1
|
Kleinbongard P, Andreadou I. Is There a Mitochondrial Protection via Remote Ischemic Conditioning in Settings of Anticancer Therapy Cardiotoxicity? Curr Heart Fail Rep 2024; 21:292-304. [PMID: 38512567 PMCID: PMC11333552 DOI: 10.1007/s11897-024-00658-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE OF REVIEW To provide an overview of (a) protective effects on mitochondria induced by remote ischemic conditioning (RIC) and (b) mitochondrial damage caused by anticancer therapy. We then discuss the available results of studies on mitochondrial protection via RIC in anticancer therapy-induced cardiotoxicity. RECENT FINDINGS In three experimental studies in healthy mice and pigs, there was a RIC-mediated protection against anthracycline-induced cardiotoxicity and there was some evidence of improved mitochondrial function with RIC. The RIC-mediated protection was not confirmed in the two available studies in cancer patients. In adult cancer patients, RIC was associated with an adverse outcome. There are no data on mitochondrial function in cancer patients. Studies in tumor-bearing animals are needed to determine whether RIC does not interfere with the anticancer properties of the drugs and whether RIC actually improves mitochondrial function, ultimately resulting in improved cardiac function.
Collapse
Affiliation(s)
- Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany.
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Osorio-Llanes E, Castellar-López J, Rosales-Rada W, Montoya Y, Bustamante J, Zalaquett R, Bravo-Sagua R, Riquelme JA, Sánchez G, Chiong M, Lavandero S, Mendoza-Torres E. Novel Strategies to Improve the Cardioprotective Effects of Cardioplegia. Curr Cardiol Rev 2024; 20:CCR-EPUB-137763. [PMID: 38275069 PMCID: PMC11071679 DOI: 10.2174/011573403x263956231129064455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/17/2023] [Accepted: 10/20/2023] [Indexed: 01/27/2024] Open
Abstract
The use of cardioprotective strategies as adjuvants of cardioplegic solutions has become an ideal alternative for the improvement of post-surgery heart recovery. The choice of the optimal cardioplegia, as well as its distribution mechanism, remains controversial in the field of cardiovascular surgery. There is still a need to search for new and better cardioprotective methods during cardioplegic procedures. New techniques for the management of cardiovascular complications during cardioplegia have evolved with new alternatives and additives, and each new strategy provides a tool to neutralize the damage after ischemia/reperfusion events. Researchers and clinicians have committed themselves to studying the effect of new strategies and adjuvant components with the potential to improve the cardioprotective effect of cardioplegic solutions in preventing myocardial ischemia/reperfusion-induced injury during cardiac surgery. The aim of this review is to explore the different types of cardioplegia, their protection mechanisms, and which strategies have been proposed to enhance the function of these solutions in hearts exposed to cardiovascular pathologies that require surgical alternatives for their corrective progression.
Collapse
Affiliation(s)
- Estefanie Osorio-Llanes
- Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla, Colombia
| | - Jairo Castellar-López
- Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla, Colombia
| | - Wendy Rosales-Rada
- Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla, Colombia
| | - Yulieth Montoya
- Grupo de Dinámica Cardiovascular (GDC), Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana
| | - John Bustamante
- Grupo de Dinámica Cardiovascular (GDC), Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana
| | - Ricardo Zalaquett
- Department of Surgery, Clínica Las Condes, Santiago, Chile. Advanced Center for Chronic Diseases (ACCDiS)
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Jaime A Riquelme
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Gina Sánchez
- Physiopathology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, USA
| | - Evelyn Mendoza-Torres
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Faculty of Health Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Seccional Barranquilla, Colombia
| |
Collapse
|
3
|
Xu X, Liang W, Tang J, Wu Z. New-Onset Sleep Disorders before Cardiac Surgery May Indicate an Increased Risk of Postoperative Atrial Fibrillation. Ann Thorac Cardiovasc Surg 2023; 29:287-293. [PMID: 37357401 PMCID: PMC10767658 DOI: 10.5761/atcs.oa.23-00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/15/2023] [Indexed: 06/27/2023] Open
Abstract
PURPOSE We aimed to determine if sleep disorders before cardiac surgery indicate an increased risk of postoperative atrial fibrillation (POAF). METHODS In this study, 238 patients undergoing coronary artery bypass grafting in our center were included. Patients were separated into the preoperative sleep disorder group and the control group. The primary endpoint was the incidence of POAF, and the secondary endpoints were the incidence of postoperative stroke, duration of invasive ventilation, length of intensive care unit, and hospitalization stay. Propensity score matching and multivariable logistic regression were used for adjusting potential confounders. RESULTS A total of 165 (69.3%) patients had sleep disorders before surgery, and 73 well-matched pairs were generated. A higher incidence of POAF was found in the preoperative sleep disorder group (16.4% versus 5.5%, p = 0.034). In multivariable logistic regression, preoperative sleep disorders were correlated to a higher risk of POAF (odds ratio = 4.627, 95% confidence interval: 1.181-18.123, p = 0.028). In the subgroup of patients without long-term sleep disorders, those who experienced preoperative sleep disorders had a higher incidence of POAF (16.1% versus 4.3%, p = 0.024), meanwhile, no difference was found in the subgroup of long-term sleep disorders. CONCLUSION New-onset sleep disorders before cardiac surgery may indicate a higher incidence of POAF.
Collapse
Affiliation(s)
- Xiaokang Xu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Weitao Liang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Tang
- Acupuncture and Moxibustion School of Teaching Hospital of Chengdu University of TCM, Chengdu, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Zhong Wu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Ravingerova T, Adameova A, Lonek L, Farkasova V, Ferko M, Andelova N, Kura B, Slezak J, Galatou E, Lazou A, Zohdi V, Dhalla NS. Is Intrinsic Cardioprotection a Laboratory Phenomenon or a Clinically Relevant Tool to Salvage the Failing Heart? Int J Mol Sci 2023; 24:16497. [PMID: 38003687 PMCID: PMC10671596 DOI: 10.3390/ijms242216497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular diseases, especially ischemic heart disease, as a leading cause of heart failure (HF) and mortality, will not reduce over the coming decades despite the progress in pharmacotherapy, interventional cardiology, and surgery. Although patients surviving acute myocardial infarction live longer, alteration of heart function will later lead to HF. Its rising incidence represents a danger, especially among the elderly, with data showing more unfavorable results among females than among males. Experiments revealed an infarct-sparing effect of ischemic "preconditioning" (IPC) as the most robust form of innate cardioprotection based on the heart's adaptation to moderate stress, increasing its resistance to severe insults. However, translation to clinical practice is limited by technical requirements and limited time. Novel forms of adaptive interventions, such as "remote" IPC, have already been applied in patients, albeit with different effectiveness. Cardiac ischemic tolerance can also be increased by other noninvasive approaches, such as adaptation to hypoxia- or exercise-induced preconditioning. Although their molecular mechanisms are not yet fully understood, some noninvasive modalities appear to be promising novel strategies for fighting HF through targeting its numerous mechanisms. In this review, we will discuss the molecular mechanisms of heart injury and repair, as well as interventions that have potential to be used in the treatment of patients.
Collapse
Affiliation(s)
- Tanya Ravingerova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Adriana Adameova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, 10 Odbojárov St., 832 32 Bratislava, Slovakia
| | - Lubomir Lonek
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Veronika Farkasova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Miroslav Ferko
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Natalia Andelova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Branislav Kura
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Jan Slezak
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Eleftheria Galatou
- School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (E.G.); (A.L.)
