1
|
Kim S, Park S, Kim YJ, Hyun J, Choi J. miRNA-199b-5p suppresses of oral squamous cell carcinoma by targeting apical-basolateral polarity via Scribble/Lgl. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102363. [PMID: 39558906 PMCID: PMC11570515 DOI: 10.1016/j.omtn.2024.102363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024]
Abstract
In epithelial cells, Scribble forms cell-cell junctions and contributes to cell morphology and homeostasis by regulating apical-basolateral polarity in mammals and functions as a tumor suppressor in many carcinomas. The initial diagnosis of oral squamous cell carcinoma is important, and its prognosis is poor when accompanied by metastasis. However, research on the mechanisms of oral squamous cell carcinoma metastasis is insufficient. Herein, we showed that Scribble regulates the apical-basolateral polarity of oral squamous cell carcinoma by regulating lethal giant larvae 1, Scribble module and E-cadherin, the adhesion junction. The expression of lethal giant larvae 1 and E-cadherin decreased when the expression of Scribble was knocked down and their localization was completely disrupted in both the oral squamous cell carcinoma cell line and in vivo model. In particular, the Scribble was involved in oral squamous cell carcinoma metastasis via hsa-miR-199b-5p, which is a microenvironmental factor of hypoxia. The disruption of Scribble localization under hypoxic conditions, but its localization was maintained in miR-199b-5p oral squamous cell carcinoma cell lines and in vivo. These results suggest that Scribble functions as a tumor suppressor marker mediated by miR-199b-5p in oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Shihyun Kim
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung-si, Gangwon-do 25457, Republic of Korea
| | - Suyeon Park
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung-si, Gangwon-do 25457, Republic of Korea
| | - Yong-Jae Kim
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan-si, Chungcheongnam-do 31116, Republic of Korea
| | - Jeongeun Hyun
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan-si, Chungcheongnam-do 31116, Republic of Korea
- Department of Biomedical Sciences & Biosystem, College of Bio-convergence, Dankook University, Cheonan 311166, Republic of Korea
| | - Jongho Choi
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung-si, Gangwon-do 25457, Republic of Korea
| |
Collapse
|
2
|
Song R, Zhang L. MicroRNAs and therapeutic potentials in acute and chronic cardiac disease. Drug Discov Today 2024; 29:104179. [PMID: 39276921 DOI: 10.1016/j.drudis.2024.104179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
microRNAs (miRNAs) are small regulatory RNAs implicated in various cardiac disorders. In this review, the role of miRNAs is discussed in relation to acute myocardial infarction and chronic heart failure. In both settings, miRNAs are altered, contributing to injury and adverse remodeling. Notably, miRNA profiles differ between acute ischemic injury and progressive heart failure. Owing to miRNA variabilities between disease stages and delivery difficulties, translation of animal studies to the clinic remains challenging. The identification of distinct miRNA signatures could lead to the development of miRNA therapies tailored to different disease stages. Here, we summarize the current understanding of miRNAs in acute and chronic cardiac diseases, identify knowledge gaps and discuss progress in developing miRNA-based treatment strategies.
Collapse
Affiliation(s)
- Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
3
|
Lee S. Cardiovascular Disease and miRNAs: Possible Oxidative Stress-Regulating Roles of miRNAs. Antioxidants (Basel) 2024; 13:656. [PMID: 38929095 PMCID: PMC11200533 DOI: 10.3390/antiox13060656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
MicroRNAs (miRNAs) have been highlighted as key players in numerous diseases, and accumulating evidence indicates that pathological expressions of miRNAs contribute to both the development and progression of cardiovascular diseases (CVD), as well. Another important factor affecting the development and progression of CVD is reactive oxygen species (ROS), as well as the oxidative stress they may impose on the cells. Considering miRNAs are involved in virtually every biological process, it is not unreasonable to assume that miRNAs also play critical roles in the regulation of oxidative stress. This narrative review aims to provide mechanistic insights on possible oxidative stress-regulating roles of miRNAs in cardiovascular diseases based on differentially expressed miRNAs reported in various cardiovascular diseases and their empirically validated targets that have been implicated in the regulation of oxidative stress.
Collapse
Affiliation(s)
- Seahyoung Lee
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
| |
Collapse
|
4
|
Pasławska M, Grodzka A, Peczyńska J, Sawicka B, Bossowski AT. Role of miRNA in Cardiovascular Diseases in Children-Systematic Review. Int J Mol Sci 2024; 25:956. [PMID: 38256030 PMCID: PMC10816020 DOI: 10.3390/ijms25020956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The number of children suffering from cardiovascular diseases (CVDs) is rising globally. Therefore, there is an urgent need to acquire a better understanding of the genetic factors and molecular mechanisms related to the pathogenesis of CVDs in order to develop new prevention and treatment strategies for the future. MicroRNAs (miRNAs) constitute a class of small non-coding RNA fragments that range from 17 to 25 nucleotides in length and play an essential role in regulating gene expression, controlling an abundance of biological aspects of cell life, such as proliferation, differentiation, and apoptosis, thus affecting immune response, stem cell growth, ageing and haematopoiesis. In recent years, the concept of miRNAs as diagnostic markers allowing discrimination between healthy individuals and those affected by CVDs entered the purview of academic debate. In this review, we aimed to systematise available information regarding miRNAs associated with arrhythmias, cardiomyopathies, myocarditis and congenital heart diseases in children. We focused on the targeted genes and metabolic pathways influenced by those particular miRNAs, and finally, tried to determine the future of miRNAs as novel biomarkers of CVD.
Collapse
Affiliation(s)
| | | | | | | | - Artur Tadeusz Bossowski
- Department of Pediatrics, Endocrinology, Diabetology with Cardiology Divisions, Medical University of Bialystok, J. Waszyngtona 17, 15-274 Bialystok, Poland; (M.P.); (A.G.); (J.P.); (B.S.)
| |
Collapse
|
5
|
He X, Dutta S, Liang J, Paul C, Huang W, Xu M, Chang V, Ao I, Wang Y. Direct cellular reprogramming techniques for cardiovascular regenerative therapeutics. Can J Physiol Pharmacol 2024; 102:1-13. [PMID: 37903419 DOI: 10.1139/cjpp-2023-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Cardiovascular diseases remain a leading cause of hospitalization affecting approximately 38 million people worldwide. While pharmacological and revascularization techniques can improve the patient's survival and quality of life, they cannot help reversing myocardial infarction injury and heart failure. Direct reprogramming of somatic cells to cardiomyocyte and cardiac progenitor cells offers a new approach to cellular reprogramming and paves the way for translational regenerative medicine. Direct reprogramming can bypass the pluripotent stage with the potential advantage of non-immunogenic cell products, reduced carcinogenic risk, and no requirement for embryonic tissue. The process of directly reprogramming cardiac cells was first achieved through the overexpression of transcription factors such as GATA4, MEF2C, and TBX5. However, over the past decade, significant work has been focused on enhancing direct reprogramming using a mixture of transcription factors, microRNAs, and small molecules to achieve cardiac cell fate. This review discusses the evolution of direct reprogramming, recent progress in achieving efficient cardiac cell fate conversion, and describes the reprogramming mechanisms at a molecular level. We also explore various viral and non-viral delivery methods currently being used to aid in the delivery of reprogramming factors to improve efficiency. However, further studies will be needed to overcome molecular and epigenetic barriers to successfully achieve translational cardiac regenerative therapeutics.
Collapse
Affiliation(s)
- Xingyu He
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Suchandrima Dutta
- Department of Internal MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Jialiang Liang
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Christian Paul
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Wei Huang
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Meifeng Xu
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Vivian Chang
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Ian Ao
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Yigang Wang
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| |
Collapse
|
6
|
Zhao Q, Yang W, Li X, Yuan H, Guo J, Wang Y, Shan Z. MicroRNA-499-5p inhibits transforming growth factor-β1-induced Smad2 signaling pathway and suppresses fibroblast proliferation and collagen synthesis in rat by targeting TGFβ-R1. Mol Biol Rep 2023; 50:9757-9767. [PMID: 37676431 PMCID: PMC10676300 DOI: 10.1007/s11033-023-08755-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/10/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Artial fibrosis has been recognized as a typical pathological change in atrial fibrillation. Although present evidence suggests that microRNA-499-5p (miR-499-5p) plays an important role in the development of atrial fibrosis, the specific mechanism is not fully understood. Therefore, this study attempted to assess the influence of miR-499-5p on atrial fibroblasts and explore the potential molecular mechanism. METHODS Atrial fibroblasts from sprague dawley rat were respectively transfected with miR-499-5p mimic, miR-499-5p negative control and miR-499-5p inhibitor, atrial fibroblasts without any treatment were also established. Cell counting kit-8 assay and transwell assay were used to detect the proliferation and migration of atrial fibroblasts in each group. Expressions of miR-499-5p, TGF-β1, smad2, α-SMA, collagen-I and TGFβ-R1 in mRNA and protein level were subsequently detected via quantitative real-time polymerase chain reaction and western blot. Furthermore, the prediction of the binding sites of miR-499-5p and TGFβ-R1 was performed via the bioinformatics online software TargetScan and verified by dual luciferase reporter. RESULTS By utilizing miR-499-5p-transfected atrial fibroblasts model, expression of miR-499-5p in the miR-499-5p mimic group was upregulated, while it was downregulated in the miR-499-5p inhibitors group. Upregulated miR-499-5p expression led to to a significant decrease in the proliferative and migratory ability of cultured atrial fibroblasts, while downregulated miR-499-5p expression led to a significant increase in the proliferative and migratory ability of cultured atrial fibroblasts. Additionally, upregulated miR-499-5p expression made a significant rise in TGF-β1-induced mRNA and protein expression of TGF-β1, TGFβ-R1, smad2, α-SMA and collagen-I in atrial fibroblasts. Furthermore, results from the dual luciferase reporter conformed that miR-499-5p may repress TGFβ-R1 by binding the 3'UTR of TGFβ-R1 directly. CONCLUSIONS miR-499-5p is able to inhibit the activation of transforming growth factor β-induced Smad2 signaling and eventually suppressed the proliferation, migration and invasion of atrial fibroblasts and collagen synthesis by targeting TGFβ-R1.
Collapse
Affiliation(s)
- Qing Zhao
- Chinese PLA Medical Academy, Beijing, China
- Department of Cardiovascular Medicine, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wentao Yang
- Department of Cardiology, Beijing Jishuitan Hospital, The Fourth Clinical Medical College of Peking University, Beijing, China
| | | | - Hongtao Yuan
- Department of Cardiovascular Medicine, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | | | - Yutang Wang
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Zhaoliang Shan
- Chinese PLA Medical Academy, Beijing, China.
- Department of Cardiovascular Medicine, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
7
|
Sharma AK, Bisht P, Gupta B, Sayeed Akhtar MD, Shaik Alavudeen S, Afzal O, Sa Altamimi A. Investigating miRNA subfamilies: Can they assist in the early diagnosis of acute myocardial infarction? Drug Discov Today 2023; 28:103695. [PMID: 37406730 DOI: 10.1016/j.drudis.2023.103695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/04/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
This report focuses on small non-coding RNA molecules (miRNAs), which have emerged as potential biomarkers with variable diagnostic values and false-positives in different conditions that limit their clinical preference. Current investigations focus on small non-coding RNA molecules (miRNAs), which have emerged as potential biomarkers with variable diagnostic values and false-positives in different conditions that limit their clinical preference. We thoroughly scrutinize the leading pathology of myocardial infarction and contemporary alterations in miRNAs for their specificity, stability and significant prognostic value at the early stage of acute myocardial infarction (AMI). Based on secondary data analysis, we explore common biomarkers and further investigate included miRNA biomarkers for their specificity, stability and area under the curve (AUC) values. We conclude that a group of novel biomarkers, including miRNA-1, miRNA-208a/b and miRNA-499, could help predict the emergence of AMI at an early stage.
