1
|
Lin YJ, Tan XHM, Wang Y, Chung PS, Zhang X, Wu TH, Wu TY, Deb A, Chiou PY. Label-free optical mapping for large-area biomechanical dynamics of multicellular systems. Biosens Bioelectron 2025; 277:117281. [PMID: 40010021 DOI: 10.1016/j.bios.2025.117281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/28/2025]
Abstract
Mapping cellular activities over large areas is crucial for understanding the collective behaviors of multicellular systems. Biomechanical properties, such as cellular traction forces, serve as critical regulators of physiological states and molecular configurations. However, existing technologies for mapping large-area biomechanical dynamics, which arise from changes in cellular traction forces, are limited by their small field of view and scanning-based nature. To address these limitations, we propose a novel platform that utilizes a vast number of optical diffractive elements to profile large-area biomechanical dynamics. This platform achieves a field of view of 10.6 mm × 10.6 mm, a three-order-of-magnitude improvement over traditional traction force microscopy. Transient mechanical waves generated by monolayer neonatal rat ventricular myocytes were captured with high spatiotemporal resolution (130 fps and 20 μm for temporal and spatial resolution, respectively). Furthermore, its label-free nature allows for long-term observations extended to a week, with minimal disruption to cellular functions. Finally, simultaneous measurements of calcium ion concentrations and biomechanical dynamics are demonstrated.
Collapse
Affiliation(s)
- Yen-Ju Lin
- Electrical and Computer Engineering Department, University of California, 420 Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Xing Haw Marvin Tan
- Mechanical and Aerospace Engineering Department, University of California, 420 Westwood Plaza, Los Angeles, CA, 90095, United States; Bioengineering Department, University of California, 420 Westwood Plaza, Los Angeles, CA, 90095, United States; Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A∗STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore
| | - Yijie Wang
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, 675 Charles E Young Dr S, Los Angeles, CA, 90095, United States
| | - Pei-Shan Chung
- Bioengineering Department, University of California, 420 Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Xiang Zhang
- Mechanical and Aerospace Engineering Department, University of California, 420 Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Ting-Hsiang Wu
- MET Biotechnology LLC, 570 Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Tung-Yu Wu
- CyteSi LLC, 1600 Adams Drive, Suite 221, Menlo Park, CA, 94025, United States
| | - Arjun Deb
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, 675 Charles E Young Dr S, Los Angeles, CA, 90095, United States
| | - Pei-Yu Chiou
- Mechanical and Aerospace Engineering Department, University of California, 420 Westwood Plaza, Los Angeles, CA, 90095, United States; Bioengineering Department, University of California, 420 Westwood Plaza, Los Angeles, CA, 90095, United States.
| |
Collapse
|
2
|
Sharp AJ, Pope MT, Briosa e Gala A, Varini R, Banerjee A, Betts TR. Identifying extra pulmonary vein targets for persistent atrial fibrillation ablation: bridging advanced and conventional mapping techniques. Europace 2025; 27:euaf048. [PMID: 40071310 PMCID: PMC11953006 DOI: 10.1093/europace/euaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/06/2025] [Indexed: 03/30/2025] Open
Abstract
AIMS Advanced technologies such as charge density mapping (CDM) show promise in guiding adjuvant ablation in patients with persistent atrial fibrillation (AF); however, their limited availability restricts widespread adoption. We sought to determine whether regions of the left atrium containing CDM-identified pivoting and rotational propagation patterns during AF could also be reliably identified using more conventional contact mapping techniques. METHODS AND RESULTS Twenty-two patients undergoing de novo ablation of persistent AF underwent both CDM and electroanatomic voltage mapping during AF and sinus rhythm with multiple pacing protocols. Through the use of a left atrium statistical shape model, the location of distinctive propagation patterns identified by CDM was compared with low-voltage areas (LVAs) and regions of slow conduction velocity (CV). Neither LVA nor CV mapping during paced rhythms reliably identified regions containing CDM propagation patterns. Conduction velocity mapping during AF did correlate with these regions (ρ = -0.63, P < 0.0001 for pivoting patterns; ρ = -0.54, P < 0.0001 for rotational patterns). These propagation patterns consistently occurred in two specific anatomical regions across patients: the anteroseptal and inferoposterior walls of the left atrium. CONCLUSION Mapping techniques during paced rhythms do not reliably correspond with regions of CDM-identified propagation patterns in persistent AF. However, these propagation patterns are consistently observed in two specific anatomical regions, suggesting a predisposition to abnormal electrophysiological properties. While further research is needed, these regions may serve as promising targets for empirical ablation, potentially reducing the reliance on complex mapping techniques.
Collapse
Affiliation(s)
- Alexander J Sharp
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX37 DQ, UK
- Cardiology Department, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Michael T Pope
- Cardiology Department, Southampton General Hospital, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Andre Briosa e Gala
- Cardiology Department, Southampton General Hospital, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Richard Varini
- Cardiology Department, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Abhirup Banerjee
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX37 DQ, UK
| | - Timothy R Betts
- Cardiology Department, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|
3
|
Oda Y, Komatsu Y, Shinoda Y, Hanaki Y, Hattori M, Hashimoto N, Kanda T, Miura F, Hironobe N, Iioka Y, Harano Y, Matsuoka Y, Arimoto T, Minamiguchi H, Makino N, Yoshida K, Yamasaki H, Igarashi M, Ishizu T, Nogami A. Clinical Impact of High-Intensity Targeted Ablation of Identifiable Critical Zones in Scar-Related Ventricular Tachycardia. JACC Clin Electrophysiol 2025:S2405-500X(25)00135-5. [PMID: 40208158 DOI: 10.1016/j.jacep.2025.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/11/2025] [Accepted: 02/19/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Ventricular tachycardia (VT) isthmus boundaries correlate with a localized line of conduction block (LOB) identified by substrate mapping during baseline rhythm. In particular, a rotational activation pattern (RAP), which is characterized as a wavefront propagation pivoting around the edge of the fixed LOB accompanied by conduction slowing, may have a high proclivity toward re-entry. OBJECTIVES This study aimed to assess outcomes of ablation targeting the RAP around the LOB identifiable during substrate mapping. METHODS We studied 81 patients (median age 68 years; 85% male; 25% ischemic cardiomyopathy) who underwent ablation primarily targeting the regions exhibiting a RAP around the LOB associated with clinical VT. RESULTS High-resolution substrate mapping identified a RAP in 41 patients (51%). Of these, 30 patients (Group A) underwent ablation of an area with a radius >1 cm, including the targeted RAP regions. In 11 patients (Group B), RAPs were unable to be ablated because of the proximity of the RAP site to the conduction system, coronary arteries, or phrenic nerves, or based on the operator's discretion to avoid hemodynamic decompensation. The remaining 40 patients (Group C) had no identifiable RAP, and none of them had no mid-diastolic activities during VT due to intramural or contra-surface arrhythmogenic substrate. During 1-year follow-up, 83% freedom from VT recurrence was achieved in Group A, compared with 41% and 39% in Groups B and C, respectively (P = 0.003). CONCLUSIONS The identification of critical zones of the VT re-entrant circuit, which may be co-localized with regions hosting RAP around the LOB, as well as high-intensity ablation targeting these regions, appear to be important for successful ablation.
Collapse
Affiliation(s)
- Yuka Oda
- Department of Cardiology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan; Department of Cardiology, Tokyo Heart Rhythm Hospital, Tokyo, Japan
| | - Yuki Komatsu
- Department of Cardiology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan.
| | - Yasutoshi Shinoda
- Department of Cardiology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuichi Hanaki
- Department of Cardiology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masayuki Hattori
- Department of Cardiology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan; Department of Cardiology, Ibaraki Prefectural Central Hospital, Ibaraki, Japan
| | - Naoaki Hashimoto
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Takashi Kanda
- Cardiovascular Division, Advanced Cardiac Rhythm Management Center, Osaka Keisatsu Hospital, Osaka, Japan
| | - Fumiharu Miura
- Department of Cardiovascular Medicine, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | - Naoya Hironobe
- Department of Cardiovascular Medicine, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | - Yuto Iioka
- Department of Cardiology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshihiro Harano
- Department of Cardiology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuki Matsuoka
- Department of Cardiology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takanori Arimoto
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Hitoshi Minamiguchi
- Cardiovascular Division, Advanced Cardiac Rhythm Management Center, Osaka Keisatsu Hospital, Osaka, Japan
| | - Nobuhiko Makino
- Cardiovascular Division, Advanced Cardiac Rhythm Management Center, Osaka Keisatsu Hospital, Osaka, Japan
| | - Kentaro Yoshida
- Department of Cardiology, Ibaraki Prefectural Central Hospital, Ibaraki, Japan
| | - Hiro Yamasaki
- Department of Cardiology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Miyako Igarashi
- Department of Cardiology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tomoko Ishizu
- Department of Cardiology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akihiko Nogami
- Department of Cardiology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan; Department of Cardiology, Tokyo Heart Rhythm Hospital, Tokyo, Japan
| |
Collapse
|
4
|
Fehrentz T, Amin E, Görldt N, Strasdeit T, Moussavi-Torshizi SE, Leippe P, Trauner D, Meyer C, Frey N, Sasse P, Klöcker N. Optical control of cardiac electrophysiology by the photochromic ligand azobupivacaine 2. Br J Pharmacol 2025; 182:1125-1142. [PMID: 39543799 DOI: 10.1111/bph.17394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND AND PURPOSE Patients suffering from ischaemic heart disease and heart failure are at high risk of recurrent ventricular arrhythmias (VAs), eventually leading to sudden cardiac death. While high-voltage shocks delivered by an implantable defibrillator may prevent sudden cardiac death, these interventions themselves impair quality of life and raise both morbidity and mortality, which accentuates the need for developing novel defibrillation techniques. EXPERIMENTAL APPROACH Photopharmacology allows for reversible control of biological processes by light. When relying on synthetic and externally applied chromophores, it renders genetic modification of target cells dispensable and may hence be advantageous over optogenetic approaches. Here, the photochromic ligand azobupivacaine 2 (AB2) was probed as a modulator of cardiac electrophysiology in an ex vivo intact mouse heart model. KEY RESULTS By reversibly blocking voltage-gated Na+ and K+ channels, photoswitching of AB2 modulated both the ventricular effective refractory period and the conduction velocity in native heart tissue. Moreover, photoswitching of AB2 was able to convert VA into sinus rhythm. CONCLUSION AND IMPLICATIONS The present study provides the first proof of concept that AB2 enables gradual control of cardiac electrophysiology by light. AB2 may hence open the door to the development of an optical defibrillator based on photopharmacology.
Collapse
Affiliation(s)
- Timm Fehrentz
- Institute of Neural and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ehsan Amin
- Institute of Neural and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Nicole Görldt
- Institute of Neural and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Strasdeit
- Institute of Neural and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Seyed-Erfan Moussavi-Torshizi
- Institute of Neural and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp Leippe
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Dirk Trauner
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christian Meyer
- Institute of Neural and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Division of Cardiology, Angiology and Intensive Care, EVK Düsseldorf, Cardiac Neuro- and Electrophysiology Research Consortium (cNEP), Düsseldorf, Germany
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
| | - Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany
| | - Nikolaj Klöcker
- Institute of Neural and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
5
|
Fan S, Hu Y, Shi J. Role of ferroptosis in atrial fibrillation: a review. Front Pharmacol 2025; 16:1362060. [PMID: 39981174 PMCID: PMC11839810 DOI: 10.3389/fphar.2025.1362060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/13/2025] [Indexed: 02/22/2025] Open
Abstract
Cardiovascular disease remains the leading cause of mortality, with atrial fibrillation emerging as one of the most common conditions encountered in clinical practice. However, its underlying mechanisms remain poorly understood, prompting ongoing research. Ferroptosis, a recently discovered form of regulated cell death characterized by lipid peroxidation and disrupted cellular redox balance leading to cell death due to iron overload, has attracted significant attention. Since its identification, ferroptosis has been extensively studied in various contexts, including cancer, stroke, myocardial ischemia/reperfusion injury, and heart failure. Growing evidence suggests that ferroptosis may also play a critical role in the onset and progression of atrial fibrillation, though research in this area is still limited. This article provides a concise overview of the potential mechanisms by which ferroptosis may contribute to the pathogenesis of atrial fibrillation.
Collapse
Affiliation(s)
- Shaowei Fan
- Lugouqiao Second Community Health Service Center, China Aerospace Science & Industry Corporation 731 Hospital, Beijing, China
| | - Yuanhui Hu
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Jingjing Shi
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| |
Collapse
|
6
|
Burashnikov A. "Pharmacological" analysis of atrial fibrillation maintenance mechanism: reentry, wavelets, or focal? Front Cardiovasc Med 2025; 12:1447542. [PMID: 39925977 PMCID: PMC11802512 DOI: 10.3389/fcvm.2025.1447542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
The primary electrophysiological mechanism of atrial fibrillation (AF) maintenance is poorly defined. AF mapping studies readily record focal activations (defining them as focal sources or breakthroughs) and "incomplete reentries" (defining them as reentries or would-be-reentries) but do not or rarely detect complete circular activations. Electrophysiological alterations induced by anti-AF drugs before AF cardioversion may help delineate the mechanism of AF maintenance. Cardioversion of AF by antiarrhythmic drugs is associated with prolongation of the AF cycle length and temporal excitable gap (t-EG), resulting in improvement in AF organization (AF-org), and with or without alterations in the refractory period, conduction velocity and wavelength. Such electrophysiological pattern is conceivable with termination of a single focal source but not a single reentry (Class III agents do not increase reentrant t-EG). Yet, a single focal source and multiple focal sources are plausible as the primary mechanism of AF maintenance prior drug administration. Improvement in AF-org caused by anti-AF agents before AF cardioversion is coherent with simultaneous multiple random reentries and wavelets. However, simultaneous multiple reentries are unlikely to occur regularly (most of the contemporary AF mapping studies report either a single reentry at a time or no reentry at all), and the ability of random wavelets to maintain AF is speculative. The conducted analysis inclines toward the focal source as the primary mechanism of AF maintenance.
