1
|
Zhou Y, Chen J, Cui Y, Tang L, Wu P, Yu P, Fu K, Sun Z, Liu Y. Azobenzene-based colorimetric and fluorometric chemosensor for nitroxyl releasing. Nitric Oxide 2024; 145:49-56. [PMID: 38364967 DOI: 10.1016/j.niox.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
The precise release and characterization of nitroxyl (HNO) gas signaling molecule remain a challenge due to its short lifetime to date. To solve this issue, an azobenzene-based HNO donor (Azo-D1) was proposed as a colorimetric and fluorometric chemosensor for HNO releasing, to release both HNO and an azobenzene fluorescent reporter together. Specifically, the Azo-D1 has an HNO release half-life of ∼68 min under physiological conditions. The characteristic color change from the original orange to the yellow color indicated the decomposition of the donor molecule. In addition, the stoichiometry release of HNO was qualitatively and quantitatively verified through the classical phosphine compound trap. As compared with the donor molecule by itself, the decomposed product demonstrates a maximum fluorescence emission at 424 nm, where the increase of fluorescence intensity by 6.8 times can be applied to infer the real-time concentration of HNO. Moreover, cellular imaging can also be achieved using this Azo-D1 HNO donor through photoexcitation at 405 and 488 nm, where the real-time monitoring of HNO release was achieved without consuming the HNO source. Finally, the Azo-D1 HNO donor would open a new platform in the exploration of the biochemistry and the biology of HNO.
Collapse
Affiliation(s)
- Yang Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Jiajun Chen
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Yunxi Cui
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lingjuan Tang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Peixuan Wu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Peng Yu
- Department of Joint Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Kun Fu
- Department of Joint Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Zhicheng Sun
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing, 102600, China
| | - Yuanyuan Liu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan, 570228, China.
| |
Collapse
|
2
|
Payne FM, Nie S, Diffee GM, Wilkins GT, Larsen DS, Harrison JC, Baldi JC, Sammut IA. The carbon monoxide prodrug oCOm-21 increases Ca 2+ sensitivity of the cardiac myofilament. Physiol Rep 2024; 12:e15974. [PMID: 38491822 PMCID: PMC10943376 DOI: 10.14814/phy2.15974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
Patients undergoing cardiopulmonary bypass procedures require inotropic support to improve hemodynamic function and cardiac output. Current inotropes such as dobutamine, can promote arrhythmias, prompting a demand for improved inotropes with little effect on intracellular Ca2+ flux. Low-dose carbon monoxide (CO) induces inotropic effects in perfused hearts. Using the CO-releasing pro-drug, oCOm-21, we investigated if this inotropic effect results from an increase in myofilament Ca2+ sensitivity. Male Sprague Dawley rat left ventricular cardiomyocytes were permeabilized, and myofilament force was measured as a function of -log [Ca2+ ] (pCa) in the range of 9.0-4.5 under five conditions: vehicle, oCOm-21, the oCOm-21 control BP-21, and levosimendan, (9 cells/group). Ca2+ sensitivity was assessed by the Ca2+ concentration at which 50% of maximal force is produced (pCa50 ). oCOm-21, but not BP-21 significantly increased pCa50 compared to vehicle, respectively (pCa50 5.52 vs. 5.47 vs. 5.44; p < 0.05). No change in myofilament phosphorylation was seen after oCOm-21 treatment. Pretreatment of cardiomyocytes with the heme scavenger hemopexin, abolished the Ca2+ sensitizing effect of oCOm-21. These results support the hypothesis that oCOm-21-derived CO increases myofilament Ca2+ sensitivity through a heme-dependent mechanism but not by phosphorylation. Further analyses will confirm if this Ca2+ sensitizing effect occurs in an intact heart.
Collapse
Affiliation(s)
- Fergus M. Payne
- School of Biomedical Sciences, Department of Pharmacology and ToxicologyUniversity of OtagoDunedinOtagoNew Zealand
- Otago Medical School, Department of MedicineUniversity of OtagoDunedinOtagoNew Zealand
- HeartOtagoUniversity of OtagoDunedinNew Zealand
| | - Samantha Nie
- School of Biomedical Sciences, Department of Pharmacology and ToxicologyUniversity of OtagoDunedinOtagoNew Zealand
- HeartOtagoUniversity of OtagoDunedinNew Zealand
| | - Gary M. Diffee
- Department of KinesiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Gerard T. Wilkins
- Otago Medical School, Department of MedicineUniversity of OtagoDunedinOtagoNew Zealand
- HeartOtagoUniversity of OtagoDunedinNew Zealand
| | - David S. Larsen
- School of Science, Department of ChemistryUniversity of OtagoDunedinOtagoNew Zealand
| | - Joanne C. Harrison
- School of Biomedical Sciences, Department of Pharmacology and ToxicologyUniversity of OtagoDunedinOtagoNew Zealand
- HeartOtagoUniversity of OtagoDunedinNew Zealand
| | - James C. Baldi
- Otago Medical School, Department of MedicineUniversity of OtagoDunedinOtagoNew Zealand
- HeartOtagoUniversity of OtagoDunedinNew Zealand
| | - Ivan A. Sammut
- School of Biomedical Sciences, Department of Pharmacology and ToxicologyUniversity of OtagoDunedinOtagoNew Zealand
- HeartOtagoUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
3
|
Elkrief D, Matusovsky O, Cheng YS, Rassier DE. From amino-acid to disease: the effects of oxidation on actin-myosin interactions in muscle. J Muscle Res Cell Motil 2023; 44:225-254. [PMID: 37805961 DOI: 10.1007/s10974-023-09658-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/15/2023] [Indexed: 10/10/2023]
Abstract
Actin-myosin interactions form the basis of the force-producing contraction cycle within the sarcomere, serving as the primary mechanism for muscle contraction. Post-translational modifications, such as oxidation, have a considerable impact on the mechanics of these interactions. Considering their widespread occurrence, the explicit contributions of these modifications to muscle function remain an active field of research. In this review, we aim to provide a comprehensive overview of the basic mechanics of the actin-myosin complex and elucidate the extent to which oxidation influences the contractile cycle and various mechanical characteristics of this complex at the single-molecule, myofibrillar and whole-muscle levels. We place particular focus on amino acids shown to be vulnerable to oxidation in actin, myosin, and some of their binding partners. Additionally, we highlight the differences between in vitro environments, where oxidation is controlled and limited to actin and myosin and myofibrillar or whole muscle environments, to foster a better understanding of oxidative modification in muscle. Thus, this review seeks to encompass a broad range of studies, aiming to lay out the multi layered effects of oxidation in in vitro and in vivo environments, with brief mention of clinical muscular disorders associated with oxidative stress.
Collapse
Affiliation(s)
- Daren Elkrief
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Oleg Matusovsky
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada
| | - Yu-Shu Cheng
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada
| | - Dilson E Rassier
- Department of Physiology, McGill University, Montreal, QC, Canada.
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada.
- Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
4
|
Sawase LR, C V J, Manna S, Chakrapani H. A modular scaffold for triggerable and tunable nitroxyl (HNO) generation with a fluorescence reporter. Chem Commun (Camb) 2023; 59:3415-3418. [PMID: 36852903 DOI: 10.1039/d2cc06134a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Nitroxyl (HNO) is a short-lived mediator of cell signalling and can enhance the sulfane sulfur pool, a cellular antioxidant reservoir, by reacting with hydrogen sulfide (H2S). Here, we report esterase-activated HNO-generators that are suitable for tunable HNO release and the design of these donors allows for real-time monitoring of HNO release. These tools will help gain a better understanding of the cross-talk among short-lived gaseous signalling molecules that have emerged as major players in health and disease.
Collapse
Affiliation(s)
- Laxman R Sawase
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411 008, Maharashtra, India.
| | - Jishnu C V
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411 008, Maharashtra, India.
| | - Suman Manna
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411 008, Maharashtra, India.
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411 008, Maharashtra, India.
| |
Collapse
|
5
|
Miranda KM, Ridnour LA, Cheng RY, Wink DA, Thomas DD. The Chemical Biology of NO that Regulates Oncogenic Signaling and Metabolism: NOS2 and Its Role in Inflammatory Disease. Crit Rev Oncog 2023; 28:27-45. [PMID: 37824385 PMCID: PMC11318306 DOI: 10.1615/critrevoncog.2023047302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Nitric oxide (NO) and the enzyme that synthesizes it, nitric oxide synthase 2 (NOS2), have emerged as key players in inflammation and cancer. Expression of NOS2 in tumors has been correlated both with positive outcomes and with poor prognoses. The chemistry of NO is the major determinate to the biological outcome and the concentration of NO, which can range over five orders of magnitude, is critical in determining which pathways are activated. It is the activation of specific oncogenic and immunological mechanisms that shape the outcome. The kinetics of specific reactions determine the mechanisms of action. In this review, the relevant reactions of NO and related species are discussed with respect to these oncogenic and immunological signals.
Collapse
Affiliation(s)
| | - Lisa A. Ridnour
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - Robert Y.S. Cheng
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - David A. Wink
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - Douglas D. Thomas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
6
|
Rouyère C, Serrano T, Frémont S, Echard A. Oxidation and reduction of actin: Origin, impact in vitro and functional consequences in vivo. Eur J Cell Biol 2022; 101:151249. [PMID: 35716426 DOI: 10.1016/j.ejcb.2022.151249] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 11/15/2022] Open
Abstract
Actin is among the most abundant proteins in eukaryotic cells and assembles into dynamic filamentous networks regulated by many actin binding proteins. The actin cytoskeleton must be finely tuned, both in space and time, to fulfill key cellular functions such as cell division, cell shape changes, phagocytosis and cell migration. While actin oxidation by reactive oxygen species (ROS) at non-physiological levels are known for long to impact on actin polymerization and on the cellular actin cytoskeleton, growing evidence shows that direct and reversible oxidation/reduction of specific actin amino acids plays an important and physiological role in regulating the actin cytoskeleton. In this review, we describe which actin amino acid residues can be selectively oxidized and reduced in many different ways (e.g. disulfide bond formation, glutathionylation, carbonylation, nitration, nitrosylation and other oxidations), the cellular enzymes at the origin of these post-translational modifications, and the impact of actin redox modifications both in vitro and in vivo. We show that the regulated balance of oxidation and reduction of key actin amino acid residues contributes to the control of actin filament polymerization and disassembly at the subcellular scale and highlight how improper redox modifications of actin can lead to pathological conditions.