Collapse
Affiliation(s)
- Arun K Sharma
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana 122413, India.
| | - Priyanka Bisht
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana 122413, India
| | - Bishal Gupta
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana 122413, India
| | - M D Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha 62223, Saudi Arabia.
| | - Sirajudeen Shaik Alavudeen
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha 62223, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdulmalik Sa Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
8
|
Wilson C, Zi M, Smith M, Hussain M, D’Souza A, Dobrzynski H, Boyett MR. Atrioventricular node dysfunction in pressure overload-induced heart failure—Involvement of the immune system and transcriptomic remodelling. Front Pharmacol 2023; 14:1083910. [PMID: 37081960 PMCID: PMC10110994 DOI: 10.3389/fphar.2023.1083910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
Heart failure is associated with atrioventricular (AV) node dysfunction, and AV node dysfunction in the setting of heart failure is associated with an increased risk of mortality and heart failure hospitalisation. This study aims to understand the causes of AV node dysfunction in heart failure by studying changes in the whole nodal transcriptome. The mouse transverse aortic constriction model of pressure overload-induced heart failure was studied; functional changes were assessed using electrocardiography and echocardiography and the transcriptome of the AV node was quantified using RNAseq. Heart failure was associated with a significant increase in the PR interval, indicating a slowing of AV node conduction and AV node dysfunction, and significant changes in 3,077 transcripts (5.6% of the transcriptome). Many systems were affected: transcripts supporting AV node conduction were downregulated and there were changes in transcripts identified by GWAS as determinants of the PR interval. In addition, there was evidence of remodelling of the sarcomere, a shift from fatty acid to glucose metabolism, remodelling of the extracellular matrix, and remodelling of the transcription and translation machinery. There was evidence of the causes of this widespread remodelling of the AV node: evidence of dysregulation of multiple intracellular signalling pathways, dysregulation of 109 protein kinases and 148 transcription factors, and an immune response with a proliferation of neutrophils, monocytes, macrophages and B lymphocytes and a dysregulation of 40 cytokines. In conclusion, inflammation and a widespread transcriptional remodelling of the AV node underlies AV node dysfunction in heart failure.
Collapse
Affiliation(s)
- Claire Wilson
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Min Zi
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Matthew Smith
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Munir Hussain
- Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Alicia D’Souza
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Halina Dobrzynski
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
- Department of Anatomy, Jagiellonian University Medical College, Kraków, Poland
- *Correspondence: Halina Dobrzynski, ; Mark R. Boyett,
| | - Mark R. Boyett
- Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
- *Correspondence: Halina Dobrzynski, ; Mark R. Boyett,
| |
Collapse
|
9
|
Gargiulo P, Marzano F, Salvatore M, Basile C, Buonocore D, Parlati ALM, Nardi E, Asile G, Abbate V, Colella A, Chirico A, Marciano C, Paolillo S, Perrone‐Filardi P. MicroRNAs: diagnostic, prognostic and therapeutic role in heart failure-a review. ESC Heart Fail 2023; 10:753-761. [PMID: 36349485 PMCID: PMC10053166 DOI: 10.1002/ehf2.14153] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/01/2022] [Accepted: 09/05/2022] [Indexed: 11/11/2022] Open
Abstract
Heart failure is a leading cause of morbidity and mortality, with relevant social and economic burden on global healthcare system. Although the development of novel diagnostic tools and the advance in therapies have deeply influenced the diagnosis and treatment of this disease, improving both prognosis and life expectancy of patients, hospitalization is still high, and mortality remains considerable. MicroRNAs are small endogenous RNA molecules that post-transcriptionally regulate gene expression in both physiological and pathological processes. In recent years, microRNA have arisen as attractive therapeutic targets in the treatment of a wide spectrum of pathologies, including heart failure. In cardiac pathology, deregulation of microRNAs expression and function is associated to adverse outcome and heart failure progression. Circulating levels of specific microRNAs have emerged as useful biomarkers for the diagnosis of heart failure or as prognostic indicators. In the present review, we summarize the state of current research on the role of miRNAs as biomarkers for diagnosis and prognosis in patients with heart failure and their use as potential therapeutic targets for this condition.
Collapse
Affiliation(s)
- Paola Gargiulo
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | | | | | - Christian Basile
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Davide Buonocore
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | | | - Ermanno Nardi
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Gaetano Asile
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Vincenza Abbate
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Angela Colella
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Alfonsina Chirico
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Caterina Marciano
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Stefania Paolillo
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Pasquale Perrone‐Filardi
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
- Mediterranea CardiocentroNaplesItaly
| |
Collapse
|
10
|
Macvanin MT, Gluvic Z, Radovanovic J, Essack M, Gao X, Isenovic ER. Diabetic cardiomyopathy: The role of microRNAs and long non-coding RNAs. Front Endocrinol (Lausanne) 2023; 14:1124613. [PMID: 36950696 PMCID: PMC10025540 DOI: 10.3389/fendo.2023.1124613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Diabetes mellitus (DM) is on the rise, necessitating the development of novel therapeutic and preventive strategies to mitigate the disease's debilitating effects. Diabetic cardiomyopathy (DCMP) is among the leading causes of morbidity and mortality in diabetic patients globally. DCMP manifests as cardiomyocyte hypertrophy, apoptosis, and myocardial interstitial fibrosis before progressing to heart failure. Evidence suggests that non-coding RNAs, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), regulate diabetic cardiomyopathy-related processes such as insulin resistance, cardiomyocyte apoptosis and inflammation, emphasizing their heart-protective effects. This paper reviewed the literature data from animal and human studies on the non-trivial roles of miRNAs and lncRNAs in the context of DCMP in diabetes and demonstrated their future potential in DCMP treatment in diabetic patients.
Collapse
Affiliation(s)
- Mirjana T. Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran Gluvic
- University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine, Department of Endocrinology and Diabetes, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Radovanovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Magbubah Essack
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Xin Gao
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
11
|
Sheng Y, Yang Z, Feng Z, Wang Y, Ji N. MicroRNA-499-5p promotes vascular smooth muscle cell proliferation and migration via inhibiting SOX6. Physiol Genomics 2023; 55:67-74. [PMID: 36250561 DOI: 10.1152/physiolgenomics.00165.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Atherosclerosis (AS) is the primary etiology of cardiovascular disease, which is considered the leading cause of death all over the world. MicroRNA miR-499-5p was involved in the functional regulation of myocardial and skeletal muscle, whereas its role in atherosclerosis, especially in vascular smooth muscle cells (VSMCs), remains unclear. Our study aims to investigate the effects of miR-499-5p in the proliferation and migration of VSMCs and potential mechanisms. We used mouse aortic vascular smooth muscle cells (MOVAS) and ApoE-/- mice to establish the models of AS in vitro and in vivo, respectively. RT-PCR was performed to detect the expression level of miR-499-5p. Subsequently, Cell Counting Kit-8 (CCK-8) assays, Transwell assays, and wound-healing assays were used to evaluate cell proliferation and migration. Dual-luciferase reporter assay was performed to validate the interaction between miR-499-5p and SOX6. miR-499-5p significantly increased in aorta tissues of mice in AS tissues and vascular smooth muscle cells treated with ox-LDL. miR-499-5p overexpression could promote the proliferation and migration of MOVAS. Bioinformatics analysis predicted and further experiments verified that miR-499-5p could directly bind to the 3'-untranslated region (UTR) region of SOX6. Further, miR-499-5p induced an increased expression of smooth muscle proliferation and migration-related genes, PCNA, cyclin D1, and matrix metalloproteinase (MMP2), as well as the decreased expression of proliferation inhibiting factor p21, which was significantly reversed by SOX6 overexpression. miR-499-5p boosts the proliferation and migration of smooth muscle cells by binding and inhibiting SOX6 expression. The miR-499-5p/SOX6 axis may present a promising therapeutic implication for the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yao Sheng
- Department of Cardiology, Yiwu Central Hospital, Yiwu, People's Republic of China
| | - Zewen Yang
- Department of Cardiology, Yiwu Central Hospital, Yiwu, People's Republic of China
| | - Ziming Feng
- Department of Cardiology, Yiwu Central Hospital, Yiwu, People's Republic of China
| | - Yu Wang
- Department of Cardiology, Yiwu Central Hospital, Yiwu, People's Republic of China
| | - Ningning Ji
- Department of Cardiology, Yiwu Central Hospital, Yiwu, People's Republic of China
| |
Collapse
|
12
|
Brown C, Mantzaris M, Nicolaou E, Karanasiou G, Papageorgiou E, Curigliano G, Cardinale D, Filippatos G, Memos N, Naka KK, Papakostantinou A, Vogazianos P, Ioulianou E, Shammas C, Constantinidou A, Tozzi F, Fotiadis DI, Antoniades A. A systematic review of miRNAs as biomarkers for chemotherapy-induced cardiotoxicity in breast cancer patients reveals potentially clinically informative panels as well as key challenges in miRNA research. CARDIO-ONCOLOGY 2022; 8:16. [PMID: 36071532 PMCID: PMC9450324 DOI: 10.1186/s40959-022-00142-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/02/2022] [Indexed: 12/01/2022]
Abstract
Breast cancer patients are at a particularly high risk of cardiotoxicity from chemotherapy having a detrimental effect on quality-of-life parameters and increasing the risk of mortality. Prognostic biomarkers would allow the management of therapies to mitigate the risks of cardiotoxicity in vulnerable patients and a key potential candidate for such biomarkers are microRNAs (miRNA). miRNAs are post-transcriptional regulators of gene expression which can also be released into the circulatory system and have been associated with the progression of many chronic diseases including many types of cancer. In this review, the evidence for the potential application of miRNAs as biomarkers for chemotherapy-induced cardiotoxicity (CIC) in breast cancer patientsis evaluated and a simple meta-analysis is performed to confirm the replication status of each reported miRNA. Further selection of miRNAs is performed by reviewing the reported associations of each miRNA with other cardiovascular conditions. Based on this research, the most representative panels targeting specific chemotherapy agents and treatment regimens are suggested, that contain several informative miRNAs, including both general markers of cardiac damage as well as those for the specific cancer treatments.
Collapse
|
13
|
Myosins and MyomiR Network in Patients with Obstructive Hypertrophic Cardiomyopathy. Biomedicines 2022; 10:biomedicines10092180. [PMID: 36140281 PMCID: PMC9496008 DOI: 10.3390/biomedicines10092180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiomyopathy. The molecular mechanisms determining HCM phenotypes are incompletely understood. Myocardial biopsies were obtained from a group of patients with obstructive HCM (n = 23) selected for surgical myectomy and from 9 unused donor hearts (controls). A subset of tissue-abundant myectomy samples from HCM (n = 10) and controls (n = 6) was submitted to laser-capture microdissection to isolate cardiomyocytes. We investigated the relationship among clinical phenotype, cardiac myosin proteins (MyHC6, MyHC7, and MyHC7b) measured by optimized label-free mass spectrometry, the relative genes (MYH7, MYH7B and MYLC2), and the MyomiR network (myosin-encoded microRNA (miRs) and long-noncoding RNAs (Mhrt)) measured using RNA sequencing and RT-qPCR. MyHC6 was lower in HCM vs. controls, whilst MyHC7, MyHC7b, and MyLC2 were comparable. MYH7, MYH7B, and MYLC2 were higher in HCM whilst MYH6, miR-208a, miR-208b, miR-499 were comparable in HCM and controls. These results are compatible with defective transcription by active genes in HCM. Mhrt and two miR-499-target genes, SOX6 and PTBP3, were upregulated in HCM. The presence of HCM-associated mutations correlated with PTBP3 in myectomies and with SOX6 in cardiomyocytes. Additionally, iPSC-derived cardiomyocytes, transiently transfected with either miR-208a or miR-499, demonstrated a time-dependent relationship between MyomiRs and myosin genes. The transfection end-stage pattern was at least in part similar to findings in HCM myectomies. These data support uncoupling between myosin protein/genes and a modulatory role for the myosin/MyomiR network in the HCM myocardium, possibly contributing to phenotypic diversity and providing putative therapeutic targets.