Collapse
|
7
|
Kakizuka T, Nakaoka H, Hara Y, Ichiraku A, Arai Y, Itoga H, Onami S, Ichimura T, Nagai T, Horikawa K. Mesoscale heterogeneity is a critical determinant for spiral pattern formation in developing social amoeba. Sci Rep 2025; 15:1422. [PMID: 39789232 PMCID: PMC11717926 DOI: 10.1038/s41598-025-85759-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025] Open
Abstract
Heterogeneity is a critical determinant for multicellular pattern formation. Although the importance of microscale and macroscale heterogeneity at the single-cell and whole-system levels, respectively, has been well accepted, the presence and functions of mesoscale heterogeneity, such as cell clusters with distinct properties, have been poorly recognized. We investigated the biological importance of mesoscale heterogeneity in signal-relaying abilities (excitability) in the self-organization of spiral waves of intercellular communications by studying the self-organized pattern formation in a population of Dictyostelium discoideum cells, a classical signal-relaying system model. By utilizing pulse-count analysis to evaluate cellular excitability, we successfully visualized the development of mesoscale heterogeneity in excitability, whose spatial scale was comparably large to that of the traveling waves of intercellular communication. Together with perturbation experiments, our detailed analysis of the structural change in mesoscale heterogeneity and associated wave dynamics demonstrated the functional importance of mesoscale heterogeneity in generating the spiral wave pattern, whose experimental observations were first realized. We propose that mesoscale heterogeneity, in addition to microscale and macroscale heterogeneities, is a critical determinant of diverse multicellular pattern formations.
Collapse
Affiliation(s)
- Taishi Kakizuka
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, Mihogaoka 8-1, Ibaraki, 567-0047, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka 2-1, Suita, 565-0871, Osaka, Japan
| | - Hidenori Nakaoka
- Department of Optical Imaging, Advanced Research Promotion Center, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima City, 770-8503, Tokushima, Japan
| | - Yusuke Hara
- Department of Optical Imaging, Advanced Research Promotion Center, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima City, 770-8503, Tokushima, Japan
| | - Aya Ichiraku
- Department of Optical Imaging, Advanced Research Promotion Center, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima City, 770-8503, Tokushima, Japan
| | - Yoshiyuki Arai
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, Mihogaoka 8-1, Ibaraki, 567-0047, Osaka, Japan
| | - Hiroya Itoga
- Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Kobe, 650-0047, Japan
| | - Shuichi Onami
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka 2-1, Suita, 565-0871, Osaka, Japan
- Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Kobe, 650-0047, Japan
| | - Taro Ichimura
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka 2-1, Suita, 565-0871, Osaka, Japan
| | - Takeharu Nagai
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, Mihogaoka 8-1, Ibaraki, 567-0047, Osaka, Japan.
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka 2-1, Suita, 565-0871, Osaka, Japan.
| | - Kazuki Horikawa
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka 2-1, Suita, 565-0871, Osaka, Japan.
- Department of Optical Imaging, Advanced Research Promotion Center, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima City, 770-8503, Tokushima, Japan.
| |
Collapse
|
8
|
Sharp AJ, Pope MTB, Briosa e Gala A, Varini R, Betts TR, Banerjee A. Multi-modal integration of MRI and global chamber charge density mapping for the evaluation of atrial fibrillation. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241048. [PMID: 39816746 PMCID: PMC11732401 DOI: 10.1098/rsos.241048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 01/18/2025]
Abstract
Atrial fibrillation (AF) is the most prevalent clinical arrhythmia, posing significant mortality and morbidity challenges. Outcomes of current catheter ablation treatment strategies are suboptimal, highlighting the need for innovative approaches. A major obstacle lies in the inability to comprehensively assess both structural and functional remodelling in AF. Combining magnetic resonance imaging (MRI)'s detailed structural insights with global chamber charge density mapping (CDM)'s functional mapping capabilities holds promise for advancing AF management. Our research introduces a novel tool for three-dimensional reconstruction of left atrial geometries from MRI, facilitating integration into CDM systems. We comprehensively assess our tool by generating three-dimensional left atrial meshes from MRIs of eight patients with AF and compare them with the established CDM intra-chamber ultrasound approach utilizing both geometric and clinical parameters. We apply the CDM inverse algorithm to both sets of reconstructions in order to compare derived conductions across various heart rhythms and AF conduction patterns. Finally, we explore the potential utility of our integrated pipeline through an exploration of the relationship between AF conduction patterns and their proximity to adjacent thoracic structures. Ultimately, this multifaceted approach aims to unveil insights into AF mechanisms, potentially improving treatment outcomes through personalized ablation strategies targeting arrhythmogenic atrial substrate.
Collapse
Affiliation(s)
- Alexander J. Sharp
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OxfordOX3 7DQ, UK
- Cardiology Department, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, OxfordOX3 9DU, UK
| | - Michael T. B. Pope
- Cardiology Department, Southampton General Hospital, University Hospital Southampton NHS Foundation Trust, SouthamptonSO16 6YD, UK
| | - Andre Briosa e Gala
- Cardiology Department, Southampton General Hospital, University Hospital Southampton NHS Foundation Trust, SouthamptonSO16 6YD, UK
| | - Richard Varini
- Cardiology Department, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, OxfordOX3 9DU, UK
| | - Timothy R. Betts
- Cardiology Department, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, OxfordOX3 9DU, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, OxfordOX3 9DU, UK
| | - Abhirup Banerjee
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OxfordOX3 7DQ, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, OxfordOX3 9DU, UK
| |
Collapse
|
9
|
Martinez-Navarro H, Bertrand A, Doste R, Smith H, Tomek J, Ristagno G, Oliveira RS, Weber dos Santos R, Pandit SV, Rodriguez B. ECG analysis of ventricular fibrillation dynamics reflects ischaemic progression subject to variability in patient anatomy and electrode location. Front Cardiovasc Med 2024; 11:1408822. [PMID: 39664764 PMCID: PMC11631900 DOI: 10.3389/fcvm.2024.1408822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024] Open
Abstract
Background Ventricular fibrillation (VF) is the deadliest arrhythmia, often caused by myocardial ischaemia. VF patients require urgent intervention planned quickly and non-invasively. However, the accuracy with which electrocardiographic (ECG) markers reflect the underlying arrhythmic substrate is unknown. Methods We analysed how ECG metrics reflect the fibrillatory dynamics of electrical excitation and ischaemic substrate. For this, we developed a human-based computational modelling and simulation framework for the quantification of ECG metrics, namely, frequency, slope, and amplitude spectrum area (AMSA) during VF in acute ischaemia for several electrode configurations. Simulations reproduced experimental and clinical findings in 21 scenarios presenting variability in the location and transmural extent of regional ischaemia, and severity of ischaemia in the remote myocardium secondary to VF. Results Regional acute myocardial ischaemia facilitated re-entries, potentially breaking up into VF. Ischaemia in the remote myocardium modulated fibrillation dynamics. Cases presenting a mildly ischaemic remote myocardium yielded sustained VF, enabled by the high proliferation of phase singularities (PS, 11-22) causing remarkably disorganised activation patterns. Conversely, global acute ischaemia induced stable rotors (3-12 PS). Changes in frequency and morphology of the ECG during VF reproduced clinical findings but did not show a direct correlation with the underlying wave dynamics. AMSA allowed the precise stratification of VF according to ischaemic severity in the remote myocardium (healthy: 23.62-24.45 mV Hz; mild ischaemia: 10.58-21.47 mV Hz; moderate ischaemia: 4.82-11.12 mV Hz). Within the context of clinical reference values, apex-anterior and apex-posterior electrode configurations were the most discriminatory in stratifying VF based on the underlying ischaemic substrate. Conclusion This in silico study provides further insights into non-invasive patient-specific strategies for assessing acute ventricular arrhythmias. The use of reliable ECG markers to characterise VF is critical for developing tailored resuscitation strategies.
Collapse
Affiliation(s)
- Hector Martinez-Navarro
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Ambre Bertrand
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Ruben Doste
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Hannah Smith
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Jakub Tomek
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Giuseppe Ristagno
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano Statale, Milano, Italy
| | - Rafael S. Oliveira
- Computer Science Department, Universidade Federal de São João del Rei, São João del Rei, Brazil
| | - Rodrigo Weber dos Santos
- Departamento de Ciência da Computação, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Sandeep V. Pandit
- Scientific Affairs, ZOLL Medical Corporation, Chelmsford, MA, United States
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Kakizuka T, Natsume T, Nagai T. Compact lens-free imager using a thin-film transistor for long-term quantitative monitoring of stem cell culture and cardiomyocyte production. LAB ON A CHIP 2024. [PMID: 39436381 DOI: 10.1039/d4lc00528g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
With advancements in human induced pluripotent stem cell (hiPSC) technology, there is an increasing demand for quality control techniques to manage the long-term process of target cell production effectively. While monitoring systems designed for use within incubators are promising for assessing culture quality, existing systems still face challenges in terms of compactness, throughput, and available metrics. To address these limitations, we have developed a compact and high-throughput lens-free imaging device named INSPCTOR. The device is as small as a standard culture plate, which allows for the installation of multiple units within an incubator. INSPCTOR utilises a large thin-film transistor image sensor, enabling simultaneous observation of six independent culture environments, each approximately 1 cm2. With this device, we successfully monitored the confluency of hiPSC cultures and identified the onset timing of epithelial-to-mesenchymal transition during mesodermal induction. Additionally, we quantified the beating frequency and conduction of hiPSC-derived cardiomyocytes by using high-speed imaging modes. This enabled us to identify the onset of spontaneous beating during differentiation and assess chronotropic responses in drug evaluations. Moreover, by tracking beating frequency over 10 days of cardiomyocyte maturation, we identified week-scale and daily-scale fluctuations, the latter of which correlated with cellular metabolic activity. The metrics derived from this device would enhance the reproducibility and quality of target cell production.
Collapse
Affiliation(s)
- Taishi Kakizuka
- SANKEN, The University of Osaka, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, The University of Osaka, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Tohru Natsume
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 2-3-26 Aoumi, Koto-ku, Tokyo 135-0064, Japan
| | - Takeharu Nagai
- SANKEN, The University of Osaka, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, The University of Osaka, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Guttipatti P, Saadallah N, Ji R, Avula UMR, Goulbourne CN, Wan EY. Quantitative 3D electron microscopy characterization of mitochondrial structure, mitophagy, and organelle interactions in murine atrial fibrillation. J Struct Biol 2024; 216:108110. [PMID: 39009246 PMCID: PMC11381154 DOI: 10.1016/j.jsb.2024.108110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/05/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Atrial fibrillation (AF) is the most common clinical arrhythmia, however there is limited understanding of its pathophysiology including the cellular and ultrastructural changes rendered by the irregular rhythm, which limits pharmacological therapy development. Prior work has demonstrated the importance of reactive oxygen species (ROS) and mitochondrial dysfunction in the development of AF. Mitochondrial structure, interactions with other organelles such as sarcoplasmic reticulum (SR) and T-tubules (TT), and degradation of dysfunctional mitochondria via mitophagy are important processes to understand ultrastructural changes due to AF. However, most analysis of mitochondrial structure and interactome in AF has been limited to two-dimensional (2D) modalities such as transmission electron microscopy (EM), which does not fully visualize the morphological evolution of the mitochondria during mitophagy. Herein, we utilize focused ion beam-scanning electron microscopy (FIB-SEM) and perform reconstruction of three-dimensional (3D) EM from murine left atrial samples and measure the interactions of mitochondria with SR and TT. We developed a novel 3D quantitative analysis of FIB-SEM in a murine model of AF to quantify mitophagy stage, mitophagosome size in cardiomyocytes, and mitochondrial structural remodeling when compared with control mice. We show that in our murine model of spontaneous and continuous AF due to persistent late sodium current, left atrial cardiomyocytes have heterogenous mitochondria, with a significant number which are enlarged with increased elongation and structural complexity. Mitophagosomes in AF cardiomyocytes are located at Z-lines where they neighbor large, elongated mitochondria. Mitochondria in AF cardiomyocytes show increased organelle interaction, with 5X greater contact area with SR and are 4X as likely to interact with TT when compared to control. We show that mitophagy in AF cardiomyocytes involves 2.5X larger mitophagosomes that carry increased organelle contents. In conclusion, when oxidative stress overcomes compensatory mechanisms, mitophagy in AF faces a challenge of degrading bulky complex mitochondria, which may result in increased SR and TT contacts, perhaps allowing for mitochondrial Ca2+ maintenance and antioxidant production.
