miRNAs reveal the practicalities of high blood pressure. The research of miRNAs may ultimately lead to the expansion of an innovative treatment strategy for hypertension, which indicates the need to explore them further at the molecular level. Therefore, here we have focused on the mechanistic importance of miRNAs in hypertension, ACE2/Apelin signaling as well as their biological functions, with a focus on interplay and crosstalk between ACE2/Apelin signaling, miRNAs, and hypertension, and the progress in miRNA-based diagnostic techniques with the goal of facilitating the development of new hypertension-controlling therapeutics.
Collapse
Affiliation(s)
- Farman Ali
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Ragunath Muthu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Qiurong Xie
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Ying Cheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Jiangfeng Chu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Wei Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| |
Collapse
|
11
|
Isoflurane Alleviates Myocardial Injury Induced by Hypoxia/Reoxygenation by Regulating miR-18a-5p. Cardiovasc Toxicol 2021; 21:800-807. [PMID: 34181233 DOI: 10.1007/s12012-021-09670-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/08/2021] [Indexed: 11/27/2022]
Abstract
The protective effect and mechanism of isoflurane on myocardial injury was investigated by constructing in vitro hypoxia/reoxygenation (HR) cell model. HR cell models were established in vitro and treated with isoflurane (ISO). qRT-PCR was used to detect the relative expression of miR-18a-5p. CCK-8 kit and flow cytometry were performed to evaluate cell proliferation and apoptosis. The myocardial injury related markers, such as Cκ-MB, cTnI and LDH were detected by ELISA. Luciferase reporter gene assay was used to verify the interaction between miR-18a-5p and target genes. The expression of miR-18a-5p was significantly increased in hypoxic cardiomyocytes compared with control group (P < 0.001). Meanwhile, cardiomyocytes in the HR group showed inhibition of proliferation, a significant increase in cell apoptosis and in myocardial injury indicators, such as Cκ-MB, cTnI and LDH (P < 0.001). However, 1% ISO treatment alleviated myocardial cell injury induced by HR. Transfection of miR-18a-5p under ISO reduced the protective effect of 1% ISO against myocardial cell damage. Luciferase report gene assay confirmed that CCND2 might be the target gene of miR-18a-5p. In the in vitro cell model of myocardium, ISO alleviated cardiomyocyte injury caused by hypoxia/reoxygenation by down-regulating the expression of miR-18a-5p.
Collapse
|
12
|
Scărlătescu AI, Micheu MM, Popa-Fotea NM, Dorobanțu M. MicroRNAs in Acute ST Elevation Myocardial Infarction-A New Tool for Diagnosis and Prognosis: Therapeutic Implications. Int J Mol Sci 2021; 22:4799. [PMID: 33946541 PMCID: PMC8124280 DOI: 10.3390/ijms22094799] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Despite diagnostic and therapeutic advances, coronary artery disease and especially its extreme manifestation, ST elevation myocardial infarction (STEMI), remain the leading causes of morbidity and mortality worldwide. Early and prompt diagnosis is of great importance regarding the prognosis of STEMI patients. In recent years, microRNAs (miRNAs) have emerged as promising tools involved in many pathophysiological processes in various fields, including cardiovascular diseases. In acute coronary syndromes (ACS), circulating levels of miRNAs are significantly elevated, as an indicator of cardiac damage, making them a promising marker for early diagnosis of myocardial infarction. They also have prognostic value and great potential as therapeutic targets considering their key function in gene regulation. This review aims to summarize current information about miRNAs and their role as diagnostic, prognostic and therapeutic targets in STEMI patients.
Collapse
Affiliation(s)
- Alina Ioana Scărlătescu
- Department of Cardiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (N.-M.P.-F.); (M.D.)
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania;
| | - Miruna Mihaela Micheu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania;
| | - Nicoleta-Monica Popa-Fotea
- Department of Cardiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (N.-M.P.-F.); (M.D.)
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania;
| | - Maria Dorobanțu
- Department of Cardiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (N.-M.P.-F.); (M.D.)
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania;
| |
Collapse
|
13
|
Shrivastava A, Haase T, Zeller T, Schulte C. Biomarkers for Heart Failure Prognosis: Proteins, Genetic Scores and Non-coding RNAs. Front Cardiovasc Med 2020; 7:601364. [PMID: 33330662 PMCID: PMC7719677 DOI: 10.3389/fcvm.2020.601364] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
Heart failure (HF) is a complex disease in which cardiomyocyte injury leads to a cascade of inflammatory and fibrosis pathway activation, thereby causing decrease in cardiac function. As a result, several biomolecules are released which can be identified easily in circulating body fluids. The complex biological processes involved in the development and worsening of HF require an early treatment strategy to stop deterioration of cardiac function. Circulating biomarkers provide not only an ideal platform to detect subclinical changes, their clinical application also offers the opportunity to monitor disease treatment. Many of these biomarkers can be quantified with high sensitivity; allowing their clinical application to be evaluated beyond diagnostic purposes as potential tools for HF prognosis. Though the field of biomarkers is dominated by protein molecules, non-coding RNAs (microRNAs, long non-coding RNAs, and circular RNAs) are novel and promising biomarker candidates that encompass several ideal characteristics required in the biomarker field. The application of genetic biomarkers as genetic risk scores in disease prognosis, albeit in its infancy, holds promise to improve disease risk estimation. Despite the multitude of biomarkers that have been available and identified, the majority of novel biomarker candidates are not cardiac-specific, and instead may simply be a readout of systemic inflammation or other pathological processes. Thus, the true value of novel biomarker candidates in HF prognostication remains unclear. In this article, we discuss the current state of application of protein, genetic as well as non-coding RNA biomarkers in HF risk prognosis.
Collapse
Affiliation(s)
- Apurva Shrivastava
- Clinic for Cardiology, University Heart and Vascular Center, University Medical Center Eppendorf, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, University Medical Center Eppendorf, Hamburg, Germany
| | - Tina Haase
- Clinic for Cardiology, University Heart and Vascular Center, University Medical Center Eppendorf, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, University Medical Center Eppendorf, Hamburg, Germany
| | - Tanja Zeller
- Clinic for Cardiology, University Heart and Vascular Center, University Medical Center Eppendorf, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, University Medical Center Eppendorf, Hamburg, Germany
| | - Christian Schulte
- Clinic for Cardiology, University Heart and Vascular Center, University Medical Center Eppendorf, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, University Medical Center Eppendorf, Hamburg, Germany.,King's British Heart Foundation Centre, King's College London, London, United Kingdom
| |
Collapse
|
14
|
Extracellular Vesicle-Mediated Vascular Cell Communications in Hypertension: Mechanism Insights and Therapeutic Potential of ncRNAs. Cardiovasc Drugs Ther 2020; 36:157-172. [PMID: 32964302 DOI: 10.1007/s10557-020-07080-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2020] [Indexed: 12/12/2022]
Abstract
Hypertension, a chronic and progressive disease, is an outstanding public health issue that affects nearly 40% of the adults worldwide. The increasing prevalence of hypertension is one of the leading causes of cardiovascular morbidity and mortality. Despite of the available treatment medications, an increasing number of hypertensive individuals continues to have uncontrolled blood pressure. In the vasculature, endothelial cells, vascular smooth muscle cells (VSMCs), and adventitial fibroblasts play a fundamental role in vascular homeostasis. The aberrant interactions between vascular cells might lead to hypertension and vascular remodeling. Identification of the precise mechanisms of vascular remodeling may be highly required to develop effective therapeutic approaches for hypertension. Recently, extracellular vesicle-mediated transfer of proteins or noncoding RNAs (ncRNAs) between vascular cells holds promise for the treatment of hypertension. Especially, extracellular vesicle-packaging ncRNAs have gained enormous attention of basic and clinical scientists because of their tremendous potential to act as novel clinical biomarkers and therapeutic targets of hypertension. Here we will discuss the current findings focusing on the emerging roles of extracellular vesicle-carrying ncRNAs in the pathologies of hypertension and its associated vascular remodeling. Furthermore, we will highlight the potential of extracellular vesicles and ncRNAs as biomarkers and therapeutic targets for hypertension. The future research directions on the challenges and perspectives of extracellular vesicles and ncRNAs in hypertensive vascular remodeling are also proposed.
Collapse
|
15
|
Zhang L, Ding H, Zhang Y, Wang Y, Zhu W, Li P. Circulating MicroRNAs: Biogenesis and Clinical Significance in Acute Myocardial Infarction. Front Physiol 2020; 11:1088. [PMID: 33013463 PMCID: PMC7494963 DOI: 10.3389/fphys.2020.01088] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Acute myocardial infarction (AMI) causes many deaths around the world. Early diagnosis can prevent the development of AMI and provide theoretical support for the subsequent treatment. miRNAs participate in the AMI pathological processes. We aim to determine the early diagnostic and the prognostic roles of circulating miRNAs in AMI in the existing studies and summarize all the data to provide a greater understanding of their utility for clinical application. We reviewed current knowledge focused on the AMI development and circulating miRNA formation. Meanwhile, we collected and analyzed the potential roles of circulating miRNAs in AMI diagnosis, prognosis and therapeutic strategies. Additionally, we elaborated on the challenges and clinical perspectives of the application of circulating miRNAs in AMI diagnosis. Circulating miRNAs are stable in the circulation and have earlier increases of circulating levels than diagnostic golden criteria. In addition, they are tissue and disease-specific. All these characteristics indicate that circulating miRNAs are promising biomarkers for the early diagnosis of AMI. Although there are several limitations to be resolved before clinical use, the application of circulating miRNAs shows great potential in the early diagnosis and the prognosis of AMI.