Collapse
Affiliation(s)
- Clémentine Rouyère
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015 Paris, France; Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | - Thomas Serrano
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015 Paris, France
| | - Stéphane Frémont
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015 Paris, France
| | - Arnaud Echard
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015 Paris, France.
| |
Collapse
|
7
|
Kamynina A, Guttzeit S, Eaton P, Cuello F. Nitroxyl Donor CXL-1020 Lowers Blood Pressure by Targeting C195 in Cyclic Guanosine-3',5'-Monophosphate-Dependent Protein Kinase I. Hypertension 2022; 79:946-956. [PMID: 35168371 DOI: 10.1161/hypertensionaha.122.18756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We previously demonstrated that nitroxyl causes vasodilation, at least in part, by inducing the formation of an intradisulfide bond between C117 and C195 in the high affinity cyclic guanosine monophosphate-binding site of PKGI (cyclic guanosine monophosphate-dependent protein kinase I). The aim of this study was to determine whether nitroxyl donors lower blood pressure via this novel PKGI activation mechanism in vivo. METHODS To determine this, a C195S PKGI knock-in mouse model was generated that ubiquitously and constitutively expresses a mutant kinase resistant to nitroxyl-induced intradisulfide activation. RESULTS Knock-in and wild-type littermates did not differ in appearance, body weight, in PKGI protein expression or blood gas content. Organ weight was similar between genotypes apart from the cecum that was significantly enlarged in knock-in animals. Mean arterial pressure and heart rate monitored in vivo over 24 hours by radio-telemetry revealed neither a significant difference between genotypes at baseline nor during angiotensin II-induced hypertension or sepsis. CXL-1020, a clinically relevant nitroxyl donor, did not lower blood pressure in normotensive animals. In contrast, administering CXL-1020 to hypertensive wild-type mice reduced their blood pressure by 10±4 mm Hg (P=0.0184), whereas the knock-in littermates were unaffected. CONCLUSIONS Oxidation of C195 in PKGI contributes to the antihypertensive effects observed in response to nitroxyl donors, emphasising the potential importance of nitroxyl donors in pathological scenarios when cyclic guanosine monophosphate levels are reduced and insufficient to activate PKGI.
Collapse
Affiliation(s)
- Alisa Kamynina
- William Harvey Research Institute, Queen Mary University of London, United Kingdom (A.K., S.G., P.E.)
| | - Sebastian Guttzeit
- William Harvey Research Institute, Queen Mary University of London, United Kingdom (A.K., S.G., P.E.)
| | - Philip Eaton
- William Harvey Research Institute, Queen Mary University of London, United Kingdom (A.K., S.G., P.E.)
| | - Friederike Cuello
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (F.C.)
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Germany (F.C.)
| |
Collapse
|
8
|
Kemp-Harper B. Vasoprotective Actions of Nitroxyl (HNO): A Story of Sibling Rivalry. J Cardiovasc Pharmacol 2021; 78:S13-S18. [PMID: 34840263 DOI: 10.1097/fjc.0000000000001151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Nitroxyl (HNO), the 1 electron-reduced and protonated form of nitric oxide (NO•), has emerged as a nitrogen oxide with a suite of vasoprotective properties and therapeutic advantages over its redox sibling. Although HNO has garnered much attention due to its cardioprotective actions in heart failure, its ability to modulate vascular function, without the limitations of tolerance development and NO• resistance, is desirable in the treatment of vascular disease. HNO serves as a potent vasodilator and antiaggregatory agent and has an ability to limit vascular inflammation and reactive oxygen species generation. In addition, its resistance to scavenging by reactive oxygen species and ability to target distinct vascular signaling pathways (Kv, KATP, and calcitonin gene-related peptide) contribute to its preserved efficacy in hypertension, diabetes, and hypercholesterolemia. In this review, the vasoprotective actions of HNO will be compared with those of NO•, and the therapeutic utility of HNO donors in the treatment of angina, acute cardiovascular emergencies, and chronic vascular disease are discussed.
Collapse
Affiliation(s)
- Barbara Kemp-Harper
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
9
|
Muniz Carvalho E, Silva Sousa EH, Bernardes‐Génisson V, Gonzaga de França Lopes L. When NO
.
Is not Enough: Chemical Systems, Advances and Challenges in the Development of NO
.
and HNO Donors for Old and Current Medical Issues. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Edinilton Muniz Carvalho
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
- CNRS Laboratoire de Chimie de Coordination LCC UPR 8241 205 Route de Narbonne, 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse Université Paul Sabatier UPS 118 Route de Narbonne 31062 Toulouse, Cedex 9 France
| | - Eduardo Henrique Silva Sousa
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
| | - Vania Bernardes‐Génisson
- CNRS Laboratoire de Chimie de Coordination LCC UPR 8241 205 Route de Narbonne, 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse Université Paul Sabatier UPS 118 Route de Narbonne 31062 Toulouse, Cedex 9 France
| | - Luiz Gonzaga de França Lopes
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
| |
Collapse
|
10
|
Chi C, Liu Y, Xu Y, Xu D. Association Between Arterial Stiffness and Heart Failure With Preserved Ejection Fraction. Front Cardiovasc Med 2021; 8:707162. [PMID: 34458336 PMCID: PMC8385653 DOI: 10.3389/fcvm.2021.707162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/14/2021] [Indexed: 01/23/2023] Open
Abstract
Cardiovascular diseases are the leading cause of mortality in the world. Heart failure with preserved ejection fraction (HFpEF) accounts for about half of all heart failure. Unfortunately, the mechanisms of HFpEF are still unclear, leading to little progress of effective treatment of HFpEF. Arterial stiffness is the decrement of arterial compliance. The media of large arteries degenerate in both physiological and pathological conditions. Many studies have proven that arterial stiffness is an independent risk factor for cardiovascular disorders including diastolic dysfunction. In this perspective, we discussed if arterial stiffness is related to HFpEF, and how does arterial stiffness contribute to HFpEF. Finally, we briefly summarized current treatment strategies on arterial stiffness and HFpEF. Though some new drugs were developed, the safety and effectiveness were not adequately assessed. New pharmacologic treatment for arterial stiffness and HFpEF are urgently needed.
Collapse
Affiliation(s)
- Chen Chi
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yifan Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dachun Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Association of free fatty acid binding protein with central aortic stiffness, myocardial dysfunction and preserved ejection fraction heart failure. Sci Rep 2021; 11:16501. [PMID: 34389755 PMCID: PMC8363603 DOI: 10.1038/s41598-021-95534-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
There is an established link between cardiometabolic abnormality, central arterial stiffness, and preserved ejection fraction heart failure (HFpEF). Adipocyte free fatty acid binding protein (a-FABP) has been shown to signal endothelial dysfunction through fatty acid toxicity, though its role in mediating ventricular-arterial dysfunction remains unclear. We prospectively examined the associations of a-FABP with central arterial pressure using non-invasive applanation tonometry (SphygmoCor) and cardiac structure/function (i.e., tissue Doppler imaging [TDI] and global longitudinal myocardial strain [GLS]) in patients with cardiometabolic (CM) risk (n = 150) and HFpEF (n = 50), with healthy volunteers (n = 49) serving as a control. We observed a graded increase of a-FABP across the healthy controls, CM individuals, and HFpEF groups (all paired p < 0.05). Higher a-FABP was independently associated with higher central systolic and diastolic blood pressures (CSP/CPP), increased arterial augmentation index (Aix), lower early myocardial relaxation velocity (TDI-e'), higher left ventricle (LV) filling (E/TDI-e') and worsened GLS (all p < 0.05). During a median of 3.85 years (interquartile range: 3.68-4.62 years) follow-up, higher a-FABP (cutoff: 24 ng/mL, adjusted hazard ratio: 1.01, 95% confidence interval: 1.001-1.02, p = 0.04) but not brain natriuretic peptide, and higher central hemodynamic indices were related to the incidence of heart failure (HF) in fully adjusted Cox models. Furthermore, a-FABP improved the HF risk classification over central hemodynamic information. We found a mechanistic pathophysiological link between a-FABP, central arterial stiffness, and myocardial dysfunction. In a population with a high metabolic risk, higher a-FABP accompanied by worsened ventricular-arterial coupling may confer more unfavorable outcomes in HFpEF.
Collapse
|
12
|
The Interplay between S-Glutathionylation and Phosphorylation of Cardiac Troponin I and Myosin Binding Protein C in End-Stage Human Failing Hearts. Antioxidants (Basel) 2021; 10:antiox10071134. [PMID: 34356367 PMCID: PMC8301081 DOI: 10.3390/antiox10071134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress is defined as an imbalance between the antioxidant defense system and the production of reactive oxygen species (ROS). At low levels, ROS are involved in the regulation of redox signaling for cell protection. However, upon chronical increase in oxidative stress, cell damage occurs, due to protein, DNA and lipid oxidation. Here, we investigated the oxidative modifications of myofilament proteins, and their role in modulating cardiomyocyte function in end-stage human failing hearts. We found altered maximum Ca2+-activated tension and Ca2+ sensitivity of force production of skinned single cardiomyocytes in end-stage human failing hearts compared to non-failing hearts, which was corrected upon treatment with reduced glutathione enzyme. This was accompanied by the increased oxidation of troponin I and myosin binding protein C, and decreased levels of protein kinases A (PKA)- and C (PKC)-mediated phosphorylation of both proteins. The Ca2+ sensitivity and maximal tension correlated strongly with the myofilament oxidation levels, hypo-phosphorylation, and oxidative stress parameters that were measured in all the samples. Furthermore, we detected elevated titin-based myocardial stiffness in HF myocytes, which was reversed by PKA and reduced glutathione enzyme treatment. Finally, many oxidative stress and inflammation parameters were significantly elevated in failing hearts compared to non-failing hearts, and corrected upon treatment with the anti-oxidant GSH enzyme. Here, we provide evidence that the altered mechanical properties of failing human cardiomyocytes are partially due to phosphorylation, S-glutathionylation, and the interplay between the two post-translational modifications, which contribute to the development of heart failure.
Collapse
|
13
|
Yuan S, Schmidt HM, Wood KC, Straub AC. CoenzymeQ in cellular redox regulation and clinical heart failure. Free Radic Biol Med 2021; 167:321-334. [PMID: 33753238 DOI: 10.1016/j.freeradbiomed.2021.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/22/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
Coenzyme Q (CoQ) is ubiquitously embedded in lipid bilayers of various cellular organelles. As a redox cycler, CoQ shuttles electrons between mitochondrial complexes and extramitochondrial reductases and oxidases. In this way, CoQ is crucial for maintaining the mitochondrial function, ATP synthesis, and redox homeostasis. Cardiomyocytes have a high metabolic rate and rely heavily on mitochondria to provide energy. CoQ levels, in both plasma and the heart, correlate with heart failure in patients, indicating that CoQ is critical for cardiac function. Moreover, CoQ supplementation in clinics showed promising results for treating heart failure. This review provides a comprehensive view of CoQ metabolism and its interaction with redox enzymes and reactive species. We summarize the clinical trials and applications of CoQ in heart failure and discuss the caveats and future directions to improve CoQ therapeutics.
Collapse
Affiliation(s)
- Shuai Yuan
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Heidi M Schmidt
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Katherine C Wood
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Regulation of Cardiac PKA Signaling by cAMP and Oxidants. Antioxidants (Basel) 2021; 10:antiox10050663. [PMID: 33923287 PMCID: PMC8146537 DOI: 10.3390/antiox10050663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
Pathologies, such as cancer, inflammatory and cardiac diseases are commonly associated with long-term increased production and release of reactive oxygen species referred to as oxidative stress. Thereby, protein oxidation conveys protein dysfunction and contributes to disease progression. Importantly, trials to scavenge oxidants by systemic antioxidant therapy failed. This observation supports the notion that oxidants are indispensable physiological signaling molecules that induce oxidative post-translational modifications in target proteins. In cardiac myocytes, the main driver of cardiac contractility is the activation of the β-adrenoceptor-signaling cascade leading to increased cellular cAMP production and activation of its main effector, the cAMP-dependent protein kinase (PKA). PKA-mediated phosphorylation of substrate proteins that are involved in excitation-contraction coupling are responsible for the observed positive inotropic and lusitropic effects. PKA-actions are counteracted by cellular protein phosphatases (PP) that dephosphorylate substrate proteins and thus allow the termination of PKA-signaling. Both, kinase and phosphatase are redox-sensitive and susceptible to oxidation on critical cysteine residues. Thereby, oxidation of the regulatory PKA and PP subunits is considered to regulate subcellular kinase and phosphatase localization, while intradisulfide formation of the catalytic subunits negatively impacts on catalytic activity with direct consequences on substrate (de)phosphorylation and cardiac contractile function. This review article attempts to incorporate the current perception of the functionally relevant regulation of cardiac contractility by classical cAMP-dependent signaling with the contribution of oxidant modification.
