1
|
Visconti A, Qiu H. Recent advances in serum response factor posttranslational modifications and their therapeutic potential in cardiovascular and neurological diseases. Vascul Pharmacol 2024; 156:107421. [PMID: 39209126 DOI: 10.1016/j.vph.2024.107421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Serum Response Factor (SRF) is a key regulatory transcription factor present in various cell types throughout the body, playing essential roles in cellular functions under physiological conditions. Mutations and abnormal expression of SRF have been linked to the development of various diseases and disorders. Recent evidence highlights that post-translational modifications (PTMs) are critical for regulating SRF function in different cell types and contribute to disease pathogenesis. Targeting SRF-related PTMs is emerging as a promising therapeutic approach for treating SRF-associated diseases. In this review, we summarize recent advances in understanding SRF PTMs and their underlying regulatory mechanisms. We also explore the implications of SRF-PTM in related cardiovascular and neurological diseases and their potential for therapeutic intervention. This information underscores the significance of SRF PTMs in both physiological and pathological contexts, enhancing our understanding of disease mechanisms and paving the way for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Alexander Visconti
- Cardiovascular Translational Research Center, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA.
| | - Hongyu Qiu
- Cardiovascular Translational Research Center, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA; Clinical Translational Sciences (CTS) and Bio5 Institution, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
2
|
Chen S, Overberg K, Ghouse Z, Hollmann MW, Weber NC, Coronel R, Zuurbier CJ. Empagliflozin mitigates cardiac hypertrophy through cardiac RSK/NHE-1 inhibition. Biomed Pharmacother 2024; 174:116477. [PMID: 38522235 DOI: 10.1016/j.biopha.2024.116477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND SGLT2i reduce cardiac hypertrophy, but underlying mechanisms remain unknown. Here we explore a role for serine/threonine kinases (STK) and sodium hydrogen exchanger 1(NHE1) activities in SGLT2i effects on cardiac hypertrophy. METHODS Isolated hearts from db/db mice were perfused with 1 µM EMPA, and STK phosphorylation sites were examined using unbiased multiplex analysis to detect the most affected STKs by EMPA. Subsequently, hypertrophy was induced in H9c2 cells with 50 µM phenylephrine (PE), and the role of the most affected STK (p90 ribosomal S6 kinase (RSK)) and NHE1 activity in hypertrophy and the protection by EMPA was evaluated. RESULTS In db/db mice hearts, EMPA most markedly reduced STK phosphorylation sites regulated by RSKL1, a member of the RSK family, and by Aurora A and B kinases. GO and KEGG analysis suggested that EMPA inhibits hypertrophy, cell cycle, cell senescence and FOXO pathways, illustrating inhibition of growth pathways. EMPA prevented PE-induced hypertrophy as evaluated by BNP and cell surface area in H9c2 cells. EMPA blocked PE-induced activation of NHE1. The specific NHE1 inhibitor Cariporide also prevented PE-induced hypertrophy without added effect of EMPA. EMPA blocked PE-induced RSK phosphorylation. The RSK inhibitor BIX02565 also suppressed PE-induced hypertrophy without added effect of EMPA. Cariporide mimicked EMPA's effects on PE-treated RSK phosphorylation. BIX02565 decreased PE-induced NHE1 activity, with no further decrease by EMPA. CONCLUSIONS RSK inhibition by EMPA appears as a novel direct cardiac target of SGLT2i. Direct cardiac effects of EMPA exert their anti-hypertrophic effect through NHE-inhibition and subsequent RSK pathway inhibition.
Collapse
Affiliation(s)
- Sha Chen
- Department of Anaesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Kenneth Overberg
- Department of Anaesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Zakiya Ghouse
- Department of Anaesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Markus W Hollmann
- Department of Anaesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Nina C Weber
- Department of Anaesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Ruben Coronel
- Department of Experimental Cardiology, Amsterdam UMC, location AMC, Cardiovascular Science, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Coert J Zuurbier
- Department of Anaesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands.
| |
Collapse
|
3
|
Suleiman M, Al Najjar A, Zakaria ZZ, Ahmed R, Yalcin HC, Korashy HM, Uddin S, Riaz S, Abdulrahman N, Mraiche F. The Role of p90 Ribosomal S6 Kinase (RSK) in Tyrosine Kinase Inhibitor (TKI)-Induced Cardiotoxicity. J Cardiovasc Transl Res 2024; 17:334-344. [PMID: 37725271 DOI: 10.1007/s12265-023-10431-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/22/2023] [Indexed: 09/21/2023]
Abstract
Targeted therapy, such as tyrosine kinase inhibitors (TKIs), has been approved to manage various cancer types. However, TKI-induced cardiotoxicity is a limiting factor for their use. This issue has raised the need for investigating potential cardioprotective techniques to be combined with TKIs. Ribosomal S6-kinases (RSKs) are a downstream effector of the mitogen-activated-protein-kinase (MAPK) pathway; specific RSK isoforms, such as RSK1 and RSK2, have been expressed in cancer cells, in which they increase tumour proliferation. Selective targeting of those isoforms would result in tumour suppression. Moreover, activation of RSKs expressed in the heart has resulted in cardiac hypertrophy and arrhythmia; thus, inhibiting RSKs would result in cardio-protection. This review article presents an overview of the usefulness of RSK inhibitors that can be novel agents to be assessed in future research for their effect in reducing cancer proliferation, as well as protecting the heart from cardiotoxicity induced by TKIs.
Collapse
Affiliation(s)
- Muna Suleiman
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Afnan Al Najjar
- National Center for Cancer Care and Research, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Zain Z Zakaria
- Medical and Health Sciences, Qatar University, PO Box 2713, Doha, Qatar
| | - Rashid Ahmed
- Department of Biotechnology, Faculty of Science, Mirpur University of Science and Technology, Mirpur, 10250, AJK, Pakistan
| | - Huseyin C Yalcin
- Biomedical Research Centre (BRC), Qatar University, PO Box 2713, Doha, Qatar
- College of Health Sciences, QU-Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Hesham M Korashy
- National Center for Cancer Care and Research, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Sadaf Riaz
- Pharmacy Department, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Nabeel Abdulrahman
- College of Health Sciences, QU-Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Fatima Mraiche
- National Center for Cancer Care and Research, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
4
|
Golatkar V, Bhatt LK. mAKAPβ signalosome: A potential target for cardiac hypertrophy. Drug Dev Res 2023; 84:1072-1084. [PMID: 37203301 DOI: 10.1002/ddr.22081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/05/2023] [Accepted: 05/06/2023] [Indexed: 05/20/2023]
Abstract
Pathological cardiac hypertrophy is the result of a prolonged increase in the workload of the heart that activates various signaling pathways such as MAPK pathway, PKA-dependent cAMP signaling, and CaN-NFAT signaling pathway which further activates genes for cardiac remodeling. Various signalosomes are present in the heart that regulates the signaling of physiological and pathological cardiac hypertrophy. mAKAPβ is one such scaffold protein that regulates signaling pathways involved in promoting cardiac hypertrophy. It is present in the outer nuclear envelope of the cardiomyocytes, which provides specificity of the target toward the heart. In addition, nuclear translocation of signaling components and transcription factors such as MEF2D, NFATc, and HIF-1α is facilitated due to the localization of mAKAPβ near the nuclear envelope. These factors are required for activation of genes promoting cardiac remodeling. Downregulation of mAKAPβ improves cardiac function and attenuates cardiac hypertrophy which in turn prevents the development of heart failure. Unlike earlier therapies for heart failure, knockout or silencing of mAKAPβ is not associated with side effects because of its high specificity in the striated myocytes. Downregulating expression of mAKAPβ is a favorable therapeutic approach toward attenuating cardiac hypertrophy and hence preventing heart failure. This review discusses mAKAPβ signalosome as a potential target for cardiac hypertrophy intervention.
Collapse
Affiliation(s)
- Vaishnavi Golatkar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh K Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| |
Collapse
|
5
|
Nijholt KT, Sánchez-Aguilera PI, Booij HG, Oberdorf-Maass SU, Dokter MM, Wolters AHG, Giepmans BNG, van Gilst WH, Brown JH, de Boer RA, Silljé HHW, Westenbrink BD. A Kinase Interacting Protein 1 (AKIP1) promotes cardiomyocyte elongation and physiological cardiac remodelling. Sci Rep 2023; 13:4046. [PMID: 36899057 PMCID: PMC10006410 DOI: 10.1038/s41598-023-30514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
A Kinase Interacting Protein 1 (AKIP1) is a signalling adaptor that promotes physiological hypertrophy in vitro. The purpose of this study is to determine if AKIP1 promotes physiological cardiomyocyte hypertrophy in vivo. Therefore, adult male mice with cardiomyocyte-specific overexpression of AKIP1 (AKIP1-TG) and wild type (WT) littermates were caged individually for four weeks in the presence or absence of a running wheel. Exercise performance, heart weight to tibia length (HW/TL), MRI, histology, and left ventricular (LV) molecular markers were evaluated. While exercise parameters were comparable between genotypes, exercise-induced cardiac hypertrophy was augmented in AKIP1-TG vs. WT mice as evidenced by an increase in HW/TL by weighing scale and in LV mass on MRI. AKIP1-induced hypertrophy was predominantly determined by an increase in cardiomyocyte length, which was associated with reductions in p90 ribosomal S6 kinase 3 (RSK3), increments of phosphatase 2A catalytic subunit (PP2Ac) and dephosphorylation of serum response factor (SRF). With electron microscopy, we detected clusters of AKIP1 protein in the cardiomyocyte nucleus, which can potentially influence signalosome formation and predispose a switch in transcription upon exercise. Mechanistically, AKIP1 promoted exercise-induced activation of protein kinase B (Akt), downregulation of CCAAT Enhancer Binding Protein Beta (C/EBPβ) and de-repression of Cbp/p300 interacting transactivator with Glu/Asp rich carboxy-terminal domain 4 (CITED4). Concludingly, we identified AKIP1 as a novel regulator of cardiomyocyte elongation and physiological cardiac remodelling with activation of the RSK3-PP2Ac-SRF and Akt-C/EBPβ-CITED4 pathway. These findings suggest that AKIP1 may serve as a nodal point for physiological reprogramming of cardiac remodelling.