Collapse
|
14
|
Zhao K, Mao Y, Li Y, Yang C, Wang K, Zhang J. The roles and mechanisms of epigenetic regulation in pathological myocardial remodeling. Front Cardiovasc Med 2022; 9:952949. [PMID: 36093141 PMCID: PMC9458904 DOI: 10.3389/fcvm.2022.952949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/10/2022] [Indexed: 11/22/2022] Open
Abstract
Pathological myocardial remodeling was still one of the leading causes of death worldwide with an unmet therapeutic need. A growing number of researchers have addressed the role of epigenome changes in cardiovascular diseases, paving the way for the clinical application of novel cardiovascular-related epigenetic targets in the future. In this review, we summarized the emerged advances of epigenetic regulation, including DNA methylation, Histone posttranslational modification, Adenosine disodium triphosphate (ATP)-dependent chromatin remodeling, Non-coding RNA, and RNA modification, in pathological myocardial remodeling. Also, we provided an overview of the mechanisms that potentially involve the participation of these epigenetic regulation.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yukang Mao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yansong Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanxi Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kai Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Kai Wang
| | - Jing Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Jing Zhang
| |
Collapse
|
15
|
Martins HC, Gilardi C, Sungur AÖ, Winterer J, Pelzl MA, Bicker S, Gross F, Kisko TM, Malikowska‐Racia N, Braun MD, Brosch K, Nenadic I, Stein F, Meinert S, Schwarting RKW, Dannlowski U, Kircher T, Wöhr M, Schratt G. Bipolar‐associated
miR
‐499‐5p controls neuroplasticity by downregulating the Cav1.2 subunit
CACNB2. EMBO Rep 2022; 23:e54420. [PMID: 35969184 PMCID: PMC9535808 DOI: 10.15252/embr.202154420] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022] Open
Abstract
Bipolar disorder (BD) is a chronic mood disorder characterized by manic and depressive episodes. Dysregulation of neuroplasticity and calcium homeostasis are frequently observed in BD patients, but the underlying molecular mechanisms are largely unknown. Here, we show that miR‐499‐5p regulates dendritogenesis and cognitive function by downregulating the BD risk gene CACNB2. miR‐499‐5p expression is increased in peripheral blood of BD patients, as well as in the hippocampus of rats which underwent juvenile social isolation. In rat hippocampal neurons, miR‐499‐5p impairs dendritogenesis and reduces surface expression and activity of the L‐type calcium channel Cav1.2. We further identified CACNB2, which encodes a regulatory β‐subunit of Cav1.2, as a direct functional target of miR‐499‐5p in neurons. miR‐499‐5p overexpression in the hippocampus in vivo induces short‐term memory impairments selectively in rats haploinsufficient for the Cav1.2 pore forming subunit Cacna1c. In humans, miR‐499‐5p expression is negatively associated with gray matter volumes of the left superior temporal gyrus, a region implicated in auditory and emotional processing. We propose that stress‐induced miR‐499‐5p overexpression contributes to dendritic impairments, deregulated calcium homeostasis, and neurocognitive dysfunction in BD.
Collapse
Affiliation(s)
- Helena C Martins
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience Swiss Federal Institute of Technology ETH Zurich Switzerland
| | - Carlotta Gilardi
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience Swiss Federal Institute of Technology ETH Zurich Switzerland
| | - A Özge Sungur
- Behavioural Neuroscience, Experimental and Biological Psychology Faculty of Psychology, Philipps‐University of Marburg Marburg Germany
- Center for Mind, Brain, and Behavior Philipps‐University of Marburg Marburg Germany
| | - Jochen Winterer
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience Swiss Federal Institute of Technology ETH Zurich Switzerland
| | - Michael A Pelzl
- Institute for Physiological Chemistry, Biochemical‐Pharmacological Center Marburg Philipps‐University of Marburg Marburg Germany
- Psychiatry and Psychotherapy University of Tübingen Tübingen Germany
| | - Silvia Bicker
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience Swiss Federal Institute of Technology ETH Zurich Switzerland
| | - Fridolin Gross
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience Swiss Federal Institute of Technology ETH Zurich Switzerland
| | - Theresa M Kisko
- Behavioural Neuroscience, Experimental and Biological Psychology Faculty of Psychology, Philipps‐University of Marburg Marburg Germany
| | - Natalia Malikowska‐Racia
- Behavioural Neuroscience, Experimental and Biological Psychology Faculty of Psychology, Philipps‐University of Marburg Marburg Germany
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences Krakow Poland
| | - Moria D Braun
- Behavioural Neuroscience, Experimental and Biological Psychology Faculty of Psychology, Philipps‐University of Marburg Marburg Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy University of Marburg Marburg Germany
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy University of Marburg Marburg Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy University of Marburg Marburg Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry University of Münster Münster Germany
| | - Rainer K W Schwarting
- Behavioural Neuroscience, Experimental and Biological Psychology Faculty of Psychology, Philipps‐University of Marburg Marburg Germany
- Center for Mind, Brain, and Behavior Philipps‐University of Marburg Marburg Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry University of Münster Münster Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy University of Marburg Marburg Germany
| | - Markus Wöhr
- Behavioural Neuroscience, Experimental and Biological Psychology Faculty of Psychology, Philipps‐University of Marburg Marburg Germany
- Center for Mind, Brain, and Behavior Philipps‐University of Marburg Marburg Germany
- Social and Affective Neuroscience Research Group, Laboratory of Biological Psychology, Research Unit Brain and Cognition, Faculty of Psychology and Educational Sciences KU Leuven Leuven Belgium
- Leuven Brain Institute KU Leuven Leuven Belgium
| | - Gerhard Schratt
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience Swiss Federal Institute of Technology ETH Zurich Switzerland
| |
Collapse
|
16
|
Dorn Ii GW. Neurohormonal Connections with Mitochondria in Cardiomyopathy and Other Diseases. Am J Physiol Cell Physiol 2022; 323:C461-C477. [PMID: 35759434 PMCID: PMC9363002 DOI: 10.1152/ajpcell.00167.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurohormonal signaling and mitochondrial dynamism are seemingly distinct processes that are almost ubiquitous among multicellular organisms. Both of these processes are regulated by GTPases, and disturbances in either can provoke disease. Here, inconspicuous pathophysiological connectivity between neurohormonal signaling and mitochondrial dynamism is reviewed in the context of cardiac and neurological syndromes. For both processes, greater understanding of basic mechanisms has evoked a reversal of conventional pathophysiological concepts. Thus, neurohormonal systems induced in, and previously thought to be critical for, cardiac functioning in heart failure are now pharmaceutically interrupted as modern standard of care. And, mitochondrial abnormalities in neuropathies that were originally attributed to an imbalance between mitochondrial fusion and fission are increasingly recognized as an interruption of axonal mitochondrial transport. The data are presented in a historical context to provided insight into how scientific thought has evolved and to foster an appreciation for how seemingly different areas of investigation can converge. Finally, some theoretical notions are presented to explain how different molecular and functional defects can evoke tissue-specific disease.
Collapse
Affiliation(s)
- Gerald W Dorn Ii
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
17
|
Non-Coding RNAs in the Therapeutic Landscape of Pathological Cardiac Hypertrophy. Cells 2022; 11:cells11111805. [PMID: 35681500 PMCID: PMC9180404 DOI: 10.3390/cells11111805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are a major health problem, and long-term survival for people diagnosed with heart failure is, still, unrealistic. Pathological cardiac hypertrophy largely contributes to morbidity and mortality, as effective therapeutic approaches are lacking. Non-coding RNAs (ncRNAs) arise as active regulators of the signaling pathways and mechanisms that govern this pathology, and their therapeutic potential has received great attention in the last decades. Preclinical studies in large animal models have been successful in ameliorating cardiac hypertrophy, and an antisense drug for the treatment of heart failure has, already, entered clinical trials. In this review, we provide an overview of the molecular mechanisms underlying cardiac hypertrophy, the involvement of ncRNAs, and the current therapeutic landscape of oligonucleotides targeting these regulators. Strategies to improve the delivery of such therapeutics and overcome the actual challenges are, also, defined and discussed. With the fast advance in the improvement of oligonucleotide drug delivery, the inclusion of ncRNAs-targeting therapies for cardiac hypertrophy seems, increasingly, a closer reality.
Collapse
|
18
|
Perez-Sanchez C, Barbera Betancourt A, Lyons PA, Zhang Z, Suo C, Lee JC, McKinney EF, Modis LK, Ellson C, Smith KG. miR-374a-5p regulates inflammatory genes and monocyte function in patients with inflammatory bowel disease. J Exp Med 2022; 219:e20211366. [PMID: 35363256 PMCID: PMC8980842 DOI: 10.1084/jem.20211366] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/23/2021] [Accepted: 02/17/2022] [Indexed: 02/02/2023] Open
Abstract
MicroRNAs are critical regulators of gene expression controlling cellular processes including inflammation. We explored their role in the pathogenesis of inflammatory bowel disease (IBD) and identified reduced expression of miR-374a-5p in IBD monocytes that correlated with a module of up-regulated genes related to the inflammatory response. Key proinflammatory module genes, including for example TNFα, IL1A, IL6, and OSM, were inversely correlated with miR-374a-5p and were validated in vitro. In colonic biopsies, miR-374a-5p was again reduced in expression and inversely correlated with the same inflammatory module, and its levels predicted subsequent response to anti-TNF therapy. Increased miR-374a-5p expression was shown to control macrophage-driven inflammation by suppressing proinflammatory mediators and to reduce the capacity of monocytes to migrate and activate T cells. Our findings suggest that miR-374a-5p reduction is a central driver of inflammation in IBD, and its therapeutic supplementation could reduce monocyte-driven inflammation in IBD or other immune-mediated diseases.
Collapse
Affiliation(s)
- Carlos Perez-Sanchez
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
- Rheumatology Service, Reina Sofia University Hospital, Maimonides Biomedical Research Institute of Córdoba, University of Cordoba, Cordoba, Spain
| | - Ariana Barbera Betancourt
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Paul A. Lyons
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Zinan Zhang
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Chenqu Suo
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Paediatrics, Cambridge University Hospitals, Cambridge, UK
| | - James C. Lee
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Eoin F. McKinney
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | | | | | - Kenneth G.C. Smith
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
19
|
Liu S, Fan M, Zheng Q, Hao S, Yang L, Xia Q, Qi C, Ge J. MicroRNAs in Alzheimer's disease: Potential diagnostic markers and therapeutic targets. Biomed Pharmacother 2022; 148:112681. [PMID: 35177290 DOI: 10.1016/j.biopha.2022.112681] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, with cognitive decline as the primary clinical feature. According to epidemiological statistics, 50 million people worldwide are currently affected by Alzheimer's disease. Although new drugs such as aducanumab have been approved for use in the treatment of AD, none of them have reversed the progression of AD. MicroRNAs (miRNAs) are small molecule RNAs that exert their biological functions by regulating the expression of intracellular proteins, and differential abundance and varieties are found between the central and peripheral tissues of AD patients and healthy controls. This article will summarise the changes of miRNAs in the AD process, and the potential role of diagnostic markers and therapeutic targets in AD will be explored.