- Department of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (E.G.); (A.L.)
| | - Vladislava Zohdi
- Department of Anatomy, Faculty of Medicine, Comenius University in Bratislava, 24 Špitalska, 813 72 Bratislava, Slovakia;
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, VIC 3800, Australia
| | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada;
| |
Collapse
|
5
|
Naraiah Mukkala A, Petrut R, Goldfarb R, Leigh Beroncal E, Ho Leung C, Khan Z, Ailenberg M, Jerkic M, Andreazza AC, Rhind SG, Jeschke MG, Kapus A, Rotstein OD. Augmented Parkin-dependent mitophagy underlies the hepatoprotective effect of remote ischemic conditioning used prior to hemorrhagic shock. Mitochondrion 2023; 70:20-30. [PMID: 36906251 DOI: 10.1016/j.mito.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/04/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND AND AIMS Hemorrhagic shock-resuscitation (HSR) following trauma contributes to organ dysfunction by causing ischemia-reperfusion injury (IRI). We previously showed that 'remote ischemic preconditioning' (RIPC) exerted multi-organ protection from IRI. Maintenance of mitochondrial quality by clearance of dysfunctional mitochondria via mitophagy is vital in restoring organ integrity. We hypothesized that parkin-dependent mitophagy played a role in RIPC-induced hepatoprotection following HSR. METHODS The hepatoprotective effect of RIPC in a murine model of HSR-IRI was investigated in wild type and parkin-/- animals. Mice were subjected to HSR ± RIPC and blood and organs were collected, followed by cytokine ELISAs, histology, qPCR, Western blots, and transmission electron microscopy. RESULTS HSR increased hepatocellular injury, as measured by plasma ALT and liver necrosis, while antecedent RIPC prevented this injury; in parkin-/- mice, RIPC failed to exert hepatoprotection. The ability of RIPC to lessen HSR-induced rises in plasma IL-6 and TNFα, was lost in parkin-/- mice. While RIPC alone did not induce mitophagy, the application of RIPC prior to HSR caused a synergistic increase in mitophagy, this increase was not observed in parkin-/- mice. RIPC induced shifts in mitochondrial morphology favoring mitophagy in WT but not in parkin-/- animals. CONCLUSIONS RIPC was hepatoprotective in WT mice following HSR but not in parkin-/- mice. Loss of protection in parkin-/- mice corresponded with the failure of RIPC plus HSR to upregulate the mitophagic process. Improving mitochondrial quality by modulating mitophagy, may prove to be an attractive therapeutic target in disease processes caused by IRI.
Collapse
Affiliation(s)
- Avinash Naraiah Mukkala
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Raluca Petrut
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Rachel Goldfarb
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | | | - Chung Ho Leung
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Zahra Khan
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Menachem Ailenberg
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Mirjana Jerkic
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Ana C Andreazza
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada
| | - Shawn G Rhind
- Defence Research and Development Canada, Department of National Defense, Government of Canada, Toronto, Canada
| | - Marc G Jeschke
- Hamilton Health Sciences Centre and McMaster University, Hamilton, Canada
| | - Andras Kapus
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Surgery, University of Toronto, Toronto, Canada; Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Ori D Rotstein
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Surgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
6
|
Pieri M, Vayianos P, Nicolaidou V, Felekkis K, Papaneophytou C. Alterations in Circulating miRNA Levels after Infection with SARS-CoV-2 Could Contribute to the Development of Cardiovascular Diseases: What We Know So Far. Int J Mol Sci 2023; 24:ijms24032380. [PMID: 36768701 PMCID: PMC9917196 DOI: 10.3390/ijms24032380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and poses significant complications for cardiovascular disease (CVD) patients. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and influence several physiological and pathological processes, including CVD. This critical review aims to expand upon the current literature concerning miRNA deregulation during the SARS-CoV-2 infection, focusing on cardio-specific miRNAs and their association with various CVDs, including cardiac remodeling, arrhythmias, and atherosclerosis after SARS-CoV-2 infection. Despite the scarcity of research in this area, our findings suggest that changes in the expression levels of particular COVID-19-related miRNAs, including miR-146a, miR-27/miR-27a-5p, miR-451, miR-486-5p, miR-21, miR-155, and miR-133a, may be linked to CVDs. While our analysis did not conclusively determine the impact of SARS-CoV-2 infection on the profile and/or expression levels of cardiac-specific miRNAs, we proposed a potential mechanism by which the miRNAs mentioned above may contribute to the development of these two pathologies. Further research on the relationship between SARS-CoV-2, CVDs, and microRNAs will significantly enhance our understanding of this connection and may lead to the use of these miRNAs as biomarkers or therapeutic targets for both pathologies.
Collapse
Affiliation(s)
- Myrtani Pieri
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
- Non-Coding RNA Research Laboratory, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
| | - Panayiotis Vayianos
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
| | - Vicky Nicolaidou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
- Non-Coding RNA Research Laboratory, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
| | - Kyriacos Felekkis
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
- Non-Coding RNA Research Laboratory, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
- Correspondence: (K.F.); (C.P.)
| | - Christos Papaneophytou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
- Non-Coding RNA Research Laboratory, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
- Correspondence: (K.F.); (C.P.)
| |
Collapse
|
7
|
Ferdinandy P, Andreadou I, Baxter GF, Bøtker HE, Davidson SM, Dobrev D, Gersh BJ, Heusch G, Lecour S, Ruiz-Meana M, Zuurbier CJ, Hausenloy DJ, Schulz R. Interaction of Cardiovascular Nonmodifiable Risk Factors, Comorbidities and Comedications With Ischemia/Reperfusion Injury and Cardioprotection by Pharmacological Treatments and Ischemic Conditioning. Pharmacol Rev 2023; 75:159-216. [PMID: 36753049 PMCID: PMC9832381 DOI: 10.1124/pharmrev.121.000348] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/07/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022] Open
Abstract
Preconditioning, postconditioning, and remote conditioning of the myocardium enhance the ability of the heart to withstand a prolonged ischemia/reperfusion insult and the potential to provide novel therapeutic paradigms for cardioprotection. While many signaling pathways leading to endogenous cardioprotection have been elucidated in experimental studies over the past 30 years, no cardioprotective drug is on the market yet for that indication. One likely major reason for this failure to translate cardioprotection into patient benefit is the lack of rigorous and systematic preclinical evaluation of promising cardioprotective therapies prior to their clinical evaluation, since ischemic heart disease in humans is a complex disorder caused by or associated with cardiovascular risk factors and comorbidities. These risk factors and comorbidities induce fundamental alterations in cellular signaling cascades that affect the development of ischemia/reperfusion injury and responses to cardioprotective interventions. Moreover, some of the medications used to treat these comorbidities may impact on cardioprotection by again modifying cellular signaling pathways. The aim of this article is to review the recent evidence that cardiovascular risk factors as well as comorbidities and their medications may modify the response to cardioprotective interventions. We emphasize the critical need for taking into account the presence of cardiovascular risk factors as well as comorbidities and their concomitant medications when designing preclinical studies for the identification and validation of cardioprotective drug targets and clinical studies. This will hopefully maximize the success rate of developing rational approaches to effective cardioprotective therapies for the majority of patients with multiple comorbidities. SIGNIFICANCE STATEMENT: Ischemic heart disease is a major cause of mortality; however, there are still no cardioprotective drugs on the market. Most studies on cardioprotection have been undertaken in animal models of ischemia/reperfusion in the absence of comorbidities; however, ischemic heart disease develops with other systemic disorders (e.g., hypertension, hyperlipidemia, diabetes, atherosclerosis). Here we focus on the preclinical and clinical evidence showing how these comorbidities and their routine medications affect ischemia/reperfusion injury and interfere with cardioprotective strategies.