Collapse
Affiliation(s)
- Kirsten T Nijholt
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, Hanzeplein 1, 9713 GZ, 9700 RB, Groningen, The Netherlands
| | - Pablo I Sánchez-Aguilera
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, Hanzeplein 1, 9713 GZ, 9700 RB, Groningen, The Netherlands
| | - Harmen G Booij
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, Hanzeplein 1, 9713 GZ, 9700 RB, Groningen, The Netherlands
| | - Silke U Oberdorf-Maass
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, Hanzeplein 1, 9713 GZ, 9700 RB, Groningen, The Netherlands
| | - Martin M Dokter
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, Hanzeplein 1, 9713 GZ, 9700 RB, Groningen, The Netherlands
| | - Anouk H G Wolters
- Department of Biomedical Sciences of Cells and Systems, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Ben N G Giepmans
- Department of Biomedical Sciences of Cells and Systems, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Wiek H van Gilst
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, Hanzeplein 1, 9713 GZ, 9700 RB, Groningen, The Netherlands
| | - Joan H Brown
- Department of Pharmacology, University of California San Diego, La Jolla, USA
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, Hanzeplein 1, 9713 GZ, 9700 RB, Groningen, The Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, Hanzeplein 1, 9713 GZ, 9700 RB, Groningen, The Netherlands
| | - B Daan Westenbrink
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, Hanzeplein 1, 9713 GZ, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
6
|
Jiang X, Cao M, Wu J, Wang X, Zhang G, Yang C, Gao P, Zou Y. Protections of transcription factor BACH2 and natural product myricetin against pathological cardiac hypertrophy and dysfunction. Front Physiol 2022; 13:971424. [PMID: 36105283 PMCID: PMC9465486 DOI: 10.3389/fphys.2022.971424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Pathological hypertrophic myocardium under consistent adverse stimuli eventually can cause heart failure. This study aims to explore the role of BACH2, a member of the basic region leucine zipper transcription factor family, in cardiac hypertrophy and failure. Transverse aortic constriction surgery was operated to induce cardiac hypertrophy and failure in mice. BACH2 was overexpressed in mice through tail vein injection of AAV9-Bach2. Mice with systemic or cardiac-specific knockdown of Bach2 were adopted. Neonatal rat ventricular myocytes (NRVMs) were isolated and infected with lentivirus to overexpress Bach2 or transfected with siRNA to knock down Bach2. Our data showed that overexpression of BACH2 ameliorated TAC-induced cardiac hypertrophy and failure in mice and decreased isoproterenol (ISO)-triggered myocyte hypertrophy in NRVMs. Systemic or cardiac-specific knockdown of Bach2 worsened the cardiac hypertrophy and failure phenotype in mice. Further assays showed that BACH2 bound to the promotor region of Akap6 at the -600 to -587 site and repressed its expression, which functioned as a crucial scaffold for cardiac hypertrophy and failure signaling pathways. Small molecular natural product library screening suggested that myricetin could up-regulate expression of Bach2 and simultaneously suppress the transcriptional levels of hypertrophic marker genes Bnp and Myh7. Further studies showed that myricetin exerted a BACH2-dependent protective effect against cardiac hypertrophy in vivo and in vitro. Taken together, our findings demonstrated that BACH2 plays a crucial role in the regulation of cardiac hypertrophy and failure and can be a potential therapeutic target in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pan Gao
- *Correspondence: Yunzeng Zou, ; Pan Gao,
| | | |
Collapse
|
7
|
Li J, Kelly SC, Ivey JR, Thorne PK, Yamada KP, Aikawa T, Mazurek R, Turk JR, Silva KAS, Amin AR, Tharp DL, Mueller CM, Thakur H, Leary EV, Domeier TL, Rector RS, Fish K, Cividini F, Ishikawa K, Emter CA, Kapiloff MS. Distribution of cardiomyocyte-selective adeno-associated virus serotype 9 vectors in swine following intracoronary and intravenous infusion. Physiol Genomics 2022; 54:261-272. [PMID: 35648460 PMCID: PMC9236866 DOI: 10.1152/physiolgenomics.00032.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/17/2022] [Accepted: 05/30/2022] [Indexed: 11/22/2022] Open
Abstract
Limited reports exist regarding adeno-associated virus (AAV) biodistribution in swine. This study assessed biodistribution following antegrade intracoronary and intravenous delivery of two self-complementary serotype 9 AAV (AAV9sc) biologics designed to target signaling in the cardiomyocyte considered important for the development of heart failure. Under the control of a cardiomyocyte-specific promoter, AAV9sc.shmAKAP and AAV9sc.RBD express a small hairpin RNA for the perinuclear scaffold protein muscle A-kinase anchoring protein β (mAKAPβ) and an anchoring disruptor peptide for p90 ribosomal S6 kinase type 3 (RSK3), respectively. Quantitative PCR was used to assess viral genome (vg) delivery and transcript expression in Ossabaw and Yorkshire swine tissues. Myocardial viral delivery was 2-5 × 105 vg/µg genomic DNA (gDNA) for both infusion techniques at a dose ∼1013 vg/kg body wt, demonstrating delivery of ∼1-3 viral particles per cardiac diploid genome. Myocardial RNA levels for each expressed transgene were generally proportional to dose and genomic delivery, and comparable with levels for moderately expressed endogenous genes. Despite significant AAV9sc delivery to other tissues, including the liver, neither biologic induced toxic effects as assessed using functional, structural, and circulating cardiac and systemic markers. These results indicate successful targeted delivery of cardiomyocyte-selective viral vectors in swine without negative side effects, an important step in establishing efficacy in a preclinical experimental setting.
Collapse
Affiliation(s)
- Jinliang Li
- Department of Ophthalmology, Stanford University, Palo Alto, California
- Department of Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, California
| | - Shannon C Kelly
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Jan R Ivey
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Pamela K Thorne
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Kelly P Yamada
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Tadao Aikawa
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Renata Mazurek
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - James R Turk
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | | | - Amira R Amin
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Darla L Tharp
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Christina M Mueller
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Hrishikesh Thakur
- Department of Ophthalmology, Stanford University, Palo Alto, California
- Department of Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, California
| | - Emily V Leary
- Department of Orthopedic Surgery, University of Missouri, Columbia, Missouri
| | - Timothy L Domeier
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial VA Hospital, University of Missouri, Columbia, Missouri
| | - Kenneth Fish
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York City, New York
| | | | - Kiyotake Ishikawa
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Craig A Emter
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Michael S Kapiloff
- Department of Ophthalmology, Stanford University, Palo Alto, California
- Department of Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, California
| |
Collapse
|
8
|
Lee WS, Lavery L, Rousseaux MWC, Rutledge EB, Jang Y, Wan YW, Wu SR, Kim W, Al-Ramahi I, Rath S, Adamski CJ, Bondar VV, Tewari A, Soleimani S, Mota S, Yalamanchili HK, Orr HT, Liu Z, Botas J, Zoghbi HY. Dual targeting of brain region-specific kinases potentiates neurological rescue in Spinocerebellar ataxia type 1. EMBO J 2021; 40:e106106. [PMID: 33709453 DOI: 10.15252/embj.2020106106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 12/26/2022] Open
Abstract
A critical question in neurodegeneration is why the accumulation of disease-driving proteins causes selective neuronal loss despite their brain-wide expression. In Spinocerebellar ataxia type 1 (SCA1), accumulation of polyglutamine-expanded Ataxin-1 (ATXN1) causes selective degeneration of cerebellar and brainstem neurons. Previous studies revealed that inhibiting Msk1 reduces phosphorylation of ATXN1 at S776 as well as its levels leading to improved cerebellar function. However, there are no regulators that modulate ATXN1 in the brainstem-the brain region whose pathology is most closely linked to premature death. To identify new regulators of ATXN1, we performed genetic screens and identified a transcription factor-kinase axis (ZBTB7B-RSK3) that regulates ATXN1 levels. Unlike MSK1, RSK3 is highly expressed in the human and mouse brainstems where it regulates Atxn1 by phosphorylating S776. Reducing Rsk3 rescues brainstem-associated pathologies and deficits, and lowering Rsk3 and Msk1 together improves cerebellar and brainstem function in an SCA1 mouse model. Our results demonstrate that selective vulnerability of brain regions in SCA1 is governed by region-specific regulators of ATXN1, and targeting multiple regulators could rescue multiple degenerating brain areas.
Collapse
Affiliation(s)
- Won-Seok Lee
- Integrative Molecular and Biomedical Science Program, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Laura Lavery
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Maxime W C Rousseaux
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Eric B Rutledge
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Youjin Jang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Ying-Wooi Wan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Sih-Rong Wu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Wonho Kim
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Howard Hughes Medical Institute, Houston, TX, USA
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Smruti Rath
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Carolyn J Adamski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Howard Hughes Medical Institute, Houston, TX, USA
| | - Vitaliy V Bondar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Ambika Tewari
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Shirin Soleimani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Samantha Mota
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Hari K Yalamanchili
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Harry T Orr
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA.,Howard Hughes Medical Institute, Houston, TX, USA
| |
Collapse
|
9
|
Vergarajauregui S, Becker R, Steffen U, Sharkova M, Esser T, Petzold J, Billing F, Kapiloff MS, Schett G, Thievessen I, Engel FB. AKAP6 orchestrates the nuclear envelope microtubule-organizing center by linking golgi and nucleus via AKAP9. eLife 2020; 9:61669. [PMID: 33295871 PMCID: PMC7725499 DOI: 10.7554/elife.61669] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/03/2020] [Indexed: 12/31/2022] Open
Abstract
The switch from centrosomal microtubule-organizing centers (MTOCs) to non-centrosomal MTOCs during differentiation is poorly understood. Here, we identify AKAP6 as key component of the nuclear envelope MTOC. In rat cardiomyocytes, AKAP6 anchors centrosomal proteins to the nuclear envelope through its spectrin repeats, acting as an adaptor between nesprin-1α and Pcnt or AKAP9. In addition, AKAP6 and AKAP9 form a protein platform tethering the Golgi to the nucleus. Both Golgi and nuclear envelope exhibit MTOC activity utilizing either AKAP9, or Pcnt-AKAP9, respectively. AKAP6 is also required for formation and activity of the nuclear envelope MTOC in human osteoclasts. Moreover, ectopic expression of AKAP6 in epithelial cells is sufficient to recruit endogenous centrosomal proteins. Finally, AKAP6 is required for cardiomyocyte hypertrophy and osteoclast bone resorption activity. Collectively, we decipher the MTOC at the nuclear envelope as a bi-layered structure generating two pools of microtubules with AKAP6 as a key organizer.