Collapse
Affiliation(s)
- Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Han Ding
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenjie Zhu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Early Elevation of Systemic Plasma Clusterin after Reperfused Acute Myocardial Infarction in a Preclinical Porcine Model of Ischemic Heart Disease. Int J Mol Sci 2020; 21:ijms21134591. [PMID: 32605184 PMCID: PMC7369988 DOI: 10.3390/ijms21134591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/14/2020] [Accepted: 06/23/2020] [Indexed: 01/08/2023] Open
Abstract
Clusterin exerts anti-inflammatory, cytoprotective and anti-apoptotic effects. Both an increase and decrease of clusterin in acute myocardial infarction (AMI) has been reported. We aimed to clarify the role of clusterin as a systemic biomarker in AMI. AMI was induced by percutaneous left anterior artery (LAD) occlusion for 90 min followed by reperfusion in 24 pigs. Contrast ventriculography was performed after reperfusion to assess left ventricular ejection fraction (LVEF), left ventricular end diastolic volume (LVEDV) and left ventricular end systolic volume (LVESV) and additional cMRI + late enhancement to measure infarct size and LV functions at day 3 and week 6 post-MI. Blood samples were collected at prespecified timepoints. Plasma clusterin and other biomarkers (cTnT, NT-proBNP, neprilysin, NGAL, ET-1, osteopontin, miR21, miR29) were measured by ELISA and qPCR. Gene expression profiles of infarcted and remote region 3 h (n = 5) and 3 days (n = 5) after AMI onset were analysed by RNA-sequencing. AMI led to an increase in LVEDV and LVESV during 6-week, with concomitant elevation of NT-proBNP 3-weeks after AMI. Plasma clusterin levels were increased immediately after AMI and returned to normal levels until 3-weeks. Plasma NGAL, ET-1 and miR29 was significantly elevated at 3 weeks follow-up, miR21 increased after reperfusion and at 3 weeks post-AMI, while circulating neprilysin levels did not change. Elevated plasma clusterin levels 120 min after AMI onset suggest that clusterin might be an additional early biomarker of myocardial ischemia.
Collapse
|
17
|
Intravenous Administration of Allogenic Cell-Derived Microvesicles of Healthy Origins Defend Against Atherosclerotic Cardiovascular Disease Development by a Direct Action on Endothelial Progenitor Cells. Cells 2020; 9:cells9020423. [PMID: 32059493 PMCID: PMC7072151 DOI: 10.3390/cells9020423] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis and cardiovascular disease development is the outcome of intermediate processes where endothelial dysfunction and vascular inflammation are main protagonists. Cell-derived microvesicles (MVs), endothelial progenitor cells (EPCs), and circulating microRNAs (miRNAs) are known as biomarkers and potential regulators for atherosclerotic vascular disease, but their role in the complexity of the inflammatory process and in the mechanism of vascular restoration is far from clear. We aimed to evaluate the biological activity and functional role of MVs, in particular of the EPCs-derived MVs (MVEs), of healthy origins in reducing atherosclerotic vascular disease development. The experiments were performed on hamsters divided into the following groups: simultaneously hypertensive–hyperlipidemic (HH group) by combining two feeding conditions for 4 months; HH with retro-orbital sinus injection containing 1 × 105 MVs or MVEs from control hamsters, one dose per month for 4 months of HH diet, to prevent atherosclerosis (HH-MVs or HH-MVEs group); and controls (C group), age-matched normal healthy animals. We found that circulating MV and MVE transplantation of healthy origins significantly reduces atherosclerosis development via (1) the mitigation of dyslipidemia, hypertension, and circulating EPC/cytokine/chemokine levels and (2) the structural and functional remodeling of arterial and left ventricular walls. We also demonstrated that (1) circulating MVs contain miRNAs; this was demonstrated by validating MVs and MVEs as transporters of Ago2-miRNA, Stau1-miRNA, and Stau2-miRNA complexes and (2) MV and MVE administration significantly protect against atherosclerotic cardiovascular disease via transfer of miR-223, miR-21, miR-126, and miR-146a to circulating late EPCs. It should be mentioned that the favorable effects of MVEs were greater than those of MVs. Our findings suggest that allogenic MV and MVE administration of healthy origins could counteract HH diet-induced detrimental effects by biologically active miR-10a, miR-21, miR-126, and miR-146a transfer to circulating EPCs, mediating their vascular repair function in atherosclerosis processes.
Collapse
|
18
|
Abstract
Cardiovascular diseases are one of the most common causes of death in both developing and developed countries worldwide. Even though there have been improvements in primary prevention, the prevalence of cardiovascular diseases continues to increase in recent years. Hence, it is crucial to both investigate the molecular pathophysiology of cardiovascular diseases in-depth and find novel biomarkers regarding the early and proper prevention and diagnosis of these diseases. MicroRNAs, or miRNAs, are endogenous, conserved, single-stranded non-coding RNAs of 21-25 nucleotides in length. miRNAs have important roles in various cellular events such as embryogenesis, proliferation, vasculogenesis, apoptosis, cell growth, differentiation, and tumorigenesis. They also have potential roles in the cardiovascular system, including angiogenesis, cardiac cell contractility, control of lipid metabolism, plaque formation, the arrangement of cardiac rhythm, and cardiac cell growth. Circulating miRNAs are promising novel biomarkers for purposes of the diagnosis and prognosis of cardiovascular diseases. Cell or tissue specificity, stability in serum or plasma, resistance to degradative factors such as freeze-thaw cycles or enzymes in the blood, and fast-release kinetics, provide the potential for miRNAs to be surrogate markers for the early and accurate diagnosis of disease and for predicting middle- or long-term prognosis. Moreover, it may be a logical approach to combine miRNAs with traditional biomarkers to improve risk stratification and long-term prognosis. In addition to their efficacy in both diagnosis and prognosis, miRNA-based therapeutics may be beneficial for treating cardiovascular diseases using novel platforms and computational tools and in combination with traditional methods of analysis. microRNAs are promising, novel therapeutic agents, which can affect multiple genes using different signaling pathways. miRNAs therapeutic modulation techniques have been used in the settings of atherosclerosis, acute myocardial infarction, restenosis, vascular remodeling, arrhythmias, hypertrophy and fibrosis, angiogenesis and cardiogenesis, aortic aneurysm, pulmonary hypertension, and ischemic injury. This review presents detailed information about miRNAs regarding structure and biogenesis, stages of synthesis and functions, expression profiles in serum/plasma of living organisms, diagnostic and prognostic potential as novel biomarkers, and therapeutic applications in various diseases.
Collapse
Affiliation(s)
| | - Mehmet Demir
- Department of Cardiology, University of Health Sciences, Bursa Yüksek İhtisas Research and Training Hospital, Bursa, Turkey
| |
Collapse
|
19
|
Maués JHDS, Aquino Moreira-Nunes CDF, Rodriguez Burbano RM. MicroRNAs as a Potential Quality Measurement Tool of Platelet Concentrate Stored in Blood Banks-A Review. Cells 2019; 8:E1256. [PMID: 31618890 PMCID: PMC6829606 DOI: 10.3390/cells8101256] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/04/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Platelet concentrate (PC) is one of the main products used in a therapeutic transfusion. This blood component requires special storage at blood banks, however, even under good storage conditions, modifications or degradations may occur and are known as platelet storage lesions. METHODS This research was performed on scientific citation databases PubMed/Medline, ScienceDirect, and Web of Science, for publications containing platelet storage lesions. The results obtained mainly reveal the clinical applicability of miRNAs as biomarkers of storage injury and as useful tools for a problem affecting public and private health, the lack of PC bags in countries with few blood donors. The major studies listed in this review identified miRNAs associated with important platelet functions that are relevant in clinical practice as quality biomarkers of PC, such as miR-223, miR-126, miR-10a, miR-150, miR-16, miR-21, miR-326, miR-495, let-7b, let-7c, let-7e, miR-107, miR-10b, miR-145, miR-155, miR-17, miR-191, miR-197, miR-200b, miR-24, miR-331, miR-376. These miRNAs can be used in blood banks to identify platelet injury in PC bags. CONCLUSION The studies described in this review relate the functions of miRNAs with molecular mechanisms that result in functional platelet differences, such as apoptosis. Thus, miRNA profiles can be used to measure the quality of storage PC for more than 5 days, identify bags with platelet injury, and distinguish those with functional platelets.
Collapse
Affiliation(s)
- Jersey Heitor da Silva Maués
- Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil.
- Laboratory of Molecular Biology, Ophir Loyola Hospital, Belém, PA 66063-240, Brazil.
| | - Caroline de Fátima Aquino Moreira-Nunes
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil.
- Christus University Center-Unichristus, Faculty of Biomedicine, Fortaleza, CE 60192-345, Brazil.
| | - Rommel Mário Rodriguez Burbano
- Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil.