Collapse
Affiliation(s)
- Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Ioanna Andreadou
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Gary F Baxter
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Hans Erik Bøtker
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Sean M Davidson
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Dobromir Dobrev
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Bernard J Gersh
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Gerd Heusch
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Sandrine Lecour
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Marisol Ruiz-Meana
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Coert J Zuurbier
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Derek J Hausenloy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Rainer Schulz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| |
Collapse
|
8
|
Jiao Y, Wang J, Jia Y, Xue M. Remote ischemic preconditioning protects against cerebral ischemia injury in rats by upregulating miR-204-5p and activating the PINK1/Parkin signaling pathway. Metab Brain Dis 2022; 37:945-959. [PMID: 35067796 DOI: 10.1007/s11011-022-00910-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022]
Abstract
Remote ischemic preconditioning (RiPC) is the process where preconditioning ischemia protects the organs against the subsequent index ischemia. RiPC is a protective method for brain damage. This study is to explore the effect and mechanism of RiPC in cerebral ischemia injury in rats through regulation of miR-204-5p/BRD4 expression. Middle cerebral artery occlusion (MCAO) rat model and glucose deprivation (OGD) neuron model were established. The effect of RiPC on neurological deficits, cerebral infarct size, autophagy marker, inflammatory cytokines and apoptosis was evaluated. miR-204-5p expression was analyzed using RT-qPCR, and then downregulated using miR-204-5p antagomir to estimate its effect on MCAO rats. The downstream mechanism of miR-204-5p was explored. RiPC promoted autophagy, reduced cerebral infarct volume and neurological deficit score, and alleviated apoptosis and cerebral ischemia injury in rats, with no significant effects on healthy rat brains. RiPC up-regulated miR-204-5p expression in MCAO rats. miR-204-5p knockdown partially reversed the effect of RiPC. RiPC promoted autophagy in OGD cells, and attenuated inflammation and apoptosis. miR-204-5p targeted BRD4, which partially reversed the effect of miR-204-5p on OGD cells. RiPC activated the PINK1/Parkin pathway via the miR-204-5p/BRD4 axis. In conclusion, RiPC activated the PINK1/Parkin pathway and prevented cerebral ischemia injury by up-regulating miR-204-5p and inhibiting BRD4.
Collapse
Affiliation(s)
- Yiming Jiao
- The Departments of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, 450001, Henan, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Jinlan Wang
- The Departments of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, 450001, Henan, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Yanjie Jia
- The Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengzhou Xue
- The Departments of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, 450001, Henan, China.
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China.
| |
Collapse
|
9
|
Sánchez FJ, Pueyo E, Diez ER. Strain Echocardiography to Predict Postoperative Atrial Fibrillation. Int J Mol Sci 2022; 23:1355. [PMID: 35163278 PMCID: PMC8836170 DOI: 10.3390/ijms23031355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/23/2022] [Accepted: 01/23/2022] [Indexed: 11/16/2022] Open
Abstract
Postoperative atrial fibrillation (POAF) complicates 15% to 40% of cardiovascular surgeries. Its incidence progressively increases with aging, reaching 50% in octogenarians. This arrhythmia is usually transient but it increases the risk of embolic stroke, prolonged hospital stay, and cardiovascular mortality. Though many pathophysiological mechanisms are known, POAF prediction is still a hot topic of discussion. Doppler echocardiogram and, lately, strain echocardiography have shown significant capacity to predict POAF. Alterations in oxidative stress, calcium handling, mitochondrial dysfunction, inflammation, fibrosis, and tissue aging are among the mechanisms that predispose patients to the perfect "atrial storm". Manifestations of these mechanisms have been related to enlarged atria and impaired function, which can be detected prior to surgery. Specific alterations in the atrial reservoir and pump function, as well as atrial dyssynchrony determined by echocardiographic atrial strain, can predict POAF and help to shed light on which patients could benefit from preventive therapy.
Collapse
Affiliation(s)
| | - Esther Pueyo
- BSICOS Group, I3A, IIS Aragón, University of Zaragoza, 50018 Zaragoza, Spain;
- CIBER-BBN, 28029 Madrid, Spain
| | - Emiliano Raúl Diez
- Faculty of Medical Sciences, National University of Cuyo, Mendoza 5500, Argentina;
- Institute of Medical and Experimental Biology of Cuyo, IMBECU-UNCuyo-CONICET, Mendoza 5500, Argentina
| |
Collapse
|
10
|
Zhong Y, Luo L. Exosomes from Human Umbilical Vein Endothelial Cells Ameliorate Ischemic Injuries by Suppressing the RNA Component of Mitochondrial RNA-processing Endoribonuclease via the Induction of miR-206/miR-1-3p Levels. Neuroscience 2021; 476:34-44. [PMID: 34481913 DOI: 10.1016/j.neuroscience.2021.08.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022]
Abstract
Exosomes might mediate the effects of remote ischemic post-conditioning (RIPostC) treatment on vital organs. The present study aimed to explore the role of RNA component of mitochondrial RNA-processing endoribonuclease (RMRP) in the effects of human umbilical vein endothelial cell (HUVEC)-derived exosomes on ischemic injuries in vitro and in vivo. HUVECs were subjected to oxygen-glucose deprivation (OGD) treatment and exosomes were collected OGD-treated human neural cells were incubated with HUVEC-derived exosomes. Changes in cell viability, apoptosis, and RMRP-mediated PI3K/Akt/mTOR pathway activity were detected. The role of RMRP inhibition in the anti-OGD effects of exosomes was further determined by upregulating RMRP expression in human neural cells. The potential RMRP inhibitory factors in exosomes were explored using microarray detection. The effects of exosomes were validated with MCAO mouse models. In OGD neurons incubated with the exosomes, cell viability was improved and cell apoptosis was suppressed. At molecular level, exosomes on downregulated RMRP, p-PI3K, p-Akt, and p-mTOR, while induced eNOS. After the overexpression of RMRP, the cell protective effects of exosomes were counteracted, which was associated with the re-activation of PI3K/Akt/mTOR pathway. Based on the detection of microarray, the induced levels of miR-206 and miR-1-3p by OGD in HVUECs contributed to the RMPR inhibition. Additionally, injection of exosomes restricted infarction area and suppressed RMRP in MCAO mice. Collectively, exosomes from OGD HUVECs could protect neurons against ischemia-induced injuries, and the effects were associated with the suppression of RMRP in neurons via distance transfer of miR-206 and miR-1-3p.