Collapse
MESH Headings
- Animals
- Mitophagy
- Mice
- Atrial Fibrillation/metabolism
- Atrial Fibrillation/pathology
- Myocytes, Cardiac/ultrastructure
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Mitochondria/ultrastructure
- Mitochondria/metabolism
- Mitochondria/pathology
- Sarcoplasmic Reticulum/metabolism
- Sarcoplasmic Reticulum/ultrastructure
- Sarcoplasmic Reticulum/pathology
- Mitochondria, Heart/ultrastructure
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Imaging, Three-Dimensional/methods
- Male
- Disease Models, Animal
- Microscopy, Electron, Scanning/methods
Collapse
Affiliation(s)
- Pavithran Guttipatti
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| | - Najla Saadallah
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| | - Ruiping Ji
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| | - Uma Mahesh R Avula
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Department of Medicine, University of Mississippi, Jackson, MS, United States.
| | - Christopher N Goulbourne
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States.
| | - Elaine Y Wan
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| |
Collapse
|
12
|
Pandit SV, Lampe JW, Silver AE. Recurrence of ventricular fibrillation in out-of-hospital cardiac arrest: Clinical evidence and underlying ionic mechanisms. J Physiol 2024; 602:4649-4667. [PMID: 38661672 DOI: 10.1113/jp284621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/08/2024] [Indexed: 04/26/2024] Open
Abstract
Defibrillation remains the optimal therapy for terminating ventricular fibrillation (VF) in out-of-hospital cardiac arrest (OHCA) patients, with reported shock success rates of ∼90%. A key persistent challenge, however, is the high rate of VF recurrence (∼50-80%) seen during post-shock cardiopulmonary resuscitation (CPR). Studies have shown that the incidence and time spent in recurrent VF are negatively associated with neurologically-intact survival. Recurrent VF also results in the administration of extra shocks at escalating energy levels, which can cause cardiac dysfunction. Unfortunately, the mechanisms underlying recurrent VF remain poorly understood. In particular, the role of chest-compressions (CC) administered during CPR in mediating recurrent VF remains controversial. In this review, we first summarize the available clinical evidence for refibrillation occurring during CPR in OHCA patients, including the postulated contribution of CC and non-CC related pathways. Next, we examine experimental studies highlighting how CC can re-induce VF via direct mechano-electric feedback. We postulate the ionic mechanisms involved by comparison with similar phenomena seen in commotio cordis. Subsequently, the hypothesized contribution of partial cardiac reperfusion (either as a result of CC or CC independent organized rhythm) in re-initiating VF in a globally ischaemic heart is examined. An overview of the proposed ionic mechanisms contributing to VF recurrence in OHCA during CPR from a cellular level to the whole heart is outlined. Possible therapeutic implications of the proposed mechanistic theories for VF recurrence in OHCA are briefly discussed.
Collapse
|
13
|
Lietava S, Sepsi M, Novotny T. Idiopathic Ventricular Fibrillation - Just How Much Idiopathic is it? Rev Cardiovasc Med 2024; 25:306. [PMID: 39228494 PMCID: PMC11366998 DOI: 10.31083/j.rcm2508306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 09/05/2024] Open
Abstract
Idiopathic ventricular fibrillation is diagnosed in survivors of sudden cardiac death that has been caused by ventricular fibrillation without known structural or electrical abnormalities, even after extensive investigation. It is a common cause of sudden death in young adults. Although idiopathic ventricular fibrillation is a diagnosis of exclusion, in many cases only a partial investigation algorithm is performed. The aim of this review is to present a comprehensive diagnostic evaluation algorithm with a focus on diagnostic assessment of inherited arrhythmic syndromes and genetic background.
Collapse
Affiliation(s)
- Samuel Lietava
- Department of Internal Medicine and Cardiology, University Hospital Brno
and Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Milan Sepsi
- Department of Internal Medicine and Cardiology, University Hospital Brno
and Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Tomas Novotny
- Department of Internal Medicine and Cardiology, University Hospital Brno
and Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
14
|
Goldberger JJ, Mitrani RD, Zaatari G, Narayan SM. Mechanistic Insights From Trials of Atrial Fibrillation Ablation: Charting a Course for the Future. Circ Arrhythm Electrophysiol 2024; 17:e012939. [PMID: 39041221 DOI: 10.1161/circep.124.012939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Success rates for catheter ablation of atrial fibrillation (AF), particularly persistent AF, remain suboptimal. Pulmonary vein isolation has been the cornerstone for catheter ablation of AF for over a decade. While successful for most patients, pulmonary vein isolation alone is still insufficient for a substantial minority. Frustratingly, multiple clinical trials testing a diverse array of additional ablation approaches have led to mixed results, with no current strategy that improves AF outcomes beyond pulmonary vein isolation in all patients. Nevertheless, this large collection of data could be used to extract important insights regarding AF mechanisms and the diversity of the AF syndrome. Mechanistically, the general model for arrhythmogenesis prompts the need for tools to individually assess triggers, drivers, and substrates in individual patients. A key goal is to identify those who will not respond to pulmonary vein isolation, with novel approaches to phenotyping that may include mapping to identify alternative drivers or critical substrates. This, in turn, can allow for the implementation of phenotype-based, targeted approaches that may categorize patients into groups who would or would not be likely to respond to catheter ablation, pharmacological therapy, and risk factor modification programs. One major goal is to predict individuals in whom additional empirical ablation, while feasible, may be futile or lead to atrial scarring or proarrhythmia. This work attempts to integrate key lessons from successful and failed trials of catheter ablation, as well as models of AF, to suggest future paradigms for AF treatment.
Collapse
Affiliation(s)
- Jeffrey J Goldberger
- Cardiovascular Division, Department of Medicine, University of Miami Miller School of Medicine, FL (J.J.G., R.D.M., G.Z.)
| | - Raul D Mitrani
- Cardiovascular Division, Department of Medicine, University of Miami Miller School of Medicine, FL (J.J.G., R.D.M., G.Z.)
| | - Ghaith Zaatari
- Cardiovascular Division, Department of Medicine, University of Miami Miller School of Medicine, FL (J.J.G., R.D.M., G.Z.)
| | - Sanjiv M Narayan
- Cardiovascular Division, Department of Medicine and Cardiovascular Institute, Stanford University, Palo Alto, CA (S.M.N.)
| |
Collapse
|
15
|
Sharp AJ, Betts TR, Banerjee A. Leveraging 3D Atrial Geometry for the Evaluation of Atrial Fibrillation: A Comprehensive Review. J Clin Med 2024; 13:4442. [PMID: 39124709 PMCID: PMC11313299 DOI: 10.3390/jcm13154442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia associated with significant morbidity and mortality. Managing risk of stroke and AF burden are pillars of AF management. Atrial geometry has long been recognized as a useful measure in achieving these goals. However, traditional diagnostic approaches often overlook the complex spatial dynamics of the atria. This review explores the emerging role of three-dimensional (3D) atrial geometry in the evaluation and management of AF. Advancements in imaging technologies and computational modeling have enabled detailed reconstructions of atrial anatomy, providing insights into the pathophysiology of AF that were previously unattainable. We examine current methodologies for interpreting 3D atrial data, including qualitative, basic quantitative, global quantitative, and statistical shape modeling approaches. We discuss their integration into clinical practice, highlighting potential benefits such as personalized treatment strategies, improved outcome prediction, and informed treatment approaches. Additionally, we discuss the challenges and limitations associated with current approaches, including technical constraints and variable interpretations, and propose future directions for research and clinical applications. This comprehensive review underscores the transformative potential of leveraging 3D atrial geometry in the evaluation and management of AF, advocating for its broader adoption in clinical practice.
Collapse
Affiliation(s)
- Alexander J. Sharp
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| | - Timothy R. Betts
- Cardiology Department, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Abhirup Banerjee
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
16
|
Trayanova NA, Lyon A, Shade J, Heijman J. Computational modeling of cardiac electrophysiology and arrhythmogenesis: toward clinical translation. Physiol Rev 2024; 104:1265-1333. [PMID: 38153307 PMCID: PMC11381036 DOI: 10.1152/physrev.00017.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023] Open
Abstract
The complexity of cardiac electrophysiology, involving dynamic changes in numerous components across multiple spatial (from ion channel to organ) and temporal (from milliseconds to days) scales, makes an intuitive or empirical analysis of cardiac arrhythmogenesis challenging. Multiscale mechanistic computational models of cardiac electrophysiology provide precise control over individual parameters, and their reproducibility enables a thorough assessment of arrhythmia mechanisms. This review provides a comprehensive analysis of models of cardiac electrophysiology and arrhythmias, from the single cell to the organ level, and how they can be leveraged to better understand rhythm disorders in cardiac disease and to improve heart patient care. Key issues related to model development based on experimental data are discussed, and major families of human cardiomyocyte models and their applications are highlighted. An overview of organ-level computational modeling of cardiac electrophysiology and its clinical applications in personalized arrhythmia risk assessment and patient-specific therapy of atrial and ventricular arrhythmias is provided. The advancements presented here highlight how patient-specific computational models of the heart reconstructed from patient data have achieved success in predicting risk of sudden cardiac death and guiding optimal treatments of heart rhythm disorders. Finally, an outlook toward potential future advances, including the combination of mechanistic modeling and machine learning/artificial intelligence, is provided. As the field of cardiology is embarking on a journey toward precision medicine, personalized modeling of the heart is expected to become a key technology to guide pharmaceutical therapy, deployment of devices, and surgical interventions.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland, United States
| | - Aurore Lyon
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Julie Shade
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland, United States
| | - Jordi Heijman
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
17
|
Du Y, Tri JA, DeSimone CV, Kong X, Tolkacheva EG. Discrimination between RA and LA Sinus Rhythms using machine learning approach. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039295 DOI: 10.1109/embc53108.2024.10782285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Atrial fibrillation (AF) is a common cardiac disease that potentially leads to fatal conditions. Machine Learning (ML) classification methods are widely used to distinguish between sinus rhythm and AF for post-ablation rhythms in ECG. However, intracardiac electrograms (iEGMs) recorded in the left atrium (LA) and right atrium (RA) might have different sinus rhythms characteristics. In this work, we demonstrate a method to evaluate the iEGMs in the high-dimensional parameter space and effectively discriminate between the sinus rhythms recorded from LA and RA by extracting the features from the time series and using Support Vector Machine (SVM) and K-means clustering. We also demonstrate that the rhythms in LA post ablations exhibit a similar distribution in feature space to that of the sinus RA. The classification has achieved an accuracy of 90.15% for the non-supervised K-Means cluster. It marks the difference between LA and RA baseline and provides insights into signal identification using iEGMs.
Collapse
|
18
|
Lin YJ, Tan XHM, Wang Y, Chung PS, Zhang X, Wu TH, Wu TY, Deb A, Chiou PY. Label-Free Optical Mapping for Large-Area Biomechanical Dynamics of Multicellular Systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598186. [PMID: 38915576 PMCID: PMC11195166 DOI: 10.1101/2024.06.12.598186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Mapping cellular activities over large areas is crucial for understanding the collective behaviors of multicellular systems. Biomechanical properties, such as cellular traction force, serve as critical regulators of physiological states and molecular configurations. However, existing technologies for mapping large-area biomechanical dynamics are limited by the small field of view and scanning nature. To address this, we propose a novel platform that utilizes a vast number of optical diffractive elements for mapping large-area biomechanical dynamics. This platform achieves a field-of-view of 10.6 mm X 10.6 mm, a three-orders-of-magnitude improvement over traditional traction force microscopy. Transient mechanical waves generated by monolayer neonatal rat ventricular myocytes were captured with high spatiotemporal resolution (130 fps and 20 µm for temporal and spatial resolution, respectively). Furthermore, its label-free nature allows for long-term observations extended to a week, with minimal disruption of cellular functions. Finally, simultaneous measurements of calcium ions concentrations and biomechanical dynamics are demonstrated.
Collapse
|
19
|
Vogt S, Ramzan R, Cybulski P, Rhiel A, Weber P, Ruppert V, Irqsusi M, Rohrbach S, Niemann B, Mirow N, Rastan AJ. The ratio of cytochrome c oxidase subunit 4 isoform 4I1 and 4I2 mRNA is changed in permanent atrial fibrillation. ESC Heart Fail 2024; 11:1525-1539. [PMID: 38149324 PMCID: PMC11098639 DOI: 10.1002/ehf2.14607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 08/11/2023] [Accepted: 11/16/2023] [Indexed: 12/28/2023] Open
Abstract
AIMS The conditions of hypoxia are suggested to induce permanent atrial fibrillation (AF). The regulation of COX4I2 and COX4I1 depends on oxygen availability in tissues. A role of COX4I2 in the myocardium of AF patients is supposed for pathogenesis of AF and subsequent alterations in the electron transfer chain (ETC) under hypoxia. METHODS AND RESULTS In vitro, influence of hypoxia on HeLa 53 cells was studied and elevated parts of COX 4I2 were confirmed. Myocardial biopsies were taken ex vivo from the patients' Right Atria with SR (n = 31) and AF (n = 11), respectively. RT- PCR for mRNA expresson, mitochondrial respiration by polarography and the protein content of cytochrome c oxidase (CytOx) subunit 4I1 and CytOx subunit 4I2 by ELISA were studied. Clinical data were correlated to the findings of gene expressions in parallel. Patients with permanent AF had a change in isoform 4I2/4I1 expression along with a decrease of isoform COX 4I1 expression. The 4I2/4I1 ratio of mRNA expression was increased from 0.630 to 1.058 in comparison. However, the protein content of CytOx subunit 4 was much lower in the AF group, whereas the respiration/units enzyme activity in both groups remained the same. CONCLUSIONS This study describes a possible molecular correlate for the development of AF. Due to the known functional significance of COX 4I2, mitochondrial dysfunction can be assumed as a part of the pathogenesis of AF.