- Laboratory of Molecular Biology, Ophir Loyola Hospital, Belém, PA 66063-240, Brazil.
| |
Collapse
|
20
|
Mukai N, Nakayama Y, Ishi S, Murakami T, Ogawa S, Kageyama K, Murakami S, Sasada Y, Yoshioka J, Nakajima Y. Cold storage conditions modify microRNA expressions for platelet transfusion. PLoS One 2019; 14:e0218797. [PMID: 31269049 PMCID: PMC6608970 DOI: 10.1371/journal.pone.0218797] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/09/2019] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules that modulate gene and protein expression in hematopoiesis. Platelets are known to contain a fully functional miRNA machinery. While platelets used for transfusion are normally stored at room temperature, recent evidence suggests more favorable effects under a cold-storage condition, including higher adhesion and aggregation properties. Thus, we sought to determine whether functional differences in platelets are associated with the differential profiling of platelet miRNA expressions. To obtain the miRNA expression profile, next-generation sequencing was performed on human platelets obtained from 10 healthy subjects. The miRNAs were quantified after being stored in three different conditions: 1) baseline (before storage), 2) stored at 22°C with agitation for 72 h, and 3) stored at 4°C for 72 h. Following the identification of miRNAs by sequencing, the results were validated at the level of mature miRNAs from 18 healthy subjects, by using quantitative polymerase chain reaction (qPCR). Differential expression was observed for 125 miRNAs that were stored at 4°C and 9 miRNAs stored at 22°C as compared to the baseline. The validation study by qPCR confirmed that storage at 4°C increased the expression levels (fold change 95% CI) of mir-20a-5p (1.87, p<0.0001), mir-10a-3p (1.88, p<0.0001), mir-16-2-3p (1.54, p<0.01), and mir-223-5p (1.38, p<0.05), compared with those of the samples stored at 22°C. These results show that miRNAs correlate with platelet quality under specific storage conditions. The data indicate that miRNAs could be potentially used as biomarkers of platelet quality.
Collapse
Affiliation(s)
- Nobuhiro Mukai
- Department of Anesthesiology and Critical Care, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshinobu Nakayama
- Department of Anesthesiology and Critical Care, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, City College of New York, New York, NY, United States of America
- * E-mail:
| | - Sachiyo Ishi
- Department of Anesthesiology and Critical Care, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takayuki Murakami
- Department of Anesthesiology and Critical Care, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoru Ogawa
- Department of Anesthesiology and Critical Care, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kyoko Kageyama
- Department of Anesthesiology, Otokoyama Hospital, Kyoto, Japan
| | - Satoshi Murakami
- Thermo Fisher Scientific, Life Technologies Japan Ltd., Life Solutions Group, Tokyo, Japan
| | - Yuji Sasada
- Department of Transfusion Medicine and Cell Therapy, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jun Yoshioka
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, City College of New York, New York, NY, United States of America
| | - Yasufumi Nakajima
- Department of Anesthesiology and Critical Care, Kansai Medical University, Osaka, Japan and Outcomes Research Consortium, Cleveland, OH, United States of America
| |
Collapse
|
21
|
Coats AJS. Figures of the Heart Failure Association: Professor Dr. med. Johann Bauersachs, Chair of the Clinical Science Section. Eur J Heart Fail 2019; 21:545-548. [PMID: 31069912 DOI: 10.1002/ejhf.1484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 11/05/2022] Open
|
22
|
Halushka PV, Goodwin AJ, Halushka MK. Opportunities for microRNAs in the Crowded Field of Cardiovascular Biomarkers. ANNUAL REVIEW OF PATHOLOGY 2019; 14:211-238. [PMID: 30332561 PMCID: PMC6442682 DOI: 10.1146/annurev-pathmechdis-012418-012827] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cardiovascular diseases exist across all developed countries. Biomarkers that can predict or diagnose diseases early in their pathogeneses can reduce their morbidity and mortality in afflicted individuals. microRNAs are small regulatory RNAs that modulate translation and have been identified as potential fluid-based biomarkers across numerous maladies. We describe the current state of cardiovascular disease biomarkers across a range of diseases, including myocardial infarction, acute coronary syndrome, myocarditis, hypertension, heart failure, heart transplantation, aortic stenosis, diabetic cardiomyopathy, atrial fibrillation, and sepsis. We present the current understanding of microRNAs as possible biomarkers in these categories and where their best opportunities exist to enter clinical practice.
Collapse
Affiliation(s)
- Perry V Halushka
- Department of Pharmacology, South Carolina Clinical and Translational Research Institute, Medical University of South Carolina, Charleston, South Carolina 29425, USA;
- Department of Medicine, South Carolina Clinical and Translational Research Institute, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Andrew J Goodwin
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA;
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
23
|
Reddy LL, Shah SAV, Ponde CK, Rajani RM, Ashavaid TF. Circulating miRNA-33: a potential biomarker in patients with coronary artery disease. Biomarkers 2018; 24:36-42. [PMID: 30022694 DOI: 10.1080/1354750x.2018.1501760] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND Circulating microRNAs (miRNA) are present in body fluids in stable, cell-free form. Likewise, these miRNAs can be identified in various stages of coronary artery disease (CAD) such as inflammation, endothelial dysfunction, proliferation and atherosclerosis among others. miRNA expression levels can be identified. AIMS AND OBJECTIVES To determine the expression of circulating miRNAs (miR-126, miR-92, miR-33, miR-145 and miR-155) in CAD patients of Indian origin. MATERIAL AND METHODS miRNA profiling analysis in blood plasma was performed by quantitative real-time-PCR (qRT-PCR) in 60 angiographically verified subjects including 30 CAD patients and 30 age- and gender-matched controls. Association between the expression of all five circulating miRNAs and clinical characteristics of patients with CAD were analysed using Medcalc statistics. The severity of CAD was assessed using SYNTAX score (SS). RESULTS Expression of plasma miR-33 increased by 2.9 folds in CAD patients than in control group (p value ≥0.002) also it was found that miR-33 expression levels in mild cases (SS: ≤22) were significantly higher than CAD controls. There was a modest negative correlation between miR-33 and total cholesterol/high density lipoprotein ratio, triglycerides and very low density lipoprotein. CONCLUSION The study reports a significant association between increased levels of plasma miR-33 and CAD. Thus, plasma miR-33 appears to be a promising non-invasive biomarker, but requires further validation in a large cohort.
Collapse
Affiliation(s)
- Lakshmi Lavanya Reddy
- a Research Laboratories Department , P. D. Hinduja Hospital and Medical Research Centre , Mahim, Mumbai , India
| | - Swarup A V Shah
- b Department of Laboratory Medicine , P. D. Hinduja Hospital and Medical Research Centre , Mahim, Mumbai , India
| | - Chandrashekhar K Ponde
- c Department of Cardiology , P. D. Hinduja Hospital and Medical Research Centre , Mahim, Mumbai , India
| | - Rajesh M Rajani
- c Department of Cardiology , P. D. Hinduja Hospital and Medical Research Centre , Mahim, Mumbai , India
| | - Tester F Ashavaid
- d Department of Lab Medicine , P. D. Hinduja Hospital and Medical Research Centre , Mahim, Mumbai , India
| |
Collapse
|
24
|
Derda AA, Pfanne A, Bär C, Schimmel K, Kennel PJ, Xiao K, Schulze PC, Bauersachs J, Thum T. Blood-based microRNA profiling in patients with cardiac amyloidosis. PLoS One 2018; 13:e0204235. [PMID: 30332417 PMCID: PMC6192556 DOI: 10.1371/journal.pone.0204235] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 08/17/2018] [Indexed: 11/21/2022] Open
Abstract
Introduction Amyloidosis is caused by dysregulation of protein folding resulting in systemic or organ specific amyloid aggregation. When affecting the heart, amyloidosis can cause severe heart failure, which is associated with a high morbidity and mortality. Different subtypes of cardiac amyloidosis exist e.g. transthyretin cardiac amyloidosis and senile cardiac amyloidosis. Today, diagnostics is primarily based on cardiac biopsies and no clinically used circulating blood-based biomarkers existing. Therefore, our aim was to identify circulating microRNAs in patients with different forms of amyloidosis. Methods Blood was collected from healthy subjects (n = 10), patients with reduced ejection fraction (EF < 35%; n = 10), patients affected by transthyretin cardiac amyloidosis (n = 13) as well as senile cardiac amyloidosis (n = 11). After performing TaqMan array profiling, promising candidates, in particular miR-99a-5p, miR-122-5p, miR-27a-3p, miR-221-3p, miR-1180-3p, miR-155-5p, miR-339-3p, miR-574-3p, miR-342-3p and miR-329-3p were validated via quantitative real time PCR. Results The validation experiments revealed a significant upregulation of miR-339-3p in patients affected with senile cardiac amyloidosis compared to controls. This corresponded to the array profiling results. In contrast, there was no deregulation in the other patient groups. Conclusion MiR-339-3p was increased in blood of patients with senile cardiac amyloidosis. Therefore, miR-339-3p is a potential candidate as biomarker for senile cardiac amyloidosis in future studies. Larger patient cohorts should be investigated.