Collapse
Affiliation(s)
- Silvia Vergarajauregui
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Robert Becker
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ulrike Steffen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Maria Sharkova
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tilman Esser
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jana Petzold
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Florian Billing
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael S Kapiloff
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, United States
| | - George Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ingo Thievessen
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Muscle Research Center Erlangen (MURCE), Erlangen, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Muscle Research Center Erlangen (MURCE), Erlangen, Germany
| |
Collapse
|
10
|
Li J, Tan Y, Passariello CL, Martinez EC, Kritzer MD, Li X, Li X, Li Y, Yu Q, Ohgi K, Thakur H, MacArthur JW, Ivey JR, Woo YJ, Emter CA, Dodge-Kafka K, Rosenfeld MG, Kapiloff MS. Signalosome-Regulated Serum Response Factor Phosphorylation Determining Myocyte Growth in Width Versus Length as a Therapeutic Target for Heart Failure. Circulation 2020; 142:2138-2154. [PMID: 32933333 DOI: 10.1161/circulationaha.119.044805] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Concentric and eccentric cardiac hypertrophy are associated with pressure and volume overload, respectively, in cardiovascular disease both conferring an increased risk of heart failure. These contrasting forms of hypertrophy are characterized by asymmetrical growth of the cardiac myocyte in mainly width or length, respectively. The molecular mechanisms determining myocyte preferential growth in width versus length remain poorly understood. Identification of the mechanisms governing asymmetrical myocyte growth could provide new therapeutic targets for the prevention or treatment of heart failure. METHODS Primary adult rat ventricular myocytes, adeno-associated virus (AAV)-mediated gene delivery in mice, and human tissue samples were used to define a regulatory pathway controlling pathological myocyte hypertrophy. Chromatin immunoprecipitation assays with sequencing and precision nuclear run-on sequencing were used to define a transcriptional mechanism. RESULTS We report that asymmetrical cardiac myocyte hypertrophy is modulated by SRF (serum response factor) phosphorylation, constituting an epigenomic switch balancing the growth in width versus length of adult ventricular myocytes in vitro and in vivo. SRF Ser103 phosphorylation is bidirectionally regulated by RSK3 (p90 ribosomal S6 kinase type 3) and PP2A (protein phosphatase 2A) at signalosomes organized by the scaffold protein mAKAPβ (muscle A-kinase anchoring protein β), such that increased SRF phosphorylation activates AP-1 (activator protein-1)-dependent enhancers that direct myocyte growth in width. AAV are used to express in vivo mAKAPβ-derived RSK3 and PP2A anchoring disruptor peptides that block the association of the enzymes with the mAKAPβ scaffold. Inhibition of RSK3 signaling prevents concentric cardiac remodeling induced by pressure overload, while inhibition of PP2A signaling prevents eccentric cardiac remodeling induced by myocardial infarction, in each case improving cardiac function. SRF Ser103 phosphorylation is significantly decreased in dilated human hearts, supporting the notion that modulation of the mAKAPβ-SRF signalosome could be a new therapeutic approach for human heart failure. CONCLUSIONS We have identified a new molecular switch, namely mAKAPβ signalosome-regulated SRF phosphorylation, that controls a transcriptional program responsible for modulating changes in cardiac myocyte morphology that occur secondary to pathological stressors. Complementary AAV-based gene therapies constitute rationally-designed strategies for a new translational modality for heart failure.
Collapse
Affiliation(s)
- Jinliang Li
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Xueyi Li, Y. L., Q.Y., H.T., M.S.K.).,Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (J.L., C.L.P., E.C.M., M.D.K., Xiaofeng Li, H.T., M.S.K.)
| | - Yuliang Tan
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, La Jolla, CA (Y.T., K.O., M.G.R.)
| | - Catherine L Passariello
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (J.L., C.L.P., E.C.M., M.D.K., Xiaofeng Li, H.T., M.S.K.)
| | - Eliana C Martinez
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (J.L., C.L.P., E.C.M., M.D.K., Xiaofeng Li, H.T., M.S.K.)
| | - Michael D Kritzer
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (J.L., C.L.P., E.C.M., M.D.K., Xiaofeng Li, H.T., M.S.K.)
| | - Xueyi Li
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Xueyi Li, Y. L., Q.Y., H.T., M.S.K.)
| | - Xiaofeng Li
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (J.L., C.L.P., E.C.M., M.D.K., Xiaofeng Li, H.T., M.S.K.)
| | - Yang Li
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Xueyi Li, Y. L., Q.Y., H.T., M.S.K.)
| | - Qian Yu
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Xueyi Li, Y. L., Q.Y., H.T., M.S.K.)
| | - Kenneth Ohgi
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, La Jolla, CA (Y.T., K.O., M.G.R.)
| | - Hrishikesh Thakur
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Xueyi Li, Y. L., Q.Y., H.T., M.S.K.).,Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (J.L., C.L.P., E.C.M., M.D.K., Xiaofeng Li, H.T., M.S.K.)
| | | | - Jan R Ivey
- Department of Biomedical Sciences, University of Missouri-Columbia (J.R.I., C.A.E.)
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, CA (Y.J.W.)
| | - Craig A Emter
- Department of Biomedical Sciences, University of Missouri-Columbia (J.R.I., C.A.E.)
| | - Kimberly Dodge-Kafka
- Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington (K.D-K.)
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, La Jolla, CA (Y.T., K.O., M.G.R.)
| | - Michael S Kapiloff
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Xueyi Li, Y. L., Q.Y., H.T., M.S.K.).,Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (J.L., C.L.P., E.C.M., M.D.K., Xiaofeng Li, H.T., M.S.K.)
| |
Collapse
|
11
|
Wei YJ, Xu HJ, Chen JJ, Yang X, Xiong J, Wang J, Cheng F. Carnosic acid protects against pressure overload-induced cardiac remodelling by inhibiting the AKT/GSK3β/NOX4 signalling pathway. Exp Ther Med 2020; 20:3709-3719. [PMID: 32855722 PMCID: PMC7444384 DOI: 10.3892/etm.2020.9109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 01/09/2020] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress and apoptosis serve an important role in the development of pressure overload-induced cardiac remodelling. Carnosic acid (CA) has been found to exert antioxidant and anti-apoptotic effects. The present study investigated the underlying mechanism of CA protection and whether this effect was exerted against pressure overload-induced cardiac remodelling. Aortic banding (AB) surgery was performed to induce cardiac remodelling. Mice were randomly divided into four groups (n=15/group): i) Sham + vehicle; ii) sham + CA; iii) AB + vehicle; and iv) AB + CA. After 2 days of AB, 50 mg kg CA was administered orally for 12 days. Echocardiography, histological analysis and molecular biochemistry techniques were performed to evaluate the roles of CA. CA treatment decreased cardiac hypertrophy, fibrosis, oxidative stress and apoptosis in mice challenged with pressure overload. CA also decreased the cross-sectional area of cardiomyocytes and the mRNA and protein expression levels of hypertrophic markers. Furthermore, CA treatment decreased collagen deposition, α-smooth muscle actin expression and the mRNA and protein expression of various fibrotic markers. Additionally, CA reversed the AB-mediated increase in NAPDH oxidase (NOX) 2, NOX4 and 4-hydroxynonenal levels. The number of apoptotic cells was decreased following CA treatment following under conditions of pressure overload. CA also suppressed the activation of AKT and glycogen synthase kinase 3 β (GSK3β) in mice challenged with AB. The present results suggested that CA could inhibit pressure overload-induced cardiac hypertrophy and fibrosis by suppressing the AKT/GSK3β/NOX4 signalling pathway. Therefore, CA may be a promising therapy for cardiac remodelling.
Collapse
Affiliation(s)
- Yun-Jie Wei
- Department of Cardiology, Taihe Hospital of Shiyan, Affiliated to Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Hai-Jun Xu
- Department of Cardiology, Taihe Hospital of Shiyan, Affiliated to Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jia-Juan Chen
- Department of Cardiology, Taihe Hospital of Shiyan, Affiliated to Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xi Yang
- Department of Cardiology, Taihe Hospital of Shiyan, Affiliated to Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jian Xiong
- Department of Cardiology, Taihe Hospital of Shiyan, Affiliated to Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jing Wang
- Department of Cardiology, Taihe Hospital of Shiyan, Affiliated to Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Fei Cheng
- Department of Cardiology, Taihe Hospital of Shiyan, Affiliated to Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
12
|
Li X, Li J, Martinez EC, Froese A, Passariello CL, Henshaw K, Rusconi F, Li Y, Yu Q, Thakur H, Nikolaev VO, Kapiloff MS. Calcineurin Aβ-Specific Anchoring Confers Isoform-Specific Compartmentation and Function in Pathological Cardiac Myocyte Hypertrophy. Circulation 2020; 142:948-962. [PMID: 32611257 DOI: 10.1161/circulationaha.119.044893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The Ca2+/calmodulin-dependent phosphatase calcineurin is a key regulator of cardiac myocyte hypertrophy in disease. An unexplained paradox is how the β isoform of the calcineurin catalytic A-subunit (CaNAβ) is required for induction of pathological myocyte hypertrophy, despite calcineurin Aα expression in the same cells. It is unclear how the pleiotropic second messenger Ca2+ drives excitation-contraction coupling while not stimulating hypertrophy by calcineurin in the normal heart. Elucidation of the mechanisms conferring this selectivity in calcineurin signaling should reveal new strategies for targeting the phosphatase in disease. METHODS Primary adult rat ventricular myocytes were studied for morphology and intracellular signaling. New Förster resonance energy transfer reporters were used to assay Ca2+ and calcineurin activity in living cells. Conditional gene deletion and adeno-associated virus-mediated gene delivery in the mouse were used to study calcineurin signaling after transverse aortic constriction in vivo. RESULTS CIP4 (Cdc42-interacting protein 4)/TRIP10 (thyroid hormone receptor interactor 10) was identified as a new polyproline domain-dependent scaffold for CaNAβ2 by yeast 2-hybrid screen. Cardiac myocyte-specific CIP4 gene deletion in mice attenuated pressure overload-induced pathological cardiac remodeling and heart failure. Blockade of CaNAβ polyproline-dependent anchoring using a competing peptide inhibited concentric hypertrophy in cultured myocytes; disruption of anchoring in vivo using an adeno-associated virus gene therapy vector inhibited cardiac hypertrophy and improved systolic function after pressure overload. Live cell Förster resonance energy transfer biosensor imaging of cultured myocytes revealed that Ca2+ levels and calcineurin activity associated with the CIP4 compartment were increased by neurohormonal stimulation, but minimally by pacing. Conversely, Ca2+ levels and calcineurin activity detected by nonlocalized Förster resonance energy transfer sensors were induced by pacing and minimally by neurohormonal stimulation, providing functional evidence for differential intracellular compartmentation of Ca2+ and calcineurin signal transduction. CONCLUSIONS These results support a structural model for Ca2+ and CaNAβ compartmentation in cells based on an isoform-specific mechanism for calcineurin protein-protein interaction and localization. This mechanism provides an explanation for the specific role of CaNAβ in hypertrophy and its selective activation under conditions of pathologic stress. Disruption of CaNAβ polyproline-dependent anchoring constitutes a rational strategy for therapeutic targeting of CaNAβ-specific signaling responsible for pathological cardiac remodeling in cardiovascular disease deserving of further preclinical investigation.