Collapse
Affiliation(s)
- Sen Liu
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Min Fan
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Qiang Zheng
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Shengwei Hao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Longjun Yang
- Chaohu Clinical Medical College, Anhui Medical University, Hefei, China
| | - Qingrong Xia
- Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China
| | - Congcong Qi
- Department of Laboratory Animal Science, Fudan University, Shanghai, China.
| | - Jinfang Ge
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China.
| |
Collapse
|
20
|
Yang J, Xu L, Yin X, Zheng YL, Zhang HP, Xu SJ, Wang W, Wang S, Zhang CY, Ma JZ. Excessive Treadmill Training Produces different Cardiac-related MicroRNA Profiles in the Left and Right Ventricles in Mice. Int J Sports Med 2021; 43:219-229. [PMID: 34416779 PMCID: PMC8885328 DOI: 10.1055/a-1539-6702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High-volume training followed by inadequate recovery may cause overtraining. This process may undermine the protective effect of regular exercise on the cardiovascular system and may increase the risk of pathological cardiac remodelling. We evaluated whether chronic overtraining changes cardiac-related microRNA profiles in the left and right ventricles. C57BL/6 mice were divided into the control, normal training, and overtrained by running without inclination, uphill running or downhill running groups. After an 8-week treadmill training protocol, the incremental load test and training volume results showed that the model had been successfully established. The qRT-PCR results showed increased cardiac miR-1, miR-133a, miR-133b, miR-206, miR-208b and miR-499 levels in the left ventricle of the downhill running group compared with the left ventricle of the control group. Similarly, compared with the control group, the downhill running induced increased expression of miR-21, miR-17–3p, and miR-29b in the left ventricle. Unlike the changes in the left ventricle, no difference in the expression of the tested miRNAs was observed in the right ventricle. Briefly, our results indicated that overtraining generally affects key miRNAs in the left ventricle (rather than the right ventricle) and that changes in individual miRNAs may cause either adaptive or maladaptive remodelling with overtraining.
Collapse
Affiliation(s)
- Jing Yang
- The Research Center of Military Exercise Science, The Army Engineering University of PLA, Nanjing, China
| | - Lin Xu
- The Research Center of Military Exercise Science, The Army Engineering University of PLA, Nanjing, China.,Department of Exercise and Heath, Nanjing Sport Institute, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xin Yin
- Department of Exercise and Heath, Nanjing Sport Institute, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yi Li Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hai Peng Zhang
- Department of Exercise and Heath, Nanjing Sport Institute, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Sheng Jia Xu
- The Research Center of Military Exercise Science, The Army Engineering University of PLA, Nanjing, China
| | - Wei Wang
- The Research Center of Military Exercise Science, The Army Engineering University of PLA, Nanjing, China
| | - Sen Wang
- Department of Geriatric Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ji Zheng Ma
- The Research Center of Military Exercise Science, The Army Engineering University of PLA, Nanjing, China
| |
Collapse
|
21
|
Kmecova Z, Veteskova J, Lelkova-Zirova K, Bies Pivackova L, Doka G, Malikova E, Paulis L, Krenek P, Klimas J. Disease severity-related alterations of cardiac microRNAs in experimental pulmonary hypertension. J Cell Mol Med 2020; 24:6943-6951. [PMID: 32395887 PMCID: PMC7299706 DOI: 10.1111/jcmm.15352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022] Open
Abstract
Right ventricular (RV) failure is the primary cause of death in pulmonary arterial hypertension (PAH). We hypothesized that heart‐relevant microRNAs, that is myomiRs (miR‐1, miR‐133a, miR‐208, miR‐499) and miR‐214, can have a role in the right ventricle in the development of PAH. To mimic PAH, male Wistar rats were injected with monocrotaline (MCT, 60 mg/kg, s.c.); control group received vehicle. MCT rats were divided into two groups, based on the clinical presentation: MCT group terminated 4 weeks after MCT administration and prematurely terminated group (ptMCT) displaying signs of terminal disease. Myocardial damage genes and candidate microRNAs expressions were determined by RT‐qPCR. Reduced blood oxygen saturation, breathing disturbances, RV enlargement as well as elevated levels of markers of myocardial damage confirmed PH in MCT animals and were more pronounced in ptMCT. MyomiRs (miR‐1/miR‐133a/miR‐208a/miR‐499) were decreased and the expression of miR‐214 was increased only in ptMCT group (P < 0.05). The myomiRs negatively correlated with Fulton index as a measure of RV hypertrophy in MCT group (P < 0.05), whereas miR‐214 showed a positive correlation (P < 0.05). We conclude that the expression of determined microRNAs mirrored the disease severity and targeting their pathways might represent potential future therapeutic approach in PAH.
Collapse
Affiliation(s)
- Zuzana Kmecova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Jana Veteskova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Katarina Lelkova-Zirova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Lenka Bies Pivackova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Gabriel Doka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Eva Malikova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Ludovit Paulis
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Krenek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| |
Collapse
|
22
|
Calore M, Lorenzon A, Vitiello L, Poloni G, Khan MAF, Beffagna G, Dazzo E, Sacchetto C, Polishchuk R, Sabatelli P, Doliana R, Carnevale D, Lembo G, Bonaldo P, De Windt L, Braghetta P, Rampazzo A. A novel murine model for arrhythmogenic cardiomyopathy points to a pathogenic role of Wnt signalling and miRNA dysregulation. Cardiovasc Res 2020; 115:739-751. [PMID: 30304392 DOI: 10.1093/cvr/cvy253] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 09/06/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022] Open
Abstract
AIMS Arrhythmogenic cardiomyopathy (AC) is one of the most common inherited cardiomyopathies, characterized by progressive fibro-fatty replacement in the myocardium. Clinically, AC manifests itself with ventricular arrhythmias, syncope, and sudden death and shows wide inter- and intra-familial variability. Among the causative genes identified so far, those encoding for the desmosomal proteins plakophilin-2 (PKP2), desmoplakin (DSP), and desmoglein-2 (DSG2) are the most commonly mutated. So far, little is known about the molecular mechanism(s) behind such a varied spectrum of phenotypes, although it has been shown that the causative mutations not only lead to structural abnormalities but also affect the miRNA profiling of cardiac tissue. Here, we aimed at studying the pathogenic effects of a nonsense mutation of the desmoglein-2 gene, both at the structural level and in terms of miRNA expression pattern. METHODS AND RESULTS We generated transgenic mice with cardiomyocyte-specific overexpression of a FLAG-tagged human desmoglein-2 harbouring the Q558* nonsense mutation found in an AC patient. The hearts of these mice showed signs of fibrosis, decrease in desmosomal size and number, and reduction of the Wnt/β-catenin signalling. Genome-wide RNA-Seq performed in Tg-hQ hearts and non-transgenic hearts revealed that 24 miRNAs were dysregulated in transgenic animals. Further bioinformatic analyses for selected miRNAs suggested that miR-217-5p, miR-499-5p, and miR-708-5p might be involved in the pathogenesis of the disease. CONCLUSION Down-regulation of the canonical Wnt/β-catenin signalling might be considered a common key event in the AC pathogenesis. We identified the miRNA signature in AC hearts, with miR-708-5p and miR-217-5p being the most up-regulated and miR-499-5p the most down-regulated miRNAs. All of them were predicted to be involved in the regulation of the Wnt/β-catenin pathway and might reveal the potential pathophysiology mechanisms of AC, as well as be useful as therapeutic targets for the disease.
Collapse
Affiliation(s)
- Martina Calore
- Department of Biology, University of Padua, Via Ugo Bassi 58/B, Padua, Italy.,Department of Cardiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, MD Maastricht, The Netherlands
| | - Alessandra Lorenzon
- Department of Biology, University of Padua, Via Ugo Bassi 58/B, Padua, Italy
| | - Libero Vitiello
- Department of Biology, University of Padua, Via Ugo Bassi 58/B, Padua, Italy.,Italian Inter-University Institute of Myology, Padua, Italy
| | - Giulia Poloni
- Department of Biology, University of Padua, Via Ugo Bassi 58/B, Padua, Italy
| | - Mohsin A F Khan
- Department of Experimental Cardiology, Biostatistics and Bioinformatics, Academic Medical Center, Amsterdam, The Netherlands
| | - Giorgia Beffagna
- Department of Biology, University of Padua, Via Ugo Bassi 58/B, Padua, Italy
| | - Emanuela Dazzo
- Department of Biology, University of Padua, Via Ugo Bassi 58/B, Padua, Italy
| | - Claudia Sacchetto
- Department of Biology, University of Padua, Via Ugo Bassi 58/B, Padua, Italy
| | - Roman Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Patrizia Sabatelli
- National Research Council of Italy, Institute of Molecular Genetics, Bologna, Italy
| | - Roberto Doliana
- Department of Translational Research, CRO-IRCCS National Cancer Institute, Aviano, Italy
| | - Daniela Carnevale
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Pozzilli, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Lembo
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Pozzilli, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padua, Via Ugo Bassi 58/B, Padua, Italy
| | - Leon De Windt
- Department of Cardiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, MD Maastricht, The Netherlands
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padua, Via Ugo Bassi 58/B, Padua, Italy
| | - Alessandra Rampazzo
- Department of Biology, University of Padua, Via Ugo Bassi 58/B, Padua, Italy
| |
Collapse
|
23
|
Ghosh A, Shcherbik N. Effects of Oxidative Stress on Protein Translation: Implications for Cardiovascular Diseases. Int J Mol Sci 2020; 21:E2661. [PMID: 32290431 PMCID: PMC7215667 DOI: 10.3390/ijms21082661] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) are a group of disorders that affect the heart and blood vessels. Due to their multifactorial nature and wide variation, CVDs are the leading cause of death worldwide. Understanding the molecular alterations leading to the development of heart and vessel pathologies is crucial for successfully treating and preventing CVDs. One of the causative factors of CVD etiology and progression is acute oxidative stress, a toxic condition characterized by elevated intracellular levels of reactive oxygen species (ROS). Left unabated, ROS can damage virtually any cellular component and affect essential biological processes, including protein synthesis. Defective or insufficient protein translation results in production of faulty protein products and disturbances of protein homeostasis, thus promoting pathologies. The relationships between translational dysregulation, ROS, and cardiovascular disorders will be examined in this review.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | - Natalia Shcherbik
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, 2 Medical Center Drive, Stratford, NJ 08084, USA
| |
Collapse
|
24
|
LaRocca TJ, Seeger T, Prado M, Perea-Gil I, Neofytou E, Mecham BH, Ameen M, Chang ACY, Pandey G, Wu JC, Karakikes I. Pharmacological Silencing of MicroRNA-152 Prevents Pressure Overload-Induced Heart Failure. Circ Heart Fail 2020; 13:e006298. [PMID: 32160771 DOI: 10.1161/circheartfailure.119.006298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND MicroRNAs are small, noncoding RNAs that play a key role in gene expression. Accumulating evidence suggests that aberrant microRNA expression contributes to the heart failure (HF) phenotype; however, the underlying molecular mechanisms are not well understood. A better understanding of the mechanisms of action of microRNAs could potentially lead to targeted therapies that could halt the progression or even reverse HF. METHODS AND RESULTS We found that microRNA-152 (miR-152) expression was upregulated in the failing human heart and experimental animal models of HF. Transgenic mice with cardiomyocyte-specific miR-152 overexpression developed systolic dysfunction (mean difference, -38.74% [95% CI, -45.73% to -31.74%]; P<0.001) and dilated cardiomyopathy. At the cellular level, miR-152 overexpression perturbed mitochondrial ultrastructure and dysregulated key genes involved in cardiomyocyte metabolism and inflammation. Mechanistically, we identified Glrx5 (glutaredoxin 5), a critical regulator of mitochondrial iron homeostasis and iron-sulfur cluster synthesis, as a direct miR-152 target. Finally, a proof-of-concept of the therapeutic efficacy of targeting miR-152 in vivo was obtained by utilizing a locked nucleic acid-based inhibitor of miR-152 (LNA 152) in a murine model of HF subjected to transverse aortic constriction. We demonstrated that animals treated with LNA-152 (n=10) showed preservation of systolic function when compared with locked nucleic acid-control treated animals (n=9; mean difference, 18.25% [95% CI, 25.10% to 11.39%]; P<0.001). CONCLUSIONS The upregulation of miR-152 expression in the failing myocardium contributes to HF pathophysiology. Preclinical evidence suggests that miR-152 inhibition preserves cardiac function in a model of pressure overload-induced HF. These findings offer new insights into the pathophysiology of HF and point to miR-152-Glrx5 axis as a potential novel therapeutic target.