Collapse
Affiliation(s)
- Yanyan Zhong
- Department of Emergency, The First People's Hospital of Wenling, Wenling 317500, China
| | - Liangyan Luo
- Department of Neurology, The First People's Hospital of Wenling, Wenling 317500, China.
| |
Collapse
|
11
|
Long YQ, Feng XM, Shan XS, Chen QC, Xia Z, Ji FH, Liu H, Peng K. Remote Ischemic Preconditioning Reduces Acute Kidney Injury After Cardiac Surgery: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Anesth Analg 2021; 134:592-605. [PMID: 34748518 DOI: 10.1213/ane.0000000000005804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Results from previous studies evaluating the effects of remote ischemic preconditioning (RIPC) on morbidity and mortality after cardiac surgery are inconsistent. This meta-analysis of randomized controlled trials (RCTs) aims to determine whether RIPC improves cardiac and renal outcomes in adults undergoing cardiac surgery. METHODS PubMed, EMBASE, and Cochrane Library were comprehensively searched to identify RCTs comparing RIPC with control in cardiac surgery. The coprimary outcomes were the incidence of postoperative myocardial infarction (MI) and the incidence of postoperative acute kidney injury (AKI). Meta-analyses were performed using a random-effect model. Subgroup analyses were conducted according to volatile only anesthesia versus propofol anesthesia with or without volatiles, high-risk patients versus non-high-risk patients, and Acute Kidney Injury Network (AKIN) or Kidney Disease Improving Global Outcomes (KDIGO) criteria versus other criteria for AKI diagnosis. RESULTS A total of 79 RCTs with 10,814 patients were included. While the incidence of postoperative MI did not differ between the RIPC and control groups (8.2% vs 9.7%; risk ratio [RR] = 0.87, 95% confidence interval [CI], 0.76-1.01, P = .07, I2 = 0%), RIPC significantly reduced the incidence of postoperative AKI (22% vs 24.4%; RR = 0.86, 95% CI, 0.77-0.97, P = .01, I2 = 34%). The subgroup analyses showed that RIPC was associated with a reduced incidence of MI in non-high-risk patients, and that RIPC was associated with a reduced incidence of AKI in volatile only anesthesia, in non-high-risk patients, and in the studies using AKIN or KDIGO criteria for AKI diagnosis. CONCLUSIONS This meta-analysis demonstrates that RIPC reduces the incidence of AKI after cardiac surgery. This renoprotective effect of RIPC is mainly evident during volatile only anesthesia, in non-high-risk patients, and when AKIN or KDIGO criteria used for AKI diagnosis.
Collapse
Affiliation(s)
- Yu-Qin Long
- From the Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Mei Feng
- Department of Anesthesiology, University of Utah Health, Salt Lake City, Utah.,Transitional Residency Program, Intermountain Medical Center, Murray, Utah
| | - Xi-Sheng Shan
- From the Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qing-Cai Chen
- From the Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhengyuan Xia
- Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, California
| | - Fu-Hai Ji
- From the Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Liu
- Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, California
| | - Ke Peng
- From the Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
12
|
Røsand Ø, Høydal MA. Cardiac Exosomes in Ischemic Heart Disease- A Narrative Review. Diagnostics (Basel) 2021; 11:diagnostics11020269. [PMID: 33572486 PMCID: PMC7916440 DOI: 10.3390/diagnostics11020269] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 12/15/2022] Open
Abstract
Ischemic heart disease (IHD) is the primary cause of death globally. IHD is associated with the disruption of blood supply to the heart muscles, which often results in myocardial infarction (MI) that further may progress to heart failure (HF). Exosomes are a subgroup of extracellular vesicles that can be secreted by virtually all types of cells, including cardiomyocytes, cardiac fibroblasts, endothelial cells, and stem and progenitor cells. Exosomes represent an important means of cell–cell communication through the transport of proteins, coding and non-coding RNA, and other bioactive molecules. Several studies show that exosomes play an important role in the progression of IHD, including endothelial dysfunction, the development of arterial atherosclerosis, ischemic reperfusion injury, and HF development. Recently, promising data have been shown that designates exosomes as carriers of cardioprotective molecules that enhance the survival of recipient cells undergoing ischemia. In this review, we summarize the functional involvement of exosomes regarding IHD. We also highlight the cardioprotective effects of native and bioengineered exosomes to IHD, as well as the possibility of using exosomes as natural biomarkers of cardiovascular diseases. Lastly, we discuss the opportunities and challenges that need to be addressed before exosomes can be used in clinical applications.
Collapse
|
13
|
Zhong SJ, Cui MM, Gao YT, Cao XY, Chen B, Wen XR. MicroRNA-144 promotes remote limb ischemic preconditioning-mediated neuroprotection against ischemic stroke via PTEN/Akt pathway. Acta Neurol Belg 2021; 121:95-106. [PMID: 32960423 DOI: 10.1007/s13760-020-01500-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 09/10/2020] [Indexed: 12/18/2022]
Abstract
Ischemic stroke is a refractory disease generally caused by cerebral ischemic injury. Remote ischemic preconditioning (RIPC) caused by transient ischemia and reperfusion of the femoral artery exerts a protective effect on ischemic stroke-induced brain injury. This study was designed to investigate the potential molecular mechanism of RIPC-mediated neuroprotection, namely, the biological effects of microRNA-144 on RIPC in mice with ischemic stroke and its effects on PTEN and Akt signaling pathways. Healthy adult C57BL6 mice were selected for the establishment of middle cerebral artery occlusion (MCAO). One hour before the start, remote ischemic preconditioning of limbs was performed in mice. Brain edema and infarct volume were measured. The expressions of microRNA-144, PTEN, and Akt were measured. The results showed that, compared with MCAO group, the RIPC group protected mice from cerebral ischemia-reperfusion injury, systemic accumulation of inflammatory cytokines, and accelerated apoptosis of parenchymal cells. In RIPC group, PTEN expression decreased, and mir-144 and Akt expression increased. The level of phosphorylated PTEN in the transfected microRNA-144 inhibitor group increased and the level of phosphorylated Akt reduced significantly. In conclusion, our results suggest that microRNA-144 may play a protective role in remote ischemic pretreatment by downregulating PTEN and upregulating Akt, suggesting that microRNA-144 via PTEN/Akt pathway may be of therapeutic significance in ischemic stroke.
Collapse
Affiliation(s)
- Si-Jin Zhong
- Department of Clinical, Xuzhou Medical University, Xuzhou, 221004, China
| | - Miao-Miao Cui
- Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yu-Ting Gao
- Medical Technology School, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xue-Yan Cao
- Department of Clinical, Xuzhou Medical University, Xuzhou, 221004, China
| | - Bin Chen
- Department of Rehabilitation and National Clinical Research Base of Traditional Chinese Medicine, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350004, China.
| | - Xian-Ru Wen
- Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
14
|
Kosiuk J, Langenhan K, Hindricks G, Bollmann A, Dagres N. Remote ischemic preconditioning in a setting of electrical cardioversion of early onset persistent atrial fibrillation (RIP CAF trial): Rationale and study design. J Cardiol 2021; 77:79-82. [PMID: 32847754 DOI: 10.1016/j.jjcc.2020.07.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/23/2020] [Accepted: 07/10/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND The beneficial effect of remote ischemic preconditioning (RIP) on electrophysiological parameters resulting in lower inducibility and sustainability of atrial fibrillation (AF) in patients with paroxysmal AF has been recently demonstrated in a randomized trial. However, the potential clinical impact of RIP on persistent AF (CAF) has not been investigated. Therefore, we designed a randomized trial set in a setting of electrical cardioversion (CV) of early onset CAF. AIM The aim of the study is to answer the following questions: I) Does RIP have impact on rate of spontaneous conversion into sinus rhythm (SR) within 24 h after first RIP intervention? II) Does RIP have the potential to improve the acute outcome of CV following a standardized protocol? METHODS The presented study is a two-armed randomized, placebo-controlled, double-blinded, multi-center trial in a cohort of 588 patients with early onset CAF referred for electrical CV. The patients will undergo 3 sessions (immediately after randomization, the following morning, and directly before scheduled CV 24 h after randomization) of either RIP intervention or a sham procedure. The primary outcome of the study, i.e. documentation of SR 24 h after randomization as well secondary outcome i.e. stable SR first CV without usage of anti-arrhythmic drugs will be documented by 12-lead surface electrocardiography. CONCLUSION Previously observed positive effect of RIP on atrial electrophysiology might be also implemented in a clinical setting of CV and therefore simplified and improve patient treatment.