Collapse
Affiliation(s)
- Xiaofeng Li
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.)
| | - Jinliang Li
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.).,Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Y.L., Q.Y., H.T., M.S.K.)
| | - Eliana C Martinez
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.)
| | - Alexander Froese
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.F., V.O.N.)
| | - Catherine L Passariello
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.)
| | - Kathryn Henshaw
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.)
| | - Francesca Rusconi
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.)
| | - Yang Li
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Y.L., Q.Y., H.T., M.S.K.)
| | - Qian Yu
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Y.L., Q.Y., H.T., M.S.K.)
| | - Hrishikesh Thakur
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.).,Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Y.L., Q.Y., H.T., M.S.K.)
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.F., V.O.N.)
| | - Michael S Kapiloff
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.).,Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Y.L., Q.Y., H.T., M.S.K.)
| |
Collapse
|
13
|
Wang M, Wan H, Wang S, Liao L, Huang Y, Guo L, Liu F, Shang L, Huang J, Ji D, Xia X, Jiang B, Chen D, Xiong K. RSK3 mediates necroptosis by regulating phosphorylation of RIP3 in rat retinal ganglion cells. J Anat 2020; 237:29-47. [PMID: 32162697 PMCID: PMC7309291 DOI: 10.1111/joa.13185] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
Receptor-interacting protein 3 (RIP3) plays an important role in the necroptosis signaling pathway. Our previous studies have shown that the RIP3/mixed lineage kinase domain-like protein (MLKL)-mediated necroptosis occurs in retinal ganglion cell line 5 (RGC-5) following oxygen-glucose deprivation (OGD). However, upstream regulatory pathways of RIP3 are yet to be uncovered. The purpose of the present study was to investigate the role of p90 ribosomal protein S6 kinase 3 (RSK3) in the phosphorylation of RIP3 in RGC-5 cell necroptosis following OGD. Our results showed that expression of RSK3, RIP3, and MLKL was upregulated in necroptosis of RGC-5 after OGD. A computer simulation based on our preliminary results indicated that RSK3 might interact with RIP3, which was subsequently confirmed by co-immunoprecipitation. Further, we found that the application of a specific RSK inhibitor, LJH685, or rsk3 small interfering RNA (siRNA), downregulated the phosphorylation of RIP3. However, the overexpression of rip3 did not affect the expression of RSK3, thereby indicating that RSK3 could be a possible upstream regulator of RIP3 phosphorylation in OGD-induced necroptosis of RGC-5 cells. Moreover, our in vivo results showed that pretreatment with LJH685 before acute high intraocular pressure episodes could reduce the necroptosis of retinal neurons and improve recovery of impaired visual function. Taken together, our findings suggested that RSK3 might work as an upstream regulator of RIP3 phosphorylation during RGC-5 necroptosis.
Collapse
Affiliation(s)
- Mi Wang
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Hao Wan
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Shuchao Wang
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Lvshuang Liao
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Yanxia Huang
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Limin Guo
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Fengxia Liu
- Department of Human AnatomySchool of Basic Medical ScienceXinjiang Medical UniversityUrumqiChina
| | - Lei Shang
- Jiangxi Research Institute of Ophthalmology and Visual SciencesAffiliated Eye Hospital of Nanchang UniversityNanchangChina
| | - Jufang Huang
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
- Hunan Key Laboratory of OphthalmologyChangshaChina
| | - Dan Ji
- Hunan Key Laboratory of OphthalmologyChangshaChina
- Department of OphthalmologyXiangya HospitalCentral South UniversityChangshaChina
| | - Xiaobo Xia
- Hunan Key Laboratory of OphthalmologyChangshaChina
- Department of OphthalmologyXiangya HospitalCentral South UniversityChangshaChina
| | - Bin Jiang
- Department of OphthalmologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Dan Chen
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
- Hunan Key Laboratory of OphthalmologyChangshaChina
| | - Kun Xiong
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
- Hunan Key Laboratory of OphthalmologyChangshaChina
| |
Collapse
|
14
|
Dorn LE, Lasman L, Chen J, Xu X, Hund TJ, Medvedovic M, Hanna JH, van Berlo JH, Accornero F. The N 6-Methyladenosine mRNA Methylase METTL3 Controls Cardiac Homeostasis and Hypertrophy. Circulation 2019; 139:533-545. [PMID: 30586742 PMCID: PMC6340720 DOI: 10.1161/circulationaha.118.036146] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND N6-Methyladenosine (m6A) methylation is the most prevalent internal posttranscriptional modification on mammalian mRNA. The role of m6A mRNA methylation in the heart is not known. METHODS To determine the role of m6A methylation in the heart, we isolated primary cardiomyocytes and performed m6A immunoprecipitation followed by RNA sequencing. We then generated genetic tools to modulate m6A levels in cardiomyocytes by manipulating the levels of the m6A RNA methylase methyltransferase-like 3 (METTL3) both in culture and in vivo. We generated cardiac-restricted gain- and loss-of-function mouse models to allow assessment of the METTL3-m6A pathway in cardiac homeostasis and function. RESULTS We measured the level of m6A methylation on cardiomyocyte mRNA, and found a significant increase in response to hypertrophic stimulation, suggesting a potential role for m6A methylation in the development of cardiomyocyte hypertrophy. Analysis of m6A methylation showed significant enrichment in genes that regulate kinases and intracellular signaling pathways. Inhibition of METTL3 completely abrogated the ability of cardiomyocytes to undergo hypertrophy when stimulated to grow, whereas increased expression of the m6A RNA methylase METTL3 was sufficient to promote cardiomyocyte hypertrophy both in vitro and in vivo. Finally, cardiac-specific METTL3 knockout mice exhibit morphological and functional signs of heart failure with aging and stress, showing the necessity of RNA methylation for the maintenance of cardiac homeostasis. CONCLUSIONS Our study identified METTL3-mediated methylation of mRNA on N6-adenosines as a dynamic modification that is enhanced in response to hypertrophic stimuli and is necessary for a normal hypertrophic response in cardiomyocytes. Enhanced m6A RNA methylation results in compensated cardiac hypertrophy, whereas diminished m6A drives eccentric cardiomyocyte remodeling and dysfunction, highlighting the critical importance of this novel stress-response mechanism in the heart for maintaining normal cardiac function.
Collapse
Affiliation(s)
- Lisa E Dorn
- Department of Physiology and Cell Biology (L.E.D., F.A.), Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus
| | - Lior Lasman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel (L.L., J.H.H.)
| | - Jing Chen
- Division of Biostatistics and Bioinformatics, Department of Environmental Health, University of Cincinnati, OH (J.C., M.M.)
| | - Xianyao Xu
- Department of Biomedical Engineering (X.X., T.J.H.), Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus
| | - Thomas J Hund
- Department of Biomedical Engineering (X.X., T.J.H.), Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus
| | - Mario Medvedovic
- Division of Biostatistics and Bioinformatics, Department of Environmental Health, University of Cincinnati, OH (J.C., M.M.)
| | - Jacob H Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel (L.L., J.H.H.)
| | - Jop H van Berlo
- Cardiovascular Division, Lillehei Heart Institute and Stem Cell Institute, University of Minnesota, Minneapolis (J.H.v.B.)
| | - Federica Accornero
- Department of Physiology and Cell Biology (L.E.D., F.A.), Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus
| |
Collapse
|
15
|
Chen J, Ning Y, Zhang H, Song N, Gu Y, Shi Y, Cai J, Ding X, Zhang X. METTL14-dependent m6A regulates vascular calcification induced by indoxyl sulfate. Life Sci 2019; 239:117034. [PMID: 31697949 DOI: 10.1016/j.lfs.2019.117034] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022]
Abstract
AIMS Although the functional importance of N6-methyladenosine (m6A) in various fundamental bioprocesses are well known, its effect on vascular calcification is not well studied. We investigated the role of methyltransferase-like 14 (METTL14), an m6A methylase, in vascular calcification. MAIN METHODS We used clinical human samples as well as rat models and primary human artery smooth muscle cell (HASMC) cultures to study the functional role of m6A and METTL14 in vascular calcification and in HASMCs. We modulated the expression of METTL14 using siRNAs (in vitro) to study its function in regulating HASMCs m6A, osteoblasts induced by indoxyl sulfate. We performed the MeRIP-qPCR assays to map and validate m6A in individual transcripts, controls, and calcific HASMCs. KEY FINDINGS We discovered that the METTL14 expression increases in calcific arteries and in HASMCs induced by indoxyl sulfate, thereby increasing the m6A level in RNA and decreasing the vascular repair function. Decreasing the expression of METTL14 in calcified arteries attenuated the indoxyl sulfate-induced increase in m6A and decrease in HASMCs calcification. We performed the methylation activity of METTL14, which selectively methylates vascular osteogenic transcripts, thereby promoting their degradation and improving their protein expression induced by indoxyl sulfate. Moreover, we demonstrated that the METTL14 de-expression in HASMCs models of calcification decreased the calcification and enhanced the vascular repair function. SIGNIFICANCE Collectively, our results demonstrated the functional importance of METTL14-dependent vascular m6A methylome in vascular functions during calcification and provided a novel mechanistic insight to the therapeutic mechanisms of METTL14.