Collapse
Affiliation(s)
- Anselm A. Derda
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Hannover, Germany
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Angelika Pfanne
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Hannover, Germany
| | - Katharina Schimmel
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Hannover, Germany
| | - Peter J. Kennel
- Division of Cardiology, Columbia University Medical Center, New York, New York, United States of America
- Department of Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Ke Xiao
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Hannover, Germany
| | - P. Christian Schulze
- Division of Cardiology, Columbia University Medical Center, New York, New York, United States of America
- Department of Internal Medicine I, Division of Cardiology, Pneumology, Angiology and Intensive Medical Care, University Hospital Jena, Friedrich-Schiller-University Jena, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
- Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Hannover, Germany
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
- Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
- Imperial College London, NHLI London, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
The diagnostic values of circulating miRNAs for hypertension and bioinformatics analysis. Biosci Rep 2018; 38:BSR20180525. [PMID: 29961674 PMCID: PMC6147777 DOI: 10.1042/bsr20180525] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/08/2018] [Accepted: 06/22/2018] [Indexed: 12/19/2022] Open
Abstract
Few studies have compared the performances of those reported miRNAs as biomarkers for hypertension in a same cohort, we aimed to comprehensively examine the performances of those reported miRNAs as biomarkers for hypertension and identify the genes and pathways targetted by these miRNAs. Serum samples were collected from patients hospitalized for hypertension in Zhongshan Hospital. Gene expressions of 25 miRNAs were compared between hypertension and normal groups. Receiver operating characteristic (ROC) curves were used to evaluate the accuracy of those miRNAs as biomarkers for hypertension. miRWALK2.0 and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed to predict the target genes and pathways of selected miRNAs. A total of 164 participants were enrolled, amongst which 53 were patients with hypertension, 111 were normal population. MiR-122-5p (area under curve (AUC): 0.750), miR-199a-3p (AUC: 0.744), miR-208a-3p (AUC: 0.743), miR-423-5p (AUC: 0.740), and miR-223-5p (AUC: 0.718) showed better performance than others, and the best performance was the combination of miR-199a-3p, miR-208a-3p, miR-122-5p, and miR-223-3p (AUC: 0.80). Pathway analysis revealed that 94 pathways enriched with genes targetted by miR-199a-3p, miR-208a-3p, miR-122-5p, miR-223-5p. FoxO signaling was enriched with genes targetted by all the three miRNAs (miR-199a-3p, miR-208a-3p, miR-122-5p). The combination of miR-199a-3p, miR-208a-3p, miR-122-5p, and miR-223-3p has a good diagnostic performance for hypertension, and multitudes of possible mechanisms/pathways through which dysregulation of these miRNAs may impact risk of hypertension.
Collapse
|
26
|
Xia L, Zeng Z, Tang WH. The Role of Platelet Microparticle Associated microRNAs in Cellular Crosstalk. Front Cardiovasc Med 2018; 5:29. [PMID: 29670887 PMCID: PMC5893844 DOI: 10.3389/fcvm.2018.00029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/15/2018] [Indexed: 01/11/2023] Open
Abstract
Platelet is an anucleate cell containing abundant messenger RNAs and microRNAs (miRNAs), and their functional roles in hemostasis and inflammation remain elusive. Accumulating evidence has suggested that platelets can actively transfer RNAs to hepatocytes, vascular cells, macrophages, and tumor cells. The incorporated mRNAs are translated into proteins, and miRNAs were found to regulate the gene expression, resulting in the functional change of the recipient cells. This novel intercellular communication opens up a new avenue for the pathophysiological role of platelet in platelet-associated vascular diseases. Therefore, understanding the underlying mechanism and identification of the platelet miRNAs involved in this biological process would provide novel diagnostic and therapeutic targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Luoxing Xia
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Zhi Zeng
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Wai Ho Tang
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
27
|
Schiattarella GG, Madonna R, Van Linthout S, Thum T, Schulz R, Ferdinandy P, Perrino C. Epigenetic modulation of vascular diseases: Assessing the evidence and exploring the opportunities. Vascul Pharmacol 2018; 107:S1537-1891(17)30468-8. [PMID: 29548901 DOI: 10.1016/j.vph.2018.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 01/27/2018] [Accepted: 02/22/2018] [Indexed: 02/09/2023]
Abstract
Vascular adaptations to either physiological or pathophysiological conditions commonly require gene expression modifications in the most represented cellular elements of the vessel wall, i.e. endothelial and smooth muscle cells. In addition to transcription factors, a number of mechanisms contribute to the regulation of gene expression in these cells including noncoding RNAs, histone and DNA modifications, collectively indicated as epigenetic modifications. Here, we summarize the state of art regarding the role of epigenetic changes in major vascular diseases, and discuss the potential diagnostic and therapeutic applications of epigenetic modulation in this context.
Collapse
Affiliation(s)
| | - Rosalinda Madonna
- Center for Aging Sciences and Translational Medicine - CESI-MeT, Institute of Cardiology, Department of Neurosciences, Imaging and Clinical Sciences, "G. D'Annunzio" University, Chiety, Italy; Center for Cardiovascular Biology and Atherosclerosis Research, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany; Charité University Medicine Berlin, Campus Rudolf Virchow, Department of Cardiology, Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University of Giessen, Giessen, Germany
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy.
| |
Collapse
|
28
|
Lock MC, Botting KJ, Tellam RL, Brooks D, Morrison JL. Adverse Intrauterine Environment and Cardiac miRNA Expression. Int J Mol Sci 2017; 18:ijms18122628. [PMID: 29210999 PMCID: PMC5751231 DOI: 10.3390/ijms18122628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/10/2017] [Accepted: 11/28/2017] [Indexed: 12/23/2022] Open
Abstract
Placental insufficiency, high altitude pregnancies, maternal obesity/diabetes, maternal undernutrition and stress can result in a poor setting for growth of the developing fetus. These adverse intrauterine environments result in physiological changes to the developing heart that impact how the heart will function in postnatal life. The intrauterine environment plays a key role in the complex interplay between genes and the epigenetic mechanisms that regulate their expression. In this review we describe how an adverse intrauterine environment can influence the expression of miRNAs (a sub-set of non-coding RNAs) and how these changes may impact heart development. Potential consequences of altered miRNA expression in the fetal heart include; Hypoxia inducible factor (HIF) activation, dysregulation of angiogenesis, mitochondrial abnormalities and altered glucose and fatty acid transport/metabolism. It is important to understand how miRNAs are altered in these adverse environments to identify key pathways that can be targeted using miRNA mimics or inhibitors to condition an improved developmental response.
Collapse
Affiliation(s)
- Mitchell C Lock
- Early Origins of Adult Health Research Group; School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Kimberley J Botting
- Early Origins of Adult Health Research Group; School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Ross L Tellam
- Early Origins of Adult Health Research Group; School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
- CSIRO Agriculture, 306 Carmody Rd, St. Lucia, QLD 4067, Australia.
| | - Doug Brooks
- Mechanisms in Cell Biology and Disease Research Group School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Janna L Morrison
- Early Origins of Adult Health Research Group; School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
29
|
Li F, Zhu Y, Wan Y, Xie X, Ke R, Zhai C, Pan Y, Yan X, Wang J, Shi W, Li M. Activation of PPARγ inhibits HDAC1-mediated pulmonary arterial smooth muscle cell proliferation and its potential mechanisms. Eur J Pharmacol 2017; 814:324-334. [DOI: 10.1016/j.ejphar.2017.08.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 12/21/2022]
|
30
|
Tang Y, Yu S, Liu Y, Zhang J, Han L, Xu Z. MicroRNA-124 controls human vascular smooth muscle cell phenotypic switch via Sp1. Am J Physiol Heart Circ Physiol 2017; 313:H641-H649. [PMID: 28667053 DOI: 10.1152/ajpheart.00660.2016] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 01/07/2023]
Abstract
Phenotypic switch of vascular smooth muscle cells (VSMCs) plays an important role in the pathogenesis of atherosclerosis and aortic dissection. However, the mechanisms of phenotypic modulation are still unclear. MicroRNAs have emerged as important regulators of VSMC function. We recently found that microRNA-124 (miR-124) was downregulated in proliferative vascular diseases that were characterized by a VSMC phenotypic switch. Therefore, we speculated that the aberrant expression of miR-124 might play a critical role in human aortic VSMC phenotypic switch. Using quantitative RT-PCR, we found that miR-124 was dramatically downregulated in the aortic media of clinical specimens of the dissected aorta and correlated with molecular markers of the contractile VSMC phenotype. Overexpression of miR-124 by mimicking transfection significantly attenuated platelet-derived growth factor-BB-induced human aortic VSMC proliferation and phenotypic switch. Furthermore, we identified specificity protein 1 (Sp1) as the downstream target of miR-124. A luciferase reporter assay was used to confirm direct miR-124 targeting of the 3'-untranslated region of the Sp1 gene and repression of Sp1 expression in human aortic VSMCs. Furthermore, constitutively active Sp1 in miR-124-overexpressing VSMCs reversed the antiproliferative effects of miR-124. These results demonstrated a novel mechanism of miR-124 modulation of VSMC phenotypic switch by targeting Sp1 expression.NEW & NOTEWORTHY Previous studies have demonstrated that miR-124 is involved in the proliferation of a variety of cell types. However, miRNAs are expressed in a tissue-specific manner. We first identified miR-124 as a critical regulator in human aortic vascular smooth muscle cell differentiation, proliferation, and phenotype switch by targeting the 3'-untranslated region of specificity protein 1.