Collapse
|
15
|
Infante T, Costa D, Napoli C. Novel Insights Regarding Nitric Oxide and Cardiovascular Diseases. Angiology 2021; 72:411-425. [PMID: 33478246 DOI: 10.1177/0003319720979243] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is a powerful mediator with biological activities such as vasodilation and prevention of vascular smooth muscle cell proliferation as well as functional regulation of cardiac cells. Thus, impaired production or reduced bioavailability of NO predisposes to the onset of different cardiovascular (CV) diseases. Alterations in the redox balance associated with excitation-contraction coupling have been identified in heart failure (HF), thus contributing to contractile abnormalities and arrhythmias. For its ability to influence cell proliferation and angiogenesis, NO may be considered a therapeutic option for the management of several CV diseases. Several clinical studies and trials investigated therapeutic NO strategies for systemic hypertension, atherosclerosis, and/or prevention of in stent restenosis, coronary heart disease (CHD), pulmonary arterial hypertension (PAH), and HF, although with mixed results in long-term treatment and effective dose administered in selected groups of patients. Tadalafil, sildenafil, and cinaguat were evaluated for the treatment of PAH, whereas vericiguat was investigated in the treatment of HF patients with reduced ejection fraction. Furthermore, supplementation with hydrogen sulfide, tetrahydrobiopterin, and nitrite/nitrate has shown beneficial effects at the vascular level.
Collapse
Affiliation(s)
- Teresa Infante
- Department of Advanced Clinical and Surgical Sciences, 18994University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Dario Costa
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Clinical Department of Internal Medicine and Specialistics, 18994University of Campania "L. Vanvitelli," Naples, Italy
| | - Claudio Napoli
- Department of Advanced Clinical and Surgical Sciences, 18994University of Campania "Luigi Vanvitelli," Naples, Italy.,IRCCS SDN, Naples, Italy
| |
Collapse
|
16
|
He S, Zhu J, Xie P, Liu J, Zhang D, Tang J, Ye Y. A novel NIR fluorescent probe for the highly sensitive detection of HNO and its application in bioimaging. NEW J CHEM 2021. [DOI: 10.1039/d1nj04015d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A “naked-eye” HNO probe based on xanthene was obtained.
Collapse
Affiliation(s)
- Shenwei He
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jianming Zhu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Peiyao Xie
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jianfei Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Di Zhang
- Institute of Agricultural Quality Standards and Testing Technology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Jun Tang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yong Ye
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
17
|
Huang YQ, Jin HF, Zhang H, Tang CS, Du JB. Interaction among Hydrogen Sulfide and Other Gasotransmitters in Mammalian Physiology and Pathophysiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:205-236. [PMID: 34302694 DOI: 10.1007/978-981-16-0991-6_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide (H2S), nitric oxide (NO), carbon monoxide (CO), and sulfur dioxide (SO2) were previously considered as toxic gases, but now they are found to be members of mammalian gasotransmitters family. Both H2S and SO2 are endogenously produced in sulfur-containing amino acid metabolic pathway in vivo. The enzymes catalyzing the formation of H2S are mainly CBS, CSE, and 3-MST, and the key enzymes for SO2 production are AAT1 and AAT2. Endogenous NO is produced from L-arginine under catalysis of three isoforms of NOS (eNOS, iNOS, and nNOS). HO-mediated heme catabolism is the main source of endogenous CO. These four gasotransmitters play important physiological and pathophysiological roles in mammalian cardiovascular, nervous, gastrointestinal, respiratory, and immune systems. The similarity among these four gasotransmitters can be seen from the same and/or shared signals. With many studies on the biological effects of gasotransmitters on multiple systems, the interaction among H2S and other gasotransmitters has been gradually explored. H2S not only interacts with NO to form nitroxyl (HNO), but also regulates the HO/CO and AAT/SO2 pathways. Here, we review the biosynthesis and metabolism of the gasotransmitters in mammals, as well as the known complicated interactions among H2S and other gasotransmitters (NO, CO, and SO2) and their effects on various aspects of cardiovascular physiology and pathophysiology, such as vascular tension, angiogenesis, heart contractility, and cardiac protection.
Collapse
Affiliation(s)
- Ya-Qian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hong-Fang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China.
| | - Heng Zhang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Chao-Shu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China
| | - Jun-Bao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China.
| |
Collapse
|
18
|
Diering S, Stathopoulou K, Goetz M, Rathjens L, Harder S, Piasecki A, Raabe J, Schulz S, Brandt M, Pflaumenbaum J, Fuchs U, Donzelli S, Sadayappan S, Nikolaev VO, Flenner F, Ehler E, Cuello F. Receptor-independent modulation of cAMP-dependent protein kinase and protein phosphatase signaling in cardiac myocytes by oxidizing agents. J Biol Chem 2020; 295:15342-15365. [PMID: 32868295 PMCID: PMC7650233 DOI: 10.1074/jbc.ra120.014467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/28/2020] [Indexed: 02/04/2023] Open
Abstract
The contraction and relaxation of the heart is controlled by stimulation of the β1-adrenoreceptor (AR) signaling cascade, which leads to activation of cAMP-dependent protein kinase (PKA) and subsequent cardiac protein phosphorylation. Phosphorylation is counteracted by the main cardiac protein phosphatases, PP2A and PP1. Both kinase and phosphatases are sensitive to intramolecular disulfide formation in their catalytic subunits that inhibits their activity. Additionally, intermolecular disulfide formation between PKA type I regulatory subunits (PKA-RI) has been described to enhance PKA's affinity for protein kinase A anchoring proteins, which alters its subcellular distribution. Nitroxyl donors have been shown to affect contractility and relaxation, but the mechanistic basis for this effect is unclear. The present study investigates the impact of several nitroxyl donors and the thiol-oxidizing agent diamide on cardiac myocyte protein phosphorylation and oxidation. Although all tested compounds equally induced intermolecular disulfide formation in PKA-RI, only 1-nitrosocyclohexalycetate (NCA) and diamide induced reproducible protein phosphorylation. Phosphorylation occurred independently of β1-AR activation, but was abolished after pharmacological PKA inhibition and thus potentially attributable to increased PKA activity. NCA treatment of cardiac myocytes induced translocation of PKA and phosphatases to the myofilament compartment as shown by fractionation, immunofluorescence, and proximity ligation assays. Assessment of kinase and phosphatase activity within the myofilament fraction of cardiac myocytes after exposure to NCA revealed activation of PKA and inhibition of phosphatase activity thus explaining the increase in phosphorylation. The data suggest that the NCA-mediated effect on cardiac myocyte protein phosphorylation orchestrates alterations in the kinase/phosphatase balance.
Collapse
Affiliation(s)
- Simon Diering
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Konstantina Stathopoulou
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mara Goetz
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Rathjens
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sönke Harder
- Institut für Klinische Chemie und Laboratoriumsmedizin, Massenspektrometrische Proteomanalytik, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Angelika Piasecki
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janice Raabe
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Steven Schulz
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mona Brandt
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Pflaumenbaum
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrike Fuchs
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonia Donzelli
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sakthivel Sadayappan
- University of Cincinnati Heart, Lung and Vascular Institute, Cardiovascular Center, Cincinnati, Ohio USA
| | - Viacheslav O Nikolaev
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Experimental Cardiovascular Research, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frederik Flenner
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics (School of Basic and Medical Biosciences) and School of Cardiovascular Medicine and Sciences, British Heart Foundation Research Excellence Center, King's College London, London, United Kingdom
| | - Friederike Cuello
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
19
|
Maack C, Eschenhagen T, Hamdani N, Heinzel FR, Lyon AR, Manstein DJ, Metzger J, Papp Z, Tocchetti CG, Yilmaz MB, Anker SD, Balligand JL, Bauersachs J, Brutsaert D, Carrier L, Chlopicki S, Cleland JG, de Boer RA, Dietl A, Fischmeister R, Harjola VP, Heymans S, Hilfiker-Kleiner D, Holzmeister J, de Keulenaer G, Limongelli G, Linke WA, Lund LH, Masip J, Metra M, Mueller C, Pieske B, Ponikowski P, Ristić A, Ruschitzka F, Seferović PM, Skouri H, Zimmermann WH, Mebazaa A. Treatments targeting inotropy. Eur Heart J 2020; 40:3626-3644. [PMID: 30295807 DOI: 10.1093/eurheartj/ehy600] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/06/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023] Open
Abstract
Acute heart failure (HF) and in particular, cardiogenic shock are associated with high morbidity and mortality. A therapeutic dilemma is that the use of positive inotropic agents, such as catecholamines or phosphodiesterase-inhibitors, is associated with increased mortality. Newer drugs, such as levosimendan or omecamtiv mecarbil, target sarcomeres to improve systolic function putatively without elevating intracellular Ca2+. Although meta-analyses of smaller trials suggested that levosimendan is associated with a better outcome than dobutamine, larger comparative trials failed to confirm this observation. For omecamtiv mecarbil, Phase II clinical trials suggest a favourable haemodynamic profile in patients with acute and chronic HF, and a Phase III morbidity/mortality trial in patients with chronic HF has recently begun. Here, we review the pathophysiological basis of systolic dysfunction in patients with HF and the mechanisms through which different inotropic agents improve cardiac function. Since adenosine triphosphate and reactive oxygen species production in mitochondria are intimately linked to the processes of excitation-contraction coupling, we also discuss the impact of inotropic agents on mitochondrial bioenergetics and redox regulation. Therefore, this position paper should help identify novel targets for treatments that could not only safely improve systolic and diastolic function acutely, but potentially also myocardial structure and function over a longer-term.