Collapse
Affiliation(s)
- Jing Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University, China; Shanghai Medical Center of Kidney, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China; Hemodialysis quality control center of Shanghai, China
| | - Yichun Ning
- Department of Nephrology, Zhongshan Hospital, Fudan University, China; Shanghai Medical Center of Kidney, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China; Hemodialysis quality control center of Shanghai, China
| | - Han Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, China; Shanghai Medical Center of Kidney, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China; Hemodialysis quality control center of Shanghai, China
| | - Nana Song
- Department of Nephrology, Zhongshan Hospital, Fudan University, China; Shanghai Medical Center of Kidney, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China; Hemodialysis quality control center of Shanghai, China
| | - Yulu Gu
- Shanghai Institute of Kidney and Dialysis, Shanghai, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China; Hemodialysis quality control center of Shanghai, China
| | - Yiqin Shi
- Department of Nephrology, Zhongshan Hospital, Fudan University, China; Shanghai Medical Center of Kidney, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China; Hemodialysis quality control center of Shanghai, China
| | - Jieru Cai
- Department of Nephrology, Zhongshan Hospital, Fudan University, China; Shanghai Medical Center of Kidney, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China; Hemodialysis quality control center of Shanghai, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, China; Shanghai Medical Center of Kidney, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China; Hemodialysis quality control center of Shanghai, China.
| | - Xiaoyan Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, China; Shanghai Medical Center of Kidney, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China; Hemodialysis quality control center of Shanghai, China.
| |
Collapse
|
16
|
Dodge-Kafka KL, Gildart M, Li J, Thakur H, Kapiloff MS. Bidirectional regulation of HDAC5 by mAKAPβ signalosomes in cardiac myocytes. J Mol Cell Cardiol 2018. [PMID: 29522762 DOI: 10.1016/j.yjmcc.2018.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Class IIa histone deacetylases (HDACs) are transcriptional repressors whose nuclear export in the cardiac myocyte is associated with the induction of pathological gene expression and cardiac remodeling. Class IIa HDACs are regulated by multiple, functionally opposing post-translational modifications, including phosphorylation by protein kinase D (PKD) that promotes nuclear export and phosphorylation by protein kinase A (PKA) that promotes nuclear import. We have previously shown that the scaffold protein muscle A-kinase anchoring protein β (mAKAPβ) orchestrates signaling in the cardiac myocyte required for pathological cardiac remodeling, including serving as a scaffold for both PKD and PKA. We now show that mAKAPβ is a scaffold for HDAC5 in cardiac myocytes, forming signalosomes containing HDAC5, PKD, and PKA. Inhibition of mAKAPβ expression attenuated the phosphorylation of HDAC5 by PKD and PKA in response to α- and β-adrenergic receptor stimulation, respectively. Importantly, disruption of mAKAPβ-HDAC5 anchoring prevented the induction of HDAC5 nuclear export by α-adrenergic receptor signaling and PKD phosphorylation. In addition, disruption of mAKAPβ-PKA anchoring prevented the inhibition by β-adrenergic receptor stimulation of α-adrenergic-induced HDAC5 nuclear export. Together, these data establish that mAKAPβ signalosomes serve to bidirectionally regulate the nuclear-cytoplasmic localization of class IIa HDACs. Thus, the mAKAPβ scaffold serves as a node in the myocyte regulatory network controlling both the repression and activation of pathological gene expression in health and disease, respectively.
Collapse
Affiliation(s)
- Kimberly L Dodge-Kafka
- Calhoun Center for Cardiology, University of Connecticut Health Center, Cardiac Signal Transduction and Cellular Biology Laboratory, Farmington, CT, USA.
| | - Moriah Gildart
- Calhoun Center for Cardiology, University of Connecticut Health Center, Cardiac Signal Transduction and Cellular Biology Laboratory, Farmington, CT, USA
| | - Jinliang Li
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute Stanford University, Palo Alto, CA, USA
| | - Hrishikesh Thakur
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute Stanford University, Palo Alto, CA, USA
| | - Michael S Kapiloff
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
17
|
Function of Adenylyl Cyclase in Heart: the AKAP Connection. J Cardiovasc Dev Dis 2018; 5:jcdd5010002. [PMID: 29367580 PMCID: PMC5872350 DOI: 10.3390/jcdd5010002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 12/13/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP), synthesized by adenylyl cyclase (AC), is a universal second messenger that regulates various aspects of cardiac physiology from contraction rate to the initiation of cardioprotective stress response pathways. Local pools of cAMP are maintained by macromolecular complexes formed by A-kinase anchoring proteins (AKAPs). AKAPs facilitate control by bringing together regulators of the cAMP pathway including G-protein-coupled receptors, ACs, and downstream effectors of cAMP to finely tune signaling. This review will summarize the distinct roles of AC isoforms in cardiac function and how interactions with AKAPs facilitate AC function, highlighting newly appreciated roles for lesser abundant AC isoforms.
Collapse
|
18
|
Wild AR, Dell'Acqua ML. Potential for therapeutic targeting of AKAP signaling complexes in nervous system disorders. Pharmacol Ther 2017; 185:99-121. [PMID: 29262295 DOI: 10.1016/j.pharmthera.2017.12.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A common feature of neurological and neuropsychiatric disorders is a breakdown in the integrity of intracellular signal transduction pathways. Dysregulation of ion channels and receptors in the cell membrane and the enzymatic mediators that link them to intracellular effectors can lead to synaptic dysfunction and neuronal death. However, therapeutic targeting of these ubiquitous signaling elements can lead to off-target side effects due to their widespread expression in multiple systems of the body. A-kinase anchoring proteins (AKAPs) are multivalent scaffolding proteins that compartmentalize a diverse range of receptor and effector proteins to streamline signaling within nanodomain signalosomes. A number of essential neurological processes are known to critically depend on AKAP-directed signaling and an understanding of the role AKAPs play in nervous system disorders has emerged in recent years. Selective targeting of AKAP protein-protein interactions may be a means to uncouple pathologically active signaling pathways in neurological disorders with a greater degree of specificity. In this review we will discuss the role of AKAPs in both regulating normal nervous system function and dysfunction associated with disease, and the potential for therapeutic targeting of AKAP signaling complexes.
Collapse
Affiliation(s)
- Angela R Wild
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
19
|
Li J, Yuan YP, Xu SC, Zhang N, Xu CR, Wan CX, Ren J, Zeng XF, Tang QZ. Arctiin protects against cardiac hypertrophy through inhibiting MAPKs and AKT signaling pathways. J Pharmacol Sci 2017; 135:97-104. [DOI: 10.1016/j.jphs.2017.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 12/20/2022] Open
|
20
|
Ryba DM, Li J, Cowan CL, Russell B, Wolska BM, Solaro RJ. Long-Term Biased β-Arrestin Signaling Improves Cardiac Structure and Function in Dilated Cardiomyopathy. Circulation 2017; 135:1056-1070. [PMID: 28104714 DOI: 10.1161/circulationaha.116.024482] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/12/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Biased agonism of the angiotensin II receptor is known to promote cardiac contractility. Our laboratory indicated that these effects may be attributable to changes at the level of the myofilaments. However, these signaling mechanisms remain unknown. Because a common finding in dilated cardiomyopathy is a reduction in the myofilament-Ca2+ response, we hypothesized that β-arrestin signaling would increase myofilament-Ca2+ responsiveness in a model of familial dilated cardiomyopathy and improve cardiac function and morphology. METHODS We treated a dilated cardiomyopathy-linked mouse model expressing a mutant tropomyosin (Tm-E54K) for 3 months with either TRV120067, a β-arrestin 2-biased ligand of the angiotensin II receptor, or losartan, an angiotensin II receptor blocker. At the end of the treatment protocol, we assessed cardiac function using echocardiography, the myofilament-Ca2+ response of detergent-extracted fiber bundles, and used proteomic approaches to understand changes in posttranslational modifications of proteins that may explain functional changes. We also assessed signaling pathways altered in vivo and by using isolated myocytes. RESULTS TRV120067- treated Tm-E54K mice showed improved cardiac structure and function, whereas losartan-treated mice had no improvement. Myofilaments of TRV120067-treated Tm-E54K mice had significantly improved myofilament-Ca2+ responsiveness, which was depressed in untreated Tm-E54K mice. We attributed these changes to increased MLC2v and MYPT1/2 phosphorylation seen only in TRV120067-treated mice. We found that the functional changes were attributable to an activation of ERK1/2-RSK3 signaling, mediated through β-arrestin, which may have a novel role in increasing MLC2v phosphorylation through a previously unrecognized interaction of β-arrestin localized to the sarcomere. CONCLUSIONS Long-term β-arrestin 2-biased agonism of the angiotensin II receptor may be a viable approach to the treatment of dilated cardiomyopathy by not only preventing maladaptive signaling, but also improving cardiac function by altering the myofilament-Ca2+ response via β-arrestin signaling pathways.
Collapse
Affiliation(s)
- David M Ryba
- From Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago (D.M.R., J.L., B.R., B.M.W., R.J.S.); Department of Medicine, Division of Cardiology, University of Illinois at Chicago (B.M.W.); and Trevena, Inc. King of Prussia, PA (B.M.W.)
| | - Jieli Li
- From Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago (D.M.R., J.L., B.R., B.M.W., R.J.S.); Department of Medicine, Division of Cardiology, University of Illinois at Chicago (B.M.W.); and Trevena, Inc. King of Prussia, PA (B.M.W.)
| | - Conrad L Cowan
- From Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago (D.M.R., J.L., B.R., B.M.W., R.J.S.); Department of Medicine, Division of Cardiology, University of Illinois at Chicago (B.M.W.); and Trevena, Inc. King of Prussia, PA (B.M.W.)
| | - Brenda Russell
- From Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago (D.M.R., J.L., B.R., B.M.W., R.J.S.); Department of Medicine, Division of Cardiology, University of Illinois at Chicago (B.M.W.); and Trevena, Inc. King of Prussia, PA (B.M.W.)
| | - Beata M Wolska
- From Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago (D.M.R., J.L., B.R., B.M.W., R.J.S.); Department of Medicine, Division of Cardiology, University of Illinois at Chicago (B.M.W.); and Trevena, Inc. King of Prussia, PA (B.M.W.)
| | - R John Solaro
- From Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago (D.M.R., J.L., B.R., B.M.W., R.J.S.); Department of Medicine, Division of Cardiology, University of Illinois at Chicago (B.M.W.); and Trevena, Inc. King of Prussia, PA (B.M.W.).
| |
Collapse
|
21
|
Shekhar A, Lin X, Liu FY, Zhang J, Mo H, Bastarache L, Denny JC, Cox NJ, Delmar M, Roden DM, Fishman GI, Park DS. Transcription factor ETV1 is essential for rapid conduction in the heart. J Clin Invest 2016; 126:4444-4459. [PMID: 27775552 DOI: 10.1172/jci87968] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/15/2016] [Indexed: 01/12/2023] Open
Abstract
Rapid impulse propagation in the heart is a defining property of pectinated atrial myocardium (PAM) and the ventricular conduction system (VCS) and is essential for maintaining normal cardiac rhythm and optimal cardiac output. Conduction defects in these tissues produce a disproportionate burden of arrhythmic disease and are major predictors of mortality in heart failure patients. Despite the clinical importance, little is known about the gene regulatory network that dictates the fast conduction phenotype. Here, we have used signal transduction and transcriptional profiling screens to identify a genetic pathway that converges on the NRG1-responsive transcription factor ETV1 as a critical regulator of fast conduction physiology for PAM and VCS cardiomyocytes. Etv1 was highly expressed in murine PAM and VCS cardiomyocytes, where it regulates expression of Nkx2-5, Gja5, and Scn5a, key cardiac genes required for rapid conduction. Mice deficient in Etv1 exhibited marked cardiac conduction defects coupled with developmental abnormalities of the VCS. Loss of Etv1 resulted in a complete disruption of the normal sodium current heterogeneity that exists between atrial, VCS, and ventricular myocytes. Lastly, a phenome-wide association study identified a link between ETV1 and bundle branch block and heart block in humans. Together, these results identify ETV1 as a critical factor in determining fast conduction physiology in the heart.