Collapse
Affiliation(s)
- Sebastian Vogt
- Cardiovascular Research LabPhilipps‐University MarburgMarburgGermany
- Department of Cardiac and Vascular SurgeryUniversity Hospital of Giessen and MarburgMarburgGermany
| | - Rabia Ramzan
- Cardiovascular Research LabPhilipps‐University MarburgMarburgGermany
- Department of Cardiac and Vascular SurgeryUniversity Hospital of Giessen and MarburgMarburgGermany
| | - Pia Cybulski
- Cardiovascular Research LabPhilipps‐University MarburgMarburgGermany
| | - Annika Rhiel
- Cardiovascular Research LabPhilipps‐University MarburgMarburgGermany
| | - Petra Weber
- Cardiovascular Research LabPhilipps‐University MarburgMarburgGermany
| | - Volker Ruppert
- Department of CardiologyUniversity Hospital of Giessen and MarburgMarburgGermany
| | - Marc Irqsusi
- Department of Cardiac and Vascular SurgeryUniversity Hospital of Giessen and MarburgMarburgGermany
| | - Susanne Rohrbach
- Institute of PhysiologyJustus Liebig University GiessenGiessenGermany
| | - Bernd Niemann
- Department of Cardiac and Vascular SurgeryUniversity Hospital of Giessen and MarburgGiessenGermany
| | - Nikolas Mirow
- Department of Cardiac and Vascular SurgeryUniversity Hospital of Giessen and MarburgMarburgGermany
| | - Ardawan J. Rastan
- Department of Cardiac and Vascular SurgeryUniversity Hospital of Giessen and MarburgMarburgGermany
| |
Collapse
|
20
|
Schmidt S, Li W, Schubert M, Binnewerg B, Prönnecke C, Zitzmann FD, Bulst M, Wegner S, Meier M, Guan K, Jahnke HG. Novel high-dense microelectrode array based multimodal bioelectronic monitoring system for cardiac arrhythmia re-entry analysis. Biosens Bioelectron 2024; 252:116120. [PMID: 38394704 DOI: 10.1016/j.bios.2024.116120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/26/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
In recent decades, significant progress has been made in the treatment of heart diseases, particularly in the field of personalized medicine. Despite the development of genetic tests, phenotyping and risk stratification are performed based on clinical findings and invasive in vivo techniques, such as stimulation conduction mapping techniques and programmed ventricular pacing. Consequently, label-free non-invasive in vitro functional analysis systems are urgently needed for more accurate and effective in vitro risk stratification, model-based therapy planning, and clinical safety profile evaluation of drugs. To overcome these limitations, a novel multilayer high-density microelectrode array (HD-MEA), with an optimized configuration of 512 sensing and 4 pacing electrodes on a sensor area of 100 mm2, was developed for the bioelectronic detection of re-entry arrhythmia patterns. Together with a co-developed front-end, we monitored label-free and in parallel cardiac electrophysiology based on field potential monitoring and mechanical contraction using impedance spectroscopy at the same microelectrode. In proof of principle experiments, human induced pluripotent stem cell (hiPS)-derived cardiomyocytes were cultured on HD-MEAs and used to demonstrate the sensitive quantification of contraction strength modulation by cardioactive drugs such as blebbistatin (IC50 = 4.2 μM), omecamtiv and levosimendan. Strikingly, arrhythmia-typical rotor patterns (re-entry) can be induced by optimized electrical stimulation sequences and detected with high spatial resolution. Therefore, we provide a novel cardiac re-entry analysis system as a promising reference point for diagnostic approaches based on in vitro assays using patient-specific hiPS-derived cardiomyocytes.
Collapse
Affiliation(s)
- Sabine Schmidt
- Centre for Biotechnology and Biomedicine, Biochemical Cell Technology, Leipzig University, Deutscher Platz 5, D-04103, Leipzig, Germany
| | - Wener Li
- Institute of Pharmacology and Toxicology, Carl Gustav Carus Medical Faculty, Technical University Dresden, Fetscherstraße 74, D-01307, Dresden, Germany
| | - Mario Schubert
- Institute of Pharmacology and Toxicology, Carl Gustav Carus Medical Faculty, Technical University Dresden, Fetscherstraße 74, D-01307, Dresden, Germany
| | - Björn Binnewerg
- Institute of Pharmacology and Toxicology, Carl Gustav Carus Medical Faculty, Technical University Dresden, Fetscherstraße 74, D-01307, Dresden, Germany
| | - Christoph Prönnecke
- Centre for Biotechnology and Biomedicine, Biochemical Cell Technology, Leipzig University, Deutscher Platz 5, D-04103, Leipzig, Germany
| | - Franziska D Zitzmann
- Centre for Biotechnology and Biomedicine, Biochemical Cell Technology, Leipzig University, Deutscher Platz 5, D-04103, Leipzig, Germany
| | - Martin Bulst
- Sciospec Scientific Instruments GmbH, Leipziger Str. 43b, D-04828, Bennewitz, Germany
| | - Sebastian Wegner
- Sciospec Scientific Instruments GmbH, Leipziger Str. 43b, D-04828, Bennewitz, Germany
| | - Matthias Meier
- Centre for Biotechnology and Biomedicine, Biochemical Cell Technology, Leipzig University, Deutscher Platz 5, D-04103, Leipzig, Germany; Helmholtz Pioneer Campus, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Carl Gustav Carus Medical Faculty, Technical University Dresden, Fetscherstraße 74, D-01307, Dresden, Germany
| | - Heinz-Georg Jahnke
- Centre for Biotechnology and Biomedicine, Biochemical Cell Technology, Leipzig University, Deutscher Platz 5, D-04103, Leipzig, Germany.
| |
Collapse
|
21
|
Lei M, Salvage SC, Jackson AP, Huang CLH. Cardiac arrhythmogenesis: roles of ion channels and their functional modification. Front Physiol 2024; 15:1342761. [PMID: 38505707 PMCID: PMC10949183 DOI: 10.3389/fphys.2024.1342761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/22/2024] [Indexed: 03/21/2024] Open
Abstract
Cardiac arrhythmias cause significant morbidity and mortality and pose a major public health problem. They arise from disruptions in the normally orderly propagation of cardiac electrophysiological activation and recovery through successive cardiomyocytes in the heart. They reflect abnormalities in automaticity, initiation, conduction, or recovery in cardiomyocyte excitation. The latter properties are dependent on surface membrane electrophysiological mechanisms underlying the cardiac action potential. Their disruption results from spatial or temporal instabilities and heterogeneities in the generation and propagation of cellular excitation. These arise from abnormal function in their underlying surface membrane, ion channels, and transporters, as well as the interactions between them. The latter, in turn, form common regulatory targets for the hierarchical network of diverse signaling mechanisms reviewed here. In addition to direct molecular-level pharmacological or physiological actions on these surface membrane biomolecules, accessory, adhesion, signal transduction, and cytoskeletal anchoring proteins modify both their properties and localization. At the cellular level of excitation-contraction coupling processes, Ca2+ homeostatic and phosphorylation processes affect channel activity and membrane excitability directly or through intermediate signaling. Systems-level autonomic cellular signaling exerts both acute channel and longer-term actions on channel expression. Further upstream intermediaries from metabolic changes modulate the channels both themselves and through modifying Ca2+ homeostasis. Finally, longer-term organ-level inflammatory and structural changes, such as fibrotic and hypertrophic remodeling, similarly can influence all these physiological processes with potential pro-arrhythmic consequences. These normal physiological processes may target either individual or groups of ionic channel species and alter with particular pathological conditions. They are also potentially alterable by direct pharmacological action, or effects on longer-term targets modifying protein or cofactor structure, expression, or localization. Their participating specific biomolecules, often clarified in experimental genetically modified models, thus constitute potential therapeutic targets. The insights clarified by the physiological and pharmacological framework outlined here provide a basis for a recent modernized drug classification. Together, they offer a translational framework for current drug understanding. This would facilitate future mechanistically directed therapeutic advances, for which a number of examples are considered here. The latter are potentially useful for treating cardiac, in particular arrhythmic, disease.
Collapse
Affiliation(s)
- Ming Lei
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Samantha C. Salvage
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Antony P. Jackson
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Christopher L.-H. Huang
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
22
|
Maizels L, Heller E, Landesberg M, Glatstein S, Huber I, Arbel G, Gepstein A, Aronson D, Sharabi S, Beinart R, Segev A, Maor E, Gepstein L. Utilizing Human-Induced Pluripotent Stem Cells to Study Cardiac Electroporation Pulsed-Field Ablation. Circ Arrhythm Electrophysiol 2024; 17:e012278. [PMID: 38344845 PMCID: PMC10949974 DOI: 10.1161/circep.123.012278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/16/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Electroporation is a promising nonthermal ablation method for cardiac arrhythmia treatment. Although initial clinical studies found electroporation pulsed-field ablation (PFA) both safe and efficacious, there are significant knowledge gaps concerning the mechanistic nature and electrophysiological consequences of cardiomyocyte electroporation, contributed by the paucity of suitable human in vitro models. Here, we aimed to establish and characterize a functional in vitro model based on human-induced pluripotent stem cells (hiPSCs)-derived cardiac tissue, and to study the fundamentals of cardiac PFA. METHODS hiPSC-derived cardiomyocytes were seeded as circular cell sheets and subjected to different PFA protocols. Detailed optical mapping, cellular, and molecular characterizations were performed to study PFA mechanisms and electrophysiological outcomes. RESULTS PFA generated electrically silenced lesions within the hiPSC-derived cardiac circular cell sheets, resulting in areas of conduction block. Both reversible and irreversible electroporation components were identified. Significant electroporation reversibility was documented within 5 to 15-minutes post-PFA. Irreversibly electroporated regions persisted at 24-hours post-PFA. Per single pulse, high-frequency PFA was less efficacious than standard (monophasic) PFA, whereas increasing pulse-number augmented lesion size and diminished reversible electroporation. PFA augmentation could also be achieved by increasing extracellular Ca2+ levels. Flow-cytometry experiments revealed that regulated cell death played an important role following PFA. Assessing for PFA antiarrhythmic properties, sustainable lines of conduction block could be generated using PFA, which could either terminate or isolate arrhythmic activity in the hiPSC-derived cardiac circular cell sheets. CONCLUSIONS Cardiac electroporation may be studied using hiPSC-derived cardiac tissue, providing novel insights into PFA temporal and electrophysiological characteristics, facilitating electroporation protocol optimization, screening for potential PFA-sensitizers, and investigating the mechanistic nature of PFA antiarrhythmic properties.
Collapse
Affiliation(s)
- Leonid Maizels
- Division of Cardiology, Leviev Center of Cardiovascular Medicine, Sheba Medical Center, Ramt Gan, Israel (L.M., E.H., R.B., A.S., E.M.)
- Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel (L.M., R.B., A.S., E.M.)
- Talpiot Sheba Medical Leadership Program, Sheba Medical Center, Ramat Gan, Israel (L.M., E.M.)
- Department of Cardiology, Royal Melbourne Hospital, Australia (L.M.)
| | - Eyal Heller
- Division of Cardiology, Leviev Center of Cardiovascular Medicine, Sheba Medical Center, Ramt Gan, Israel (L.M., E.H., R.B., A.S., E.M.)
| | - Michal Landesberg
- Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine, Technion, Haifa, Israel (M.L., S.G., I.H., G.A., A.G., L.G.)
| | - Shany Glatstein
- Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine, Technion, Haifa, Israel (M.L., S.G., I.H., G.A., A.G., L.G.)
| | - Irit Huber
- Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine, Technion, Haifa, Israel (M.L., S.G., I.H., G.A., A.G., L.G.)
| | - Gil Arbel
- Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine, Technion, Haifa, Israel (M.L., S.G., I.H., G.A., A.G., L.G.)
| | - Amira Gepstein
- Division of Cardiology, Leviev Center of Cardiovascular Medicine, Sheba Medical Center, Ramt Gan, Israel (L.M., E.H., R.B., A.S., E.M.)
- Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine, Technion, Haifa, Israel (M.L., S.G., I.H., G.A., A.G., L.G.)
| | - Doron Aronson
- Division of Cardiology, Rambam Health Care Campus, Haifa, Israel (D.A., L.G.)
| | - Shirley Sharabi
- Advanced Technology Center and Department of Radiology, Sheba Medical Center, Ramat Gan, Israel (S.S.)
| | - Roy Beinart
- Division of Cardiology, Leviev Center of Cardiovascular Medicine, Sheba Medical Center, Ramt Gan, Israel (L.M., E.H., R.B., A.S., E.M.)
- Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel (L.M., R.B., A.S., E.M.)
| | - Amit Segev
- Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel (L.M., R.B., A.S., E.M.)
| | - Elad Maor
- Division of Cardiology, Leviev Center of Cardiovascular Medicine, Sheba Medical Center, Ramt Gan, Israel (L.M., E.H., R.B., A.S., E.M.)
- Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel (L.M., R.B., A.S., E.M.)
- Talpiot Sheba Medical Leadership Program, Sheba Medical Center, Ramat Gan, Israel (L.M., E.M.)
| | - Lior Gepstein
- Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine, Technion, Haifa, Israel (M.L., S.G., I.H., G.A., A.G., L.G.)
- Division of Cardiology, Rambam Health Care Campus, Haifa, Israel (D.A., L.G.)
| |
Collapse
|
23
|
Gao P, Gao X, Xie B, Tse G, Liu T. Aging and atrial fibrillation: A vicious circle. Int J Cardiol 2024; 395:131445. [PMID: 37848123 DOI: 10.1016/j.ijcard.2023.131445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/17/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
Atrial fibrillation (AF) is the commonest sustained cardiac arrhythmia observed in clinical practice. Its prevalence increases dramatically with advancing age. This review article discusses the recent advances in studies investigating the relationship between aging and AF and the possible underlying mechanisms.