Collapse
Affiliation(s)
- Thomas J LaRocca
- Division of Critical Care Medicine, Department of Pediatrics, Lucile Packard Children's Hospital (T.J.L.), Stanford University School of Medicine, CA
| | - Timon Seeger
- Stanford Cardiovascular Institute (T.S., I.P.-G., E.N., M.A., J.C.W., I.K.), Stanford University School of Medicine, CA
| | - Maricela Prado
- Department of Cardiothoracic Surgery (M.P., I.P.-G., I.K.), Stanford University School of Medicine, CA
| | - Isaac Perea-Gil
- Department of Cardiothoracic Surgery (M.P., I.P.-G., I.K.), Stanford University School of Medicine, CA.,Stanford Cardiovascular Institute (T.S., I.P.-G., E.N., M.A., J.C.W., I.K.), Stanford University School of Medicine, CA
| | - Evgenios Neofytou
- Stanford Cardiovascular Institute (T.S., I.P.-G., E.N., M.A., J.C.W., I.K.), Stanford University School of Medicine, CA
| | | | - Mohamed Ameen
- Stanford Cardiovascular Institute (T.S., I.P.-G., E.N., M.A., J.C.W., I.K.), Stanford University School of Medicine, CA
| | - Alex Chia Yu Chang
- Department of Cardiology and Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China (A.C.Y.C.)
| | - Gaurav Pandey
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (G.P.)
| | - Joseph C Wu
- Stanford Cardiovascular Institute (T.S., I.P.-G., E.N., M.A., J.C.W., I.K.), Stanford University School of Medicine, CA.,Department of Radiology (J.C.W.), Stanford University School of Medicine, CA
| | - Ioannis Karakikes
- Department of Cardiothoracic Surgery (M.P., I.P.-G., I.K.), Stanford University School of Medicine, CA.,Stanford Cardiovascular Institute (T.S., I.P.-G., E.N., M.A., J.C.W., I.K.), Stanford University School of Medicine, CA
| |
Collapse
|
25
|
Zhao X, Wang Y, Sun X. The functions of microRNA-208 in the heart. Diabetes Res Clin Pract 2020; 160:108004. [PMID: 31911250 DOI: 10.1016/j.diabres.2020.108004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/15/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease is a major chronic complication of obesity and diabetes. Due to several patients with obesity and diabetes, it is necessary to urgently explore early diagnostic biomarkers and innovative therapeutic strategies to prevent the progression of cardiovascular diseases. Recently, microRNAs (also known as miRNAs) have emerged as important players in heart disease and energy regulation. MiRNAs are a group of small, highly conserved non-coding RNA molecules that regulate gene expression by suppressing the translation of messenger RNA of target genes or by promoting mRNA degradation. These act as a class of potential biomarkers and may provide key information in diagnosing common diseases such as tumors, tissue damage, and autoimmune diseases. Among all the known miRNAs, microRNA-208 (miR-208) is specifically expressed in myocardial cells and showed close association with the development of cardiac diseases, such as myocardial hypertrophy, cardiac fibrosis, myocardial infarction, arrhythmia, and heart failure. However, the functions and underlying mechanisms of miR-208 in heart are still unclear. In this review, we highlighted the novel insights of miR-208 functions and associated mechanisms in the regulation of cardiac diseases.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Outpatient Clinic, ShanDong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yao Wang
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xianglan Sun
- Department of Geriatrics, Department of Geriatric Endocrinology, ShanDong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
26
|
Wang W, Li T, Gao L, Li Y, Sun Y, Yao HC. Diagnostic and prognostic impact of circulating microRNA-208b and microRNA-499 in patients with acute coronary syndrome. Biomark Med 2020; 14:87-95. [PMID: 31789049 DOI: 10.2217/bmm-2019-0257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: This study aimed to investigate the correlation between the expression of circulating miR-208b and miR-499 and acute coronary syndrome (ACS) patients. Materials & methods: A total of 160 consecutive patients with ACS and 48 healthy control subjects were enrolled for primary analysis. The ACS patients (n = 160) were followed up for 6 months for further analysis regarding major adverse cardiac events. Results: Area under the curve values of miR-208b and miR-499 for predicting ACS were 0.910 and 0.851 (p < 0.001, respectively). Cox proportional hazards regression analysis revealed that miR-208b but not miR-499 was an independent predictor of major adverse cardiac events. Conclusion: Circulating miR-208b and miR-499 could be considered as diagnostic or prognostic biomarkers for patients with ACS.
Collapse
Affiliation(s)
- Wei Wang
- Department of Cardiology, Liaocheng People’s Hospital Affiliated to Shandong University & Clinical School of Shandong First Medical University, Liaocheng 252000, PR China
| | - Tai Li
- Department of Nursing, Liaocheng Vocational & Technical College, Liaocheng 252000, PR China
| | - Lei Gao
- Zhong Yuan Academy of Biological Medicine, Liaocheng People’s Hospital, Shandong University, Liaocheng 252000, PR China
| | - Yang Li
- Zhong Yuan Academy of Biological Medicine, Liaocheng People’s Hospital, Shandong University, Liaocheng 252000, PR China
| | - Ying Sun
- Department of Cardiology, Liaocheng People’s Hospital Affiliated to Shandong University & Clinical School of Shandong First Medical University, Liaocheng 252000, PR China
| | - Heng-Chen Yao
- Department of Cardiology, Liaocheng People’s Hospital Affiliated to Shandong University & Clinical School of Shandong First Medical University, Liaocheng 252000, PR China
| |
Collapse
|
27
|
He J, Luo Y, Song J, Tan T, Zhu H. Non-coding RNAs and Pathological Cardiac Hypertrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:231-245. [PMID: 32285415 DOI: 10.1007/978-981-15-1671-9_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cardiovascular disease (CVD) is a common disease which poses a serious threat to human health and it is characterized by high prevalence, high disability and high mortality. Myocardial hypertrophy (MH) is a common pathological process of various cardiovascular diseases and is considered as an independent risk factor for increased cardiovascular morbidity and mortality. Therefore, it is particularly important to understand its pathological mechanism and treatment. In recent years, it has been found that many non-coding RNAs (ncRNAs) play key regulatory roles in humans' various pathophysiological processes. Abnormal expression of ncRNAs in different types of cardiac cells is associated with pathological cardiac hypertrophy. Understanding the relationship between various ncRNAs and intercellular communication through extracellular vesicles (EV) can identify the key ncRNAs which are the accurate targets of precise therapy in this network of action, it also can potentially be a marker for clinical disease diagnosis, which will reflect the progress of the disease earlier and more accurately. There are many factors that regulate the occurrence and development of cardiac hypertrophy, ncRNAs are only a part of them. There are also mutual promotion or inhibition between ncRNAs and other molecules. It will be helpful for us to comprehend the mechanism of cardiac hypertrophy better and provide a sufficient theoretical basis for clinical diagnosis and treatment by defining these relationships.
Collapse
Affiliation(s)
- Jianfeng He
- Children's Hospital Chongqing Medical University, Chongqing, People's Republic of China
| | - Yanhong Luo
- Children's Hospital Chongqing Medical University, Chongqing, People's Republic of China
| | - Junxia Song
- Children's Hospital Chongqing Medical University, Chongqing, People's Republic of China
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
28
|
Boen JRA, Gevaert AB, De Keulenaer GW, Van Craenenbroeck EM, Segers VFM. The role of endothelial miRNAs in myocardial biology and disease. J Mol Cell Cardiol 2019; 138:75-87. [PMID: 31756323 DOI: 10.1016/j.yjmcc.2019.11.151] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 01/08/2023]
Abstract
The myocardium is a highly structured pluricellular tissue which is governed by an intricate network of intercellular communication. Endothelial cells are the most abundant cell type in the myocardium and exert crucial roles in both healthy myocardium and during myocardial disease. In the last decade, microRNAs have emerged as new actors in the regulation of cellular function in almost every cell type. Here, we review recent evidence on the regulatory function of different microRNAs expressed in endothelial cells, also called endothelial microRNAs, in healthy and diseased myocardium. Endothelial microRNA emerged as modulators of angiogenesis in the myocardium, they are implicated in the paracrine role of endothelial cells in regulating cardiac contractility and homeostasis, and interfere in the crosstalk between endothelial cells and cardiomyocytes.
Collapse
Affiliation(s)
- Jente R A Boen
- Research group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Andreas B Gevaert
- Research group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Cardiology, Antwerp University Hospital (UZA), Wilrijkstraat 10, Edegem, Belgium.
| | - Gilles W De Keulenaer
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Cardiology, ZNA Middelheim Hospital, Lindendreef 1, 2020 Antwerp, Belgium.
| | - Emeline M Van Craenenbroeck
- Research group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Cardiology, Antwerp University Hospital (UZA), Wilrijkstraat 10, Edegem, Belgium.
| | - Vincent F M Segers
- Department of Cardiology, Antwerp University Hospital (UZA), Wilrijkstraat 10, Edegem, Belgium; Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
29
|
Up-regulation of miR-27 extenuates lipopolysaccharide-induced injury in H9c2 cells via modulating ICAM1 expression. Genes Genomics 2019; 41:1467-1474. [PMID: 31576518 DOI: 10.1007/s13258-019-00863-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/25/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND MiR-27 has been found to present an overt myocardial expression during cardiogenesis. However, whether miR-27 involves in myocarditis development and the possible molecular mechanism remain unknown. The purpose of this study was to investigate the biological characteristic of miR-27 in LPS-damaged H9c2 cells. METHODS H9c2 cells were treated with lipopolysaccharide (LPS, 10 µg/ml) for 12 h to form cell injury. MiR-27 mimic and inhibitor were used to up-regulate or down-regulate miR-27 expression. MTT assay and flow cytometry analysis were conducted to test cell viability and apoptosis. The relative RNA expression level of miR-27 and intercellular adhesion molecule 1 (ICAM1) was determined by qRT-PCR. Luciferase reporter gene assay was utilized to confirm the interaction between miR-27 and ICAM1. Western blot was used to determine the protein expression levels. RESULTS We observed that LPS treatment significantly decreased the level of miR-27 in H9c2 cells. Moreover, LPS exposure suppressed cell viability, promoted cell apoptosis and increased the relative expression of p-NF-κB p65/NF-κB p65 and p-IκBα/IκBα. Up-regulation of miR-27 increased cell proliferation and reduced cell apoptosis, while down-regulation of miR-27 suppressed cell growth and promoted cell apoptosis. ICAM1 was predicted and verified as a target of miR-27, and the expression of ICAM1 is negatively regulated by miR-27. The relative expression of p-NF-κB p65/NF-κB p65 and p-IκBα/IκBα was dramatically decreased by miR-27 mimic and increased by miR-27 inhibitor. CONCLUSION Our study illustrated that up-regulation of miR-27 exhibits a protective effect on LPS-damaged H9c2 cells, which may be achieved by regulating ICAM1 and NF-κB signaling.
Collapse
|
30
|
Cresci S, Pereira NL, Ahmad F, Byku M, de las Fuentes L, Lanfear DE, Reilly CM, Owens AT, Wolf MJ. Heart Failure in the Era of Precision Medicine: A Scientific Statement From the American Heart Association. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2019; 12:458-485. [PMID: 31510778 DOI: 10.1161/hcg.0000000000000058] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
One of 5 people will develop heart failure over his or her lifetime. Early diagnosis and better understanding of the pathophysiology of this disease are critical to optimal treatment. The "omics"-genomics, pharmacogenomics, epigenomics, proteomics, metabolomics, and microbiomics- of heart failure represent rapidly expanding fields of science that have, to date, not been integrated into a single body of work. The goals of this statement are to provide a comprehensive overview of the current state of these omics as they relate to the development and progression of heart failure and to consider the current and potential future applications of these data for precision medicine with respect to prevention, diagnosis, and therapy.