Collapse
|
22
|
Abstract
INTRODUCTION The p90 ribosomal S6 kinases (RSK) are a family of Ser/Thr protein kinases that are downstream effectors of MEK1/2-ERK1/2. Increased RSK activation is implicated in the etiology of multiple pathologies, including numerous types of cancers, cardiovascular disease, liver and lung fibrosis, and infections. AREAS COVERED The review summarizes the patent and scientific literature on small molecule modulators of RSK and their potential use as therapeutics. The patents were identified using World Intellectual Property Organization and United States Patent and Trademark Office databases. The compounds described are predominantly RSK inhibitors, but a RSK activator is also described. The majority of the inhibitors are not RSK-specific. EXPERT OPINION Based on the overwhelming evidence that RSK is involved in a number of diseases that have high mortalities it seems surprising that there are no RSK modulators that have pharmacokinetic properties suitable for in vivo use. MEK1/2 inhibitors are in the clinic, but the efficacy of these compounds appears to be limited by their side effects. We hypothesize that targeting the downstream effectors of MEK1/2, like RSK, are an untapped source of drug targets and that they will generate less side effects than MEK1/2 inhibitors because they regulate fewer effectors.
Collapse
Affiliation(s)
- Katarzyna A Ludwik
- a Department of Pathology, Microbiology & Immunology , Vanderbilt University , Nashville , TN , USA
| | - Deborah A Lannigan
- a Department of Pathology, Microbiology & Immunology , Vanderbilt University , Nashville , TN , USA.,b Department of Cancer Biology , Vanderbilt University , Nashville , TN , USA
| |
Collapse
|
23
|
He B, Zhao YC, Gao LC, Ying XY, Xu LW, Su YY, Ji QQ, Lin N, Pu J. Ubiquitin-Specific Protease 4 Is an Endogenous Negative Regulator of Pathological Cardiac Hypertrophy. Hypertension 2016; 67:1237-48. [PMID: 27045030 DOI: 10.1161/hypertensionaha.116.07392] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/08/2016] [Indexed: 11/16/2022]
Abstract
Dysregulation of the ubiquitin proteasome system components ubiquitin ligases and proteasome plays an important role in the pathogenesis of cardiac hypertrophy. However, little is known about the role of another ubiquitin proteasome system component, the deubiquitinating enzymes, in cardiac hypertrophy. Here, we revealed a crucial role of ubiquitin specific protease 4 (USP4), a deubiquitinating enzyme prominently expressed in the heart, in attenuating pathological cardiac hypertrophy and dysfunction. USP4 levels were consistently decreased in human failing hearts and in murine hypertrophied hearts. Adenovirus-mediated gain- and loss-of-function approaches indicated that deficiency of endogenous USP4 promoted myocyte hypertrophy induced by angiotensin II in vitro, whereas restoration of USP4 significantly attenuated the prohypertrophic effect of angiotensin II. To corroborate the role of USP4 in vivo, we generated USP4 global knockout mice and mice with cardiac-specific overexpression of USP4. Consistent with the in vitro study, USP4 depletion exacerbated the hypertrophic phenotype and cardiac dysfunction in mice subjected to pressure overload, whereas USP4 transgenic mice presented ameliorated pathological cardiac hypertrophy compared with their control littermates. Molecular analysis revealed that USP4 deficiency augmented the activation of the transforming growth factor β–activated kinase 1 (TAK1)-(JNK1/2)/P38 signaling in response to hypertrophic stress, and blockage of TAK1 activation abolished the pathological effects of USP4 deficiency in vivo. These findings provide the first evidence for the involvement of USP4 in cardiac hypertrophy, and shed light on the therapeutic potential of targeting USP4 in the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Ben He
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Chao Zhao
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling-Chen Gao
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Ying Ying
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Long-Wei Xu
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan-Yuan Su
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing-Qi Ji
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Lin
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Pu
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Abstract
Cardiac remodeling is regulated by an extensive intracellular signal transduction network. Each of the many signaling pathways in this network contributes uniquely to the control of cellular adaptation. In the last few years, it has become apparent that multimolecular signaling complexes or "signalosomes" are important for fidelity in intracellular signaling and for mediating crosstalk between the different signaling pathways. These complexes integrate upstream signals and control downstream effectors. In the cardiac myocyte, the protein mAKAPβ serves as a scaffold for a large signalosome that is responsive to cAMP, calcium, hypoxia, and mitogen-activated protein kinase signaling. The main function of mAKAPβ signalosomes is to modulate stress-related gene expression regulated by the transcription factors NFATc, MEF2, and HIF-1α and type II histone deacetylases that control pathological cardiac hypertrophy.
Collapse
|
25
|
Passariello CL, Martinez EC, Thakur H, Cesareo M, Li J, Kapiloff MS. RSK3 is required for concentric myocyte hypertrophy in an activated Raf1 model for Noonan syndrome. J Mol Cell Cardiol 2016; 93:98-105. [PMID: 26940993 DOI: 10.1016/j.yjmcc.2016.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/26/2016] [Accepted: 02/27/2016] [Indexed: 12/27/2022]
Abstract
Noonan syndrome (NS) is a congenital disorder resulting from mutations of the Ras-Raf signaling pathway. Hypertrophic cardiomyopathy associated with RAF1 "RASopathy" mutations is a major risk factor for heart failure and death in NS and has been attributed to activation of MEK1/2-ERK1/2 mitogen-activated protein kinases. We recently discovered that type 3 p90 ribosomal S6 kinase (RSK3) is an ERK effector that is required, like ERK1/2, for concentric myocyte hypertrophy in response to pathological stress such as pressure overload. In order to test whether RSK3 also contributes to NS-associated hypertrophic cardiomyopathy, RSK3 knock-out mice were crossed with mice bearing the Raf1(L613V) human NS mutation. We confirmed that Raf1(L613V) knock-in confers a NS-like phenotype, including cardiac hypertrophy. Active RSK3 was increased in Raf1(L613V) mice. Constitutive RSK3 gene deletion prevented the Raf1(L613V)-dependent concentric growth in width of the cardiac myocyte and attenuated cardiac hypertrophy in female mice. These results are consistent with RSK3 being an important mediator of ERK1/2-dependent growth in RASopathy. In conjunction with previously published data showing that RSK3 is important for pathological remodeling of the heart, these data suggest that targeting of this downstream MAP-kinase pathway effector should be considered in the treatment of RASopathy-associated hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Catherine L Passariello
- Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33101, United States
| | - Eliana C Martinez
- Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33101, United States
| | - Hrishikesh Thakur
- Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33101, United States
| | - Maria Cesareo
- Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33101, United States
| | - Jinliang Li
- Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33101, United States
| | - Michael S Kapiloff
- Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33101, United States.
| |
Collapse
|
26
|
Diviani D, Reggi E, Arambasic M, Caso S, Maric D. Emerging roles of A-kinase anchoring proteins in cardiovascular pathophysiology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1926-36. [PMID: 26643253 DOI: 10.1016/j.bbamcr.2015.11.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 01/08/2023]
Abstract
Heart and blood vessels ensure adequate perfusion of peripheral organs with blood and nutrients. Alteration of the homeostatic functions of the cardiovascular system can cause hypertension, atherosclerosis, and coronary artery disease leading to heart injury and failure. A-kinase anchoring proteins (AKAPs) constitute a family of scaffolding proteins that are crucially involved in modulating the function of the cardiovascular system both under physiological and pathological conditions. AKAPs assemble multifunctional signaling complexes that ensure correct targeting of the cAMP-dependent protein kinase (PKA) as well as other signaling enzymes to precise subcellular compartments. This allows local regulation of specific effector proteins that control the function of vascular and cardiac cells. This review will focus on recent advances illustrating the role of AKAPs in cardiovascular pathophysiology. The accent will be mainly placed on the molecular events linked to the control of vascular integrity and blood pressure as well as on the cardiac remodeling process associated with heart failure. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Dario Diviani
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland.
| | - Erica Reggi
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| | - Miroslav Arambasic
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| | - Stefania Caso
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| | - Darko Maric
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| |
Collapse
|
27
|
Wang Y, Cameron EG, Li J, Stiles TL, Kritzer MD, Lodhavia R, Hertz J, Nguyen T, Kapiloff MS, Goldberg JL. Muscle A-Kinase Anchoring Protein-α is an Injury-Specific Signaling Scaffold Required for Neurotrophic- and Cyclic Adenosine Monophosphate-Mediated Survival. EBioMedicine 2015; 2:1880-7. [PMID: 26844267 PMCID: PMC4703706 DOI: 10.1016/j.ebiom.2015.10.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 10/17/2015] [Accepted: 10/22/2015] [Indexed: 12/11/2022] Open
Abstract
Neurotrophic factor and cAMP-dependent signaling promote the survival and neurite outgrowth of retinal ganglion cells (RGCs) after injury. However, the mechanisms conferring neuroprotection and neuroregeneration downstream to these signals are unclear. We now reveal that the scaffold protein muscle A-kinase anchoring protein-α (mAKAPα) is required for the survival and axon growth of cultured primary RGCs. Although genetic deletion of mAKAPα early in prenatal RGC development did not affect RGC survival into adulthood, nor promoted the death of RGCs in the uninjured adult retina, loss of mAKAPα in the adult increased RGC death after optic nerve crush. Importantly, mAKAPα was required for the neuroprotective effects of brain-derived neurotrophic factor and cyclic adenosine-monophosphate (cAMP) after injury. These results identify mAKAPα as a scaffold for signaling in the stressed neuron that is required for RGC neuroprotection after optic nerve injury. mAKAPα is a stress-specific mediator of RGC survival. mAKAP deletion does not affect RGC survival in development or in the uninjured adult retina. mAKAP is downregulated after optic nerve injury, and its further deletion exacerbates RGC death. mAKAP deletion suppresses the neuroprotective effects of cAMP and BDNF after injury.