Collapse
Affiliation(s)
- Pan Gao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xinyi Gao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bingxin Xie
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China; School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
24
|
Shu Y, Smith TG, Arunachalam SP, Tolkacheva EG, Cheng C. Image-Decomposition-Enhanced Deep Learning for Detection of Rotor Cores in Cardiac Fibrillation. IEEE Trans Biomed Eng 2024; 71:68-76. [PMID: 37440380 DOI: 10.1109/tbme.2023.3292383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
OBJECTIVE Rotors, regions of spiral wave reentry in cardiac tissues, are considered as the drivers of atrial fibrillation (AF), the most common arrhythmia. Whereas physics-based approaches have been widely deployed to detect the rotors, in-depth knowledge in cardiac physiology and electrogram interpretation skills are typically needed. The recent leap forward in smart sensing, data acquisition, and Artificial Intelligence (AI) has offered an unprecedented opportunity to transform diagnosis and treatment in cardiac ailment, including AF. This study aims to develop an image-decomposition-enhanced deep learning framework for automatic identification of rotor cores on both simulation and optical mapping data. METHODS We adopt the Ensemble Empirical Mode Decomposition algorithm (EEMD) to decompose the original image, and the most representative component is then fed into a You-Only-Look-Once (YOLO) object-detection architecture for rotor detection. Simulation data from a bi-domain simulation model and optical mapping acquired from isolated rabbit hearts are used for training and validation. RESULTS This integrated EEMD-YOLO model achieves high accuracy on both simulation and optical mapping data (precision: 97.2%, 96.8%, recall: 93.8%, 92.2%, and F1 score: 95.5%, 94.4%, respectively). CONCLUSION The proposed EEMD-YOLO yields comparable accuracy in rotor detection with the gold standard in literature.
Collapse
|
25
|
Romero-Becerra R, Cruz FM, Mora A, Lopez JA, Ponce-Balbuena D, Allan A, Ramos-Mondragón R, González-Terán B, León M, Rodríguez ME, Leiva-Vega L, Guerrero-Serna G, Jimenez-Vazquez EN, Filgueiras-Rama D, Vázquez J, Jalife J, Sabio G. p38γ/δ activation alters cardiac electrical activity and predisposes to ventricular arrhythmia. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1204-1220. [PMID: 39196141 DOI: 10.1038/s44161-023-00368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 10/19/2023] [Indexed: 08/29/2024]
Abstract
Ventricular fibrillation (VF) is a leading immediate cause of sudden cardiac death. There is a strong association between aging and VF, although the mechanisms are unclear, limiting the availability of targeted therapeutic interventions. Here we found that the stress kinases p38γ and p38δ are activated in the ventricles of old mice and mice with genetic or drug-induced arrhythmogenic conditions. We discovered that, upon activation, p38γ and p38δ cooperatively increase the susceptibility to stress-induced VF. Mechanistically, our data indicate that activated p38γ and p38δ phosphorylate ryanodine receptor 2 (RyR2) disrupt Kv4.3 channel localization, promoting sarcoplasmic reticulum calcium leak, Ito current reduction and action potential duration prolongation. In turn, this led to aberrant intracellular calcium handling, premature ventricular complexes and enhanced susceptibility to VF. Blocking this pathway protected genetically modified animals from VF development and reduced the VF duration in aged animals. These results indicate that p38γ and p38δ are a potential therapeutic target for sustained VF prevention.
Collapse
Affiliation(s)
| | - Francisco M Cruz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alfonso Mora
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Juan Antonio Lopez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Daniela Ponce-Balbuena
- Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Andrew Allan
- Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Roberto Ramos-Mondragón
- Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Bárbara González-Terán
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Gladstone Institutes, San Francisco, CA, USA
| | - Marta León
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Luis Leiva-Vega
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Guadalupe Guerrero-Serna
- Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Eric N Jimenez-Vazquez
- Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - David Filgueiras-Rama
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Hospital Clínico Universitario San Carlos, Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
26
|
Venkateshappa R, Hunter DV, Muralidharan P, Nagalingam RS, Huen G, Faizi S, Luthra S, Lin E, Cheng YM, Hughes J, Khelifi R, Dhunna DP, Johal R, Sergeev V, Shafaattalab S, Julian LM, Poburko DT, Laksman Z, Tibbits GF, Claydon TW. Targeted activation of human ether-à-go-go-related gene channels rescues electrical instability induced by the R56Q+/- long QT syndrome variant. Cardiovasc Res 2023; 119:2522-2535. [PMID: 37739930 PMCID: PMC10676460 DOI: 10.1093/cvr/cvad155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 09/24/2023] Open
Abstract
AIMS Long QT syndrome type 2 (LQTS2) is associated with inherited variants in the cardiac human ether-à-go-go-related gene (hERG) K+ channel. However, the pathogenicity of hERG channel gene variants is often uncertain. Using CRISPR-Cas9 gene-edited hiPSC-derived cardiomyocytes (hiPSC-CMs), we investigated the pathogenic mechanism underlying the LQTS-associated hERG R56Q variant and its phenotypic rescue by using the Type 1 hERG activator, RPR260243. METHODS AND RESULTS The above approaches enable characterization of the unclear causative mechanism of arrhythmia in the R56Q variant (an N-terminal PAS domain mutation that primarily accelerates channel deactivation) and translational investigation of the potential for targeted pharmacologic manipulation of hERG deactivation. Using perforated patch clamp electrophysiology of single hiPSC-CMs, programmed electrical stimulation showed that the hERG R56Q variant does not significantly alter the mean action potential duration (APD90). However, the R56Q variant increases the beat-to-beat variability in APD90 during pacing at constant cycle lengths, enhances the variance of APD90 during rate transitions, and increases the incidence of 2:1 block. During paired S1-S2 stimulations measuring electrical restitution properties, the R56Q variant was also found to increase the variability in rise time and duration of the response to premature stimulations. Application of the hERG channel activator, RPR260243, reduces the APD variance in hERG R56Q hiPSC-CMs, reduces the variability in responses to premature stimulations, and increases the post-repolarization refractoriness. CONCLUSION Based on our findings, we propose that the hERG R56Q variant leads to heterogeneous APD dynamics, which could result in spatial dispersion of repolarization and increased risk for re-entry without significantly affecting the average APD90. Furthermore, our data highlight the antiarrhythmic potential of targeted slowing of hERG deactivation gating, which we demonstrate increases protection against premature action potentials and reduces electrical heterogeneity in hiPSC-CMs.
Collapse
Affiliation(s)
- Ravichandra Venkateshappa
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Diana V Hunter
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Priya Muralidharan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Raghu S Nagalingam
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
- Cellular and Regenerative Medicine Centre, British Columbia Children’s Hospital Research Institute, 938 W 28th Ave, Vancouver, BC, Canada V5Z 4H4
| | - Galvin Huen
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Shoaib Faizi
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Shreya Luthra
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Eric Lin
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Yen May Cheng
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Julia Hughes
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Rania Khelifi
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Daman Parduman Dhunna
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Raj Johal
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Valentine Sergeev
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Sanam Shafaattalab
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Lisa M Julian
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Damon T Poburko
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Zachary Laksman
- Department of Medicine, School of Biomedical Engineering, University of British Columbia, 2194 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | - Glen F Tibbits
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
- Cellular and Regenerative Medicine Centre, British Columbia Children’s Hospital Research Institute, 938 W 28th Ave, Vancouver, BC, Canada V5Z 4H4
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Tom W Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| |
Collapse
|
27
|
Syomin FA, Galushka VA, Tsaturyan AK. Effect of strain-dependent conduction slowing on the re-entry formation and maintenance in cardiac muscle: 2D computer simulation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3676. [PMID: 36562353 DOI: 10.1002/cnm.3676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The effect of mechano-electrical feedback on re-entry formation and maintenance was studied using a model of myocardial electromechanics that accounts for two components of myocardial conductivity and delayed strain-dependent changes in membrane capacitance that causes a conduction slowing. Two scenarios were simulated in 2D numerical experiments: (i) propagation of an excitation-contraction wave beyond the edge of a nonconductive nonexcitable obstacle; (ii) circulation of a re-entry wave around a nonconductive nonexcitable obstacle. The simulations demonstrated that the delayed strain-dependent deceleration of the conduction waves promotes the detachment of the excitation-contraction waves from the sharp edge of an elongated obstacle and modulates the re-entry waves rotating around a compact obstacle. The data show that the mechano-electrical feedback, together with an increase in the stimulation frequency and an increase in the excitation threshold, is an arrhythmogenic factor that must be taken into account when analyzing the possibility of the re-entry formation.
Collapse
Affiliation(s)
- Fyodor A Syomin
- Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia
| | | | - Andrey K Tsaturyan
- Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
28
|
Aitova A, Berezhnoy A, Tsvelaya V, Gusev O, Lyundup A, Efimov AE, Agapov I, Agladze K. Biomimetic Cardiac Tissue Models for In Vitro Arrhythmia Studies. Biomimetics (Basel) 2023; 8:487. [PMID: 37887618 PMCID: PMC10604593 DOI: 10.3390/biomimetics8060487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
Cardiac arrhythmias are a major cause of cardiovascular mortality worldwide. Many arrhythmias are caused by reentry, a phenomenon where excitation waves circulate in the heart. Optical mapping techniques have revealed the role of reentry in arrhythmia initiation and fibrillation transition, but the underlying biophysical mechanisms are still difficult to investigate in intact hearts. Tissue engineering models of cardiac tissue can mimic the structure and function of native cardiac tissue and enable interactive observation of reentry formation and wave propagation. This review will present various approaches to constructing cardiac tissue models for reentry studies, using the authors' work as examples. The review will highlight the evolution of tissue engineering designs based on different substrates, cell types, and structural parameters. A new approach using polymer materials and cellular reprogramming to create biomimetic cardiac tissues will be introduced. The review will also show how computational modeling of cardiac tissue can complement experimental data and how such models can be applied in the biomimetics of cardiac tissue.
Collapse
Affiliation(s)
- Aleria Aitova
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, 129110 Moscow, Russia
- Almetyevsk State Oil Institute, 423450 Almetyevsk, Russia
| | - Andrey Berezhnoy
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, 129110 Moscow, Russia
- Almetyevsk State Oil Institute, 423450 Almetyevsk, Russia
| | - Valeriya Tsvelaya
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, 129110 Moscow, Russia
- Almetyevsk State Oil Institute, 423450 Almetyevsk, Russia
| | - Oleg Gusev
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420018 Kazan, Russia
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | | | - Anton E. Efimov
- Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 123182 Moscow, Russia
| | - Igor Agapov
- Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 123182 Moscow, Russia
| | - Konstantin Agladze
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, 129110 Moscow, Russia
| |
Collapse
|
29
|
Shiti A, Arbil G, Shaheen N, Huber I, Setter N, Gepstein L. Utilizing human induced pluripotent stem cells to study atrial arrhythmias in the short QT syndrome. J Mol Cell Cardiol 2023; 183:42-53. [PMID: 37579942 PMCID: PMC10589759 DOI: 10.1016/j.yjmcc.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 07/17/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Among the monogenic inherited causes of atrial fibrillation is the short QT syndrome (SQTS), a rare channelopathy causing atrial and ventricular arrhythmias. One of the limitations in studying the mechanisms and optimizing treatment of SQTS-related atrial arrhythmias has been the lack of relevant human atrial tissues models. OBJECTIVE To generate a unique model to study SQTS-related atrial arrhythmias by combining the use of patient-specific human induced pluripotent stem cells (hiPSCs), atrial-specific differentiation schemes, two-dimensional tissue modeling, optical mapping, and drug testing. METHODS AND RESULTS SQTS (N588K KCNH2 mutation), isogenic-control, and healthy-control hiPSCs were coaxed to differentiate into atrial cardiomyocytes using a retinoic-acid based differentiation protocol. The atrial identity of the cells was confirmed by a distinctive pattern of MLC2v downregulation, connexin 40 upregulation, shorter and triangular-shaped action potentials (APs), and expression of the atrial-specific acetylcholine-sensitive potassium current. In comparison to the healthy- and isogenic control cells, the SQTS-hiPSC atrial cardiomyocytes displayed abbreviated APs and refractory periods along with an augmented rapidly activating delayed-rectifier potassium current (IKr). Optical mapping of a hiPSC-based atrial tissue model of the SQTS displayed shortened APD and altered biophysical properties of spiral waves induced in this model, manifested by accelerated spiral-wave frequency and increased rotor curvature. Both AP shortening and arrhythmia irregularities were reversed by quinidine and vernakalant treatment, but not by sotalol. CONCLUSIONS Patient-specific hiPSC-based atrial cellular and tissue models of the SQTS were established, which provide examples on how this type of modeling can shed light on the pathogenesis and pharmacological treatment of inherited atrial arrhythmias.