Collapse
Affiliation(s)
- Christoph Maack
- Comprehensive Heart Failure Center, University Clinic Würzburg, Am Schwarzenberg 15, Würzburg, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.,Partner site Hamburg/Kiel/Lübeck, DZHK (German Centre for Cardiovascular Research), Hamburg, Germany
| | - Nazha Hamdani
- Department of Cardiovascular Physiology, Ruhr University Bochum, Bochum, Germany
| | - Frank R Heinzel
- Department of Cardiology, Charité University Medicine, Berlin, Germany
| | - Alexander R Lyon
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital and National Heart and Lung Institute, Imperial College, London, UK
| | - Dietmar J Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany.,Division for Structural Biochemistry, Hannover Medical School, Hannover, Germany
| | - Joseph Metzger
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Zoltán Papp
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - M Birhan Yilmaz
- Department of Cardiology, Cumhuriyet University, Sivas, Turkey
| | - Stefan D Anker
- Department of Cardiology and Pneumology, University Medical Center Göttingen and DZHK (German Center for Cardiovascular Research), Göttingen, Germany.,Division of Cardiology and Metabolism - Heart Failure, Cachexia and Sarcopenia, Department of Internal Medicine and Cardiology, Berlin-Brandenburg Center for Regenerative Therapies (BCRT) at Charité University Medicine, Berlin, Germany
| | - Jean-Luc Balligand
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Universite Catholique de Louvain and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover D-30625, Germany
| | | | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.,Partner site Hamburg/Kiel/Lübeck, DZHK (German Centre for Cardiovascular Research), Hamburg, Germany
| | - Stefan Chlopicki
- Department of Pharmacology, Medical College, Jagiellonian University, Krakow, Poland
| | - John G Cleland
- University of Hull, Kingston upon Hull, UK.,National Heart and Lung Institute, Royal Brompton and Harefield Hospitals NHS Trust, Imperial College, London, UK
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alexander Dietl
- Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Rodolphe Fischmeister
- Inserm UMR-S 1180, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | | | | | | | | | - Gilles de Keulenaer
- Laboratory of Physiopharmacology (University of Antwerp) and Department of Cardiology, ZNA Hospital, Antwerp, Belgium
| | - Giuseppe Limongelli
- Department of Cardiothoracic Sciences, Second University of Naples, Naples, Italy
| | | | - Lars H Lund
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josep Masip
- Intensive Care Department, Consorci Sanitari Integral, University of Barcelona, Spain
| | - Marco Metra
- Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Italy
| | - Christian Mueller
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Switzerland
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany.,Department of Internal Medicine and Cardiology, German Heart Center Berlin, and German Centre for Cardiovascular Research (DZHK), Partner site Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Piotr Ponikowski
- Department of Cardiology, Medical University, Clinical Military Hospital, Wroclaw, Poland
| | - Arsen Ristić
- Department of Cardiology of the Clinical Center of Serbia and Belgrade University School of Medicine, Belgrade, Serbia
| | - Frank Ruschitzka
- Department of Cardiology, University Heart Centre, University Hospital Zurich, Switzerland
| | | | - Hadi Skouri
- Division of Cardiology, American University of Beirut Medical Centre, Beirut, Lebanon
| | - Wolfram H Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner siteGöttingen, Göttingen, Germany
| | - Alexandre Mebazaa
- Hôpital Lariboisière, Université Paris Diderot, Inserm U 942, Paris, France
| |
Collapse
|
20
|
Pignataro M, Di Rocco G, Lancellotti L, Bernini F, Subramanian K, Castellini E, Bortolotti CA, Malferrari D, Moro D, Valdrè G, Borsari M, Del Monte F. Phosphorylated cofilin-2 is more prone to oxidative modifications on Cys39 and favors amyloid fibril formation. Redox Biol 2020; 37:101691. [PMID: 32863228 PMCID: PMC7472925 DOI: 10.1016/j.redox.2020.101691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 02/01/2023] Open
Abstract
Cofilins are small protein of the actin depolymerizing family. Actin polymerization/depolymerization is central to a number of critical cellular physiological tasks making cofilin a key protein for several physiological functions of the cell. Cofilin activity is mainly regulated by phosphorylation on serine residue 3 making this post-translational modification key to the regulation of myofilament integrity. In fact, in this form, the protein segregates in myocardial aggregates in human idiopathic dilated cardiomyopathy. Since myofilament network is an early target of oxidative stress we investigated the molecular changes induced by oxidation on cofilin isoforms and their interplay with the protein phosphorylation state to get insight on whether/how those changes may predispose to early protein aggregation. Using different and complementary approaches we characterized the aggregation properties of cofilin-2 and its phosphomimetic variant (S3D) in response to oxidative stress in silico, in vitro and on isolated cardiomyocytes. We found that the phosphorylated (inactive) form of cofilin-2 is mechanistically linked to the formation of an extended network of fibrillar structures induced by oxidative stress via the formation of a disulfide bond between Cys39 and Cys80. Such phosphorylation-dependent effect is likely controlled by changes in the hydrogen bonding network involving Cys39. We found that the sulfide ion inhibits the formation of such structures. This might represent the mechanism for the protective effect of the therapeutic agent Na2S on ischemic injury.
Collapse
Affiliation(s)
- Marcello Pignataro
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, USA
| | - Giulia Di Rocco
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lidia Lancellotti
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabrizio Bernini
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Elena Castellini
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Daniele Malferrari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniele Moro
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Valdrè
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Marco Borsari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Federica Del Monte
- Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, USA; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), School of Medicine, University of Bologna, Bologna, Italy.
| |
Collapse
|
21
|
Loescher CM, Breitkreuz M, Li Y, Nickel A, Unger A, Dietl A, Schmidt A, Mohamed BA, Kötter S, Schmitt JP, Krüger M, Krüger M, Toischer K, Maack C, Leichert LI, Hamdani N, Linke WA. Regulation of titin-based cardiac stiffness by unfolded domain oxidation (UnDOx). Proc Natl Acad Sci U S A 2020; 117:24545-24556. [PMID: 32929035 PMCID: PMC7533878 DOI: 10.1073/pnas.2004900117] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The relationship between oxidative stress and cardiac stiffness is thought to involve modifications to the giant muscle protein titin, which in turn can determine the progression of heart disease. In vitro studies have shown that S-glutathionylation and disulfide bonding of titin fragments could alter the elastic properties of titin; however, whether and where titin becomes oxidized in vivo is less certain. Here we demonstrate, using multiple models of oxidative stress in conjunction with mechanical loading, that immunoglobulin domains preferentially from the distal titin spring region become oxidized in vivo through the mechanism of unfolded domain oxidation (UnDOx). Via oxidation type-specific modification of titin, UnDOx modulates human cardiomyocyte passive force bidirectionally. UnDOx also enhances titin phosphorylation and, importantly, promotes nonconstitutive folding and aggregation of unfolded domains. We propose a mechanism whereby UnDOx enables the controlled homotypic interactions within the distal titin spring to stabilize this segment and regulate myocardial passive stiffness.
Collapse
Affiliation(s)
| | - Martin Breitkreuz
- Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Yong Li
- Institute of Physiology II, University of Munster, 48149 Munster, Germany
| | - Alexander Nickel
- Comprehensive Heart Failure Center Wuerzburg, University Clinic Wuerzburg, 97078 Wuerzburg, Germany
| | - Andreas Unger
- Institute of Physiology II, University of Munster, 48149 Munster, Germany
| | - Alexander Dietl
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Andreas Schmidt
- Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Belal A Mohamed
- Department of Cardiology and Pneumology, University Medicine Goettingen, 37075 Goettingen, Germany
| | - Sebastian Kötter
- Department of Cardiovascular Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Joachim P Schmitt
- Department of Pharmacology and Clinical Pharmacology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Marcus Krüger
- Institute for Genetics, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine and Excellence Cluster "Cellular Stress Responses in Aging-Associated Diseases" (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Martina Krüger
- Department of Cardiovascular Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Karl Toischer
- Department of Cardiology and Pneumology, University Medicine Goettingen, 37075 Goettingen, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center Wuerzburg, University Clinic Wuerzburg, 97078 Wuerzburg, Germany
| | - Lars I Leichert
- Institute for Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Nazha Hamdani
- Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Wolfgang A Linke
- Institute of Physiology II, University of Munster, 48149 Munster, Germany;
| |
Collapse
|
22
|
Sun HJ, Wu ZY, Cao L, Zhu MY, Nie XW, Huang DJ, Sun MT, Bian JS. Role of nitroxyl (HNO) in cardiovascular system: From biochemistry to pharmacology. Pharmacol Res 2020; 159:104961. [DOI: 10.1016/j.phrs.2020.104961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/16/2020] [Accepted: 05/24/2020] [Indexed: 12/12/2022]
|
23
|
Cardiovascular Therapeutic Potential of the Redox Siblings, Nitric Oxide (NO•) and Nitroxyl (HNO), in the Setting of Reactive Oxygen Species Dysregulation. Handb Exp Pharmacol 2020; 264:311-337. [PMID: 32813078 DOI: 10.1007/164_2020_389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species (ROS) dysregulation is a hallmark of cardiovascular disease, characterised by an imbalance in the synthesis and removal of ROS. ROS such as superoxide (•O2-), hydrogen peroxide (H2O2), hydroxyl (OH•) and peroxynitrite (ONOO-) have a marked impact on cardiovascular function, contributing to the vascular impairment and cardiac dysfunction associated with diseases such as angina, hypertension, diabetes and heart failure. Central to the vascular dysfunction is a reduction in bioavailability and/or physiological effects of vasoprotective nitric oxide (NO•), leading to vasoconstriction, inflammation and vascular remodelling. In a cardiac context, increased ROS generation can also lead to modification of key proteins involved in cardiac contractility. Whilst playing a key role in the pathogenesis of cardiovascular disease, ROS dysregulation also limits the clinical efficacy of current therapies, such as nitrosovasodilators. As such, alternate therapies are sought. This review will discuss the impact of ROS dysregulation on the therapeutic utility of NO• and its redox sibling, nitroxyl (HNO). Both nitric oxide (NO) and nitroxyl (HNO) donors signal through soluble guanylyl cyclase (sGC). NO binds to the Fe(II) form of sGC and nitroxyl possibly to both sGC heme and thiol groups. In the vasculature, nitroxyl can also signal through voltage-dependent (Kv) and ATP-sensitive (KATP) K+ channels as well as calcitonin gene-related peptide (CGRP). In the heart, HNO directly targets critical thiols to increase myocardial contractility, an effect not seen with NO. The qualitative effects via elevation of cGMP are similar, i.e. lusitropic in the heart and inhibitory on vasoconstriction, inflammation, aggregation and vascular remodelling. Of pathophysiological significance is the fact the efficacy of NO donors is impaired by ROS, e.g. through chemical scavenging of NO, to generate reactive nitrogen oxide species (RNOS), whilst nitroxyl is apparently not.