After injury or in degenerative diseases, neurons of the central nervous system (CNS) fail to regenerate and often die partly due to a lack of pro-survival, trophic signaling. Better understanding of such signaling is important for the development of therapies that enhance survival and regeneration of neurons after injury. Here we identify a critical regulator of such signaling, mAKAPα, a scaffold protein that coordinates pro-survival signaling to enhance survival and regeneration in CNS neurons after injury. The neuroprotective role of mAKAPα will likely lead to further future insights into the detailed nature of survival signaling in adult neurons.
Collapse
Affiliation(s)
- Yan Wang
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Department of Ophthalmology, University of California, San Diego, CA 92093, United States
| | - Evan G Cameron
- Department of Ophthalmology, University of California, San Diego, CA 92093, United States; Byers Eye Institute, Stanford University, Palo Alto, CA 94303, United States
| | - Jinliang Li
- Department of Pediatrics, Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, United States; Department of Medicine, Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, United States
| | - Travis L Stiles
- Department of Ophthalmology, University of California, San Diego, CA 92093, United States
| | - Michael D Kritzer
- Department of Pediatrics, Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, United States; Department of Medicine, Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, United States
| | - Rahul Lodhavia
- Department of Ophthalmology, University of California, San Diego, CA 92093, United States
| | - Jonathan Hertz
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Tu Nguyen
- Department of Ophthalmology, University of California, San Diego, CA 92093, United States
| | - Michael S Kapiloff
- Department of Pediatrics, Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, United States; Department of Medicine, Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, United States
| | - Jeffrey L Goldberg
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Department of Ophthalmology, University of California, San Diego, CA 92093, United States; Byers Eye Institute, Stanford University, Palo Alto, CA 94303, United States
| |
Collapse
|
28
|
Roffé M, Lupinacci FC, Soares LC, Hajj GN, Martins VR. Two widely used RSK inhibitors, BI-D1870 and SL0101, alter mTORC1 signaling in a RSK-independent manner. Cell Signal 2015; 27:1630-42. [DOI: 10.1016/j.cellsig.2015.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 12/20/2022]
|
29
|
Raymer B, Ebner D. Small molecule and peptide therapies for chronic heart failure: a patent review (2011 - 2014). Expert Opin Ther Pat 2015; 25:1175-90. [PMID: 26173447 DOI: 10.1517/13543776.2015.1061997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Chronic heart failure (CHF) is the long-term inability of the heart to meet circulatory demands under normal conditions. Effects of CHF can include increased blood volume, increased vascular resistance and compromised contractility leading to fluid retention, dyspnea and fatigue. Current standard of care for chronic systolic heart failure is directed towards managing hypoperfusion through the renin-angiotensin-aldosterone and sympathetic nervous systems. Treatment may also involve reversal of maladaptive cardiac remodeling and prevention of life-threatening arrhythmias. AREAS COVERED This review highlights small molecule and peptidic agents for the treatment of CHF with patents published between 2011 and 2014. Targets are subdivided into inotropic agents, ventricular remodeling, diuretics and the renin-angiotensin-aldosterone system. EXPERT OPINION CHF represents a large, unmet medical need where improved therapies are needed. The renin-angiotensin-aldosterone system pathway continues to be a major source of new therapies for CHF with new inotropic therapies emerging. Promising initial clinical results for a few approaches combined with the expectation of additional clinical results in the near future make this an exciting time in the pursuit of new treatments for CHF.
Collapse
Affiliation(s)
- Brian Raymer
- a Cardiovascular, Metabolic, and Endocrine Diseases Chemistry, Pfizer Worldwide Research and Development , Cambridge, MA, USA +1 617 551 3414 ; +1 617 551 3082 ;
| | - David Ebner
- a Cardiovascular, Metabolic, and Endocrine Diseases Chemistry, Pfizer Worldwide Research and Development , Cambridge, MA, USA +1 617 551 3414 ; +1 617 551 3082 ;
| |
Collapse
|
30
|
Rigatti M, Le AV, Gerber C, Moraru II, Dodge-Kafka KL. Phosphorylation state-dependent interaction between AKAP7δ/γ and phospholamban increases phospholamban phosphorylation. Cell Signal 2015; 27:1807-15. [PMID: 26027516 DOI: 10.1016/j.cellsig.2015.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 05/07/2015] [Indexed: 12/01/2022]
Abstract
Changes in heart rate and contractility in response to sympathetic stimulation occur via activation of cAMP dependent protein kinase A (PKA), leading to phosphorylation of numerous substrates that alter Ca(2+) cycling. Phosphorylation of these substrates is coordinated by A-kinase anchoring proteins (AKAPs), which recruit PKA to specific substrates [1]. Phosphorylation of the PKA substrate phospholamban (PLB) is a critical determinant of Ca(2+) re-entry into the sarcoplasmic reticulum and is coordinated by AKAP7δ/γ [2,3]. Here, we further these findings by showing that phosphorylation of PLB requires interaction with AKAP7δ/γ and that this interaction occurs only when PLB is unphosphorylated. Additionally, we find that two mutants of PLB (R9C and Δ14), which are associated with dilated cardiomyopathy in humans, prevent association with AKAP7δ/γ and display reduced phosphorylation in vitro. This finding implicates the AKAP7δ/γ-PLB interaction in the pathology of the disease phenotype. Further exploration of the AKAP7δ/γ-PLB association demonstrated a phosphorylation state-dependence of the interaction. Computational modeling revealed that this mode of interaction allows for small amounts of AKAP and PKA (100-200nM) to regulate the phosphorylation of large quantities of PLB (50μM). Our results confirm that AKAP7γ/δ binding to PLB is important for phosphorylation of PLB, and describe a novel phosphorylation state-dependent binding mechanism that explains how phosphorylation of highly abundant PKA substrates can be regulated by AKAPs present at ~100-200 fold lower concentrations.
Collapse
Affiliation(s)
- Marc Rigatti
- Pat and Jim Calhoun Center for Cardiovascular Research, UCONN Health, 263 Farmington Ave, Farmington, CT 06030, USA; The Richard D. Berlin Center for Cell Analysis & Modeling, UCONN Health, 400 Farmington Ave, Farmington, CT 06030, USA
| | - Andrew V Le
- Pat and Jim Calhoun Center for Cardiovascular Research, UCONN Health, 263 Farmington Ave, Farmington, CT 06030, USA; The Richard D. Berlin Center for Cell Analysis & Modeling, UCONN Health, 400 Farmington Ave, Farmington, CT 06030, USA
| | - Claire Gerber
- Pat and Jim Calhoun Center for Cardiovascular Research, UCONN Health, 263 Farmington Ave, Farmington, CT 06030, USA; The Richard D. Berlin Center for Cell Analysis & Modeling, UCONN Health, 400 Farmington Ave, Farmington, CT 06030, USA
| | - Ion I Moraru
- Pat and Jim Calhoun Center for Cardiovascular Research, UCONN Health, 263 Farmington Ave, Farmington, CT 06030, USA; The Richard D. Berlin Center for Cell Analysis & Modeling, UCONN Health, 400 Farmington Ave, Farmington, CT 06030, USA
| | - Kimberly L Dodge-Kafka
- Pat and Jim Calhoun Center for Cardiovascular Research, UCONN Health, 263 Farmington Ave, Farmington, CT 06030, USA; The Richard D. Berlin Center for Cell Analysis & Modeling, UCONN Health, 400 Farmington Ave, Farmington, CT 06030, USA.
| |
Collapse
|
31
|
Martinez EC, Passariello CL, Li J, Matheson CJ, Dodge-Kafka K, Reigan P, Kapiloff MS. RSK3: A regulator of pathological cardiac remodeling. IUBMB Life 2015; 67:331-7. [PMID: 25988524 PMCID: PMC4449288 DOI: 10.1002/iub.1383] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/08/2015] [Indexed: 12/18/2022]
Abstract
The family of p90 ribosomal S6 kinases (RSKs) are pleiotropic effectors for extracellular signal-regulated kinase signaling pathways. Recently, RSK3 was shown to be important for pathological remodeling of the heart. Although cardiac myocyte hypertrophy can be compensatory for increased wall stress, in chronic heart diseases, this nonmitotic cell growth is usually associated with interstitial fibrosis, increased cell death, and decreased cardiac function. Although RSK3 is less abundant in the cardiac myocyte than other RSK family members, RSK3 appears to serve a unique role in cardiac myocyte stress responses. A potential mechanism conferring the unique function of RSK3 in the heart is anchoring by the scaffold protein muscle A-kinase anchoring protein β (mAKAPβ). Recent findings suggest that RSK3 should be considered as a therapeutic target for the prevention of heart failure, a clinical syndrome of major public health significance.
Collapse
Affiliation(s)
- Eliana C. Martinez
- Department of Pediatrics, Division of Cardiology, Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Catherine L. Passariello
- Department of Pediatrics, Division of Cardiology, Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jinliang Li
- Department of Pediatrics, Division of Cardiology, Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Christopher J. Matheson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Kimberly Dodge-Kafka
- Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington, CT, USA
| | - Philip Reigan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Michael S. Kapiloff
- Department of Pediatrics, Division of Cardiology, Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
32
|
Alpha-1-adrenergic receptors in heart failure: the adaptive arm of the cardiac response to chronic catecholamine stimulation. J Cardiovasc Pharmacol 2014; 63:291-301. [PMID: 24145181 DOI: 10.1097/fjc.0000000000000032] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alpha-1-adrenergic receptors (ARs) are G protein-coupled receptors activated by catecholamines. The alpha-1A and alpha-1B subtypes are expressed in mouse and human myocardium, whereas the alpha-1D protein is found only in coronary arteries. There are far fewer alpha-1-ARs than beta-ARs in the nonfailing heart, but their abundance is maintained or increased in the setting of heart failure, which is characterized by pronounced chronic elevation of catecholamines and beta-AR dysfunction. Decades of evidence from gain and loss-of-function studies in isolated cardiac myocytes and numerous animal models demonstrate important adaptive functions for cardiac alpha-1-ARs to include physiological hypertrophy, positive inotropy, ischemic preconditioning, and protection from cell death. Clinical trial data indicate that blocking alpha-1-ARs is associated with incident heart failure in patients with hypertension. Collectively, these findings suggest that alpha-1-AR activation might mitigate the well-recognized toxic effects of beta-ARs in the hyperadrenergic setting of chronic heart failure. Thus, exogenous cardioselective activation of alpha-1-ARs might represent a novel and viable approach to the treatment of heart failure.