Collapse
|
31
|
Wang L, Tang S, Wang Z, Chen H, Rajcha SS, Qian J. The administration of dexmedetomidine changes microRNA expression profiling of rat hearts. Biomed Pharmacother 2019; 120:109463. [PMID: 31541882 DOI: 10.1016/j.biopha.2019.109463] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Dexmedetomidine is widely used for perioperative and ICU patients. microRNAs (miRNAs) function as regulators of gene expression. The aim of the study was to assay expression profiling of microRNA in rat hearts following administration of dexmedetomidine. METHODS In this study 6 rats were randomly divided into two groups (n = 3): dexmedetomidine group and control group. The rats of dexmedetomidine group were intraperitoneally given dexmedetomidine in a dose of 100 μg/kg whereas the rats in control group were administered normal saline intraperitoneally. The hearts were excised 30 min after the administration of dexmedetomidine or normal saline under anesthesia. The samples were analyzed for differentially expressed microRNAs with Exiqon miRNA Array. The differentially expressed microRNAs were confirmed by using qRT-PCR. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to find the target genes and signaling pathways of the aberrantly expressed miRNAs. RESULTS Six microRNAs were identified to be significantly expressed, among of which, five microRNAs (miRNA-434-3p, miRNA-3596d, miRNA-496-5p, miRNA-7a-2-3p and miRNA-702-3p) were up-regulated and 1 microRNA (miRNA-208b-3p) down-regulated compared to those of control group. The aberrantly expressed microRNAs were further validated by Quantitative Real Time-Polymerase Chain Reaction (qRT-PCR). GO and KEGG analyses were used to identify target genes and the signaling pathways. CONCLUSIONS The use of dexmedetomidine is associated with differentially expressed microRNAs which may be involved in cardioprotection following administration of dexmedetomidine.
Collapse
Affiliation(s)
- Lingyan Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Shumiao Tang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Zhuoran Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Hongmei Chen
- Department of Anesthesiology, Kunming Angel Women's & Children's Hospital, Kunming, Yunnan Province, China
| | - Shiva Sunder Rajcha
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Jinqiao Qian
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China.
| |
Collapse
|
32
|
Li Y, Huo C, Pan T, Li L, Jin X, Lin X, Chen J, Zhang J, Guo Z, Xu J, Li X. Systematic review regulatory principles of non-coding RNAs in cardiovascular diseases. Brief Bioinform 2019; 20:66-76. [PMID: 28968629 DOI: 10.1093/bib/bbx095] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular diseases (CVDs) continue to be a major cause of morbidity and mortality, and non-coding RNAs (ncRNAs) play critical roles in CVDs. With the recent emergence of high-throughput technologies, including small RNA sequencing, investigations of CVDs have been transformed from candidate-based studies into genome-wide undertakings, and a number of ncRNAs in CVDs were discovered in various studies. A comprehensive review of these ncRNAs would be highly valuable for researchers to get a complete picture of the ncRNAs in CVD. To address these knowledge gaps and clinical needs, in this review, we first discussed dysregulated ncRNAs and their critical roles in cardiovascular development and related diseases. Moreover, we reviewed >28 561 published papers and documented the ncRNA-CVD association benchmarking data sets to summarize the principles of ncRNA regulation in CVDs. This data set included 13 249 curated relationships between 9503 ncRNAs and 139 CVDs in 12 species. Based on this comprehensive resource, we summarized the regulatory principles of dysregulated ncRNAs in CVDs, including the complex associations between ncRNA and CVDs, tissue specificity and ncRNA synergistic regulation. The highlighted principles are that CVD microRNAs (miRNAs) are highly expressed in heart tissue and that they play central roles in miRNA-miRNA functional synergistic network. In addition, CVD-related miRNAs are close to one another in the functional network, indicating the modular characteristic features of CVD miRNAs. We believe that the regulatory principles summarized here will further contribute to our understanding of ncRNA function and dysregulation mechanisms in CVDs.
Collapse
Affiliation(s)
- Yongsheng Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Caiqin Huo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Tao Pan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lili Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiyun Jin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaoyu Lin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Juan Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jinwen Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Zheng Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, China
| |
Collapse
|
33
|
Shi Y, Han Y, Niu L, Li J, Chen Y. MiR-499 inhibited hypoxia/reoxygenation induced cardiomyocytes injury by targeting SOX6. Biotechnol Lett 2019; 41:837-847. [PMID: 31076992 PMCID: PMC6551346 DOI: 10.1007/s10529-019-02685-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/02/2019] [Indexed: 01/12/2023]
Abstract
Objective MiR-499 has been reported to be expressed only in cardiomyocytes, and its expression would increase after acute myocardial infarction (AMI). miR-499 plays a role in the process of cardiomyocytes injury induced by hypoxia/reoxygenation (H/R), however, it still remains unclear. Results Hypoxia inhibited miR-499-5p expression and H/R induced apoptosis. SOX6 was a target gene of miR-499-5p, and high expression of miR-499-5p inhibited the expression of SOX6. MiR-499-5p reduced H9c2 cells injury by inhibiting the expression of SOX6, overexpression of which could reverse the effect of miR-499-5p on H9c2 cells. MiR-499-5p inhibited the levels of LDH and MDA, while overexpression of miR-499-5p inhibited H/R-induced cell apoptosis. MiR-499-5p could up-regulate the level of Bcl-2 and down-regulate the expression levels of Bax and caspase-3. However, SOX6 partially reversed these effects of miR-499-5p. Conclusion We proved that miR-499-5p inhibited H/R-induced cardiomyocytes injury by targeting SOX6. Our results suggested that miR-499-5p/SOX6 pathway may present a potential therapeutic target for the treatment of AMI.
Collapse
Affiliation(s)
- Yujie Shi
- Department of Cardiology, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Yunfeng Han
- Cardiovascular Disease Institute, PLA Army General Hospital, Beijing, China
| | - Lili Niu
- Cardiovascular Disease Institute, PLA Army General Hospital, Beijing, China
| | - Junxia Li
- Cardiovascular Disease Institute, PLA Army General Hospital, Beijing, China
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
34
|
Label-free Quantitative Analysis of Protein Expression Alterations in miR-26a-Knockout HeLa Cells using SWATH-MS Technology. Sci Rep 2019; 9:1399. [PMID: 30718521 PMCID: PMC6362012 DOI: 10.1038/s41598-018-34904-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) bind to the 3ʹ-untranslated region of target mRNAs in a sequence-specific manner and subsequently repress gene translation. Human miR-26a has been studied extensively, but the target transcripts are far from complete. We first employed the CRISPR-Cas9 system to generate an miR-26a-knockout line in human cervical cancer HeLa cells. The miR26a-knockout line showed increased cell growth and altered proliferation. Proteomics technology of sequential window acquisition of all theoretical mass spectra (SWATH-MS) was utilized to compare the protein abundance between the wild-type and the knockout lines, with an attempt to identify transcripts whose translation was influenced by miR-26a. Functional classification of the proteins with significant changes revealed their function in stress response, proliferation, localization, development, signaling, etc. Several proteins in the cell cycle/proliferation signaling pathway were chosen to be validated by western blot and parallel reaction monitoring (PRM). The satisfactory consistency among the three approaches indicated the reliability of the SWATH-MS quantification. Among the computationally predicted targets, a subset of the targets was directly regulated by miR-26a, as demonstrated by luciferase assays and Western blotting. This study creates an inventory of miR-26a-targeted transcripts in HeLa cells and provides fundamental knowledge to further explore the functions of miR-26a in human cancer.
Collapse
|
35
|
Wan Q, Xu T, Ding W, Zhang X, Ji X, Yu T, Yu W, Lin Z, Wang J. miR-499-5p Attenuates Mitochondrial Fission and Cell Apoptosis via p21 in Doxorubicin Cardiotoxicity. Front Genet 2019; 9:734. [PMID: 30719033 PMCID: PMC6348261 DOI: 10.3389/fgene.2018.00734] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 12/22/2018] [Indexed: 12/24/2022] Open
Abstract
Doxorubicin (DOX) is a broad-spectrum anti-tumor drug, but its cardiotoxicity limits its clinical application. A better understanding of the molecular mechanisms underlying DOX cardiotoxicity will benefit clinical practice and remedy heart failure. Our present study observed that DOX caused cardiomyocyte (H9c2) apoptosis via the induction of abnormal mitochondrial fission. Notably, the expression levels of p21 increased in DOX-treated cardiomyocytes, and the silencing of p21 using siRNA greatly attenuated mitochondrial fission and apoptosis in cardiomyocytes. We also found that miR-499-5p could directly target p21 and attenuated DOX-induced mitochondrial fission and apoptosis. The role of the miR-499-5p-p21 axis in the prevention of DOX cardiotoxicity was also validated in the mice model. DOX treatment induced an upregulation of p21, which induced subsequent abnormal mitochondrial fission and myocardial apoptosis in mouse heart. Adenovirus-harboring miR-499-5p-overexpressing mice exhibited significantly reduced p21 expression, mitochondrial fission and myocardial apoptosis in hearts following DOX administration. The miR-499-5p-overexpressing mice also exhibited improved cardiomyocyte hypertrophy and cardiac function after DOX treatment. However, miR-499-5p was not involved in the DOX-induced apoptosis of cancer cells. Taken together, these findings reveal an emerging role of p21 in the regulation of mitochondrial fission program. miR-499-5p attenuated mitochondrial fission and DOX cardiotoxicity via the targeting of p21. These results provide new evidence for the miR-499-5p-p21 axis in the attenuation of DOX cardiotoxicity. The development of new therapeutic strategies based on the miR-499-5p-p21 axis is a promising path to overcome DOX cardiotoxicity as a chemotherapy for cancer treatment.
Collapse
Affiliation(s)
- Qinggong Wan
- Center for Regenerative Medicine, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China.,School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Tao Xu
- Center for Regenerative Medicine, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Wei Ding
- Department of Comprehensive Internal Medicine, Affiliated Hospital, Qingdao University, Qingdao, China
| | - Xuejuan Zhang
- Department of Comprehensive Internal Medicine, Affiliated Hospital, Qingdao University, Qingdao, China
| | - Xiaoyu Ji
- Center for Regenerative Medicine, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China.,School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Tao Yu
- Center for Regenerative Medicine, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Wanpeng Yu
- Center for Regenerative Medicine, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Zhijuan Lin
- Center for Regenerative Medicine, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Jianxun Wang
- Center for Regenerative Medicine, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China.,School of Basic Medical Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
36
|
Wadley GD, Lamon S, Alexander SE, McMullen JR, Bernardo BC. Noncoding RNAs regulating cardiac muscle mass. J Appl Physiol (1985) 2018; 127:633-644. [PMID: 30571279 DOI: 10.1152/japplphysiol.00904.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Noncoding RNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) play roles in the development and homeostasis of nearly every tissue of the body, including the regulation of processes underlying heart growth. Cardiac hypertrophy can be classified as either physiological (beneficial heart growth) or pathological (detrimental heart growth), the latter of which results in impaired cardiac function and heart failure and is predictive of a higher incidence of death due to cardiovascular disease. Several miRNAs have a functional role in exercise-induced cardiac hypertrophy, while both miRNAs and lncRNAs are heavily involved in pathological heart growth and heart failure. The latter have the potential to act as an endogenous sponge RNA and interact with specific miRNAs to control cardiac hypertrophy, adding another level of complexity to our understanding of the regulation of cardiac muscle mass. In addition to tissue-specific effects, ncRNA-mediated tissue cross talk occurs via exosomes. In particular, miRNAs can be internalized in exosomes and secreted from various cardiac and vascular cell types to promote angiogenesis, as well as protection and repair of ischemic tissues. ncRNAs hold promising therapeutic potential to protect the heart against ischemic injury and aid in regeneration. Numerous preclinical studies have demonstrated the therapeutic potential of ncRNAs, specifically miRNAs, for the treatment of cardiovascular disease. Most of these studies employ antisense oligonucleotides to inhibit miRNAs of interest; however, off-target effects often limit their potential to be translated to the clinic. In this context, approaches using viral and nonviral delivery tools are promising means to provide targeted delivery in vivo.