Collapse
Affiliation(s)
- Assad Shiti
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Gil Arbil
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Naim Shaheen
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Irit Huber
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Noga Setter
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Lior Gepstein
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel; Cardiolology Department, Rambam Health Care Campus, Haifa, Israel.
| |
Collapse
|
30
|
Pierre M, Djemai M, Chapotte-Baldacci CA, Pouliot V, Puymirat J, Boutjdir M, Chahine M. Cardiac involvement in patient-specific induced pluripotent stem cells of myotonic dystrophy type 1: unveiling the impact of voltage-gated sodium channels. Front Physiol 2023; 14:1258318. [PMID: 37791351 PMCID: PMC10544896 DOI: 10.3389/fphys.2023.1258318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a genetic disorder that causes muscle weakness and myotonia. In DM1 patients, cardiac electrical manifestations include conduction defects and atrial fibrillation. DM1 results in the expansion of a CTG transcribed into CUG-containing transcripts that accumulate in the nucleus as RNA foci and alter the activity of several splicing regulators. The underlying pathological mechanism involves two key RNA-binding proteins (MBNL and CELF) with expanded CUG repeats that sequester MBNL and alter the activity of CELF resulting in spliceopathy and abnormal electrical activity. In the present study, we identified two DM1 patients with heart conduction abnormalities and characterized their hiPSC lines. Two differentiation protocols were used to investigate both the ventricular and the atrial electrophysiological aspects of DM1 and unveil the impact of the mutation on voltage-gated ion channels, electrical activity, and calcium homeostasis in DM1 cardiomyocytes derived from hiPSCs. Our analysis revealed the presence of molecular hallmarks of DM1, including the accumulation of RNA foci and sequestration of MBNL1 in DM1 hiPSC-CMs. We also observed mis-splicing of SCN5A and haploinsufficiency of DMPK. Furthermore, we conducted separate characterizations of atrial and ventricular electrical activity, conduction properties, and calcium homeostasis. Both DM1 cell lines exhibited reduced density of sodium and calcium currents, prolonged action potential duration, slower conduction velocity, and impaired calcium transient propagation in both ventricular and atrial cardiomyocytes. Notably, arrhythmogenic events were recorded, including both ventricular and atrial arrhythmias were observed in the two DM1 cell lines. These findings enhance our comprehension of the molecular mechanisms underlying DM1 and provide valuable insights into the pathophysiology of ventricular and atrial involvement.
Collapse
Affiliation(s)
| | | | | | | | - Jack Puymirat
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, QC, Canada
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States
- Departments of Cell Biology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Mohamed Chahine
- CERVO Research Center, Quebec City, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
31
|
Dasí A, Pope MT, Wijesurendra RS, Betts TR, Sachetto R, Bueno‐Orovio A, Rodriguez B. What determines the optimal pharmacological treatment of atrial fibrillation? Insights from in silico trials in 800 virtual atria. J Physiol 2023; 601:4013-4032. [PMID: 37475475 PMCID: PMC10952228 DOI: 10.1113/jp284730] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
The best pharmacological treatment for each atrial fibrillation (AF) patient is unclear. We aim to exploit AF simulations in 800 virtual atria to identify key patient characteristics that guide the optimal selection of anti-arrhythmic drugs. The virtual cohort considered variability in electrophysiology and low voltage areas (LVA) and was developed and validated against experimental and clinical data from ionic currents to ECG. AF sustained in 494 (62%) atria, with large inward rectifier K+ current (IK1 ) and Na+ /K+ pump (INaK ) densities (IK1 0.11 ± 0.03 vs. 0.07 ± 0.03 S mF-1 ; INaK 0.68 ± 0.15 vs. 0.38 ± 26 S mF-1 ; sustained vs. un-sustained AF). In severely remodelled left atrium, with LVA extensions of more than 40% in the posterior wall, higher IK1 (median density 0.12 ± 0.02 S mF-1 ) was required for AF maintenance, and rotors localized in healthy right atrium. For lower LVA extensions, rotors could also anchor to LVA, in atria presenting short refractoriness (median L-type Ca2+ current, ICaL , density 0.08 ± 0.03 S mF-1 ). This atrial refractoriness, modulated by ICaL and fast Na+ current (INa ), determined pharmacological treatment success for both small and large LVA. Vernakalant was effective in atria presenting long refractoriness (median ICaL density 0.13 ± 0.05 S mF-1 ). For short refractoriness, atria with high INa (median density 8.92 ± 2.59 S mF-1 ) responded more favourably to amiodarone than flecainide, and the opposite was found in atria with low INa (median density 5.33 ± 1.41 S mF-1 ). In silico drug trials in 800 human atria identify inward currents as critical for optimal stratification of AF patient to pharmacological treatment and, together with the left atrial LVA extension, for accurately phenotyping AF dynamics. KEY POINTS: Atrial fibrillation (AF) maintenance is facilitated by small L-type Ca2+ current (ICaL ) and large inward rectifier K+ current (IK1 ) and Na+ /K+ pump. In severely remodelled left atrium, with low voltage areas (LVA) covering more than 40% of the posterior wall, sustained AF requires higher IK1 and rotors localize in healthy right atrium. For lower LVA extensions, rotors can also anchor to LVA, if the atria present short refractoriness (low ICaL ) Vernakalant is effective in atria presenting long refractoriness (high ICaL ). For short refractoriness, atria with fast Na+ current (INa ) up-regulation respond more favourably to amiodarone than flecainide, and the opposite is found in atria with low INa . The inward currents (ICaL and INa ) are critical for optimal stratification of AF patient to pharmacological treatment and, together with the left atrial LVA extension, for accurately phenotyping AF dynamics.
Collapse
Affiliation(s)
- Albert Dasí
- Department of Computer ScienceUniversity of OxfordOxfordUK
| | - Michael T.B. Pope
- Department of CardiologyOxford University Hospitals NHS Foundation TrustOxfordUK
- Department for Human Development and HealthUniversity of SouthamptonSouthamptonUK
| | - Rohan S. Wijesurendra
- Department of CardiologyOxford University Hospitals NHS Foundation TrustOxfordUK
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Tim R. Betts
- Department of CardiologyOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Rafael Sachetto
- Departamento de Ciência da ComputaçãoUniversidade Federal de São João del‐ReiSão João del‐ReiBrazil
| | | | | |
Collapse
|
32
|
Limpitikul WB, Das S. Obesity-Related Atrial Fibrillation: Cardiac Manifestation of a Systemic Disease. J Cardiovasc Dev Dis 2023; 10:323. [PMID: 37623336 PMCID: PMC10455513 DOI: 10.3390/jcdd10080323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia worldwide and is associated with increased morbidity and mortality. The mechanisms underlying AF are complex and multifactorial. Although it is well known that obesity is a strong risk factor for AF, the mechanisms underlying obesity-related AF are not completely understood. Current evidence proposes that in addition to overall hemodynamic changes due to increased body weight, excess adiposity raises systemic inflammation and oxidative stress, which lead to adverse atrial remodeling. This remodeling includes atrial fibrosis, atrial dilation, decreased electrical conduction between atrial myocytes, and altered ionic currents, making atrial tissue more vulnerable to both the initiation and maintenance of AF. However, much remains to be learned about the mechanistic links between obesity and AF. This knowledge will power the development of novel diagnostic tools and treatment options that will help combat the rise of the global AF burden among the obesity epidemic.
Collapse
Affiliation(s)
- Worawan B. Limpitikul
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
- Demoulas Family Foundation Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
33
|
Amoni M, Ingelaere S, Moeyersons J, Wets D, Tanushi A, Van Huffel S, Varon C, Sipido K, Claus P, Willems R. Regional beat-to-beat variability of repolarization increases during ischemia and predicts imminent arrhythmias in a pig model of myocardial infarction. Am J Physiol Heart Circ Physiol 2023; 325:H54-H65. [PMID: 37145956 PMCID: PMC10511165 DOI: 10.1152/ajpheart.00732.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/07/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
Ventricular arrhythmia (VT/VF) can complicate acute myocardial ischemia (AMI). Regional instability of repolarization during AMI contributes to the substrate for VT/VF. Beat-to-beat variability of repolarization (BVR), a measure of repolarization lability increases during AMI. We hypothesized that its surge precedes VT/VF. We studied the spatial and temporal changes in BVR in relation to VT/VF during AMI. In 24 pigs, BVR was quantified on 12-lead electrocardiogram recorded at a sampling rate of 1 kHz. AMI was induced in 16 pigs by percutaneous coronary artery occlusion (MI), whereas 8 underwent sham operation (sham). Changes in BVR were assessed at 5 min after occlusion, 5 and 1 min pre-VF in animals that developed VF, and matched time points in pigs without VF. Serum troponin and ST deviation were measured. After 1 mo, magnetic resonance imaging and VT induction by programmed electrical stimulation were performed. During AMI, BVR increased significantly in inferior-lateral leads correlating with ST deviation and troponin increase. BVR was maximal 1 min pre-VF (3.78 ± 1.36 vs. 5 min pre-VF, 1.67 ± 1.56, P < 0.0001). After 1 mo, BVR was higher in MI than in sham and correlated with the infarct size (1.43 ± 0.50 vs. 0.57 ± 0.30, P = 0.009). VT was inducible in all MI animals and the ease of induction correlated with BVR. BVR increased during AMI and temporal BVR changes predicted imminent VT/VF, supporting a possible role in monitoring and early warning systems. BVR correlated to arrhythmia vulnerability suggesting utility in risk stratification post-AMI.NEW & NOTEWORTHY The key finding of this study is that BVR increases during AMI and surges before ventricular arrhythmia onset. This suggests that monitoring BVR may be useful for monitoring the risk of VF during and after AMI in the coronary care unit settings. Beyond this, monitoring BVR may have value in cardiac implantable devices or wearables.
Collapse
Affiliation(s)
- Matthew Amoni
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Department of Cardiology, University Hospitals, Leuven, Belgium
| | - Sebastian Ingelaere
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Department of Cardiology, University Hospitals, Leuven, Belgium
| | - Jonathan Moeyersons
- Department of Electrical Engineering, STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
| | - Dries Wets
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Aldo Tanushi
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Sabine Van Huffel
- Department of Electrical Engineering, STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
| | - Carolina Varon
- Department of Electrical Engineering, STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
- Microgravity Research Center, Université Libre de Bruxelles, Brussels, Belgium
| | - Karin Sipido
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Piet Claus
- Cardiovascular Imaging and Dynamics, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Rik Willems
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Department of Cardiology, University Hospitals, Leuven, Belgium
| |
Collapse
|
34
|
Haines DE, Kong MH, Ruppersberg P, Haeusser P, Avitall B, Szili-Torok T, Verma A. Electrographic flow mapping for atrial fibrillation: theoretical basis and preliminary observations. J Interv Card Electrophysiol 2023; 66:1015-1028. [PMID: 35969338 PMCID: PMC10172240 DOI: 10.1007/s10840-022-01308-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/15/2022] [Indexed: 10/15/2022]
Abstract
Ablation strategies remain poorly defined for persistent atrial fibrillation (AF) patients with recurrence despite intact pulmonary vein isolation (PVI). As the ability to perform durable PVI improves, the need for advanced mapping to identify extra-PV sources of AF becomes increasingly evident. Multiple mapping technologies attempt to localize these self-sustained triggers and/or drivers responsible for initiating and/or maintaining AF; however, current approaches suffer from technical limitations. Electrographic flow (EGF) mapping is a novel mapping method based on well-established principles of optical flow and fluid dynamics. It enables the full spatiotemporal reconstruction of organized wavefront propagation within the otherwise chaotic and disorganized electrical conduction of AF. Given the novelty of EGF mapping and relative unfamiliarity of most clinical electrophysiologists with the mathematical principles powering the EGF algorithm, this paper provides an in-depth explanation of the technical/mathematical foundations of EGF mapping and demonstrates clinical applications of EGF mapping data and analyses. Starting with a 64-electrode basket catheter, unipolar EGMs are recorded and processed using an algorithm to visualize the electrographic flow and highlight the location of high prevalence AF "source" activity. The AF sources are agnostic to the specific mechanisms of source signal generation.
Collapse
Affiliation(s)
- David E Haines
- Department of Cardiovascular Medicine, Beaumont Hospital, Oakland University William Beaumont School of Medicine, 3601 West 13 Mile Rd., Royal Oaks, MI, 48973, USA.
| | | | | | | | - Boaz Avitall
- Department of Medicine and Bioengineering, University of Illinois, Chicago, IL, USA
| | - Tamas Szili-Torok
- Department of Cardiology, Electrophysiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Atul Verma
- Southlake Regional Health Centre, Division of Cardiology, University of Toronto, 602-581 Davis Drive, Newmarket, Ontario, L3Y 2P6, Canada.
| |
Collapse
|
35
|
Sakata K, Tanaka T, Yamashita S, Kobayashi M, Ito M, Yamashiro K. The spatiotemporal electrogram dispersion ablation targeting rotors is more effective for elderly patients than non-elderly population. J Arrhythm 2023; 39:315-326. [PMID: 37324760 PMCID: PMC10264740 DOI: 10.1002/joa3.12860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/10/2023] [Accepted: 04/16/2023] [Indexed: 06/17/2023] Open
Abstract
Background Modulating atrial fibrillation (AF) drivers has been proposed as one of the effective ablation strategies for non-paroxysmal AF (non-PAF). However, the optimal non-PAF ablation strategy is still under debate because the exact mechanisms of AF persistence including focal activity and/or rotational activity, are not well-understood. Recently, spatiotemporal electrogram dispersion (STED) assumed to indicate rotors in the form of rotational activity is proposed as an effective target for non-PAF ablation. We aimed to clarify the effectiveness of STED ablation for modulating AF drivers. Methods STED ablation plus pulmonary vein isolation was applied in 161 consecutive non-PAF patients not undergoing previous ablation. STED areas within the entire left and right atria were identified and ablated during AF. After the procedures, the STED ablation's acute and long-term outcomes were investigated. Results (1) Despite a more effective acute outcome of the STED ablation for both AF termination and non-inducibility of atrial tachyarrhythmias (ATAs), Kaplan-Meier curves showed that the 24-month freedom ratio from ATAs was 49%, which resulted from the higher recurrence ratio of atrial tachycardia (AT) rather than AF. (2) A multivariate analysis showed that the determinant of ATA recurrences was only a non-elderly age, not long-standing persistent AF, and an enlarged left atrium, which were conventionally considered as key factors. Conclusions STED ablation targeting rotors was effective in elderly non-PAF patients. Therefore, the main mechanism of AF persistency and the component of the fibrillatory conduction might vary between elders and non-elders. However, we should be careful about post-ablation ATs following substrate modification.