Collapse
|
33
|
Kritzer MD, Li J, Passariello CL, Gayanilo M, Thakur H, Dayan J, Dodge-Kafka K, Kapiloff MS. The scaffold protein muscle A-kinase anchoring protein β orchestrates cardiac myocyte hypertrophic signaling required for the development of heart failure. Circ Heart Fail 2014; 7:663-72. [PMID: 24812305 DOI: 10.1161/circheartfailure.114.001266] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Cardiac myocyte hypertrophy is regulated by an extensive intracellular signal transduction network. In vitro evidence suggests that the scaffold protein muscle A-kinase anchoring protein β (mAKAPβ) serves as a nodal organizer of hypertrophic signaling. However, the relevance of mAKAPβ signalosomes to pathological remodeling and heart failure in vivo remains unknown. METHODS AND RESULTS Using conditional, cardiac myocyte-specific gene deletion, we now demonstrate that mAKAPβ expression in mice is important for the cardiac hypertrophy induced by pressure overload and catecholamine toxicity. mAKAPβ targeting prevented the development of heart failure associated with long-term transverse aortic constriction, conferring a survival benefit. In contrast to 29% of control mice (n=24), only 6% of mAKAPβ knockout mice (n=31) died in the 16 weeks of pressure overload (P=0.02). Accordingly, mAKAPβ knockout inhibited myocardial apoptosis and the development of interstitial fibrosis, left atrial hypertrophy, and pulmonary edema. This improvement in cardiac status correlated with the attenuated activation of signaling pathways coordinated by the mAKAPβ scaffold, including the decreased phosphorylation of protein kinase D1 and histone deacetylase 4 that we reveal to participate in a new mAKAP signaling module. Furthermore, mAKAPβ knockout inhibited pathological gene expression directed by myocyte-enhancer factor-2 and nuclear factor of activated T-cell transcription factors that associate with the scaffold. CONCLUSIONS mAKAPβ orchestrates signaling that regulates pathological cardiac remodeling in mice. Targeting of the underlying physical architecture of signaling networks, including mAKAPβ signalosome formation, may constitute an effective therapeutic strategy for the prevention and treatment of pathological remodeling and heart failure.
Collapse
Affiliation(s)
- Michael D Kritzer
- From the Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, FL (M.D.K., J.L., C.L.P., M.G., H.T., J.D., M.S.K.); and Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington (K.D.-K.).
| | - Jinliang Li
- From the Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, FL (M.D.K., J.L., C.L.P., M.G., H.T., J.D., M.S.K.); and Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington (K.D.-K.)
| | - Catherine L Passariello
- From the Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, FL (M.D.K., J.L., C.L.P., M.G., H.T., J.D., M.S.K.); and Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington (K.D.-K.)
| | - Marjorie Gayanilo
- From the Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, FL (M.D.K., J.L., C.L.P., M.G., H.T., J.D., M.S.K.); and Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington (K.D.-K.)
| | - Hrishikesh Thakur
- From the Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, FL (M.D.K., J.L., C.L.P., M.G., H.T., J.D., M.S.K.); and Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington (K.D.-K.)
| | - Joseph Dayan
- From the Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, FL (M.D.K., J.L., C.L.P., M.G., H.T., J.D., M.S.K.); and Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington (K.D.-K.)
| | - Kimberly Dodge-Kafka
- From the Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, FL (M.D.K., J.L., C.L.P., M.G., H.T., J.D., M.S.K.); and Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington (K.D.-K.)
| | - Michael S Kapiloff
- From the Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, FL (M.D.K., J.L., C.L.P., M.G., H.T., J.D., M.S.K.); and Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington (K.D.-K.)
| |
Collapse
|
34
|
Gao X, Lin B, Sadayappan S, Patel TB. Interactions between the regulatory subunit of type I protein kinase A and p90 ribosomal S6 kinase1 regulate cardiomyocyte apoptosis. Mol Pharmacol 2013; 85:357-67. [PMID: 24307699 DOI: 10.1124/mol.113.090613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cardiomyocyte apoptosis contributes toward the loss of muscle mass in myocardial pathologies. Previous reports have implicated type I cAMP-dependent protein kinase (PKA) and p90 ribosomal S6 kinase (RSK) in cardiomyocyte apoptosis. However, the precise mechanisms and the isoform of RSK involved in this process remain undefined. Using adult rat ventricular myocytes and mouse-derived cardiac HL-1 cardiomyocytes, we demonstrate that hypoxia/reoxygenation (H/R)-induced apoptosis is accompanied by a decrease in the type I PKA regulatory subunit (PKARIα) and activation of RSK1. As previously described by us for other cell types, in cardiomyocytes, inactive RSK1 also interacts with PKARIα, whereas the active RSK1 interacts with the catalytic subunit of PKA. Additionally, small interfering (siRNA)-mediated silencing of PKARIα or disrupting the RSK1/PKARIα interactions with a small, cell-permeable peptide activates RSK1 and recapitulates the H/R-induced apoptosis. Inhibition of RSK1 or siRNA-mediated silencing of RSK1 attenuates H/R-induced apoptosis, demonstrating the role of RSK1 in cardiomyocyte apoptosis. Furthermore, silencing of RSK1 decreases the H/R-induced phosphorylation of sodium-hydrogen exchanger 1 (NHE1), and inhibition of NHE1 with 5'-N-ethyl-N-isopropyl-amiloride blocks H/R induced apoptosis, indicating the involvement of NHE1 in apoptosis. Overall, our findings demonstrate that H/R-mediated decrease in PKARIα protein levels leads to activation of RSK1, which via phosphorylation of NHE1 induces cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Xianlong Gao
- Department of Molecular Pharmacology & Therapeutics and Signal Transduction Research Institute (X.G., T.B.P.), and the Department of Molecular and Cellular Physiology (B.L., S.S.), Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois
| | | | | | | |
Collapse
|
35
|
Targeting protein-protein interactions within the cyclic AMP signaling system as a therapeutic strategy for cardiovascular disease. Future Med Chem 2013; 5:451-64. [PMID: 23495691 DOI: 10.4155/fmc.12.216] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The cAMP signaling system can trigger precise physiological cellular responses that depend on the fidelity of many protein-protein interactions, which act to bring together signaling intermediates at defined locations within cells. In the heart, cAMP participates in the fine control of excitation-contraction coupling, hence, any disregulation of this signaling cascade can lead to cardiac disease. Due to the ubiquitous nature of the cAMP pathway, general inhibitors of cAMP signaling proteins such as PKA, EPAC and PDEs would act non-specifically and universally, increasing the likelihood of serious 'off target' effects. Recent advances in the discovery of peptides and small molecules that disrupt the protein-protein interactions that underpin cellular targeting of cAMP signaling proteins are described and discussed.
Collapse
|
36
|
Passariello CL, Gayanilo M, Kritzer MD, Thakur H, Cozacov Z, Rusconi F, Wieczorek D, Sanders M, Li J, Kapiloff MS. p90 ribosomal S6 kinase 3 contributes to cardiac insufficiency in α-tropomyosin Glu180Gly transgenic mice. Am J Physiol Heart Circ Physiol 2013; 305:H1010-9. [PMID: 23913705 DOI: 10.1152/ajpheart.00237.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myocardial interstitial fibrosis is an important contributor to the development of heart failure. Type 3 p90 ribosomal S6 kinase (RSK3) was recently shown to be required for concentric myocyte hypertrophy under in vivo pathological conditions. However, the role of RSK family members in myocardial fibrosis remains uninvestigated. Transgenic expression of α-tropomyosin containing a Glu180Gly mutation (TM180) in mice of a mixed C57BL/6:FVB/N background induces a cardiomyopathy characterized by a small left ventricle, interstitial fibrosis, and diminished systolic and diastolic function. Using this mouse model, we now show that RSK3 is required for the induction of interstitial fibrosis in vivo. TM180 transgenic mice were crossed to RSK3 constitutive knockout (RSK3(-/-)) mice. Although RSK3 knockout did not affect myocyte growth, the decreased cardiac function and mild pulmonary edema associated with the TM180 transgene were attenuated by RSK3 knockout. The improved cardiac function was consistent with reduced interstitial fibrosis in the TM180;RSK3(-/-) mice as shown by histology and gene expression analysis, including the decreased expression of collagens. The specific inhibition of RSK3 should be considered as a potential novel therapeutic strategy for improving cardiac function and the prevention of sudden cardiac death in diseases in which interstitial fibrosis contributes to the development of heart failure.
Collapse
Affiliation(s)
- Catherine L Passariello
- Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida; and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhang Z, Liu R, Townsend PA, Proud CG. p90RSKs mediate the activation of ribosomal RNA synthesis by the hypertrophic agonist phenylephrine in adult cardiomyocytes. J Mol Cell Cardiol 2013; 59:139-47. [DOI: 10.1016/j.yjmcc.2013.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/05/2013] [Accepted: 03/07/2013] [Indexed: 01/06/2023]
|
38
|
Li J, Vargas MAX, Kapiloff MS, Dodge-Kafka KL. Regulation of MEF2 transcriptional activity by calcineurin/mAKAP complexes. Exp Cell Res 2012; 319:447-54. [PMID: 23261540 DOI: 10.1016/j.yexcr.2012.12.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 11/28/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
Abstract
The calcium/calmodulin-dependent protein phosphatase calcineurin is required for the induction of transcriptional events that initiate and promote myogenic differentiation. An important effector for calcineurin in striated muscle is the transcription factor myocyte enhancer factor 2 (MEF2). The targeting of the enzyme and substrate to specific intracellular compartments by scaffold proteins often confers specificity in phosphatase activity. We now show that the scaffolding protein mAKAP organizes a calcineurin/MEF2 signaling complex in myocytes, regulating gene transcription. A calcineurin/mAKAP/MEF2 complex can be isolated from C2C12 cells and cardiac myocytes, and the calcineurin/MEF2 association is dependent on mAKAP expression. We have identified a peptide comprising the calcineurin binding domain in mAKAP that can disrupt the binding of the phosphatase to the scaffold in vivo. Dominant interference of calcineurin/mAKAP binding blunts the increase in MEF2 transcriptional activity seen during myoblast differentiation, as well as the expression of endogenous MEF2-target genes. Furthermore, disruption of calcineurin binding to mAKAP in cardiac myocytes inhibits adrenergic-induced cellular hypertrophy. Together these data illustrate the importance of calcineurin anchoring by the mAKAP scaffold for MEF2 regulation.
Collapse
Affiliation(s)
- Jinliang Li
- Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL 33101, United States
| | | | | | | |
Collapse
|