Collapse
|
24
|
Velagic A, Qin C, Woodman OL, Horowitz JD, Ritchie RH, Kemp-Harper BK. Nitroxyl: A Novel Strategy to Circumvent Diabetes Associated Impairments in Nitric Oxide Signaling. Front Pharmacol 2020; 11:727. [PMID: 32508651 PMCID: PMC7248192 DOI: 10.3389/fphar.2020.00727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022] Open
Abstract
Diabetes is associated with an increased mortality risk due to cardiovascular complications. Hyperglycemia-induced oxidative stress underlies these complications, leading to an impairment in endogenous nitric oxide (NO•) generation, together with reductions in NO• bioavailability and NO• responsiveness in the vasculature, platelets and myocardium. The latter impairment of responsiveness to NO•, termed NO• resistance, compromises the ability of traditional NO•-based therapeutics to improve hemodynamic status during diabetes-associated cardiovascular emergencies, such as acute myocardial infarction. Whilst a number of agents can ameliorate (e.g. angiotensin converting enzyme [ACE] inhibitors, perhexiline, statins and insulin) or circumvent (e.g. nitrite and sGC activators) NO• resistance, nitroxyl (HNO) donors offer a novel opportunity to circumvent NO• resistance in diabetes. With a suite of vasoprotective properties and an ability to enhance cardiac inotropic and lusitropic responses, coupled with preserved efficacy in the setting of oxidative stress, HNO donors have intact therapeutic potential in the face of diminished NO• signaling. This review explores the major mechanisms by which hyperglycemia-induced oxidative stress drives NO• resistance, and the therapeutic potential of HNO donors to circumvent this to treat cardiovascular complications in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Anida Velagic
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Chengxue Qin
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Owen L. Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - John D. Horowitz
- Basil Hetzel Institute, Queen Elizabeth Hospital, University of Adelaide, Adelaide, SA, Australia
| | - Rebecca H. Ritchie
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Barbara K. Kemp-Harper
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Sun HJ, Lee WT, Leng B, Wu ZY, Yang Y, Bian JS. Nitroxyl as a Potential Theranostic in the Cancer Arena. Antioxid Redox Signal 2020; 32:331-349. [PMID: 31617376 DOI: 10.1089/ars.2019.7904] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: As one-electron reduced molecule of nitric oxide (NO), nitroxyl (HNO) has gained enormous attention because of its novel physiological or pharmacological properties, ranging from cardiovascular protective actions to antitumoricidal effects. Recent Advances: HNO is emerging as a new entity with therapeutic advantages over its redox sibling, NO. The interests in the chemical, pharmacological, and biological characteristics of HNO have broadened our current understanding of its role in physiology and pathophysiology. Critical Issues: In particular, the experimental evidence suggests the therapeutic potential of HNO in tumor pharmacology, such as neuroblastoma, gastrointestinal tumor, ovarian, lung, and breast cancers. Indeed, HNO donors have been demonstrated to attenuate tumor proliferation and angiogenesis. Future Directions: In this review, the generation and detection of HNO are outlined, and the roles of HNO in cancer progression are further discussed. We anticipate that the completion of this review might give novel insights into the roles of HNO in cancer pharmacology and open up a novel field of cancer therapy based on HNO.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei-Thye Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bin Leng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yong Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
26
|
D'Amario D, Migliaro S, Borovac JA, Restivo A, Vergallo R, Galli M, Leone AM, Montone RA, Niccoli G, Aspromonte N, Crea F. Microvascular Dysfunction in Heart Failure With Preserved Ejection Fraction. Front Physiol 2019; 10:1347. [PMID: 31749710 PMCID: PMC6848263 DOI: 10.3389/fphys.2019.01347] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is an increasingly studied entity accounting for 50% of all diagnosed heart failure and that has claimed its own dignity being markedly different from heart failure with reduced EF in terms of etiology and natural history (Graziani et al., 2018). Recently, a growing body of evidence points the finger toward microvascular dysfunction as the major determinant of the pathological cascade that justifies clinical manifestations (Crea et al., 2017). The high burden of comorbidities such as metabolic syndrome, hypertension, atrial fibrillation, chronic kidney disease, obstructive sleep apnea, and similar, could lead to a systemic inflammatory state that impacts the physiology of the endothelium and the perivascular environment, engaging complex molecular pathways that ultimately converge to myocardial fibrosis, stiffening, and dysfunction (Paulus and Tschope, 2013). These changes could even self-perpetrate with a positive feedback where hypoxia and locally released inflammatory cytokines trigger interstitial fibrosis and hypertrophy (Ohanyan et al., 2018). Identifying microvascular dysfunction both as the cause and the maintenance mechanism of this condition has opened the field to explore specific pharmacological targets like nitric oxide (NO) pathway, sarcomeric titin, transforming growth factor beta (TGF-β) pathway, immunomodulators or adenosine receptors, trying to tackle the endothelial impairment that lies in the background of this syndrome (Graziani et al., 2018;Lam et al., 2018). Yet, many questions remain, and the new data collected still lack a translation to improved treatment strategies. To further elaborate on this tangled and exponentially growing topic, we will review the evidence favoring a microvasculature-driven etiology of this condition, its clinical correlations, the proposed diagnostic workup, and the available/hypothesized therapeutic options to address microvascular dysfunction in the failing heart.
Collapse
Affiliation(s)
- Domenico D'Amario
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Stefano Migliaro
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Josip A Borovac
- Department of Pathophysiology, University of Split School of Medicine, Split, Croatia
| | - Attilio Restivo
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Rocco Vergallo
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Mattia Galli
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Maria Leone
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Rocco A Montone
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giampaolo Niccoli
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Nadia Aspromonte
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Filippo Crea
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
27
|
|
28
|
Meng T, Ren X, Chen X, Yu J, Agrimi J, Paolocci N, Gao WD. Anesthetic Agents Isoflurane and Propofol Decrease Maximal Ca 2+-Activated Force and Thus Contractility in the Failing Myocardium. J Pharmacol Exp Ther 2019; 371:615-623. [PMID: 31515443 DOI: 10.1124/jpet.119.259556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/11/2019] [Indexed: 01/16/2023] Open
Abstract
In the normal heart, frequently used anesthetics such as isoflurane and propofol can reduce inotropy. However, the impact of these agents on the failing myocardium is unclear. Here, we examined whether and how isoflurane and propofol influence cardiac contractility in intact cardiac muscles from rats treated with monocrotaline to induce heart failure. We measured force and intracellular Ca2+ ([Ca2 +]i) in trabeculae from the right ventricles of the rats in the absence or presence of propofol or isoflurane. At low to moderate concentrations, both propofol and isoflurane dose-dependently depressed cardiac force generation in failing trabeculae without altering [Ca2+]i At high doses, propofol (but not isoflurane) also decreased amplitude of [Ca2+]i transients. During steady-state activation, both propofol and isoflurane impaired maximal Ca2+-activated force (Fmax) while increasing the amount of [Ca2+]i required for 50% of maximal activation (Ca50). These events occurred without apparent change in the Hill coefficient, suggesting no impairment of cooperativity. Exposing these same muscles to the anesthetics after fiber skinning resulted in a similar decrement in Fmax and rise in Ca50 but no change in the myofibrillar ATPase-Ca2+ relationship. Thus, our study demonstrates that challenging the failing myocardium with commonly used anesthetic agents such as propofol and isoflurane leads to reduced force development as a result of lowered myofilament responsiveness to Ca2+ SIGNIFICANCE STATEMENT: Commonly used anesthetics such as isoflurane and propofol can impair myocardial contractility in subjects with heart failure by lowering myofilament responsiveness to Ca2+. High doses of propofol can also reduce the overall amplitude of the intracellular Ca2+ transient. These findings may have important implications for the safety and quality of intra- and perioperative care of patients with heart failure and other cardiac disorders.
Collapse
Affiliation(s)
- Tao Meng
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shangdong, China (T.M., J.Y.); Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China (X.R.); Department of Cardiac Surgery, Tongji University Medical Center, Wuhan, China (X.C.); Division of Cardiology (J.A., N.P.) and Department of Anesthesiology and Critical Care Medicine (W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| | - Xianfeng Ren
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shangdong, China (T.M., J.Y.); Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China (X.R.); Department of Cardiac Surgery, Tongji University Medical Center, Wuhan, China (X.C.); Division of Cardiology (J.A., N.P.) and Department of Anesthesiology and Critical Care Medicine (W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| | - Xinzhong Chen
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shangdong, China (T.M., J.Y.); Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China (X.R.); Department of Cardiac Surgery, Tongji University Medical Center, Wuhan, China (X.C.); Division of Cardiology (J.A., N.P.) and Department of Anesthesiology and Critical Care Medicine (W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| | - Jingui Yu
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shangdong, China (T.M., J.Y.); Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China (X.R.); Department of Cardiac Surgery, Tongji University Medical Center, Wuhan, China (X.C.); Division of Cardiology (J.A., N.P.) and Department of Anesthesiology and Critical Care Medicine (W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| | - Jacopo Agrimi
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shangdong, China (T.M., J.Y.); Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China (X.R.); Department of Cardiac Surgery, Tongji University Medical Center, Wuhan, China (X.C.); Division of Cardiology (J.A., N.P.) and Department of Anesthesiology and Critical Care Medicine (W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| | - Nazareno Paolocci
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shangdong, China (T.M., J.Y.); Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China (X.R.); Department of Cardiac Surgery, Tongji University Medical Center, Wuhan, China (X.C.); Division of Cardiology (J.A., N.P.) and Department of Anesthesiology and Critical Care Medicine (W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| | - Wei Dong Gao
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shangdong, China (T.M., J.Y.); Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China (X.R.); Department of Cardiac Surgery, Tongji University Medical Center, Wuhan, China (X.C.); Division of Cardiology (J.A., N.P.) and Department of Anesthesiology and Critical Care Medicine (W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| |
Collapse
|
29
|
Wijnker PJ, Sequeira V, Kuster DW, van der Velden J. Hypertrophic Cardiomyopathy: A Vicious Cycle Triggered by Sarcomere Mutations and Secondary Disease Hits. Antioxid Redox Signal 2019; 31:318-358. [PMID: 29490477 PMCID: PMC6602117 DOI: 10.1089/ars.2017.7236] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 02/23/2018] [Accepted: 02/25/2018] [Indexed: 02/06/2023]
Abstract
Significance: Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease characterized by left ventricular hypertrophy, diastolic dysfunction, and myocardial disarray. Disease onset occurs between 20 and 50 years of age, thus affecting patients in the prime of their life. HCM is caused by mutations in sarcomere proteins, the contractile building blocks of the heart. Despite increased knowledge of causal mutations, the exact path from genetic defect leading to cardiomyopathy is complex and involves additional disease hits. Recent Advances: Laboratory-based studies indicate that HCM development not only depends on the primary sarcomere impairment caused by the mutation but also on secondary disease-related alterations in the heart. Here we propose a vicious mutation-induced disease cycle, in which a mutation-induced energy depletion alters cellular metabolism with increased mitochondrial work, which triggers secondary disease modifiers that will worsen disease and ultimately lead to end-stage HCM. Critical Issues: Evidence shows excessive cellular reactive oxygen species (ROS) in HCM patients and HCM animal models. Oxidative stress markers are increased in the heart (oxidized proteins, DNA, and lipids) and serum of HCM patients. In addition, increased mitochondrial ROS production and changes in endogenous antioxidants are reported in HCM. Mutant sarcomeric protein may drive excessive levels of cardiac ROS via changes in cardiac efficiency and metabolism, mitochondrial activation and/or dysfunction, impaired protein quality control, and microvascular dysfunction. Future Directions: Interventions restoring metabolism, mitochondrial function, and improved ROS balance may be promising therapeutic approaches. We discuss the effects of current HCM pharmacological therapies and potential future therapies to prevent and reverse HCM. Antioxid. Redox Signal. 31, 318-358.
Collapse
Affiliation(s)
- Paul J.M. Wijnker
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Vasco Sequeira
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Diederik W.D. Kuster
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
30
|
Mundiña-Weilenmann CB, Mattiazzi A. Tracking nitroxyl-derived posttranslational modifications of phospholamban in cardiac myocytes. J Gen Physiol 2019; 151:718-721. [PMID: 31010809 PMCID: PMC6571997 DOI: 10.1085/jgp.201912342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mundiña-Weilenmann and Mattiazzi examine new work revealing the mechanism by which nitroxide modifies uptake of Ca2+ into the SR.