Collapse
Affiliation(s)
- Yangfeng Tang
- Changhai Hospital of the Second Military College, Shanghai, China
| | - Shangyi Yu
- Changhai Hospital of the Second Military College, Shanghai, China
| | - Yang Liu
- Changhai Hospital of the Second Military College, Shanghai, China
| | - Jiajun Zhang
- Changhai Hospital of the Second Military College, Shanghai, China
| | - Lin Han
- Changhai Hospital of the Second Military College, Shanghai, China
| | - Zhiyun Xu
- Changhai Hospital of the Second Military College, Shanghai, China
| |
Collapse
|
31
|
Batkai S, Bär C, Thum T. MicroRNAs in right ventricular remodelling. Cardiovasc Res 2017; 113:1433-1440. [DOI: 10.1093/cvr/cvx153] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/08/2017] [Indexed: 12/12/2022] Open
|
32
|
Sivakumar A, Subbiah R, Balakrishnan R, Rajendhran J. Cardiac mitochondrial dynamics: miR-mediated regulation during cardiac injury. J Mol Cell Cardiol 2017; 110:26-34. [PMID: 28705612 DOI: 10.1016/j.yjmcc.2017.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 12/20/2022]
Abstract
Mitochondrial integrity is indispensable for cardiac health. With the advent of modern imaging technologies, mitochondrial motility and dynamics within the cell are extensively studied. Terminally differentiated and well-structured cardiomyocytes depict little mitochondrial division and fusion, questioning the contribution of mitochondrial fusion proteins (Mitofusin 1/2 and Optic Atrophy 1 protein) and fission factors (Dynamin-like protein 1 and mitochondrial fission 1 protein) in cardiomyocyte homeostasis. Emerging evidences suggest that alterations in mitochondrial morphology from globular, elongated network to punctate fragmented disconnected structures are a pathological response to ensuing cardiac stress and cardiomyocyte cell death, bringing forth the following question, "what maintains this balance between fusion and fission?" The answer hinges upon the classical "junk" DNA: microRNAs, the endogenous non-coding RNAs. Because of their essential role in numerous signaling pathways, microRNAs are considered to play major roles in the pathogenesis of various diseases. Mitochondria are not exempted from microRNA-mediated regulation. This review defines the importance of mitochondrial structural integrity and the microRNA-mitochondrial dynamics tandem, an imminent dimension of the cardiac homeostasis network. Elucidating their coordinated interaction could spur RNA-based therapeutics for resuscitating functional mitochondrial population during cardiovascular disorders.
Collapse
Affiliation(s)
- Anusha Sivakumar
- Cardiac Hypertrophy Laboratory, Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, Tamilnadu, India
| | - Ramasamy Subbiah
- Cardiac Hypertrophy Laboratory, Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, Tamilnadu, India.
| | - Rekha Balakrishnan
- Cardiac Hypertrophy Laboratory, Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, Tamilnadu, India
| | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| |
Collapse
|
33
|
Li Q, Qian Z, Wang L. Pri-microRNA-124 rs531564 polymorphism minor allele increases the risk of pulmonary artery hypertension by abnormally enhancing proliferation of pulmonary artery smooth muscle cells. Int J Chron Obstruct Pulmon Dis 2017; 12:1351-1361. [PMID: 28496318 PMCID: PMC5422315 DOI: 10.2147/copd.s99318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
MicroRNA-124 (miR-124) has been reported to be downregulated in the cells exposed to hypoxia, which was confirmed in our study. We then used online microRNA target prediction tools to identify GRB2, SMAD5, and JAG1 as the candidate target genes of miR-124, and we next validated GRB2 as a direct gene by using luciferase reporter system. We also established the regulatory relationship between miR-124 and GRB2 by showing the negative linear relationship between GRB2 and miR-124 expression. Furthermore, we investigated the miR-124 and GRB2 expression levels of different genotypes including CC (n=30), GC (n=18), and GG (n=4), which supported the hypothesis that the presence of minor allele (C) of rs531564 polymorphism compromised the expression of miR-124. Meanwhile, we also conducted real-time polymerase chain reaction and Western blot analysis to study the expression of GRB2 among different genotypes or pulmonary artery smooth muscle cells (PASMCs) treated with miR-124 mimics, GRB2 small interfering RNA, and miR-124 inhibitors, respectively, and found that introduction of miR-124 or GRB2 small interfering RNA could reduce the expression of GRB2 and inhibit the proliferation of PASMCs, while miR-124 upregulated the expression of GRB2 and promoted the proliferation of PASMCs. A total of 412 COPD patients with PAH (n=182) or without PAH (n=230) were recruited in this study, and more individuals carrying at least one minor allele of rs531564 were found in the COPD patients with PAH than in those without PAH (odds ratio: 0.61, 95% confidence interval: 0.41–0.91; P=0.166). In conclusion, the presence of rs531564 minor allele may increase the risk of PAH in COPD by reducing miR-124 expression, increasing GRB2 expression, and promoting the proliferation of PASMCs.
Collapse
Affiliation(s)
- Quanzhong Li
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Zongjie Qian
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Linqing Wang
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, People's Republic of China
| |
Collapse
|
34
|
Katta S, Karnewar S, Panuganti D, Jerald MK, Sastry BKS, Kotamraju S. Mitochondria-targeted esculetin inhibits PAI-1 levels by modulating STAT3 activation and miR-19b via SIRT3: Role in acute coronary artery syndrome. J Cell Physiol 2017; 233:214-225. [PMID: 28213977 DOI: 10.1002/jcp.25865] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 12/13/2022]
Abstract
In this study we explored the microRNAs responsible for the regulation of PAI-1 during LPS-stimulated inflammation in human aortic endothelial cells and subsequently studied the effect of a newly synthesized mitochondria-targeted esculetin (Mito-Esc) that was shown for its anti-atherosclerotic potential, in modulating PAI-1 levels and its targeted miRs during angiotensin-II-induced atherosclerosis in ApoE-/- mice. LPS-stimulated PAI-1 was accompanied with an upregulation of miR-19b and down-regulation of miR-30c. These effects of LPS on PAI-1 were reversed in the presence of both parent esculetin and Mito-Esc. However, the effect of Mito-Esc was more pronounced in the regulation of PAI-1. In addition, LPS-stimulated PAI-1 expression was significantly decreased in cells treated with Anti-miR-19b, thereby suggesting that miR-19b co-expression plays a key role in PAI-1 regulation. The results also show that incubation of cells with Stattic, an inhibitor of STAT-3, inhibited LPS-stimulated PAI-1 expression. Interestingly, knockdown of SIRT3, a mitochondrial biogenetic marker, enhanced PAI-1 levels via modulation of miR-19b and -30c. Mito-Esc treatment significantly inhibited Ang-II-induced PAI-1, possibly via altering miR-19b and 30c in ApoE-/- mice. The association between PAI-1, miR-19b and -30c were further confirmed in plasma and microparticles isolated from patients suffering from acute coronary syndrome of various degrees. Taken together, LPS-induced PAI-1 involves co-expression of miR-19b and down regulation of miR-30c, and Mito-Esc treatment by modulating miR-19b and miR-30c through SIRT3 activation, inhibits PAI-1 levels that, in part, contribute to its anti-atherosclerotic effects. Moreover, there exists a strong positive correlation between miR-19b and PAI-1 in patients suffering from ST-elevated myocardial infarction.
Collapse
Affiliation(s)
- Sujana Katta
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Santosh Karnewar
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research, Training and Development Complex, CSIR Campus, Taramani, Chennai, Tamilnadu, India
| | - Devayani Panuganti
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | | | - B K S Sastry
- Department of Cardiology, CARE Hospitals and CARE Foundation, Hyderabad, India
| | - Srigiridhar Kotamraju
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research, Training and Development Complex, CSIR Campus, Taramani, Chennai, Tamilnadu, India
| |
Collapse
|
35
|
Gombozhapova A, Rogovskaya Y, Shurupov V, Rebenkova M, Kzhyshkowska J, Popov SV, Karpov RS, Ryabov V. Macrophage activation and polarization in post-infarction cardiac remodeling. J Biomed Sci 2017; 24:13. [PMID: 28173864 PMCID: PMC5297120 DOI: 10.1186/s12929-017-0322-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/31/2017] [Indexed: 02/07/2023] Open
Abstract
Adverse cardiac remodeling leads to impaired ventricular function and heart failure, remaining a major cause of mortality and morbidity in patients with acute myocardial infarction. It have been shown that, even if all the recommended therapies for ST-segment elevation myocardial infarction are performed, one third of patients undergoes progressive cardiac remodeling that represents morphological basis for following heart failure. The need to extend our knowledge about factors leading to different clinical scenarios of myocardial infarction and following complications has resulted in a research of immuno-inflammatory pathways and molecular activities as the basis for post-infarction remodeling. Recently, macrophages (cells of the innate immune system) have become a subject of scientific interest under both normal and pathological conditions. Macrophages, besides their role in host protection and tissue homeostasis, play an important role in pathophysiological processes induced by myocardial infarction. In this article we summarize data about the function of monocytes and macrophages plasticity in myocardial infarction and outline potential role of these cells as effective targets to control processes of inflammation, cardiac remodeling and healing following acute coronary event.