Collapse
Affiliation(s)
- Kensuke Sakata
- Alliance for Cardiovascular Diagnostic and Treatment InnovationJohns Hopkin UniversityBaltimoreMarylandUSA
| | - Tomomi Tanaka
- Heart Rhythm CenterTakatsuki General HospitalTakatsukiJapan
| | - Soichiro Yamashita
- Department of CardiologyHyogo Prefectural Awaji Medical CenterSumotoJapan
| | - Masanori Kobayashi
- Department of Cardiovascular MedicineMatsumoto Kyoritsu HospitalMatsumotoJapan
| | - Mitsuaki Ito
- Department of Cardiovascular MedicineHyogo Brain and Heart CenterHimejiJapan
| | | |
Collapse
|
36
|
Higuchi K, Iwai S, Kato N, Muramoto H, Onishi Y, Yokoyama Y, Hirao K, Sasano T. The utility of combining continuous wavelet transform analysis and high-density voltage map in predicting the long-term outcomes after ablation of persistent atrial fibrillation. J Interv Card Electrophysiol 2023; 66:405-416. [PMID: 35948727 DOI: 10.1007/s10840-022-01337-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Continuous wavelet transform (CWT) analysis is a frequency analysis to detect areas of stable high-frequent activity (stable pseudo frequency [sPF]) during atrial fibrillation (AF). As previously reported, patients with the highest sPF area in pulmonary veins (PV) showed better short-term outcomes after PV isolation (PVI). This study sought to evaluate the efficacy of CWT analysis in predicting the long-term (2 years) outcomes after PVI. We also combined the left atrial (LA) voltage map with CWT analysis to further predict the outcome. METHODS Persistent AF patients (n = 109, age 65 ± 10) underwent a CWT analysis at PVs and 8 LA sites during AF for pre-PVI analysis. After PVI during AF, CWT analysis was performed again in the LA as post-PVI analysis and was compared with pre-PVI analysis. A sinus voltage map of LA was created after cardioversion. RESULTS Seventy patients had the highest sPF within PVs (PV-dominant group), while 39 patients had the highest sPF outside PVs (LA-dominant group). The global frequency in the LA showed a significant decrease after PVI only in PV-dominant group (6.55 ± 0.27 to 6.43 ± 0.37, P < 0.01). AF-free survival was better in PV-dominant group than LA-dominant group at 2-year follow-up (87.1% vs. 64.3%, P < 0.002). This trend was recognized throughout all degrees of low voltage area in the LA (LA-LVA), and AF-free survival was well predicted by combining CWT analysis and LA-LVA. CONCLUSIONS By combining CWT analysis and sinus LA-LVA, the long-term AF-free survival after PVI was well stratified and predicted.
Collapse
Affiliation(s)
- Koji Higuchi
- Department of Cardiology, Hiratsuka Kyosai Hospital, 9-11 Oiwake Hiratsuka, Kanagawa, Japan.
| | - Shinsuke Iwai
- Department of Cardiology, Hiratsuka Kyosai Hospital, 9-11 Oiwake Hiratsuka, Kanagawa, Japan
| | - Nobutaka Kato
- Department of Cardiology, Hiratsuka Kyosai Hospital, 9-11 Oiwake Hiratsuka, Kanagawa, Japan
| | - Hirotaka Muramoto
- Department of Cardiology, Hiratsuka Kyosai Hospital, 9-11 Oiwake Hiratsuka, Kanagawa, Japan
| | - Yuko Onishi
- Department of Cardiology, Hiratsuka Kyosai Hospital, 9-11 Oiwake Hiratsuka, Kanagawa, Japan
| | - Yasuhiro Yokoyama
- Department of Cardiology, St. Luke's International Hospital, Tokyo, Japan
| | - Kenzo Hirao
- Department of Cardiology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuo Sasano
- Department of Cardiology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
37
|
Ford HZ, Manhart A, Chubb JR. Controlling periodic long-range signalling to drive a morphogenetic transition. eLife 2023; 12:83796. [PMID: 36856269 PMCID: PMC10027319 DOI: 10.7554/elife.83796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/28/2023] [Indexed: 03/02/2023] Open
Abstract
Cells use signal relay to transmit information across tissue scales. However, the production of information carried by signal relay remains poorly characterised. To determine how the coding features of signal relay are generated, we used the classic system for long-range signalling: the periodic cAMP waves that drive Dictyostelium collective migration. Combining imaging and optogenetic perturbation of cell signalling states, we find that migration is triggered by an increase in wave frequency generated at the signalling centre. Wave frequency is regulated by cAMP wave circulation, which organises the long-range signal. To determine the mechanisms modulating wave circulation, we combined mathematical modelling, the general theory of excitable media, and mechanical perturbations to test competing models. Models in which cell density and spatial patterning modulate the wave frequency cannot explain the temporal evolution of signalling waves. Instead, our evidence leads to a model where wave circulation increases the ability for cells to relay the signal, causing further increase in the circulation rate. This positive feedback between cell state and signalling pattern regulates the long-range signal coding that drives morphogenesis.
Collapse
Affiliation(s)
- Hugh Z Ford
- Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Angelika Manhart
- Department of Mathematics, University College London, London, United Kingdom
- Faculty of Mathematics, University of Vienna, Vienna, Austria
| | - Jonathan R Chubb
- Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
38
|
Kong X, Ravikumar V, Mulpuru SK, Roukoz H, Tolkacheva EG. A Data-Driven Preprocessing Framework for Atrial Fibrillation Intracardiac Electrocardiogram Analysis. ENTROPY (BASEL, SWITZERLAND) 2023; 25:332. [PMID: 36832698 PMCID: PMC9955244 DOI: 10.3390/e25020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Atrial Fibrillation (AF) is the most common cardiac arrhythmia. Signal-processing approaches are widely used for the analysis of intracardiac electrograms (iEGMs), which are collected during catheter ablation from patients with AF. In order to identify possible targets for ablation therapy, dominant frequency (DF) is widely used and incorporated in electroanatomical mapping systems. Recently, a more robust measure, multiscale frequency (MSF), for iEGM data analysis was adopted and validated. However, before completing any iEGM analysis, a suitable bandpass (BP) filter must be applied to remove noise. Currently, no clear guidelines for BP filter characteristics exist. The lower bound of the BP filter is usually set to 3-5 Hz, while the upper bound (BP¯th) of the BP filter varies from 15 Hz to 50 Hz according to many researchers. This large range of BP¯th subsequently affects the efficiency of further analysis. In this paper, we aimed to develop a data-driven preprocessing framework for iEGM analysis, and validate it based on DF and MSF techniques. To achieve this goal, we optimized the BP¯th using a data-driven approach (DBSCAN clustering) and demonstrated the effects of different BP¯th on subsequent DF and MSF analysis of clinically recorded iEGMs from patients with AF. Our results demonstrated that our preprocessing framework with BP¯th = 15 Hz has the best performance in terms of the highest Dunn index. We further demonstrated that the removal of noisy and contact-loss leads is necessary for performing correct data iEGMs data analysis.
Collapse
Affiliation(s)
- Xiangzhen Kong
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vasanth Ravikumar
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Siva K. Mulpuru
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Henri Roukoz
- Division of Cardiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elena G. Tolkacheva
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
39
|
Li TC, Li QH, Song Z, Pan DB, Zhong W, Luo J. Drift of sparse and dense spiral waves under joint external forces. Phys Rev E 2023; 107:024213. [PMID: 36932583 DOI: 10.1103/physreve.107.024213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Many methods have been employed to investigate the drift behaviors of spiral waves in an effort to understand and control their dynamics. Drift behaviors of sparse and dense spirals induced by external forces have been investigated, yet they remain incompletely understood. Here we employ joint external forces to study and control the drift dynamics. First, sparse and dense spiral waves are synchronized by the suitable external current. Then, under another weak current or heterogeneity, the synchronized spirals undergo a directional drift, and the dependence of their drift velocity on the strength and frequency of the joint external force is studied.
Collapse
Affiliation(s)
- Teng-Chao Li
- School of Physics, Hangzhou Normal University, Hangzhou 311121, China
| | - Qi-Hao Li
- Peng Cheng Laboratory, Shenzhen, Guangdong 518066, China
| | - Zhen Song
- Peng Cheng Laboratory, Shenzhen, Guangdong 518066, China
| | - De-Bei Pan
- Department of Physics, Guangxi Medical University, Nanning 530021, China
| | - Wei Zhong
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| | - Jinming Luo
- School of Mathematics, China University of Mining and Technology, Xuzhou 221008, China
| |
Collapse
|
40
|
Niort BC, Recalde A, Cros C, Brette F. Critical Link between Calcium Regional Heterogeneity and Atrial Fibrillation Susceptibility in Sheep Left Atria. J Clin Med 2023; 12:jcm12030746. [PMID: 36769395 PMCID: PMC9917890 DOI: 10.3390/jcm12030746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/30/2022] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Atrial fibrillation is the most sustained form of arrhythmia in the human population that leads to important electrophysiological and structural cardiac remodeling as it progresses into a chronic form. Calcium is an established key player of cellular electrophysiology in the heart, yet to date, there is no information that maps calcium signaling across the left atrium. OBJECTIVE The aim of this study is to determine whether calcium signaling is homogenous throughout the different regions of the left atrium. This work tests the hypothesis that differences across the healthy left atrium contribute to a unique, region-dependent calcium cycling and participates in the pro-arrhythmic activity during atrial fibrillation. METHODS An animal model relevant to human cardiac function (the sheep) was used to characterize both the electrical activity and the calcium signaling of three distinct left atrium regions (appendage, free wall and pulmonary veins) in control conditions and after acetylcholine perfusion (5 μM) to induce acute atrial fibrillation. High-resolution dual calcium-voltage optical mapping on the left atria of sheep was performed to explore the spatiotemporal dynamics of calcium signaling in relation to electrophysiological properties. RESULTS Action potential duration (at 80% repolarization) was not significantly different in the three regions of interest for the three pacing sites. In contrast, the time to 50% calcium transient decay was significantly different depending on the region paced and recorded. Acetylcholine perfusion and burst pacing-induced atrial fibrillation when pulmonary veins and appendage regions were paced but not when the free wall region was. Dantrolene (a ryanodine receptor blocker) did not reduce atrial fibrillation susceptibility. CONCLUSION These data provide the first evidence of heterogenous calcium signaling across the healthy left atrium. Such basal regional differences may be exacerbated during the progression of atrial fibrillation and thus play a crucial role in focal arrhythmia initiation without ryanodine receptor gating modification.
Collapse
Affiliation(s)
- Barbara C. Niort
- Centre de Recherche Cardio-Thoracique de Bordeaux (CRCTB), Inserm U1045, Univeristé de Bordeaux, F-33000 Bordeaux, France
- IHU Liryc, Electrophysiology and Heart Modeling Institute, F-33600 Pessac, France
| | - Alice Recalde
- Centre de Recherche Cardio-Thoracique de Bordeaux (CRCTB), Inserm U1045, Univeristé de Bordeaux, F-33000 Bordeaux, France
- IHU Liryc, Electrophysiology and Heart Modeling Institute, F-33600 Pessac, France
| | - Caroline Cros
- Centre de Recherche Cardio-Thoracique de Bordeaux (CRCTB), Inserm U1045, Univeristé de Bordeaux, F-33000 Bordeaux, France
- IHU Liryc, Electrophysiology and Heart Modeling Institute, F-33600 Pessac, France
| | - Fabien Brette
- Centre de Recherche Cardio-Thoracique de Bordeaux (CRCTB), Inserm U1045, Univeristé de Bordeaux, F-33000 Bordeaux, France
- IHU Liryc, Electrophysiology and Heart Modeling Institute, F-33600 Pessac, France
- Phymedexp Inserm, CNRS, Université de Montpellier, CHRU, F-34295 Montpellier, France
- Correspondence:
| |
Collapse
|
41
|
Steyer J, Lilienkamp T, Luther S, Parlitz U. The role of pulse timing in cardiac defibrillation. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 2:1007585. [PMID: 36926106 PMCID: PMC10013017 DOI: 10.3389/fnetp.2022.1007585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/28/2022] [Indexed: 01/05/2023]
Abstract
Life-threatening cardiac arrhythmias require immediate defibrillation. For state-of-the-art shock treatments, a high field strength is required to achieve a sufficient success rate for terminating the complex spiral wave (rotor) dynamics underlying cardiac fibrillation. However, such high energy shocks have many adverse side effects due to the large electric currents applied. In this study, we show, using 2D simulations based on the Fenton-Karma model, that also pulses of relatively low energy may terminate the chaotic activity if applied at the right moment in time. In our simplified model for defibrillation, complex spiral waves are terminated by local perturbations corresponding to conductance heterogeneities acting as virtual electrodes in the presence of an external electric field. We demonstrate that time series of the success rate for low energy shocks exhibit pronounced peaks which correspond to short intervals in time during which perturbations aiming at terminating the chaotic fibrillation state are (much) more successful. Thus, the low energy shock regime, although yielding very low temporal average success rates, exhibits moments in time for which success rates are significantly higher than the average value shown in dose-response curves. This feature might be exploited in future defibrillation protocols for achieving high termination success rates with low or medium pulse energies.