Collapse
Affiliation(s)
- Cecilia Beatriz Mundiña-Weilenmann
- Centro de Investigaciones Cardiovasculares, CCT-CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares, CCT-CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
31
|
Abstract
Advances in the treatment of heart failure with reduced ejection fraction due to systolic dysfunction are engaging an ever-expanding compendium of molecular signaling targets. Well established approaches modifying hemodynamics and cell biology by neurohumoral receptor blockade are evolving, exploring the role and impact of modulating intracellular signaling pathways with more direct myocardial effects. Even well-tread avenues are being reconsidered with new insights into the signaling engaged and thus opportunity to treat underlying myocardial disease. This review explores therapies that have proven successful, those that have not, those that are moving into the clinic but whose utility remains to be confirmed, and those that remain in the experimental realm. The emphasis is on signaling pathways that are tractable for therapeutic manipulation. Of the approaches yet to be tested in humans, we chose those with a well-established experimental history, where clinical translation may be around the corner. The breadth of opportunities bodes well for the next generation of heart failure therapeutics.
Collapse
Affiliation(s)
| | | | - David A. Kass
- Division of Cardiology, Department of Medicine
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore Maryland, 21205
| |
Collapse
|
32
|
|
33
|
Zhao X, Gao C, Li N, Liu F, Huo S, Li J, Guan X, Yan N. BODIPY based fluorescent turn-on sensor for highly selective detection of HNO and the application in living cells. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.04.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Mitidieri E, Gurgone D, Caiazzo E, Tramontano T, Cicala C, Sorrentino R, d'Emmanuele di Villa Bianca R. L-cysteine/cystathionine-β-synthase-induced relaxation in mouse aorta involves a L-serine/sphingosine-1-phosphate/NO pathway. Br J Pharmacol 2019; 177:734-744. [PMID: 30835815 DOI: 10.1111/bph.14654] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/20/2018] [Accepted: 01/30/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Among the three enzymes involved in the transsulfuration pathway, only cystathionine β-synthase (CBS) converts L-cysteine into L-serine and H2 S. L-serine is also involved in the de novo sphingolipid biosynthesis through a condensation with palmitoyl-CoA by the action of serine palmitoyltransferase (SPT). Here, we have investigated if L-serine contributes to the vasorelaxant effect. EXPERIMENTAL APPROACH The presence of CBS in mouse vascular endothelium was assessed by immunohistochemistry and immunofluorescence. The relaxant activity of L-serine (0.1-300 μM) and L-cysteine (0.1-300 μM) was estimated on mouse aorta rings, with or without endothelium. A pharmacological modulation study evaluated NO and sphingosine-1-phosphate (S1P) involvement. Levels of NO and S1P were also measured following incubation of aorta tissue with either L-serine (1, 10, and 100 μM) or L-cysteine (10, 100 μM, and 1 mM). KEY RESULTS L-serine relaxed aorta rings in an endothelium-dependent manner. The vascular effect was reduced by L-NG-nitro-arginine methyl ester and wortmaninn. A similar pattern was obtained with L-cysteine. The S1P1 receptor antagonist (W146) or the SPT inhibitor (myriocin) reduced either L-serine or L-cysteine relaxant effect. L-serine or L-cysteine incubation increased NO and S1P levels in mouse aorta. CONCLUSIONS AND IMPLICATIONS L-serine, a by-product formed within the transsulfuration pathway starting from L-cysteine via CBS, contributes to the vasodilator action of L-cysteine. The L-serine effect involves both NO and S1P. This mechanism could be involved in the marked dysregulation of vascular tone in hyperhomocysteinemic patients (CBS deficiency) and may represent a feasible therapeutic target. LINKED ARTICLES This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.
Collapse
Affiliation(s)
- Emma Mitidieri
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Danila Gurgone
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Elisabetta Caiazzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Teresa Tramontano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Carla Cicala
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Raffaella Sorrentino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
35
|
Keceli G, Majumdar A, Thorpe CN, Jun S, Tocchetti CG, Lee DI, Mahaney JE, Paolocci N, Toscano JP. Nitroxyl (HNO) targets phospholamban cysteines 41 and 46 to enhance cardiac function. J Gen Physiol 2019; 151:758-770. [PMID: 30842219 PMCID: PMC6571998 DOI: 10.1085/jgp.201812208] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 02/15/2019] [Indexed: 11/20/2022] Open
Abstract
Nitroxyl (HNO) positively modulates myocardial function by accelerating Ca2+ reuptake into the sarcoplasmic reticulum (SR). HNO-induced enhancement of myocardial Ca2+ cycling and function is due to the modification of cysteines in the transmembrane domain of phospholamban (PLN), which results in activation of SR Ca2+-ATPase (SERCA2a) by functionally uncoupling PLN from SERCA2a. However, which cysteines are modified by HNO, and whether HNO induces reversible disulfides or single cysteine sulfinamides (RS(O)NH2) that are less easily reversed by reductants, remain to be determined. Using an 15N-edited NMR method for sulfinamide detection, we first demonstrate that Cys46 and Cys41 are the main targets of HNO reactivity with PLN. Supporting this conclusion, mutation of PLN cysteines 46 and 41 to alanine reduces the HNO-induced enhancement of SERCA2a activity. Treatment of WT-PLN with HNO leads to sulfinamide formation when the HNO donor is in excess, whereas disulfide formation is expected to dominate when the HNO/thiol stoichiometry approaches a 1:1 ratio that is more similar to that anticipated in vivo under normal, physiological conditions. Thus, 15N-edited NMR spectroscopy detects redox changes on thiols that are unique to HNO, greatly advancing the ability to detect HNO footprints in biological systems, while further differentiating HNO-induced post-translational modifications from those imparted by other reactive nitrogen or oxygen species. The present study confirms the potential of HNO as a signaling molecule in the cardiovascular system.
Collapse
Affiliation(s)
- Gizem Keceli
- Department of Chemistry, Johns Hopkins University, Baltimore, MD.,Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Ananya Majumdar
- Biomolecular NMR Center, Johns Hopkins University, Baltimore, MD
| | - Chevon N Thorpe
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Seungho Jun
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD
| | | | - Dong I Lee
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD
| | | | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - John P Toscano
- Department of Chemistry, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
36
|
Rattanasopa C, Kirk JA, Bupha-Intr T, Papadaki M, de Tombe PP, Wattanapermpool J. Estrogen but not testosterone preserves myofilament function from doxorubicin-induced cardiotoxicity by reducing oxidative modifications. Am J Physiol Heart Circ Physiol 2019; 316:H360-H370. [PMID: 30499711 PMCID: PMC6397386 DOI: 10.1152/ajpheart.00428.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Here, we aimed to explore sex differences and the impact of sex hormones on cardiac contractile properties in doxorubicin (DOX)-induced cardiotoxicity. Male and female Sprague-Dawley rats were subjected to sham surgery or gonadectomy and then treated or untreated with DOX (2 mg/kg) every other week for 10 wk. Estrogen preserved maximum active tension (Tmax) with DOX exposure, whereas progesterone and testosterone did not. The effects of sex hormones and DOX correlated with both altered myosin heavy chain isoform expression and myofilament protein oxidation, suggesting both as possible mechanisms. However, acute treatment with oxidative stress (H2O2) or a reducing agent (DTT) indicated that the effects on Tmax were mediated by reversible myofilament oxidative modifications and not only changes in myosin heavy chain isoforms. There were also sex differences in the DOX impact on myofilament Ca2+ sensitivity. DOX increased Ca2+ sensitivity in male rats only in the absence of testosterone and in female rats only in the presence of estrogen. Conversely, DOX decreased Ca2+ sensitivity in female rats in the absence of estrogen. In most instances, this mechanism was through altered phosphorylation of troponin I at Ser23/Ser24. However, there was an additional DOX-induced, estrogen-dependent, irreversible (by DTT) mechanism that altered Ca2+ sensitivity. Our data demonstrate sex differences in cardiac contractile responses to chronic DOX treatment. We conclude that estrogen protects against chronic DOX treatment in the heart, preserving myofilament function. NEW & NOTEWORTHY We identified sex differences in cardiotoxic effects of chronic doxorubicin (DOX) exposure on myofilament function. Estrogen, but not testosterone, decreases DOX-induced oxidative modifications on myofilaments to preserve maximum active tension. In rats, DOX exposure increased Ca2+ sensitivity in the presence of estrogen but decreased Ca2+ sensitivity in the absence of estrogen. In male rats, the DOX-induced shift in Ca2+ sensitivity involved troponin I phosphorylation; in female rats, this was through an estrogen-dependent mechanism.
Collapse
Affiliation(s)
- Chutima Rattanasopa
- 1Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jonathan A. Kirk
- 2Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Tepmanas Bupha-Intr
- 1Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Maria Papadaki
- 2Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Pieter P. de Tombe
- 2Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | | |
Collapse
|
37
|
Cowart D, Venuti RP, Lynch K, Guptill JT, Noveck RJ, Foo SY. A Phase 1 Randomized Study of Single Intravenous Infusions of the Novel Nitroxyl Donor BMS-986231 in Healthy Volunteers. J Clin Pharmacol 2019; 59:717-730. [PMID: 30703258 PMCID: PMC6519195 DOI: 10.1002/jcph.1364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/21/2018] [Indexed: 12/25/2022]
Abstract
Nitroxyl (HNO) is a reactive nitrogen molecule that has potential therapeutic benefits for patients with acute heart failure. The results of the first‐in‐human study for BMS‐986231, a novel HNO donor, are reported. The aim of this sequential cohort study was to evaluate the safety, tolerability, and pharmacokinetic profile of BMS‐986231 after 24‐ and 48‐hour intravenous infusions in healthy volunteers. Eighty subjects were randomized and dosed. Seven cohorts (stratum A) received BMS‐986231 0.1, 0.33, 1, 3, 5, 10, and 15 μg/kg/min or placebo, infused over 24 hours. An additional cohort (stratum B) received 10 μg/kg/min or placebo, infused over 48 hours. Adverse events (AEs) were reported for 30 days after completion of infusion. Blood/urine samples were collected at regular intervals; other parameters (blood pressure, heart rate/rhythm, cardiac index) were also assessed. Headaches were the most commonly reported drug‐related AE (48%) in those who received BMS‐986231, although their severity was reduced by hydration. No other significant drug‐related AEs were noted. BMS‐986231 was associated with dose‐dependent and well‐tolerated reductions in systolic and diastolic blood pressure versus baseline; cardiac index, as measured noninvasively, was increased. BMS‐986231 had no clinically significant effect on heart rate/rhythm or laboratory parameters. Its mean elimination half‐life was 0.7‐2.5 hours. BMS‐986231 was safe and well‐tolerated for up to 24 hours (15 μg/kg/min) or 48 hours (10 μg/kg/min), with a favorable hemodynamic profile observed. Ongoing studies continue to evaluate the potential benefit of BMS‐986231 in patients with acute heart failure.
Collapse
Affiliation(s)
| | | | - Kim Lynch
- Duke Early Phase Clinical Research Unit, Durham, NC, USA
| | | | | | - Shi Yin Foo
- Cardioxyl Pharmaceuticals, Inc., Chapel Hill, NC, USA
| |
Collapse
|
38
|
Fukuto JM. A recent history of nitroxyl chemistry, pharmacology and therapeutic potential. Br J Pharmacol 2019; 176:135-146. [PMID: 29859009 PMCID: PMC6295406 DOI: 10.1111/bph.14384] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022] Open
Abstract
Due to the excitement surrounding the discovery of NO as an endogenously generated signalling molecule, a number of other nitrogen oxides were also investigated as possible physiological mediators. Among these was nitroxyl (HNO). Over the past 25 years or so, a significant amount of work by this laboratory and many others has disclosed that HNO possesses unique chemical properties and important pharmacological utility. Indeed, the pharmacological potential for HNO as a treatment for heart failure, among other uses, has garnered this curious molecule a considerable amount of recent attention. This review summarizes the events that led to this recent attention as well as poses important questions that are still to be answered with regards to understanding the chemistry and biology of HNO. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.