Collapse
Affiliation(s)
- Aleksandra Gombozhapova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 111a Kievskaya Street, 634012, Tomsk, Russian Federation. .,National Research Tomsk State University, 36 Lenin Avenue, 634050, Tomsk, Russian Federation.
| | - Yuliya Rogovskaya
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 111a Kievskaya Street, 634012, Tomsk, Russian Federation.,National Research Tomsk State University, 36 Lenin Avenue, 634050, Tomsk, Russian Federation
| | - Vladimir Shurupov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 111a Kievskaya Street, 634012, Tomsk, Russian Federation
| | - Mariya Rebenkova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 111a Kievskaya Street, 634012, Tomsk, Russian Federation.,National Research Tomsk State University, 36 Lenin Avenue, 634050, Tomsk, Russian Federation
| | - Julia Kzhyshkowska
- National Research Tomsk State University, 36 Lenin Avenue, 634050, Tomsk, Russian Federation.,University of Heidelberg, 1-3 Theodor-Kutzer Ufer, 68167, Mannheim, Germany
| | - Sergey V Popov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 111a Kievskaya Street, 634012, Tomsk, Russian Federation
| | - Rostislav S Karpov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 111a Kievskaya Street, 634012, Tomsk, Russian Federation.,Siberian State Medical University, 2 Moscovsky trakt, 634055, Tomsk, Russian Federation
| | - Vyacheslav Ryabov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 111a Kievskaya Street, 634012, Tomsk, Russian Federation.,National Research Tomsk State University, 36 Lenin Avenue, 634050, Tomsk, Russian Federation.,Siberian State Medical University, 2 Moscovsky trakt, 634055, Tomsk, Russian Federation
| |
Collapse
|
36
|
Liu X, Liu S. Role of microRNAs in the pathogenesis of diabetic cardiomyopathy. Biomed Rep 2017; 6:140-145. [PMID: 28357065 DOI: 10.3892/br.2017.841] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/10/2017] [Indexed: 01/10/2023] Open
Abstract
The morbidity of diabetes mellitus has been increasing annually. As a progressive metabolic disorder, chronic complications occur in the late stage of diabetes. In addition, cardiovascular diseases account for the major cause of morbidity and mortality among the diabetic population worldwide. Diabetic cardiomyopathy (DCM) is a type of diabetic heart disease. Patients with DCM show symptoms and signs of heart failure while no specific cause, such as coronary disease, hypertension, alcohol consumption, or other structural heart diseases has been identified. The pathogenesis of DCM is complex and has not been well understood until recently. MicroRNAs (miRs) belong to a novel family of highly conserved, short, non-coding, single-stranded RNA molecules that regulate transcriptional and post-transcriptional gene expression. Furthermore, recent studies have demonstrated an association between miRs and DCM. In the current review, the role of miRs in the pathogenesis of DCM is summarized. It was concluded that miRs contribute to the regulation of cardiomyocyte hypertrophy, myocardial fibrosis, cardiomyocyte apoptosis, mitochondrial dysfunction, myocardial electrical remodeling, epigenetic modification and various other pathophysiological processes of DCM. These studies may provide novel insights into targets for prevention and treatment of the disease.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Shixue Liu
- Emergency Department, Rizhao Chinese Medicine Hospital, Rizhao, Shandong 276800, P.R. China
| |
Collapse
|
37
|
Vanhoutte PM, Shimokawa H, Feletou M, Tang EHC. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf) 2017; 219:22-96. [PMID: 26706498 DOI: 10.1111/apha.12646] [Citation(s) in RCA: 599] [Impact Index Per Article: 74.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/27/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023]
Abstract
The endothelium can evoke relaxations of the underlying vascular smooth muscle, by releasing vasodilator substances. The best-characterized endothelium-derived relaxing factor (EDRF) is nitric oxide (NO) which activates soluble guanylyl cyclase in the vascular smooth muscle cells, with the production of cyclic guanosine monophosphate (cGMP) initiating relaxation. The endothelial cells also evoke hyperpolarization of the cell membrane of vascular smooth muscle (endothelium-dependent hyperpolarizations, EDH-mediated responses). As regards the latter, hydrogen peroxide (H2 O2 ) now appears to play a dominant role. Endothelium-dependent relaxations involve both pertussis toxin-sensitive Gi (e.g. responses to α2 -adrenergic agonists, serotonin, and thrombin) and pertussis toxin-insensitive Gq (e.g. adenosine diphosphate and bradykinin) coupling proteins. New stimulators (e.g. insulin, adiponectin) of the release of EDRFs have emerged. In recent years, evidence has also accumulated, confirming that the release of NO by the endothelial cell can chronically be upregulated (e.g. by oestrogens, exercise and dietary factors) and downregulated (e.g. oxidative stress, smoking, pollution and oxidized low-density lipoproteins) and that it is reduced with ageing and in the course of vascular disease (e.g. diabetes and hypertension). Arteries covered with regenerated endothelium (e.g. following angioplasty) selectively lose the pertussis toxin-sensitive pathway for NO release which favours vasospasm, thrombosis, penetration of macrophages, cellular growth and the inflammatory reaction leading to atherosclerosis. In addition to the release of NO (and EDH, in particular those due to H2 O2 ), endothelial cells also can evoke contraction of the underlying vascular smooth muscle cells by releasing endothelium-derived contracting factors. Recent evidence confirms that most endothelium-dependent acute increases in contractile force are due to the formation of vasoconstrictor prostanoids (endoperoxides and prostacyclin) which activate TP receptors of the vascular smooth muscle cells and that prostacyclin plays a key role in such responses. Endothelium-dependent contractions are exacerbated when the production of nitric oxide is impaired (e.g. by oxidative stress, ageing, spontaneous hypertension and diabetes). They contribute to the blunting of endothelium-dependent vasodilatations in aged subjects and essential hypertensive and diabetic patients. In addition, recent data confirm that the release of endothelin-1 can contribute to endothelial dysfunction and that the peptide appears to be an important contributor to vascular dysfunction. Finally, it has become clear that nitric oxide itself, under certain conditions (e.g. hypoxia), can cause biased activation of soluble guanylyl cyclase leading to the production of cyclic inosine monophosphate (cIMP) rather than cGMP and hence causes contraction rather than relaxation of the underlying vascular smooth muscle.
Collapse
Affiliation(s)
- P. M. Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| | - H. Shimokawa
- Department of Cardiovascular Medicine; Tohoku University; Sendai Japan
| | - M. Feletou
- Department of Cardiovascular Research; Institut de Recherches Servier; Suresnes France
| | - E. H. C. Tang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
- School of Biomedical Sciences; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| |
Collapse
|
38
|
Alternative Interventions to Prevent Oxidative Damage following Ischemia/Reperfusion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7190943. [PMID: 28116037 PMCID: PMC5225393 DOI: 10.1155/2016/7190943] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/23/2016] [Accepted: 10/12/2016] [Indexed: 12/25/2022]
Abstract
Ischemia/reperfusion (I/R) lesions are a phenomenon that occurs in multiple pathological states and results in a series of events that end in irreparable damage that severely affects the recovery and health of patients. The principal therapeutic approaches include preconditioning, postconditioning, and remote ischemic preconditioning, which when used separately do not have a great impact on patient mortality or prognosis. Oxidative stress is known to contribute to the damage caused by I/R; however, there are no pharmacological approaches to limit or prevent this. Here, we explain the relationship between I/R and the oxidative stress process and describe some pharmacological options that may target oxidative stress-states.
Collapse
|
39
|
Rubiś P, Totoń-Żurańska J, Wiśniowska-Śmiałek S, Holcman K, Kołton-Wróż M, Wołkow P, Wypasek E, Natorska J, Rudnicka-Sosin L, Pawlak A, Kozanecki A, Podolec P. Relations between circulating microRNAs (miR-21, miR-26, miR-29, miR-30 and miR-133a), extracellular matrix fibrosis and serum markers of fibrosis in dilated cardiomyopathy. Int J Cardiol 2016; 231:201-206. [PMID: 27889210 DOI: 10.1016/j.ijcard.2016.11.279] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/14/2016] [Indexed: 11/17/2022]
Affiliation(s)
- Paweł Rubiś
- Department of Cardiac and Vascular Diseases, John Paul II Hospital, Krakow, Poland.