Collapse
Affiliation(s)
- Jedrzej Kosiuk
- Department of Rhythmology, Helios Clinic Kothen, Kothen, Germany.
| | | | - Gerhard Hindricks
- Department of Electrophysiology, Heart Center Leipzig, Leipzig, Germany; Leipzig Heart Institute, Leipzig, Germany
| | - Andreas Bollmann
- Department of Electrophysiology, Heart Center Leipzig, Leipzig, Germany
| | - Nikolaos Dagres
- Department of Electrophysiology, Heart Center Leipzig, Leipzig, Germany
| |
Collapse
|
15
|
Ravelli F, Masè M. MicroRNAs: New contributors to mechano-electric coupling and atrial fibrillation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 159:146-156. [PMID: 33011190 DOI: 10.1016/j.pbiomolbio.2020.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 09/17/2020] [Accepted: 09/27/2020] [Indexed: 12/29/2022]
Abstract
Atrial fibrillation (AF) is a multifactorial disease, which often occurs in the presence of underlying cardiac abnormalities and is supported by electrophysiological and structural alterations, generally referred to as atrial remodeling. Abnormal substrates are commonly encountered in various conditions that predispose to AF, such as hypertension, heart failure, obesity, and sleep apnea, in which atrial stretch plays a key mechanistic role. Emerging evidence suggests a role for microRNAs (small non-coding RNAs) in the pathogenesis of AF, where they can act as post-transcriptional regulators of the genes involved in atrial remodeling. This review summarizes the experimental and clinical evidence that supports the role of microRNAs in the modulation of atrial electrical and structural remodeling with a focus on overload-induced atrial alterations, and discusses the potential contribution of microRNAs to mechano-electrical coupling and AF.
Collapse
Affiliation(s)
- Flavia Ravelli
- Laboratory of Biophysics and Biosignals, University of Trento, Trento, Italy.
| | - Michela Masè
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy; Healthcare Research and Innovation Program, IRCS-HTA, Bruno Kessler Foundation, Trento, Italy
| |
Collapse
|
16
|
Li J, Sun D, Li Y. Novel Findings and Therapeutic Targets on Cardioprotection of Ischemia/ Reperfusion Injury in STEMI. Curr Pharm Des 2020; 25:3726-3739. [PMID: 31692431 DOI: 10.2174/1381612825666191105103417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022]
Abstract
Acute ST-segment elevation myocardial infarction (STEMI) remains a leading cause of morbidity and mortality around the world. A large number of STEMI patients after the infarction gradually develop heart failure due to the infarcted myocardium. Timely reperfusion is essential to salvage ischemic myocardium from the infarction, but the restoration of coronary blood flow in the infarct-related artery itself induces myocardial injury and cardiomyocyte death, known as ischemia/reperfusion injury (IRI). The factors contributing to IRI in STEMI are complex, and microvascular obstruction, inflammation, release of reactive oxygen species, myocardial stunning, and activation of myocardial cell death are involved. Therefore, additional cardioprotection is required to prevent the heart from IRI. Although many mechanical conditioning procedures and pharmacological agents have been identified as effective cardioprotective approaches in animal studies, their translation into the clinical practice has been relatively disappointing due to a variety of reasons. With new emerging data on cardioprotection in STEMI over the past few years, it is mandatory to reevaluate the effectiveness of "old" cardioprotective interventions and highlight the novel therapeutic targets and new treatment strategies of cardioprotection.
Collapse
Affiliation(s)
- Jianqiang Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Danghui Sun
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yue Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| |
Collapse
|
17
|
Zhao J, Florentin J, Tai YY, Torrino S, Ohayon L, Brzoska T, Tang Y, Yang J, Negi V, Woodcock CSC, Risbano MG, Nouraie SM, Sundd P, Bertero T, Dutta P, Chan SY. Long Range Endocrine Delivery of Circulating miR-210 to Endothelium Promotes Pulmonary Hypertension. Circ Res 2020; 127:677-692. [PMID: 32493166 DOI: 10.1161/circresaha.119.316398] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
RATIONALE Unproven theories abound regarding the long-range uptake and endocrine activity of extracellular blood-borne microRNAs into tissue. In pulmonary hypertension (PH), microRNA-210 (miR-210) in pulmonary endothelial cells promotes disease, but its activity as an extracellular molecule is incompletely defined. OBJECTIVE We investigated whether chronic and endogenous endocrine delivery of extracellular miR-210 to pulmonary vascular endothelial cells promotes PH. METHODS AND RESULTS Using miR-210 replete (wild-type [WT]) and knockout mice, we tracked blood-borne miR-210 using bone marrow transplantation and parabiosis (conjoining of circulatory systems). With bone marrow transplantation, circulating miR-210 was derived predominantly from bone marrow. Via parabiosis during chronic hypoxia to induce miR-210 production and PH, miR-210 was undetectable in knockout-knockout mice pairs. However, in plasma and lung endothelium, but not smooth muscle or adventitia, miR-210 was observed in knockout mice of WT-knockout pairs. This was accompanied by downregulation of miR-210 targets ISCU (iron-sulfur assembly proteins)1/2 and COX10 (cytochrome c oxidase assembly protein-10), indicating endothelial import of functional miR-210. Via hemodynamic and histological indices, knockout-knockout pairs were protected from PH, whereas knockout mice in WT-knockout pairs developed PH. In particular, pulmonary vascular engraftment of miR-210-positive interstitial lung macrophages was observed in knockout mice of WT-knockout pairs. To address whether engrafted miR-210-positive myeloid or lymphoid cells contribute to paracrine miR-210 delivery, we studied miR-210 knockout mice parabiosed with miR-210 WT; Cx3cr1 knockout mice (deficient in myeloid recruitment) or miR-210 WT; Rag1 knockout mice (deficient in lymphocytes). In both pairs, miR-210 knockout mice still displayed miR-210 delivery and PH, thus demonstrating a pathogenic endocrine delivery of extracellular miR-210. CONCLUSIONS Endogenous blood-borne transport of miR-210 into pulmonary vascular endothelial cells promotes PH, offering fundamental insight into the systemic physiology of microRNA activity. These results also describe a platform for RNA-mediated crosstalk in PH, providing an impetus for developing blood-based miR-210 technologies for diagnosis and therapy in this disease.