Collapse
Affiliation(s)
- Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Séverine Lamon
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Sarah E Alexander
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia.,Department of Medicine, Monash University, Clayton, Victoria, Australia.,Department of Physiology, Monash University, Clayton, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Bianca C Bernardo
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Victoria, Australia
| |
Collapse
|
37
|
Goldberg-Smith P. Lisa Dorn. Circ Res 2018; 123:1115-1117. [PMID: 30359186 DOI: 10.1161/circresaha.118.314188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Borck PC, Batista TM, Vettorazzi JF, Soares GM, Lubaczeuski C, Guan D, Boschero AC, Vieira E, Lazar MA, Carneiro EM. Nighttime light exposure enhances Rev-erbα-targeting microRNAs and contributes to hepatic steatosis. Metabolism 2018; 85:250-258. [PMID: 29751019 PMCID: PMC6145802 DOI: 10.1016/j.metabol.2018.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The exposure to artificial light at night (ALAN) disrupts the biological rhythms and has been associated with the development of metabolic syndrome. MicroRNAs (miRNAs) display a critical role in fine-tuning the circadian system and energy metabolism. In this study, we aimed to assess whether altered miRNAs expression in the liver underlies metabolic disorders caused by disrupted biological rhythms. RESULTS We found that C3H/HePas mice exposed to ALAN developed obesity, and hepatic steatosis, which was paralleled by decreased expression of Rev-erbα and up-regulation of its lipogenic targets ACL and FAS in liver. Furthermore, the expression of Rev-erbα-targeting miRNAs, miR-140-5p, 185-5p, 326-5p and 328-5p were increased in this group. Consistently, overexpression of these miRNAs in primary hepatocytes reduced Rev-erbα expression at the mRNA and protein levels. Importantly, overexpression of Rev-erbα-targeting miRNAs increased mRNA levels of Acly and Fasn. CONCLUSION Thus, altered miRNAs profile is an important mechanism underlying the disruption of the peripheral clock caused by exposure to ALAN, which could lead to hepatic steatosis.
Collapse
Affiliation(s)
- Patricia C Borck
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil; Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil.
| | - Thiago M Batista
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil; Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| | - Jean F Vettorazzi
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil; Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| | - Gabriela M Soares
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil; Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| | - Camila Lubaczeuski
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil; Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| | - Dongyin Guan
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Antonio C Boschero
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil; Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| | - Elaine Vieira
- Postgraduate Program in Physical Education, Universidade Católica de Brasília - UCB, DF, Brazil
| | - Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Everardo M Carneiro
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil; Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
39
|
Zhou YL, Sun Q, Zhang L, Li R. miR-208b targets Bax to protect H9c2 cells against hypoxia-induced apoptosis. Biomed Pharmacother 2018; 106:1751-1759. [PMID: 30119250 DOI: 10.1016/j.biopha.2018.07.141] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND miR-208 family members have been considered as promising biomarkers in myocardial infarction (MI). Among which, miR-208a and miR-499 are reported to function as ischemic injury promoting miRNAs. This study aimed to explore the in vitro function of miR-208b in MI, which has not been widely studied. METHODS RT-qPCR was conducted to measure the expression changes of miR-208b in MI patients, MI mouse model and H9c2 cells stimulated by hypoxia. H9c2 cells were subjected to hypoxia before which miR-208b expression was altered by transfection. CCK-8, flow cytometry and Western blot were performed to detect cell survival. Besides, the regulatory relationship between miR-208b, Bax, and PI3K/AKT was tested by luciferase reporter, RT-qPCR and Western blot. RESULTS Serum levels of miR-208b in MI patients were significantly higher than those in the healthy controls. Also, miR-208b was up-regulated in mouse model and cell model of MI. Overexpression of miR-208b protected H9c2 cells against hypoxia-induced apoptosis, as the viability was increased, apoptosis rate was decreased, Bax and Cytochrome c were down-regulated, and Bcl-2 was up-regulated. Bax was a target gene of miR-208b. And miR-208b could not protect H9c2 cells when Bax was overexpressed. More interestingly, miR-208b activated PI3K/AKT pathway via targeting Bax, and the activated PI3K/AKT pathway could further repress Bax expression. Finally, blocking PI3K/AKT pathway by using LY294002 eliminated the myocardioprotective effects of miR-208b. CONCLUSION miR-208b is highly expressed during MI, and miR-208b protects H9c2 cells against hypoxia-induced apoptosis. miR-208b exerts myocardioprotective effect via targeting Bax and activating PI3K/AKT pathway.
Collapse
Affiliation(s)
- Ya-Li Zhou
- Health Management Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiang Sun
- Department of Ultrasound, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| | - Lei Zhang
- Department of Ultrasound, The Affiliated Hospital of Jining Medical College, Jining, China
| | - Rui Li
- Health Management Center, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
40
|
Das A, Samidurai A, Salloum FN. Deciphering Non-coding RNAs in Cardiovascular Health and Disease. Front Cardiovasc Med 2018; 5:73. [PMID: 30013975 PMCID: PMC6036139 DOI: 10.3389/fcvm.2018.00073] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/29/2018] [Indexed: 12/16/2022] Open
Abstract
After being long considered as “junk” in the human genome, non-coding RNAs (ncRNAs) currently represent one of the newest frontiers in cardiovascular disease (CVD) since they have emerged in recent years as potential therapeutic targets. Different types of ncRNAs exist, including small ncRNAs that have fewer than 200 nucleotides, which are mostly known as microRNAs (miRNAs), and long ncRNAs that have more than 200 nucleotides. Recent discoveries on the role of ncRNAs in epigenetic and transcriptional regulation, atherosclerosis, myocardial ischemia/reperfusion (I/R) injury and infarction (MI), adverse cardiac remodeling and hypertrophy, insulin resistance, and diabetic cardiomyopathy prompted vast interest in exploring candidate ncRNAs for utilization as potential therapeutic targets and/or diagnostic/prognostic biomarkers in CVDs. This review will discuss our current knowledge concerning the roles of different types of ncRNAs in cardiovascular health and disease and provide some insight on the cardioprotective signaling pathways elicited by the non-coding genome. We will highlight important basic and clinical breakthroughs that support employing ncRNAs for treatment or early diagnosis of a variety of CVDs, and also depict the most relevant limitations that challenge this novel therapeutic approach.
Collapse
Affiliation(s)
- Anindita Das
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Arun Samidurai
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Fadi N Salloum
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
41
|
Wang C, Jing Q. Non-coding RNAs as biomarkers for acute myocardial infarction. Acta Pharmacol Sin 2018; 39:1110-1119. [PMID: 29698386 DOI: 10.1038/aps.2017.205] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 12/25/2017] [Indexed: 12/13/2022] Open
Abstract
Acute myocardial infarction (AMI) is a main threat to human lives worldwide. Early and accurate diagnoses warrant immediate medical care, which would reduce mortality and improve prognoses. Circulating non-coding RNAs have been demonstrated to serve as competent biomarkers for various diseases. Following the identification of cardiac-specific microRNA miR-208a in circulation, more non-coding RNAs (miR-1, miR-499 and miR-133) have been identified as biomarkers not only for the diagnosis of AMI but also for prognosis post infarction. Here, we summarized recent findings on non-coding RNAs as biomarkers for early diagnosis of ST-segment elevation myocardial infarction and for disease monitoring of myocardial infarction. In addition, the prognostic potential of non-coding RNAs in patients treated with percutaneous coronary intervention was also described. We also include studies based on biobanks, and build a miRNA release spectrum after AMI, which provides quantitative and time-lapse monitoring of AMI progress. With this spectrum, we are able to customize personal medical care, which prevents further damage. By constructing a network of circulating non-coding RNAs with high specificity and sensitivity, detailed diagnostic information was provided for personalized medicine. Unveiling the roles and kinetics of circulating non-coding RNAs may lead to a revolution in clinical diagnosis.
Collapse
|
42
|
Chung E, Haizlip KM, Leinwand LA. Pregnancy late in rodent life has detrimental effects on the heart. Am J Physiol Heart Circ Physiol 2018; 315:H482-H491. [PMID: 29750565 DOI: 10.1152/ajpheart.00020.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
During pregnancy, the heart undergoes significant and numerous changes, including hypertrophy, that are usually described as physiological and reversible. Two aspects of the cardiac response to pregnancy are relatively understudied: advanced maternal age and multiple pregnancies (multiparity). Repeated breeder (RB) mice that have undergone five to seven consecutive pregnancies were euthanized 21 days after the weaning of their last pups and compared with age-matched primiparous, one-time pregnant (O1P) mice. The ages of the older mouse groups were similar (12 ± 1 mo). Pregnancy at a later age resulted in reduced fertility (40%); resorption was 29%, maternal mortality was 10%, and mortality of the pups was 17%. Contractile function as indicated by percent fractional shortening was significantly decreased in O1P and RB groups compared with the old nonpregnant control (ONP) group. There was no pathological induction of the fetal program of gene expression, with the exception of β-myosin heavy chain mRNA, which was induced in O1P compared with ONP mice ( P < 0.05) but not in RB mice. MicroRNA-208a was significantly increased in O1P compared with ONP mice ( P < 0.05) but significantly decreased in RB compared with ONP mice ( P < 0.05). mRNA of genes regulating angiogenesis (i.e., vascular endothelial growth factor-A) were significantly downregulated, whereas proinflammatory genes [i.e., interleukin-6, chemokine (C-C motif) ligand 2, and Cd36] were significantly upregulated in O1P ( P < 0.05) but not in RB mice. Overall, our results suggest that rather than multiparity, pregnancy in advanced age is a much more stressful event in both pregnant dams and fetuses, as evidenced by increased mortality, lower fertility, downregulation of angiogenesis, upregulation of inflammation, and cardiac dysfunction. NEW & NOTEWORTHY Pregnancy in older mice significantly decreases cardiac function, although repeated breeder mice demonstrated increased wall hypertrophy and dilated chamber size compared with one-time pregnant mice. Interestingly, many of the molecular changes were altered in one-time pregnant mice but not in repeated breeder mice, which may contribute to adverse pregnancy outcomes in a first pregnancy at a later age.
Collapse
Affiliation(s)
- Eunhee Chung
- Department of Kinesiology, Health, and Nutrition, University of Texas at San Antonio , San Antonio, Texas
| | - Kaylan M Haizlip
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado , Boulder, Colorado
| | - Leslie A Leinwand
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado , Boulder, Colorado
| |
Collapse
|
43
|
Zhou K, Yue P, Ma F, Yan H, Zhang Y, Wang C, Qiu D, Hua Y, Li Y. Interpreting the various associations of MiRNA polymorphisms with susceptibilities of cardiovascular diseases: Current evidence based on a systematic review and meta-analysis. Medicine (Baltimore) 2018; 97:e10712. [PMID: 29794746 PMCID: PMC6393131 DOI: 10.1097/md.0000000000010712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND To interpret the various associations between miRNA polymorphisms and cardiovascular diseases (CVD). METHODS Literature search has identified relevant studies up to June 2016. A meta-analysis was performed followed the guidelines from the Cochrane review group and the PRISMA statement. Studies were identified by searching the Cochrane Library, EMBASE, PUBMED and WHO clinical trials registry center. A meta-analysis has been done with a fixed/random-effect model using STATA 14.0, which also has been used to estimate the publication bias and meta-regression. RESULTS The results from 11 case-control studies were included. The miR-146a G/C makes a contribution to the causing of CVD as recessive genetic model. And the miR-499 G/A raised the risks of cardiomyopathy, however it could still accelerate the procedure of CVD combined with myocardial infraction. At this point, we consider that it could deepen the adverse of outcomes from coronary artery disease (CAD), but it's hard to draw an association between miR-499 G/A and CAD. At last the miR-196a2 T/C demonstrated a contrary role between development problem and metabolic issues, which protects the development procedure and impairs the metabolism to cause different disease phenotypes. CONCLUSION Despite inter-study variability, the polymorphisms from miR-146a, miR-499 and miR-196a2 have impacts on cardiovascular disease. Each type of miRNA has individual role in either cardiac development or the origins of CVD.