| | - Justyna Totoń-Żurańska
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | | | - Katarzyna Holcman
- Department of Cardiac and Vascular Diseases, John Paul II Hospital, Krakow, Poland
| | - Maria Kołton-Wróż
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Paweł Wołkow
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Ewa Wypasek
- Department of Molecular Biology, John Paul II Hospital, Krakow, Poland
| | - Joanna Natorska
- Department of Molecular Biology, John Paul II Hospital, Krakow, Poland
| | | | - Agnieszka Pawlak
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland; 2nd Central Hospital of the Ministry of Interior, Department of Cardiology, Warsaw, Poland
| | - Artur Kozanecki
- Department of Cardiac and Vascular Diseases, John Paul II Hospital, Krakow, Poland
| | - Piotr Podolec
- Department of Cardiac and Vascular Diseases, John Paul II Hospital, Krakow, Poland; Jagiellonian University, Medical Collage, Krakow, Poland
| |
Collapse
|
40
|
Recent Advances in the Characterization and Analysis of Therapeutic Oligonucleotides by Analytical Separation Methods Coupling with Mass Spectrometry. ADVANCES IN CHROMATOGRAPHY 2016. [DOI: 10.1201/9781315370385-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Mair J. Circulating micro ribonucleic acids in cardiovascular disease: a look beyond myocardial injury. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:S30. [PMID: 27867998 DOI: 10.21037/atm.2016.10.67] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Johannes Mair
- Department of Internal Medicine III - Cardiology and Angiology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| |
Collapse
|
42
|
Altintas O, Ozgen Altintas M, Kumas M, Asil T. Neuroprotective effect of ischemic preconditioning via modulating the expression of cerebral miRNAs against transient cerebral ischemia in diabetic rats. Neurol Res 2016; 38:1003-1011. [PMID: 27635859 DOI: 10.1080/01616412.2016.1232013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVES In this study, we aimed to evaluate the effect of the Ischemic preconditioning (IPreC) on the expression profile of cerebral miRNAs against stroke by induced transient middle cerebral artery occlusion (MCAo) in diabetic rats. METHODS Eighty male Spraque Dawley rats were allocated to eight groups. In order to evaluate the expression profile of miRNAs, we induced transient MCAo seven days after STZ-induced diabetes (DM). Also we performed IPreC 72 h before transient MCAo to assess whether IPreC could have a neuroprotective effect against ischemia-reperfusion injury. RESULTS The general characteristics of STZ-treated rats included reduced body weight and elevated blood glucose levels compared to non-diabetic ones. We demonstrated that miRNA expression profiles, which are determined for biological functions such as aquaporin 4 formation (miR-29b-2, miR-124a-3p, miR-130a, miR-223 and miR-320a), glutamate toxicity (miR107, miR-145, miR-223), salvageable ischemic area (miR-9a, miR-19b, miR-29b-2, miR-341, miR-339-5p, miR-15-5p, miR-99b-5p), and neoangiogenesis (let-7f-5p, miR-126a and miR-322-3p), were regulated following IPreC. Ischemic preconditioning before cerebral ischemia significantly reduced infarction size compared with the other groups [IPreC + MCAo (27 ± 11 mm3) vs. MCAo (109 ± 15 mm3) p < 0.001; DM + IPreC + MCAo (38 ± 9 mm3) vs. DM + MCAo (165 ± 41 mm3) p < 0.001, respectively]. DISCUSSION The study results revealed the neuroprotective effects of ischemic preconditioning, supported with the upregulated pro-survival miRNAs in MCA infarcts.
Collapse
Affiliation(s)
- Ozge Altintas
- a Neurology Clinic , Bor State Hospital , Nigde , Turkey
| | - Mehmet Ozgen Altintas
- b Faculty of Engineering, Department of Genetics and Bioengineering , Fatih University , Istanbul , Turkey
| | - Meltem Kumas
- c Vocational School of Health Services, Medical Laboratory Techniques , BezmiAlem Vakif University , Istanbul , Turkey
| | - Talip Asil
- d Medical Faculty, Department of Neurology , BezmiAlem Vakıf University , Istanbul , Turkey
| |
Collapse
|
43
|
Dong D, Zhang Y, Reece EA, Wang L, Harman CR, Yang P. microRNA expression profiling and functional annotation analysis of their targets modulated by oxidative stress during embryonic heart development in diabetic mice. Reprod Toxicol 2016; 65:365-374. [PMID: 27629361 DOI: 10.1016/j.reprotox.2016.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/03/2016] [Accepted: 09/09/2016] [Indexed: 02/07/2023]
Abstract
Maternal pregestational diabetes mellitus (PGDM) induces congenital heart defects (CHDs). The molecular mechanism underlying PGDM-induced CHDs is unknown. microRNAs (miRNAs), small non-coding RNAs, repress gene expression at the posttranscriptional level and play important roles in heart development. We performed a global miRNA profiling study to assist in revealing potential miRNAs modulated by PGDM and possible developmental pathways regulated by miRNAs during heart development. A total of 149 mapped miRNAs in the developing heart were significantly altered by PGDM. Bioinformatics analysis showed that the majority of the 2111 potential miRNA target genes were associated with cardiac development-related pathways including STAT3 and IGF-1 and transcription factors (Cited2, Zeb2, Mef2c, Smad4 and Ets1). Overexpression of the antioxidant enzyme, superoxide dismutase 1, reversed PGDM-altered miRNAs, suggesting that oxidative stress is responsible for dysregulation of miRNAs. Thus, our study provides the foundation for further investigation of a miRNA-dependent mechanism underlying PGDM-induced CHDs.
Collapse
Affiliation(s)
- Daoyin Dong
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Yuji Zhang
- Division of Biostatistics and Bioinformatics, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201 ,United States
| | - E Albert Reece
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine Baltimore, MD 21201, United States
| | - Lei Wang
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Christopher R Harman
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine Baltimore, MD 21201, United States.
| |
Collapse
|
44
|
Profiling of differentially expressed microRNAs in arrhythmogenic right ventricular cardiomyopathy. Sci Rep 2016; 6:28101. [PMID: 27307080 PMCID: PMC4910108 DOI: 10.1038/srep28101] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/27/2016] [Indexed: 02/04/2023] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a kind of primary cardiomyopathy characterized by the fibro-fatty replacement of right ventricular myocardium. Currently, myocardial microRNAs have been reported to play critical role in the pathophysiology of cardiovascular pathophysiology. So far, the profiling of microRNAs in ARVC has not been described. In this study, we applied S-Poly (T) Plus method to investigate the expression profile of microRNAs in 24 ARVC patients heart samples. The tissue levels of 1078 human microRNAs were assessed and were compared with levels in a group of 24 healthy controls. Analysis of the area under the receiver operating characteristic curve (ROC) supported the 21 validated microRNAs to be miRNA signatures of ARVC, eleven microRNAs were significantly increased in ARVC heart tissues and ten microRNAs were significantly decreased. After functional enrichment analysis, miR-21-5p and miR-135b were correlated with Wnt and Hippo pathway, which might involve in the molecular pathophysiology of ARVC. Overall, our data suggested that myocardial microRNAs were involved in the pathophysiology of ARVC, miR-21-5p and miR-135b were significantly associated with both the myocardium adipose and fibrosis, which was a potential disease pathway for ARVC and might to be useful as therapeutic targets for ARVC.
Collapse
|
45
|
Dörr O, Liebetrau C, Möllmann H, Gaede L, Troidl C, Lankes S, Guckel D, Boeder N, Voss S, Bauer T, Hamm C, Nef H. Effect of Renal Sympathetic Denervation on Specific MicroRNAs as an Indicator of Reverse Remodeling Processes in Hypertensive Heart Disease. J Clin Hypertens (Greenwich) 2016; 18:497-502. [PMID: 26916982 PMCID: PMC8031684 DOI: 10.1111/jch.12797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 12/31/2022]
Abstract
A total of 90 consecutive patients undergoing renal sympathetic denervation (RSD) were included in this study. A significant reduction in office systolic blood pressure (SBP) of 21.1 mm Hg (P<.001) was documented 6 months after RSD. At this time point, circulating concentrations of microRNA (miR)-133a were significantly increased (sevenfold; P<.001) compared with baseline values. Correlation analysis showed a significant relationship between baseline SBP values and SBP reduction (P<.001) as well as between miR-133a baseline levels and the increase in miR-133a expression (P<.001) after the 6-month follow-up. The effect of RSD on miR-133a expression was significantly greater in patients at high risk for hypertensive heart disease. In addition to the effective blood pressure reduction in response to RSD, this study demonstrates an effect of RSD on miR reflecting cardiovascular reverse remodeling processes. Thus, these results provide information on a beneficial effect of RSD on cardiac recovery in patients at high risk for hypertensive heart disease.
Collapse
Affiliation(s)
- Oliver Dörr
- Department of CardiologyUniversity Clinic of GiessenGiessenGermany
| | | | - Helge Möllmann
- Department of CardiologyKerckhoff Heart and Thorax CenterBad NauheimGermany
| | - Luise Gaede
- Department of CardiologyKerckhoff Heart and Thorax CenterBad NauheimGermany
| | - Christian Troidl
- Department of CardiologyKerckhoff Heart and Thorax CenterBad NauheimGermany
| | - Simone Lankes
- Department of CardiologyUniversity Clinic of GiessenGiessenGermany
| | - Denise Guckel
- Department of CardiologyUniversity Clinic of GiessenGiessenGermany
| | - Niklas Boeder
- Department of CardiologyUniversity Clinic of GiessenGiessenGermany
| | - Sandra Voss
- Department of CardiologyKerckhoff Heart and Thorax CenterBad NauheimGermany
| | - Timm Bauer
- Department of CardiologyUniversity Clinic of GiessenGiessenGermany
| | - Christian Hamm
- Department of CardiologyUniversity Clinic of GiessenGiessenGermany
- Department of CardiologyKerckhoff Heart and Thorax CenterBad NauheimGermany
| | - Holger Nef
- Department of CardiologyUniversity Clinic of GiessenGiessenGermany
| |
Collapse
|
46
|
Huang Y, Chen J, Zhou Y, Tang S, Li J, Yu X, Mo Y, Wu Y, Zhang Y, Feng Y. Circulating miR155 expression level is positive with blood pressure parameters: Potential markers of target-organ damage. Clin Exp Hypertens 2016; 38:331-6. [PMID: 27028953 DOI: 10.3109/10641963.2015.1116551] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The aim of this study is to evaluate the relationship of miR155 with office and ambulatory blood pressure (BP) parameters and left ventricular hypertrophy (LVH) in patients with hypertension and healthy controls. METHODS We assessed the expression level of the miR155 in 50 patients with essential hypertension and 30 healthy individuals. All patients underwent two-dimensional echocardiography, office BP monitoring and ambulatory blood pressure monitoring (ABPM). Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was used to evaluate the expression of selected miR155. The miR155 correlations between BP parameters and left ventricular mass index (LVMI) were assessed using the Spearman correlation coefficient. RESULTS We observed higher expression level of miR155 (33.22 ± 2.59 vs. 27.30 ± 1.76; p < 0.001) in hypertensive patients compared with healthy control individuals, as well as in LVH to nLVH group (33.00 ± 2.78 vs. 27.28 ± 1.76; p < 0.001). MiR155 expression level showed significant positive correlations with office measurement of systolic blood pressure (SBP) (r = 0.634, p < 0.001), diastolic blood pressure (DBP) (r = 0.222, p < 0.05), pulse pressure (PP) (r = 0.564, p < 0.001), respectively. And explored miR155 expression level in relation to 24-h ABPM parameters showed significant positive correlation with 24 h mean SBP (r = 0.67, p < 0.001), 24 h mean DBP (r = 0.257, p < 0.05), 24 h mean PP (r = 0.597, p < 0.001), respectively, as well as with LVMI (r = 0.591, p < 0.001). CONCLUSION Circulating miR155 may possibly represent potential non-invasive marker of hypertension and target organ damage (TOD) in essential hypertensive patients.