Collapse
Affiliation(s)
- Jingsi Zhao
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Jonathan Florentin
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Yi-Yin Tai
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Stéphanie Torrino
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France (S.T., T. Bertero)
| | - Lee Ohayon
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Tomasz Brzoska
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Ying Tang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Jimin Yang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Vinny Negi
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Chen-Shan Chen Woodcock
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Michael G Risbano
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine (M.G.R., S.M.N., P.S.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Seyed Mehdi Nouraie
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine (M.G.R., S.M.N., P.S.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Prithu Sundd
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine (M.G.R., S.M.N., P.S.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Thomas Bertero
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France (S.T., T. Bertero)
| | - Partha Dutta
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA.,Division of Cardiology, Department of Medicine (P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA.,Division of Cardiology, Department of Medicine (P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| |
Collapse
|
18
|
Khan MS, Yamashita K, Sharma V, Ranjan R, Dosdall DJ. RNAs and Gene Expression Predicting Postoperative Atrial Fibrillation in Cardiac Surgery Patients Undergoing Coronary Artery Bypass Grafting. J Clin Med 2020; 9:jcm9041139. [PMID: 32316120 PMCID: PMC7231013 DOI: 10.3390/jcm9041139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Postoperative atrial fibrillation (POAF) is linked with increased morbidity, mortality rate and financial liability. About 20–50% of patients experience POAF after coronary artery bypass graft (CABG) surgery. Numerous review articles and meta-analyses have investigated links between patient clinical risk factors, demographic conditions, and pre-, peri- and post-operative biomarkers to forecast POAF incidence in CABG patients. This narrative review, for the first time, summarize the role of micro-RNAs, circular-RNAs and other gene expressions that have shown experimental evidence to accurately predict the POAF incidence in cardiac surgery patients after CABG. We envisage that identifying specific genomic markers for predicting POAF might be a significant step for the prevention and effective management of this type of post-operative complication and may provide critical perspective into arrhythmogenic substrate responsible for POAF.
Collapse
Affiliation(s)
- Muhammad Shuja Khan
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT 84112, USA; (M.S.K.); (K.Y.); (R.R.)
| | - Kennosuke Yamashita
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT 84112, USA; (M.S.K.); (K.Y.); (R.R.)
- Division of Cardiovascular Medicine, The University of Utah-Health, Salt Lake City, UT 84132, USA
| | - Vikas Sharma
- Division of Cardiothoracic Surgery, The University of Utah-Health, Salt Lake City, UT 84132, USA;
| | - Ravi Ranjan
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT 84112, USA; (M.S.K.); (K.Y.); (R.R.)
- Division of Cardiovascular Medicine, The University of Utah-Health, Salt Lake City, UT 84132, USA
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT 84112, USA
| | - Derek James Dosdall
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT 84112, USA; (M.S.K.); (K.Y.); (R.R.)
- Division of Cardiovascular Medicine, The University of Utah-Health, Salt Lake City, UT 84132, USA
- Division of Cardiothoracic Surgery, The University of Utah-Health, Salt Lake City, UT 84132, USA;
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT 84112, USA
- Correspondence: ; Tel.: +1-801-587-2036
| |
Collapse
|
19
|
Kura B, Kalocayova B, Devaux Y, Bartekova M. Potential Clinical Implications of miR-1 and miR-21 in Heart Disease and Cardioprotection. Int J Mol Sci 2020; 21:ijms21030700. [PMID: 31973111 PMCID: PMC7037063 DOI: 10.3390/ijms21030700] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 02/07/2023] Open
Abstract
The interest in non-coding RNAs, which started more than a decade ago, has still not weakened. A wealth of experimental and clinical studies has suggested the potential of non-coding RNAs, especially the short-sized microRNAs (miRs), to be used as the new generation of therapeutic targets and biomarkers of cardiovascular disease, an ever-growing public health issue in the modern world. Among the hundreds of miRs characterized so far, microRNA-1 (miR-1) and microRNA-21 (miR-21) have received some attention and have been associated with cardiac injury and cardioprotection. In this review article, we summarize the current knowledge of the function of these two miRs in the heart, their association with cardiac injury, and their potential cardioprotective roles and biomarker value. While this field has already been extensively studied, much remains to be done before research findings can be translated into clinical application for patient’s benefit.
Collapse
Affiliation(s)
- Branislav Kura
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (B.K.); (B.K.)
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 81372 Bratislava, Slovakia
| | - Barbora Kalocayova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (B.K.); (B.K.)
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg;
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (B.K.); (B.K.)
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 81372 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-2-3229-5427
| |
Collapse
|
20
|
Maciel L, de Oliveira DF, Monnerat G, Campos de Carvalho AC, Nascimento JHM. Exogenous 10 kDa-Heat Shock Protein Preserves Mitochondrial Function After Hypoxia/Reoxygenation. Front Pharmacol 2020; 11:545. [PMID: 32431608 PMCID: PMC7214810 DOI: 10.3389/fphar.2020.00545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/09/2020] [Indexed: 02/05/2023] Open
Abstract
Humoral factors released during ischemic preconditioning (IPC) protect the myocardium against ischemia/reperfusion (I/R) injury. We have recently identified 10 kDa-heat shock protein (HSP10) and a fraction of small 5-10 kDa peptides (5-10-sP) in the coronary effluent of IPC-treated hearts and demonstrated their cardioprotective potential. We here used our isolated mitochondria model to characterize the impact of exogenous HSP10 and 5-10-sP on mitochondria function from myocardium subjected to I/R injury. Isolated perfused rat hearts were submitted to 30-min global ischemia and 10-min reperfusion. Before ischemia, isolated hearts were infused with saline or 5-10-sP, with or without a mitochondrial ATP-sensitive-K+-channel blocker (5HD 10 μmol·L-1) or PKC inhibitor (chelerythrine 10 μmol·L-1), before I/R. HSP10 (1 µmol·L-1) was infused into isolated hearts before I/R without blockers. At 10-min reperfusion, the mitochondria were isolated and mitochondrial function was assessed. In a subset of experiments, freshly isolated mitochondria were directly incubated with HSP10 or 5-10-sP with or without 5HD or chelerythrine before in vitro hypoxia/reoxygenation. Infusion of 5-10-sP (n = 5) and HSP10 (n = 5) into isolated hearts before I/R improved mitochondrial ADP-stimulated respiration, ATP production and prevented mitochondrial ROS formation compared to the I/R group (n = 5); this effect was abrogated by 5HD and chelerythrine. In freshly isolated mitochondria with in vitro hypoxia/reoxygenation, HSP10 (n = 16) and 5-10-sP (n = 16) incubation prevented reductions of mitochondrial ADP-stimulated respiration (91.5 ± 5.1 nmol O2/min/mg PTN), ATP production (250.1 ± 9.3 μmol ATP/200μg PTN), and prevented mitochondrial ROS production (219.7 ± 9.0 nmol H2O2/200μg PTN) induced by hypoxia/reoxygenation (n = 12, 51.5 ± 5.0 nmol O2/min/mg PTN; 187 ± 21.7 μmol ATP/200 μg PTN; 339.0 ± 14.3 nmol H2O2/200 μg PTN, p < 0.001, respectively). 5HD reduced the ADP-stimulated respiration in the HSP10 group (65.84 ± 3.3 nmol O2/min/mg PTN), ATP production (193.7 ± 12.1 μmol ATP/200μg PTN) and increased ROS in the 5-10-sP group (274.4 ± 21.7 nmol H2O2/200 μg PTN). Mitochondria are a target of the cardioprotection induced by 5-10-sP and HSP10. This protection is dependent of PKC and mKATP activation. HSP10 can act directly on mitochondria and protects against hypoxia/reoxygenation injury by mKATP activation.