Collapse
Affiliation(s)
- Jon M Fukuto
- Department of ChemistrySonoma State UniversityRohnert ParkCAUSA
| |
Collapse
|
39
|
Gori M, D'Elia E, Senni M. Sacubitril/valsartan therapeutic strategy in HFpEF: Clinical insights and perspectives. Int J Cardiol 2018; 281:158-165. [PMID: 30420146 DOI: 10.1016/j.ijcard.2018.06.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 06/06/2018] [Accepted: 06/13/2018] [Indexed: 01/09/2023]
Abstract
Sacubitril/valsartan represents the first of a new class of drugs able to act as a neprilysin inhibitor and as an angiotensin receptor blocker. This double inhibition has the advantage of concomitantly blocking a pro-fibrotic/pro-hypertrophic mechanism (angiotensin receptor blocker component) while stimulating an anti-fibrotic/anti-hypertrophic mechanism (neprilysin inhibitor component). Furthermore, the novel drug has natriuretic and diuretic properties, better preserves renal function, provides better blood pressure control as compared to renin angiotensin system inhibitors, and improves ventricular-arterial coupling. Consequently, sacubitril/valsartan provides greater target organ protection than angiotensin receptor blocker therapy alone, including cardiac, vascular, and renal protection. Up to now, this drug does not have an indication in patients with heart failure with preserved ejection fraction (HFpEF). However, its complex mechanism of action and previous experimental and clinical data seem to suggest its possible success in HFpEF. In this review we highlight and discuss the rationale, clinical insights, and perspectives behind the use of sacubitril/valsartan in HFpEF, specifically referring to its possible efficacy in pathophysiologic mechanisms, such as myocardial hypertrophy, fibrosis, and ischemia, renal dysfunction, impaired ventricular-arterial coupling, which are all tightly related to elevated left ventricular end diastolic pressure, a common hallmark for this multifaceted syndrome.
Collapse
Affiliation(s)
- Mauro Gori
- Cardiology Division, Cardiovascular Department, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Emilia D'Elia
- Cardiology Division, Cardiovascular Department, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Michele Senni
- Cardiology Division, Cardiovascular Department, Hospital Papa Giovanni XXIII, Bergamo, Italy.
| |
Collapse
|
40
|
Cuello F, Eaton P. Cysteine-Based Redox Sensing and Its Role in Signaling by Cyclic Nucleotide-Dependent Kinases in the Cardiovascular System. Annu Rev Physiol 2018; 81:63-87. [PMID: 30216743 DOI: 10.1146/annurev-physiol-020518-114417] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oxidant molecules are produced in biological systems and historically have been considered causal mediators of damage and disease. While oxidants may contribute to the pathogenesis of disease, evidence continues to emerge that shows these species also play important regulatory roles in health. A major mechanism of oxidant sensing and signaling involves their reaction with reactive cysteine thiols within proteins, inducing oxidative posttranslational modifications that can couple to altered function to enable homeostatic regulation. Protein kinase A and protein kinase G are regulated by oxidants in this way, and this review focuses on our molecular-level understanding of these events and their role in regulating cardiovascular physiology during health and disease.
Collapse
Affiliation(s)
- Friederike Cuello
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Philip Eaton
- King's College London, School of Cardiovascular Medicine and Sciences, The British Heart Foundation Centre of Excellence, The Rayne Institute, St. Thomas' Hospital, London SE1 7EH, United Kingdom;
| |
Collapse
|
41
|
Cuello F, Wittig I, Lorenz K, Eaton P. Oxidation of cardiac myofilament proteins: Priming for dysfunction? Mol Aspects Med 2018; 63:47-58. [PMID: 30130564 DOI: 10.1016/j.mam.2018.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023]
Abstract
Oxidants are produced endogenously and can react with and thereby post-translationally modify target proteins. They have been implicated in the redox regulation of signal transduction pathways conferring protection, but also in mediating oxidative stress and causing damage. The difference is that in scenarios of injury the amount of oxidants generated is higher and/or the duration of oxidant exposure sustained. In the cardiovascular system, oxidants are important for blood pressure homeostasis, for unperturbed cardiac function and also contribute to the observed protection during ischemic preconditioning. In contrast, oxidative stress accompanies all major cardiovascular pathologies and has been attributed to mediate contractile dysfunction in part by inducing oxidative modifications in myofilament proteins. However, the proportion to which oxidative modifications of contractile proteins are beneficial or causatively mediate disease progression needs to be carefully reconsidered. These antithetical aspects will be discussed in this review with special focus on direct oxidative post-translational modifications of myofilament proteins that have been described to occur in vivo and to regulate actin-myosin interactions in the cardiac myocyte sarcomere, the methodologies for detection of oxidative post-translational modifications in target proteins and the feasibility of antioxidant therapy strategies as a potential treatment for cardiac disorders.
Collapse
Affiliation(s)
- Friederike Cuello
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany.
| | - Ilka Wittig
- Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Johann Wolfgang Goethe University, Frankfurt am Main, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Germany
| | - Kristina Lorenz
- Comprehensive Heart Failure Center, Würzburg, Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V. Dortmund, West German Heart and Vascular Center, Essen, Germany
| | - Philip Eaton
- King's British Heart Foundation Centre, King's College London, UK
| |
Collapse
|
42
|
Zhou Y, Cink RB, Fejedelem ZA, Cather Simpson M, Seed AJ, Sampson P, Brasch NE. Development of Photoactivatable Nitroxyl (HNO) Donors Incorporating the (3‐Hydroxy‐2‐naphthalenyl)methyl Phototrigger. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yang Zhou
- Department of Chemistry and Biochemistry Kent State University 44242 Kent OH USA
| | - Ruth B. Cink
- School of Science Auckland University of Technology Private Bag 92006 1142 Auckland New Zealand
| | - Zachary A. Fejedelem
- Department of Chemistry and Biochemistry Kent State University 44242 Kent OH USA
| | - M. Cather Simpson
- The Photon Factory School of Chemical Sciences The University of Auckland Private Bag 92019 Auckland New Zealand
| | - Alexander J. Seed
- Department of Chemistry and Biochemistry Kent State University 44242 Kent OH USA
| | - Paul Sampson
- Department of Chemistry and Biochemistry Kent State University 44242 Kent OH USA
| | - Nicola E. Brasch
- School of Science Auckland University of Technology Private Bag 92006 1142 Auckland New Zealand
| |
Collapse
|
43
|
Ren X, Schmidt W, Huang Y, Lu H, Liu W, Bu W, Eckenhoff R, Cammarato A, Gao WD. Fropofol decreases force development in cardiac muscle. FASEB J 2018. [PMID: 29522375 DOI: 10.1096/fj.201701442r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Supranormal contractile properties are frequently associated with cardiac diseases. Anesthetic agents, including propofol, can depress myocardial contraction. We tested the hypothesis that fropofol, a propofol derivative, reduces force development in cardiac muscles via inhibition of cross-bridge cycling and may therefore have therapeutic potential. Force and intracellular Ca2+ concentration ([Ca2+]i) transients of rat trabecular muscles were determined. Myofilament ATPase, actin-activated myosin ATPase, and velocity of actin filaments propelled by myosin were also measured. Fropofol dose dependently decreased force without altering [Ca2+]i in normal and pressure-induced hypertrophied-hypercontractile muscles. Similarly, fropofol depressed maximum Ca2+-activated force ( Fmax) and increased the [Ca2+]i required for 50% of Fmax (Ca50) at steady state without affecting the Hill coefficient in both intact and skinned cardiac fibers. The drug also depressed cardiac myofibrillar and actin-activated myosin ATPase activity. In vitro actin sliding velocity was significantly reduced when fropofol was introduced during rigor binding of cross-bridges. The data suggest that the depressing effects of fropofol on cardiac contractility are likely to be related to direct targeting of actomyosin interactions. From a clinical standpoint, these findings are particularly significant, given that fropofol is a nonanesthetic small molecule that decreases myocardial contractility specifically and thus may be useful in the treatment of hypercontractile cardiac disorders.-Ren, X., Schmidt, W., Huang, Y., Lu, H., Liu, W., Bu, W., Eckenhoff, R., Cammarato, A., Gao, W. D. Fropofol decreases force development in cardiac muscle.
Collapse
Affiliation(s)
- Xianfeng Ren
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China
| | - William Schmidt
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yiyuan Huang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Haisong Lu
- Department of Anesthesiology, Fuwai Hospital, Beijing, China
| | - Wenjie Liu
- Department of Anesthesiology, South China University School of Medicine, China
| | - Weiming Bu
- Department of Anesthesiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Roderic Eckenhoff
- Department of Anesthesiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wei Dong Gao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
44
|
Abstract
Nitric oxide (NO) signalling has pleiotropic roles in biology and a crucial function in cardiovascular homeostasis. Tremendous knowledge has been accumulated on the mechanisms of the nitric oxide synthase (NOS)-NO pathway, but how this highly reactive, free radical gas signals to specific targets for precise regulation of cardiovascular function remains the focus of much intense research. In this Review, we summarize the updated paradigms on NOS regulation, NO interaction with reactive oxidant species in specific subcellular compartments, and downstream effects of NO in target cardiovascular tissues, while emphasizing the latest developments of molecular tools and biomarkers to modulate and monitor NO production and bioavailability.
Collapse
Affiliation(s)
- Charlotte Farah
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, UCL-FATH Tour Vésale 5th Floor, 52 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| | - Lauriane Y M Michel
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, UCL-FATH Tour Vésale 5th Floor, 52 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, UCL-FATH Tour Vésale 5th Floor, 52 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| |
Collapse
|
45
|
Kawaguchi M, Tani T, Hombu R, Ieda N, Nakagawa H. Development and cellular application of visible-light-controllable HNO releasers based on caged Piloty's acid. Chem Commun (Camb) 2018; 54:10371-10374. [DOI: 10.1039/c8cc04954h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Novel visible-light-controllable HNO releasers was developed based on a caged form of Piloty's acid, and applied for cellular systems.