Collapse
Affiliation(s)
- Yuqing Huang
- a Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academy of Medical Sciences , The First Affiliated Hospital of South China University of Technology , Guangzhou , China
| | - Jiyan Chen
- a Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academy of Medical Sciences , The First Affiliated Hospital of South China University of Technology , Guangzhou , China
| | - Yingling Zhou
- a Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academy of Medical Sciences , The First Affiliated Hospital of South China University of Technology , Guangzhou , China
| | - Songtao Tang
- b Community Health Center of Liaobu County , Donguang , Guangdong , China
| | - Jie Li
- a Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academy of Medical Sciences , The First Affiliated Hospital of South China University of Technology , Guangzhou , China
| | - Xueju Yu
- a Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academy of Medical Sciences , The First Affiliated Hospital of South China University of Technology , Guangzhou , China
| | - Yujing Mo
- a Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academy of Medical Sciences , The First Affiliated Hospital of South China University of Technology , Guangzhou , China
| | - Ying Wu
- a Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academy of Medical Sciences , The First Affiliated Hospital of South China University of Technology , Guangzhou , China
| | - Ying Zhang
- a Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academy of Medical Sciences , The First Affiliated Hospital of South China University of Technology , Guangzhou , China
| | - Yingqing Feng
- a Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academy of Medical Sciences , The First Affiliated Hospital of South China University of Technology , Guangzhou , China
| |
Collapse
|
47
|
Singh NK. microRNAs Databases: Developmental Methodologies, Structural and Functional Annotations. Interdiscip Sci 2016; 9:357-377. [PMID: 27021491 DOI: 10.1007/s12539-016-0166-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/08/2016] [Accepted: 03/11/2016] [Indexed: 12/31/2022]
Abstract
microRNA (miRNA) is an endogenous and evolutionary conserved non-coding RNA, involved in post-transcriptional process as gene repressor and mRNA cleavage through RNA-induced silencing complex (RISC) formation. In RISC, miRNA binds in complementary base pair with targeted mRNA along with Argonaut proteins complex, causes gene repression or endonucleolytic cleavage of mRNAs and results in many diseases and syndromes. After the discovery of miRNA lin-4 and let-7, subsequently large numbers of miRNAs were discovered by low-throughput and high-throughput experimental techniques along with computational process in various biological and metabolic processes. The miRNAs are important non-coding RNA for understanding the complex biological phenomena of organism because it controls the gene regulation. This paper reviews miRNA databases with structural and functional annotations developed by various researchers. These databases contain structural and functional information of animal, plant and virus miRNAs including miRNAs-associated diseases, stress resistance in plant, miRNAs take part in various biological processes, effect of miRNAs interaction on drugs and environment, effect of variance on miRNAs, miRNAs gene expression analysis, sequence of miRNAs, structure of miRNAs. This review focuses on the developmental methodology of miRNA databases such as computational tools and methods used for extraction of miRNAs annotation from different resources or through experiment. This study also discusses the efficiency of user interface design of every database along with current entry and annotations of miRNA (pathways, gene ontology, disease ontology, etc.). Here, an integrated schematic diagram of construction process for databases is also drawn along with tabular and graphical comparison of various types of entries in different databases. Aim of this paper is to present the importance of miRNAs-related resources at a single place.
Collapse
Affiliation(s)
- Nagendra Kumar Singh
- Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, M.P., 462003, India.
| |
Collapse
|
48
|
Abstract
The worldwide increase in the prevalence of obesity and type 2 diabetes and the associated elevated risk of cardiovascular disease (CVD) has emphasized the need to seek new therapeutic targets to offset the negative impact on human health outcomes. In this regards, microRNAs (miRNAs), a class of small noncoding RNAs that mediate posttranscriptional gene silencing, have received considerable interest. miRNAs repress gene expression by their ability to pair with target sequences in the 3' untranslated region of the messenger RNA. miRNAs play a crucial role in the biogenesis and function of the cardiovascular system and are implicated as dynamic regulators of cardiac and vascular signaling and pathophysiology. Numerous miRNAs have been identified as novel biomarkers and potential therapeutic targets for CVD. In this review, we discuss the contribution of miRNAs to the regulation of CVD, their role in macrovascular/microvascular (dys)function, their potential as important biomarkers for the early detection of CVD, and, finally, as therapeutic targets.
Collapse
|
49
|
Hoseinzadeh S, Atashi A, Soleimani M, Alizadeh E, Zarghami N. MiR-221-inhibited adipose tissue-derived mesenchymal stem cells bioengineered in a nano-hydroxy apatite scaffold. In Vitro Cell Dev Biol Anim 2016; 52:479-87. [PMID: 26822432 DOI: 10.1007/s11626-015-9992-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/18/2015] [Indexed: 02/08/2023]
Abstract
The repair of skeletal defects is the main goal of bone tissue engineering. Recent literature highlighted various regulatory roles of microRNAs in stem cell fate determination. In addition, the role of porous hydroxyapatite/polycaprolacton (nHA/PCL) as a bioactive scaffold which enhances adipose tissue-derived mesenchymal stem cells (AT-MSCs) growth and osteogenic differentiation has been proved. The aim of the present study was to investigate the synergistic potential of both down-regulating miR-221 and nHA/PCL scaffold seeding in osteogenic potential of AT-MSCs. After isolation and characterization of AT-MSCs, the transfection of anti-miR-221 was performed into the cells using lipofectamine 2000 and the transfected cells were seeded into a synthesized nHA/PCL scaffold. The DAPI staining confirmed the presence of AT-MSCs on nHA/PCL scaffold. Quantitative expression of osteoblast marker genes, Runx2, and osteocalcin of the transfected cells in the scaffold were evaluated. Interestingly, significant upregulation of transcribed Runx2 and osteocalcin genes (P < 0.01) were observed in miR-221-inhibited nHA/PCL seeded cells. Also, alkaline phosphatase activity (ALP) was significantly higher (P < 0.01) in miR-221-inhibited AT-MSCs seeded on nHA/PCL than those seeded on nHA/PCL or transfected with anti-miR-221, individually. The results of this combination suggest a valuable method for enhancing osteogenesis in AT-MSCs. This method could be applicable for gene-cell therapy of bone defects.
Collapse
Affiliation(s)
- Saghar Hoseinzadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Atashi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,The Umbilical Cord Stem Cell Research Center (UCSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. .,The Umbilical Cord Stem Cell Research Center (UCSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
50
|
Schulte C, Westermann D, Blankenberg S, Zeller T. Diagnostic and prognostic value of circulating microRNAs in heart failure with preserved and reduced ejection fraction. World J Cardiol 2015; 7:843-860. [PMID: 26730290 PMCID: PMC4691811 DOI: 10.4330/wjc.v7.i12.843] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/28/2015] [Accepted: 10/13/2015] [Indexed: 02/07/2023] Open
Abstract
microRNAs (miRNAs) are powerful regulators of posttranscriptional gene expression and play an important role in pathophysiological processes. Circulating miRNAs can be quantified in body liquids and are promising biomarkers in numerous diseases. In cardiovascular disease miRNAs have been proven to be reliable diagnostic biomarkers for different disease entities. In cardiac fibrosis (CF) and heart failure (HF) dysregulated circulating miRNAs have been identified, indicating their promising applicability as diagnostic biomarkers. Some miRNAs were successfully tested in risk stratification of HF implementing their potential use as prognostic biomarkers. In this respect miRNAs might soon be implemented in diagnostic clinical routine. In the young field of miRNA based research advances have been made in identifying miRNAs as potential targets for the treatment of experimental CF and HF. Promising study results suggest their potential future application as therapeutic agents in treatment of cardiovascular disease. This article summarizes the current state of the various aspects of miRNA research in the field of CF and HF with reduced ejection fraction as well as preserved ejection fraction. The review provides an overview of the application of circulating miRNAs as biomarkers in CF and HF and current approaches to therapeutically utilize miRNAs in this field of cardiovascular disease.
Collapse
|