Collapse
Affiliation(s)
- Leonardo Maciel
- Laboratory of Cardiac Electrophysiology Antônio Paes de Carvalho, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Leonardo Maciel,
| | - Dahienne Ferreira de Oliveira
- Laboratory of Cardiac Electrophysiology Antônio Paes de Carvalho, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Monnerat
- Laboratory of Cardiac Electrophysiology Antônio Paes de Carvalho, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Cardiology, Rio de Janeiro, Brazil
| | - Antonio Carlos Campos de Carvalho
- Laboratory of Cardiac Electrophysiology Antônio Paes de Carvalho, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Cardiology, Rio de Janeiro, Brazil
| | - Jose Hamilton Matheus Nascimento
- Laboratory of Cardiac Electrophysiology Antônio Paes de Carvalho, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Kumar A, Singh H, Shariff M. Remote ischemic preconditioning and its role in the prevention of new onset atrial fibrillation post-cardiac surgery. A meta-analysis of randomized control trials. J Arrhythm 2019; 35:789-794. [PMID: 31844467 PMCID: PMC6898524 DOI: 10.1002/joa3.12252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/07/2019] [Accepted: 09/22/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The denouement of remote ischemic preconditioning on new onset atrial fibrillation (NOAF) post-cardiac surgery is not well-established. An updated meta-analysis of randomized control trials was performed by comparing remote ischemic preconditioning with controls and the outcome of interest was NOAF. METHODS The systemic review was performed in accordance with the PRISMA (Preferred reporting items for systemic review) and AHA (American Heart Association) guidelines. PubMed database was searched to include relevant randomized control trials from inception to July 2019. We used Mantel-Haenzsel method with random error model to calculate risk ratio (RR) with 95% confidence interval (CI). Heterogeneity was assessed using the I 2 test> 50% or χ 2 P < .05. Publication bias was visually assessed using a funnel plot. RESULTS Twelve randomized control trials were included in the final analysis. Remote ischemic preconditioning did not alter the risk of NOAF post-cardiac surgery [RR: 0.95, CI: 0.83-1.09, P = .48, I 2 = 37%, χ 2 P = .09]. CONCLUSION In conclusion, the present meta-analysis failed to provide any evidence for the beneficial effect of remote ischemic preconditioning in the prevention of NOAF.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Critical Care MedicineSt John’s Medical College HospitalBangaloreIndia
| | | | - Mariam Shariff
- Department of Critical Care MedicineSt John’s Medical College HospitalBangaloreIndia
| |
Collapse
|
22
|
Yu Y, Zhou H, Xiong Y, Liu J. Exosomal miR-199a-5p derived from endothelial cells attenuates apoptosis and inflammation in neural cells by inhibiting endoplasmic reticulum stress. Brain Res 2019; 1726:146515. [PMID: 31634452 DOI: 10.1016/j.brainres.2019.146515] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/20/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
Abstract
Remote ischemic post-conditioning (RIPostC) is a technique that can protect vital organs in an indirect manner, the effects of which are exerted by the long-distance exosome-mediated transfer of functional factors. In the current study, the possible mechanism driving the function of RIPostC was explored using an in vitro system by focusing on miR-199a-5p and its downstream effectors involved in endoplasmic reticulum (ER) stress. Human umbilical vein endothelial cells (HUVECs) were administrated with hypoxia/re-oxygenation (H/R) process and exosomes were collected from the H/R-treated HUVECs. The levels of miR-199a-5p in HUVECs and exosomes were detected. Afterwards, H/R-treated SH-SY5Y neural cells was incubated with H/R HUVEC-derived exosomes, and the effect on cell apoptosis, inflammation, and miR-199a-5p-mediated ER stress was assessed. Furthermore, the key role of miR-199a-5p suppression in the protection effect of HUVEC-derived exosomes was validated by transfecting neural cells with specific inhibitor. The results showed that H/R administration increased miR-199a-5p levels both in HUVECs and exosomes. The incubation of neural cells with exosomes suppressed cell apoptosis and inflammation, and induced the level of miR-199a-5p, which led to suppressed ER stress. Moreover, the transfection of miR-199a-5p inhibitor blocked the anti-H/R function of exosomes. Taken together, the findings outlined in the current study showed that the protection effect of HUVEC derived miR-199a-5p on neural cells was exerted via exosome transfer, which then suppressed the ER stress-induced apoptosis and inflammation by targeting BIP.
Collapse
Affiliation(s)
- Yunhu Yu
- Clinical Research Center for Neurological Disease, the People's Hospital of HongHuaGang District of ZunYi, China.
| | - Hang Zhou
- Clinical Research Center for Neurological Disease, the People's Hospital of HongHuaGang District of ZunYi, China
| | - Yanquan Xiong
- Clinical Research Center for Neurological Disease, the People's Hospital of HongHuaGang District of ZunYi, China
| | - Jigang Liu
- Clinical Research Center for Neurological Disease, the People's Hospital of HongHuaGang District of ZunYi, China
| |
Collapse
|
23
|
Regulation of Endothelial-to-Mesenchymal Transition by MicroRNAs in Chronic Allograft Dysfunction. Transplantation 2019; 103:e64-e73. [PMID: 30907855 DOI: 10.1097/tp.0000000000002589] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fibrosis is a universal finding in chronic allograft dysfunction, and it is characterized by an accumulation of extracellular matrix. The precise source of the myofibroblasts responsible for matrix deposition is not understood, and pharmacological strategies for prevention or treatment of fibrosis remain limited. One source of myofibroblasts in fibrosis is an endothelial-to-mesenchymal transition (EndMT), a process first described in heart development and involving endothelial cells undergoing a phenotypic change to become more like mesenchymal cells. Recently, lineage tracing of endothelial cells in mouse models allowed studies of EndMT in vivo and reported 27% to 35% of myofibroblasts involved in cardiac fibrosis and 16% of isolated fibroblasts in bleomycin-induced pulmonary fibrosis to be of endothelial origin. Over the past decade, mature microRNAs (miRNAs) have increasingly been described as key regulators of biological processes through repression or degradation of targeted mRNA. The stability and abundance of miRNAs in body fluids make them attractive as potential biomarkers, and progress is being made in developing miRNA targeted therapeutics. In this review, we will discuss the evidence of miRNA regulation of EndMT from in vitro and in vivo studies and the potential relevance of this to heart, lung, and kidney allograft dysfunction.
Collapse
|
24
|
Deferrari G, Bonanni A, Bruschi M, Alicino C, Signori A. Remote ischaemic preconditioning for renal and cardiac protection in adult patients undergoing cardiac surgery with cardiopulmonary bypass: systematic review and meta-analysis of randomized controlled trials. Nephrol Dial Transplant 2019; 33:813-824. [PMID: 28992285 DOI: 10.1093/ndt/gfx210] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/28/2017] [Indexed: 12/20/2022] Open
Abstract
Background The main aim of this systematic review was to assess whether remote ischaemic preconditioning (RIPC) protects kidneys and the heart in cardiac surgery with cardiopulmonary bypass (CPB) and to investigate a possible role of anaesthetic agents. Methods Randomized clinical trials (RCTs) on the effects of RIPC through limb ischaemia in adult patients undergoing cardiac surgery with CPB were searched (1965-October 2016) in PubMed, Cochrane Library and article reference lists. A random effects model on standardized mean difference (SMD) for continuous outcomes and the Peto odds ratio (OR) for dichotomous outcomes were used to meta-analyse data. Subgroup analyses to evaluate the effects of different anaesthetic regimens were pre-planned. Results Thirty-three RCTs (5999 participants) were included. In the whole group, RIPC did not significantly reduce the incidence of acute kidney injury (AKI), acute myocardial infarction, atrial fibrillation, mortality or length of intensive care unit (ICU) and hospital stays. On the contrary, RIPC significantly reduced the area under the curve for myocardial injury biomarkers (MIBs) {SMD -0.37 [95% confidence interval (CI) -0.53 to - 0.21]} and the composite endpoint incidence [OR 0.85 (95% CI 0.74-0.97)]. In the volatile anaesthetic group, RIPC significantly reduced AKI incidence [OR 0.57 (95% CI 0.41-0.79)] and marginally reduced ICU stay. Conversely, except for MIBs, RIPC had fewer non-significant effects under propofol with or without volatile anaesthetics. Conclusions RIPC did not consistently reduce morbidity and mortality in adults undergoing cardiac surgery with CPB. In the subgroup on volatile anaesthetics only, RIPC markedly and significantly reduced the incidence of AKI and composite endpoint as well as myocardial injury.