Collapse
Affiliation(s)
- Kaiyu Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University
- Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University
- Program for Changjiang Scholars and Innovative Research Team in University, West China Second University Hospital, Sichuan University
| | - Peng Yue
- Department of Pediatrics, West China Second University Hospital, Sichuan University
- Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University
- West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Fan Ma
- Department of Pediatrics, West China Second University Hospital, Sichuan University
- Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University
- West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Hualin Yan
- Department of Pediatrics, West China Second University Hospital, Sichuan University
- Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University
- West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yi Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University
- Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University
| | - Chuan Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University
- Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University
| | - Dajian Qiu
- Department of Pediatrics, West China Second University Hospital, Sichuan University
- Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University
| | - Yimin Hua
- Department of Pediatrics, West China Second University Hospital, Sichuan University
- Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University
- Program for Changjiang Scholars and Innovative Research Team in University, West China Second University Hospital, Sichuan University
| | - Yifei Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University
- Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University
| |
Collapse
|
44
|
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression by targeting mRNAs for degradation or translational repression. MiRNAs can be expressed tissue specifically and are altered in response to various physiological conditions. It has recently been shown that miRNAs are released into the circulation, potentially for the purpose of communicating with distant tissues. This manuscript discusses miRNA alterations in cardiac muscle and the circulation during heart failure, a prevalent and costly public health issue. A potential mechanism for how skeletal muscle maladaptations during heart failure could be mediated by myocardium-derived miRNAs released to the circulation is presented. An overview of miRNA alterations in skeletal muscle during the ubiquitous process of aging and perspectives on miRNA interactions during heart failure are also provided.
Collapse
Affiliation(s)
- Kevin A Murach
- Center for Muscle Biology, University of Kentucky, Lexington, KY, 40536, USA
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KY, 40536, USA
| | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, KY, 40536, USA.
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
45
|
Zhang K, Sun W, Zhang L, Xu X, Wang J, Hong Y. miR-499 Ameliorates Podocyte Injury by Targeting Calcineurin in Minimal Change Disease. Am J Nephrol 2018; 47:94-102. [PMID: 29448244 DOI: 10.1159/000486967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/13/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Podocyte injury is a hallmark of minimal change disease (MCD). Calcineurin inhibitors have been widely used in the current treatment of MCD, and miR-499 may target calcineurin. We aimed to study the function of miR-499 in MCD and test whether miR-499 delivery can improve MCD. METHODS An MCD mouse model was generated using puromycin aminonucleoside (PAN). MiR-499 was delivered using lentiviruses. Biochemical indicators including serum albumin, triglyceride, cholesterol, and 24-h urine protein were determined. Targets of miR-499 were confirmed using reporter gene activity assays. The ultrastructure of podocytes was analyzed using transmission electron microscopy. RESULTS MiR-499 significantly improved MCD-related symptoms and signs. Foot-process effacement was caused by PAN and partially reversed by miR-499. We identified that both CnAα and CnAβ were targets of miR-499, and were overexpressed in the presence of PAN. However, miR-499 reduced the expression of CnAα and CnAβ, leading to a decreased activity of calcineurin signaling in mouse podocytes in vitro and in vivo. In addition, miR-499 recovered PAN-induced reduction of cell viability. CONCLUSIONS MiR-499 ameliorated podocyte injury by targeting CnAα and CnAβ in a PAN-induced MCD mouse model. Delivery of miR-499 can be a novel strategy for MCD treatment.
Collapse
|
46
|
Copier CU, León L, Fernández M, Contador D, Calligaris SD. Circulating miR-19b and miR-181b are potential biomarkers for diabetic cardiomyopathy. Sci Rep 2017; 7:13514. [PMID: 29044172 PMCID: PMC5647433 DOI: 10.1038/s41598-017-13875-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/03/2017] [Indexed: 12/17/2022] Open
Abstract
Diabetic cardiomyopathy is characterized by metabolic changes in the myocardium that promote a slow and silent dysfunction of muscle fibers, leading to myocardium remodelling and heart failure, independently of the presence of coronary artery diseases or hypertension. At present, no imaging methods allow an early diagnosis of this disease. Circulating miRNAs in plasma have been proposed as biomarkers in the prognosis of several cardiac diseases. This study aimed to determine whether circulating miRNAs could be potential biomarkers of diabetic cardiomyopathy. Mice that were fed with a high fat diet for 16 months, showed metabolic syndrome manifestations, cardiac hypertrophy (without hypertension) and a progressive cardiac function decline. At 16 months, when maximal degree of cardiac dysfunction was observed, 15 miRNAs from a miRNA microarray screening in myocardium were selected. Then, selected miRNAs expression in myocardium (at 4 and 16 months) and plasma (at 4, 12 and 16 months) were measured by RT-qPCR. Circulating miR-19b-3p and miR-181b-5p levels were associated with myocardium levels during the development of diabetic cardiomyopathy (in terms of cardiac dysfunction), suggesting that these miRNAs could be suitable biomarkers of this disease in asymptomatic diabetic patients.
Collapse
Affiliation(s)
- Camila Uribe Copier
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Av. Las Condes 12.438, Lo Barnechea, Santiago, Chile
| | - Luis León
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Pedro de Valdivia 425, Providencia, Santiago, Chile
| | - Mauricio Fernández
- Departamento de Cardiología, Clínica Alemana de Santiago - Universidad del Desarrollo, Vitacura 5951, Vitacura, Santiago, Chile
| | - David Contador
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Av. Las Condes 12.438, Lo Barnechea, Santiago, Chile
| | - Sebastián D Calligaris
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Av. Las Condes 12.438, Lo Barnechea, Santiago, Chile.
| |
Collapse
|
47
|
Shah P, Bristow MR, Port JD. MicroRNAs in Heart Failure, Cardiac Transplantation, and Myocardial Recovery: Biomarkers with Therapeutic Potential. Curr Heart Fail Rep 2017; 14:454-464. [DOI: 10.1007/s11897-017-0362-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
48
|
Choong OK, Lee DS, Chen CY, Hsieh PCH. The roles of non-coding RNAs in cardiac regenerative medicine. Noncoding RNA Res 2017; 2:100-110. [PMID: 30159427 PMCID: PMC6096405 DOI: 10.1016/j.ncrna.2017.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 02/06/2023] Open
Abstract
The emergence of non-coding RNAs (ncRNAs) has challenged the central dogma of molecular biology that dictates that the decryption of genetic information starts from transcription of DNA to RNA, with subsequent translation into a protein. Large numbers of ncRNAs with biological significance have now been identified, suggesting that ncRNAs are important in their own right and their roles extend far beyond what was originally envisaged. ncRNAs do not only regulate gene expression, but are also involved in chromatin architecture and structural conformation. Several studies have pointed out that ncRNAs participate in heart disease; however, the functions of ncRNAs still remain unclear. ncRNAs are involved in cellular fate, differentiation, proliferation and tissue regeneration, hinting at their potential therapeutic applications. Here, we review the current understanding of both the biological functions and molecular mechanisms of ncRNAs in heart disease and describe some of the ncRNAs that have potential heart regeneration effects.
Collapse
Affiliation(s)
- Oi Kuan Choong
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Desy S Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Chen-Yun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Patrick C H Hsieh
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.,Institute of Medical Genomics and Proteomics, Institute of Clinical Medicine and Department of Surgery, National Taiwan University & Hospital, Taipei 100, Taiwan
| |
Collapse
|
49
|
Shah MS, Brownlee M. Molecular and Cellular Mechanisms of Cardiovascular Disorders in Diabetes. Circ Res 2017; 118:1808-29. [PMID: 27230643 DOI: 10.1161/circresaha.116.306923] [Citation(s) in RCA: 397] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/26/2016] [Indexed: 12/13/2022]
Abstract
The clinical correlations linking diabetes mellitus with accelerated atherosclerosis, cardiomyopathy, and increased post-myocardial infarction fatality rates are increasingly understood in mechanistic terms. The multiple mechanisms discussed in this review seem to share a common element: prolonged increases in reactive oxygen species (ROS) production in diabetic cardiovascular cells. Intracellular hyperglycemia causes excessive ROS production. This activates nuclear poly(ADP-ribose) polymerase, which inhibits GAPDH, shunting early glycolytic intermediates into pathogenic signaling pathways. ROS and poly(ADP-ribose) polymerase also reduce sirtuin, PGC-1α, and AMP-activated protein kinase activity. These changes cause decreased mitochondrial biogenesis, increased ROS production, and disturbed circadian clock synchronization of glucose and lipid metabolism. Excessive ROS production also facilitates nuclear transport of proatherogenic transcription factors, increases transcription of the neutrophil enzyme initiating NETosis, peptidylarginine deiminase 4, and activates the NOD-like receptor family, pyrin domain-containing 3 inflammasome. Insulin resistance causes excessive cardiomyocyte ROS production by increasing fatty acid flux and oxidation. This stimulates overexpression of the nuclear receptor PPARα and nuclear translocation of forkhead box O 1, which cause cardiomyopathy. ROS also shift the balance between mitochondrial fusion and fission in favor of increased fission, reducing the metabolic capacity and efficiency of the mitochondrial electron transport chain and ATP synthesis. Mitochondrial oxidative stress also plays a central role in angiotensin II-induced gap junction remodeling and arrhythmogenesis. ROS contribute to sudden death in diabetics after myocardial infarction by increasing post-translational protein modifications, which cause increased ryanodine receptor phosphorylation and downregulation of sarco-endoplasmic reticulum Ca(++)-ATPase transcription. Increased ROS also depress autonomic ganglion synaptic transmission by oxidizing the nAch receptor α3 subunit, potentially contributing to the increased risk of fatal cardiac arrhythmias associated with diabetic cardiac autonomic neuropathy.
Collapse
Affiliation(s)
- Manasi S Shah
- From the Diabetes Research Center (M.S.S., M.B.), Departments of Medicine (M.S.S., M.B.), and Pathology (M.B.), Albert Einstein College of Medicine, Bronx, New York, NY
| | - Michael Brownlee
- From the Diabetes Research Center (M.S.S., M.B.), Departments of Medicine (M.S.S., M.B.), and Pathology (M.B.), Albert Einstein College of Medicine, Bronx, New York, NY.
| |
Collapse
|
50
|
Ottaviani L, da Costa Martins PA. Non-coding RNAs in cardiac hypertrophy. J Physiol 2017; 595:4037-4050. [PMID: 28233323 PMCID: PMC5471409 DOI: 10.1113/jp273129] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/21/2017] [Indexed: 12/23/2022] Open
Abstract
Heart failure is one of the largest contributors to disease burden and healthcare outflow in the Western world. Despite significant progress in the treatment of heart failure, disease prognosis remains very poor, with the only curative therapy still being heart transplantation. To counteract the current situation, efforts have been made to better understand the underlying molecular pathways in the progression of cardiac disease towards heart failure, and to link the disease to novel therapeutic targets such as non‐coding RNAs. The non‐coding part of the genome has gained prominence over the last couple of decades, opening a completely new research field and establishing different non‐coding RNAs species as fundamental regulators of cellular functions. Not surprisingly, their dysregulation is increasingly being linked to pathology, including to cardiac disease. Pre‐clinically, non‐coding RNAs have been shown to be of great value as therapeutic targets in pathological cardiac remodelling and also as diagnostic/prognostic biomarkers for heart failure. Therefore, it is to be expected that non‐coding RNA‐based therapeutic strategies will reach the bedside in the future and provide new and more efficient treatments for heart failure. Here, we review recent discoveries linking the function and molecular interactions of non‐coding RNAs with the pathophysiology of cardiac hypertrophy and heart failure.
![]()
Collapse
Affiliation(s)
- Lara Ottaviani
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Paula A da Costa Martins
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|