Collapse
Affiliation(s)
- Joshua Steyer
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, Georg-August-Universität Göttingen, Göttingen, Germany
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Thomas Lilienkamp
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Faculty for Applied Mathematics, Physics, and General Science, Computational Physics for Life Science, Nuremberg Institute of Technology Georg Simon Ohm, Nürnberg, Germany
| | - Stefan Luther
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, Georg-August-Universität Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Ulrich Parlitz
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, Georg-August-Universität Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
42
|
Shi WR, Wu SH, Zou GC, Xu K, Jiang WF, Zhang Y, Qin M, Liu X. A novel approach for quantitative electrogram analysis for driver identification: Implications for ablation in persistent atrial fibrillation. Front Cardiovasc Med 2022; 9:1049854. [DOI: 10.3389/fcvm.2022.1049854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/14/2022] [Indexed: 12/04/2022] Open
Abstract
ObjectiveThis study sought to study the feasibility, efficacy, and safety of using multiscale entropy (MSE) analysis to guide catheter ablation for persistent atrial fibrillation (PsAF) and predict ablation outcomes.MethodsWe prospectively enrolled 108 patients undergoing initial ablation for PsAF. MSE was calculated based on bipolar intracardiac electrograms (iEGMs) to measure the dynamical complexity of biological signals. The iEGMs data were exported after pulmonary vein isolation (PVI), then calculated in a customed platform, and finally re-annotated into the CARTO system. After PVI, regions of the highest mean MSE (mMSE) values were ablated in descending order until AF termination, or three areas had been ablated.ResultsBaseline characteristics were evenly distributed between the AF termination (n = 38, 35.19%) and the non-termination group. The RA-to-LA mean MSE (mMSE) gradient demonstrated a positive gradient in the non-termination group and a negative gradient in the termination group (0.105 ± 0.180 vs. −0.235 ± 0.256, P < 0.001). During a 12-month follow-up, 29 patients (26.9%) had arrhythmia recurrence after single ablation, and 18 of them had AF (62.1%). The termination group had lower rates of arrhythmia recurrence (15.79 vs. 32.86%, Log-Rank P = 0.053) and AF recurrence (10.53 vs. 20%, Log-Rank P = 0.173) after single ablation and a lower rate of arrhythmia recurrence (7.89 vs. 27.14%, Log-Rank P = 0.018) after repeated ablation. Correspondingly, subjects with negative RA-to-LA mMSE gradient had lower incidences of arrhythmia (16.67 vs. 35%, Log-Rank P = 0.028) and AF (16.67 vs. 35%, Log-Rank P = 0.032) recurrence after single ablation and arrhythmia recurrence after repeated ablation (12.5 vs. 26.67%, Log-Rank P = 0.062). Marginal peri-procedural safety outcomes were observed.ConclusionMSE analysis-guided driver ablation in addition to PVI for PsAF could be feasible, efficient, and safe. An RA < LA mMSE gradient before ablation could predict freedom from arrhythmia. The RA-LA MSE gradient could be useful for guiding ablation strategy selection.
Collapse
|
43
|
Oknińska M, Mączewski M, Mackiewicz U. Ventricular arrhythmias in acute myocardial ischaemia-Focus on the ageing and sex. Ageing Res Rev 2022; 81:101722. [PMID: 36038114 DOI: 10.1016/j.arr.2022.101722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 01/31/2023]
Abstract
Annually, approximately 17 million people die from cardiovascular diseases worldwide, half of them suddenly. The most common direct cause of sudden cardiac death is ventricular arrhythmia triggered by an acute coronary syndrome (ACS). The study summarizes the knowledge of the mechanisms of arrhythmia onset during ACS in humans and in animal models and factors that may influence the susceptibility to life-threatening arrhythmias during ACS with particular focus on the age and sex. The real impact of age and sex on the arrhythmic susceptibility within the setting of acute ischaemia is masked by the fact that ACSs result from coronary artery disease appearing with age much earlier among men than among women. However, results of researches show that in ageing process changes with potential pro-arrhythmic significance, such as increased fibrosis, cardiomyocyte hypertrophy, decrease number of gap junction channels, disturbances of the intracellular Ca2+ signalling or changes in electrophysiological parameters, occur independently of the development of cardiovascular diseases and are more severe in male individuals. A review of the literature also indicates a marked paucity of research in this area in female and elderly individuals. Greater awareness of sex differences in the aging process could help in the development of personalized prevention methods targeting potential pro-arrhythmic factors in patients of both sexes to reduce mortality during the acute phase of myocardial infarction. This is especially important in an era of aging populations in which women will predominate due to their longer lifespan.
Collapse
Affiliation(s)
- Marta Oknińska
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Michał Mączewski
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Urszula Mackiewicz
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| |
Collapse
|
44
|
Yamamoto C, Trayanova NA. Atrial fibrillation: Insights from animal models, computational modeling, and clinical studies. EBioMedicine 2022; 85:104310. [PMID: 36309006 PMCID: PMC9619190 DOI: 10.1016/j.ebiom.2022.104310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/25/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022] Open
Abstract
Atrial fibrillation (AF) is the most common human arrhythmia, affecting millions of patients worldwide. A combination of risk factors and comorbidities results in complex atrial remodeling, which increases AF vulnerability and persistence. Insights from animal models, clinical studies, and computational modeling have advanced the understanding of the mechanisms and pathophysiology of AF. Areas of heterogeneous pathological remodeling, as well as altered electrophysiological properties, serve as a substrate for AF drivers and spontaneous activations. The complex and individualized presentation of this arrhythmia suggests that mechanisms-based personalized approaches will likely be needed to overcome current challenges in AF management. In this paper, we review the insights on the mechanisms of AF obtained from animal models and clinical studies and how computational models integrate this knowledge to advance AF clinical management. We also assess the challenges that need to be overcome to implement these mechanistic models in clinical practice.
Collapse
Affiliation(s)
- Carolyna Yamamoto
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Natalia A. Trayanova
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Alliance for Cardiovascular Diagnostic and Treatment Innovation (ADVANCE), Johns Hopkins University, Baltimore, MD, USA,Corresponding author. Johns Hopkins, Johns Hopkins University, United States.
| |
Collapse
|
45
|
Dantas E, Orlande HRB, Dulikravich GS. Thermal ablation effects on rotors that characterize functional re-entry cardiac arrhythmia. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3614. [PMID: 35543287 DOI: 10.1002/cnm.3614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 06/14/2023]
Abstract
Thermal ablation is a well-established successful treatment for cardiac arrhythmia, but it still presents limitations that require further studies and developments. In the rotor-driven functional re-entry arrhythmia, tissue heterogeneity results on the generation of spiral/scroll waves and wave break dynamics that may cause dangerous sustainable fibrillation. The selection of the target region to perform thermal ablation to mitigate this type of arrhythmia is challenging, since it considerably affects the local electrophysiology dynamics. This work deals with the numerical simulation of the thermal ablation of a cardiac muscle tissue and its effects on the dynamics of rotor-driven functional re-entry arrhythmia. A non-homogeneous two-dimensional rectangular region is used in the present numerical analysis, where radiofrequency ablation is performed. The electrophysiology problem for the propagation of the action potential in the cardiac tissue is simulated with the Fenton-Karma model. Thermal damage caused to the tissue by the radiofrequency heating is modeled by the Arrhenius equation. The effects of size and position of a heterogeneous region in the original muscle tissue were first analyzed, in order to verify the possible existence of the functional re-entry arrhythmia during the time period considered in the simulations. For each case that exhibited re-entry arrhythmia, six different ablation procedures were analyzed, depending on the position of the radiofrequency electrode and heating time. The obtained results revealed the effects of different model parameters on the existence and possible mitigation of the functional re-entry arrhythmia.
Collapse
Affiliation(s)
- Eber Dantas
- Department of Mechanical Engineering, Politécnica/COPPE, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil
| | - Helcio R B Orlande
- Department of Mechanical Engineering, Politécnica/COPPE, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil
| | - George S Dulikravich
- Department of Mechanical and Materials Engineering, MAIDROC Lab., Florida International University, Miami, Florida, USA
| |
Collapse
|
46
|
Xia YX, Zhi XP, Li TC, Pan JT, Panfilov AV, Zhang H. Spiral wave drift under optical feedback in cardiac tissue. Phys Rev E 2022; 106:024405. [PMID: 36109896 DOI: 10.1103/physreve.106.024405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Spiral waves occur in various types of excitable media and their dynamics determine the spatial excitation patterns. An important type of spiral wave dynamics is drift, as it can control the position of a spiral wave or eliminate a spiral wave by forcing it to the boundary. In theoretical and experimental studies of the Belousov-Zhabotinsky reaction, it was shown that the most direct way to induce the controlled drift of spiral waves is by application of an external electric field. Mathematically such drift occurs due to the onset of additional gradient terms in the Laplacian operator describing excitable media. However, this approach does not work for cardiac excitable tissue, where an external electric field does not result in gradient terms. In this paper, we propose a method of how to induce a directed linear drift of spiral waves in cardiac tissue, which can be realized as an optical feedback control in tissue where photosensitive ion channels are expressed. We illustrate our method by using the FitzHugh-Nagumo model for cardiac tissue and the generic model of photosensitive ion channels. We show that our method works for continuous and discrete light sources and can effectively move spiral waves in cardiac tissue, or eliminate them by collisions with the boundary or with another spiral wave. We finally implement our method by using a biophysically motivated photosensitive ion channel model included to the Luo-Rudy model for cardiac cells and show that the proposed feedback control also induces directed linear drift of spiral waves in a wide range of light intensities.
Collapse
Affiliation(s)
- Yuan-Xun Xia
- Zhejiang Institute of Modern Physics, School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Xin-Pei Zhi
- Zhejiang Institute of Modern Physics, School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Teng-Chao Li
- School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| | - Jun-Ting Pan
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Alexander V Panfilov
- Department of Physics and Astronomy, Ghent University, Ghent 9000, Belgium
- Laboratory of Computational Biology and Medicine, Ural Federal University, Ekaterinburg 620002, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow 119146, Russia
| | - Hong Zhang
- Zhejiang Institute of Modern Physics, School of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
47
|
Fatoyinbo HO, Brown RG, Simpson DJW, van Brunt B. Pattern Formation in a Spatially Extended Model of Pacemaker Dynamics in Smooth Muscle Cells. Bull Math Biol 2022; 84:86. [PMID: 35804271 PMCID: PMC9270316 DOI: 10.1007/s11538-022-01043-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/16/2022] [Indexed: 11/30/2022]
Abstract
Spatiotemporal patterns are common in biological systems. For electrically coupled cells, previous studies of pattern formation have mainly used applied current as the primary bifurcation parameter. The purpose of this paper is to show that applied current is not needed to generate spatiotemporal patterns for smooth muscle cells. The patterns can be generated solely by external mechanical stimulation (transmural pressure). To do this we study a reaction-diffusion system involving the Morris-Lecar equations and observe a wide range of spatiotemporal patterns for different values of the model parameters. Some aspects of these patterns are explained via a bifurcation analysis of the system without coupling - in particular Type I and Type II excitability both occur. We show the patterns are not due to a Turing instability and that the spatially extended model exhibits spatiotemporal chaos. We also use travelling wave coordinates to analyse travelling waves.
Collapse
Affiliation(s)
- H. O. Fatoyinbo
- School of Mathematical and Computational Sciences, Massey University, Palmerston North, New Zealand
| | - R. G. Brown
- School of Mathematical and Computational Sciences, Massey University, Palmerston North, New Zealand
| | - D. J. W. Simpson
- School of Mathematical and Computational Sciences, Massey University, Palmerston North, New Zealand
| | - B. van Brunt
- School of Mathematical and Computational Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
48
|
Kulangareth NV, Magtibay K, Massé S, Krishnakumar Nair, Dorian P, Nanthakumar K, Umapathy K. An In-Silico model for evaluating the directional shock vectors in terminating and modulating rotors. Comput Biol Med 2022; 146:105665. [DOI: 10.1016/j.compbiomed.2022.105665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/03/2022] [Accepted: 05/19/2022] [Indexed: 11/27/2022]
|
49
|
Rotor hypothesis in the time chain of atrial fibrillation. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2022; 19:251-253. [PMID: 35572219 PMCID: PMC9068591 DOI: 10.11909/j.issn.1671-5411.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Zaman JAB, Grace AA, Narayan SM. Future Directions for Mapping Atrial Fibrillation. Arrhythm Electrophysiol Rev 2022; 11:e08. [PMID: 35734143 PMCID: PMC9194915 DOI: 10.15420/aer.2021.52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/08/2021] [Indexed: 01/14/2023] Open
Abstract
Mapping for AF focuses on the identification of regions of interest that may guide management and - in particular - ablation therapy. Mapping may point to specific mechanisms associated with localised scar or fibrosis, or electrical features, such as localised repetitive, rotational or focal activation. In patients in whom AF is caused by disorganised waves with no spatial predilection, as proposed in the multiwavelet theory for AF, mapping would be of less benefit. The role of AF mapping is controversial at the current time in view of the debate over the underlying mechanisms. However, recent clinical expansions of mapping technologies confirm the importance of understanding the state of the art, including limitations of current approaches and potential areas of future development.
Collapse
Affiliation(s)
- Junaid AB Zaman
- Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Andrew A Grace
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Sanjiv M Narayan
- Cardiovascular Institute and Department of Medicine, Stanford University, CA, US
| |
Collapse
|