Collapse
Affiliation(s)
| | - Takuma Tani
- Graduate School of Pharmaceutical Sciences
- Nagoya City University
- Nagoya
- Japan
| | - Ryoma Hombu
- Graduate School of Pharmaceutical Sciences
- Nagoya City University
- Nagoya
- Japan
| | - Naoya Ieda
- Graduate School of Pharmaceutical Sciences
- Nagoya City University
- Nagoya
- Japan
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences
- Nagoya City University
- Nagoya
- Japan
| |
Collapse
|
46
|
Kopylova G, Nabiev S, Shchepkin D, Bershitsky S. Carbonylation of atrial myosin prolongs its interaction with actin. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2018; 47:11-18. [PMID: 28409219 DOI: 10.1007/s00249-017-1209-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/22/2017] [Accepted: 04/07/2017] [Indexed: 11/26/2022]
Abstract
Carbonylation induced by hyperthyroidism suppresses force generation of skeletal myosin and sliding velocity of actin filaments in an in vitro motility assay. However, its effects on cardiac myosin at the molecular level have not been studied. Hyperthyroidism induces a change in expression of myosin heavy chains in ventricles, which may mask the effect of oxidation. In contrast to ventricular myosin, expression of myosin heavy chains in the atrium does not change upon hyperthyroidism and enables investigation of the effect of oxidation on cardiac myosin. We studied the influence of carbonylation, a type of protein oxidation, on the motor function of atrial myosin and Ca2+ regulation of actin-myosin interaction at the level of isolated proteins and single molecules using an in vitro motility assay and an optical trap. Carbonylation of atrial myosin prolonged its attached state on actin and decreased maximal sliding velocity of thin filaments over this myosin but did not affect the calcium sensitivity of the velocity. The results indicate that carbonylation of atrial myosin induced by hyperthyroidism can be a rate-limiting factor of atrium contractility and so participates in the genesis of heart failure in hyperthyroidism.
Collapse
Affiliation(s)
- G Kopylova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomayskaya ul. 106, Yekaterinburg, 620049, Russia.
| | - S Nabiev
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomayskaya ul. 106, Yekaterinburg, 620049, Russia
| | - D Shchepkin
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomayskaya ul. 106, Yekaterinburg, 620049, Russia
| | - S Bershitsky
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomayskaya ul. 106, Yekaterinburg, 620049, Russia
| |
Collapse
|
47
|
Angelini A, Pi X, Xie L. Dioxygen and Metabolism; Dangerous Liaisons in Cardiac Function and Disease. Front Physiol 2017; 8:1044. [PMID: 29311974 PMCID: PMC5732914 DOI: 10.3389/fphys.2017.01044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022] Open
Abstract
The heart must consume a significant amount of energy to sustain its contractile activity. Although the fuel demands are huge, the stock remains very low. Thus, in order to supply its daily needs, the heart must have amazing adaptive abilities, which are dependent on dioxygen availability. However, in myriad cardiovascular diseases, “fuel” depletion and hypoxia are common features, leading cardiomyocytes to favor low-dioxygen-consuming glycolysis rather than oxidation of fatty acids. This metabolic switch makes it challenging to distinguish causes from consequences in cardiac pathologies. Finally, despite the progress achieved in the past few decades, medical treatments have not improved substantially, either. In such a situation, it seems clear that much remains to be learned about cardiac diseases. Therefore, in this review, we will discuss how reconciling dioxygen availability and cardiac metabolic adaptations may contribute to develop full and innovative strategies from bench to bedside.
Collapse
Affiliation(s)
- Aude Angelini
- Department of Medicine-Athero and Lipo, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| | - Xinchun Pi
- Department of Medicine-Athero and Lipo, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| | - Liang Xie
- Department of Medicine-Athero and Lipo, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
48
|
Bódi B, Tóth EP, Nagy L, Tóth A, Mártha L, Kovács Á, Balla G, Kovács T, Papp Z. Titin isoforms are increasingly protected against oxidative modifications in developing rat cardiomyocytes. Free Radic Biol Med 2017; 113:224-235. [PMID: 28943453 DOI: 10.1016/j.freeradbiomed.2017.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 12/18/2022]
Abstract
During the perinatal adaptation process N2BA titin isoforms are switched for N2B titin isoforms leading to an increase in cardiomyocyte passive tension (Fpassive). Here we attempted to reveal how titin isoform composition and oxidative insults (i.e. sulfhydryl (SH)-group oxidation or carbonylation) influence Fpassive of left ventricular (LV) cardiomyocytes during rat heart development. Moreover, we also examined a hypothetical protective role for titin associated small heat shock proteins (sHSPs), Hsp27 and αB-crystallin in the above processes. Single, permeabilized LV cardiomyocytes of the rat (at various ages following birth) were exposed either to 2,2'-dithiodipyridine (DTDP) to provoke SH-oxidation or Fenton reaction reagents (iron(II), hydrogen peroxide (H2O2), ascorbic acid) to induce protein carbonylation of cardiomyocytes in vitro. Thereafter, cardiomyocyte force measurements for Fpassive determinations and Western immunoblot assays were carried out for the semiquantitative determination of oxidized SH-groups or carbonyl-groups of titin isoforms and to monitor sHSPs' expressions. DTDP or Fenton reagents increased Fpassive in 0- and 7-day-old rats to relatively higher extents than in 21-day-old and adult animals. The degrees of SH-group oxidation or carbonylation declined with cardiomyocyte age to similar extents for both titin isoforms. Moreover, the above characteristics were mirrored by increasing levels of HSP27 and αB-crystallin expressions during cardiomyocyte development. Our data implicate a gradual build-up of a protective mechanism against titin oxidation through the upregulation of HSP27 and αB-crystallin expressions during postnatal cardiomyocyte development.
Collapse
Affiliation(s)
- Beáta Bódi
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Enikő Pásztorné Tóth
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Nagy
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Tóth
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
| | - Lilla Mártha
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Árpád Kovács
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - György Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary; Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Kovács
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Papp
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary.
| |
Collapse
|
49
|
Oxidant sensor in the cGMP-binding pocket of PKGIα regulates nitroxyl-mediated kinase activity. Sci Rep 2017; 7:9938. [PMID: 28855531 PMCID: PMC5577323 DOI: 10.1038/s41598-017-09275-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/18/2017] [Indexed: 12/15/2022] Open
Abstract
Despite the mechanisms for endogenous nitroxyl (HNO) production and action being incompletely understood, pharmacological donors show broad therapeutic promise and are in clinical trials. Mass spectrometry and site-directed mutagenesis showed that chemically distinct HNO donors 1-nitrosocyclohexyl acetate or Angeli’s salt induced disulfides within cGMP-dependent protein kinase I-alpha (PKGIα), an interdisulfide between Cys42 of the two identical subunits of the kinase and a previously unobserved intradisulfide between Cys117 and Cys195 in the high affinity cGMP-binding site. Kinase activity was monitored in cells transfected with wildtype (WT), Cys42Ser or Cys117/195Ser PKGIα that cannot form the inter- or intradisulfide, respectively. HNO enhanced WT kinase activity, an effect significantly attenuated in inter- or intradisulfide-deficient PKGIα. To investigate whether the intradisulfide modulates cGMP binding, real-time imaging was performed in vascular smooth muscle cells expressing a FRET-biosensor comprising the cGMP-binding sites of PKGIα. HNO induced FRET changes similar to those elicited by an increase of cGMP, suggesting that intradisulfide formation is associated with activation of PKGIα. Intradisulfide formation in PKGIα correlated with enhanced HNO-mediated vasorelaxation in mesenteric arteries in vitro and arteriolar dilation in vivo in mice. HNO induces intradisulfide formation in PKGIα, inducing the same effect as cGMP binding, namely kinase activation and thus vasorelaxation.
Collapse
|
50
|
Tita C, Gilbert EM, Van Bakel AB, Grzybowski J, Haas GJ, Jarrah M, Dunlap SH, Gottlieb SS, Klapholz M, Patel PC, Pfister R, Seidler T, Shah KB, Zieliński T, Venuti RP, Cowart D, Foo SY, Vishnevsky A, Mitrovic V. A Phase 2a dose-escalation study of the safety, tolerability, pharmacokinetics and haemodynamic effects of BMS-986231 in hospitalized patients with heart failure with reduced ejection fraction. Eur J Heart Fail 2017; 19:1321-1332. [PMID: 28677877 PMCID: PMC6607490 DOI: 10.1002/ejhf.897] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 12/28/2022] Open
Abstract
Aims This study was designed to evaluate the safety, tolerability and haemodynamic effects of BMS‐986231, a novel second‐generation nitroxyl donor with potential inotropic, lusitropic and vasodilatory effects in patients hospitalized with decompensated heart failure and reduced ejection fraction (HFrEF). Methods and results Forty‐six patients hospitalized with decompensated HFrEF were enrolled into four sequential dose‐escalation cohorts in this double‐blind, randomized, placebo‐controlled Phase 2a study. Patients with baseline pulmonary capillary wedge pressure (PCWP) of ≥20 mmHg and a cardiac index of ≤2.5 L/min/m2 received one 6‐h i.v. infusion of BMS‐986231 (at 3, 5, 7 or 12 µg/kg/min) or placebo. BMS‐986231 produced rapid and sustained reductions in PCWP, as well as consistent reductions in time‐averaged pulmonary arterial systolic pressure, pulmonary arterial diastolic pressure and right atrial pressure. BMS‐986231 increased non‐invasively measured time‐averaged stroke volume index, cardiac index and cardiac power index values, and decreased total peripheral vascular resistance. There was no evidence of increased heart rate, drug‐related arrhythmia or symptomatic hypotension with BMS‐986231. Analyses of adverse events throughout the 30‐day follow‐up did not identify any toxicities specific to BMS‐986231, with the potential exception of infrequent mild‐to‐moderate headaches during infusion. There were no treatment‐related serious adverse events. Conclusions BMS‐986231 demonstrated a favourable safety and haemodynamic profile in patients hospitalized with advanced heart failure. Based on preclinical data and these study's findings, it is possible that the haemodynamic benefits may be mediated by inotropic and/or lusitropic as well as vasodilatory effects. The therapeutic potential of BMS‐986231 should be further assessed in patients with heart failure.
Collapse
Affiliation(s)
- Cristina Tita
- Division of Cardiovascular Medicine, Department of Medicine, Henry Ford Hospital, Detroit, MI, USA
| | - Edward M Gilbert
- Division of Cardiology, Faculty of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Adrian B Van Bakel
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Jacek Grzybowski
- Department of Cardiomyopathy, Institute of Cardiology, Warsaw, Poland
| | - Garrie J Haas
- Division of Cardiology and Vascular Medicine, Faculty of Medicine, Ohio State University, Columbus, OH, USA
| | - Mohammad Jarrah
- Department of Cardiology, King Abdullah University Hospital, Irbid, Jordan
| | - Stephanie H Dunlap
- Division of Cardiology, Faculty of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Stephen S Gottlieb
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marc Klapholz
- Division of Cardiology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Parag C Patel
- Department of Transplant, Mayo Clinic, Jacksonville, FL, USA
| | - Roman Pfister
- Department III of Internal Medicine, Heart Centre, University Hospital of Cologne, Cologne, Germany
| | - Tim Seidler
- Division of Cardiology and Pulmonology, Medical University of Göttingen, Göttingen, Germany
| | - Keyur B Shah
- Department of Cardiology, Faculty of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Tomasz Zieliński
- Department of Heart Failure and Transplantology, Institute of Cardiology, Warsaw, Poland
| | - Robert P Venuti
- formerly of Cardioxyl Pharmaceuticals, Inc., Chapel Hill, NC, USA
| | - Douglas Cowart
- formerly of Cardioxyl Pharmaceuticals, Inc., Chapel Hill, NC, USA
| | - Shi Yin Foo
- formerly of Cardioxyl Pharmaceuticals, Inc., Chapel Hill, NC, USA
| | - Alexander Vishnevsky
- Intensive Care Unit, Cardiology Department, Pokrovskaya City Hospital, St Petersburg, Russia
| | - Veselin Mitrovic
- Department of Cardiology, Kerckhoff-Klinik, Bad Nauheim, Germany
| |
Collapse
|