Collapse
Affiliation(s)
- Giacomo Deferrari
- Department of Cardionephrology, Istituto Clinico Di Alta Specialità (ICLAS), Rapallo (GE), Italy.,Department of Internal Medicine (Di.MI), University of Genoa, Genoa, Italy
| | - Alice Bonanni
- Department of Cardionephrology, Istituto Clinico Di Alta Specialità (ICLAS), Rapallo (GE), Italy.,Division of Nephrology, Dialysis and Transplantation and Laboratory on Pathophysiology of Uremia, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maurizio Bruschi
- Division of Nephrology, Dialysis and Transplantation and Laboratory on Pathophysiology of Uremia, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Cristiano Alicino
- Department of Health Science (Di.S.Sal), University of Genoa, Genoa, Italy
| | - Alessio Signori
- Department of Health Science (Di.S.Sal), University of Genoa, Genoa, Italy
| |
Collapse
|
25
|
Kosiuk J, Langenhan K, Stegmann C, Uhe T, Dagres N, Dinov B, Kircher S, Richter S, Sommer P, Bertagnolli L, Bollmann A, Hindricks G. Effect of remote ischemic preconditioning on electrophysiological parameters in nonvalvular paroxysmal atrial fibrillation: The RIPPAF Randomized Clinical Trial. Heart Rhythm 2019; 17:3-9. [PMID: 31356986 DOI: 10.1016/j.hrthm.2019.07.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) remains the most relevant arrhythmia with a prevalence of 2%. The treatment options are either highly invasive and cost-intensive or limited by potential side effects or insufficient efficacy. However, no direct means of prevention that could reduce the burden of AF have been tested. OBJECTIVE The purpose of this study was to determine whether remote ischemic preconditioning (RIPC) has an impact on inducibility and sustainability of AF. METHODS A total of 146 patients with paroxysmal AF undergoing electrophysiology study were randomized to receive either RIPC, performed by short episodes of forearm ischemia, or sham intervention (clinicaltrials.gov identifier: NCT02779660). Effective refractory periods, conduction times, velocities, and conduction delays measured were analyzed by pacing from the coronary sinus (CS). End points of the study were the inducibility and sustainability of AF after prespecified rapid pacing sequences. RESULTS RIPC significantly reduces the inducibility (odds ratio 0.35; 95% confidence interval 0.17-0.71; P = .003) and sustainability (odds ratio 0.36; 95% confidence interval 0.16-0.81; P = .01) of AF. Furthermore, it decreased dispersion of atrial refractory periods (16.0 ± 14.0 ms vs 22.7 ± 19.0 ms; P = .021) as well as atrial conduction delays (49.2 ± 19.6 ms vs 56.2 ± 22.5 ms; P = .049 for proximal CS and 42.4 ± 16.6 ms vs 49.8 ± 22.2 ms; P = .029 for distal CS). In the whole cohort, longer atrial conduction delay (57.6 ± 22.2 ms vs 50.0 ± 20.5 ms; P = .044) and slower conduction velocity (1.74 ± 0.3 mm/ms vs 1.93 ± 0.5 mm/ms; P = .006) were associated with inducibility of AF whereas a wider dispersion of effective refractory periods (25.9 ± 18.3 ms vs 15.7 ± 11.6 ms; P = .028) maintained AF episodes. CONCLUSION RIPC reduces the inducibility and sustainability of AF, which is possibly mediated by changes in electrophysiological properties of the atria. It may be used as a simple noninvasive procedure to reduce AF burden.
Collapse
Affiliation(s)
- Jedrzej Kosiuk
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany.
| | - Katharina Langenhan
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Clara Stegmann
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Tobias Uhe
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany; Department IV Cardiology, Division of Internal Medicine, Neurology and Dermatology, University of Leipzig, Leipzig, Germany
| | - Nikolaos Dagres
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Borislav Dinov
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Simon Kircher
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Sergio Richter
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Philipp Sommer
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany; Department of Electrophysiology, Heart and Diabetes Center NRW, University Hospital of the Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Livio Bertagnolli
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Andreas Bollmann
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Gerhard Hindricks
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| |
Collapse
|
26
|
A secret that underlies Parkinson's disease: The damaging cycle. Neurochem Int 2019; 129:104484. [PMID: 31173779 DOI: 10.1016/j.neuint.2019.104484] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 01/21/2023]
Abstract
Parkinson's disease (PD) is a movement disorder, and its common characteristics include the loss of dopaminergic neurons and the accumulation of a special type of cytoplasmic inclusions called Lewy bodies in the substantia nigra pars compacta, which are more prevalent in the elderly. However, the pathophysiology of PD is still elusive. In this review, we summarized five common factors involved in PD, namely, (i) oxidative stress, (ii) mitochondrial dysfunction, (iii) inflammation, (iv) abnormal α-synuclein, and (v) endogenous neurotoxins, and proposed a hypothesis involving a damaging cycle. Oxidative stress-triggered aldehydes react with biogenic amines to produce endogenous neurotoxins. They cause mitochondrial dysfunction and the formation of inflammasomes, which induce the activation of neuroglial cells and the infiltration of T lymphocytes. The synergistic effect of these processes fosters chronic inflammation and α-synuclein aggregation and further exacerbates the impact of oxidative stress to establish a damaging cycle that eventually results in the degeneration of dopaminergic neurons. This damaging cycle provides an explanation of progressive neuronal death during the pathogenesis of PD and provides new potential targets beneficial for developing new drugs and approaches for clinical neuroprotection.
Collapse
|
27
|
Tsibulnikov SY, Maslov LN, Gorbunov AS, Voronkov NS, Boshchenko AA, Popov SV, Prokudina ES, Singh N, Downey JM. A Review of Humoral Factors in Remote Preconditioning of the Heart. J Cardiovasc Pharmacol Ther 2019; 24:403-421. [PMID: 31035796 DOI: 10.1177/1074248419841632] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A humoral mechanism of cardioprotection by remote ischemic preconditioning (RIP) has been clearly demonstrated in various models of ischemia-reperfusion including upper and lower extremities, liver, and the mesenteric and renal arteries. A wide range of humoral factors for RIP have been proposed including hydrophobic peptides, opioid peptides, adenosine, prostanoids, endovanilloids, endocannabinoids, calcitonin gene-related peptide, leukotrienes, noradrenaline, adrenomedullin, erythropoietin, apolipoprotein, A-I glucagon-like peptide-1, interleukin 10, stromal cell-derived factor 1, and microRNAs. Virtually, all of the components of ischemic preconditioning's signaling pathway such as nitric oxide synthase, protein kinase C, redox signaling, PI3-kinase/Akt, glycogen synthase kinase β, ERK1/2, mitoKATP channels, Connexin 43, and STAT were all found to play a role. The signaling pattern also depends on which remote vascular bed was subjected to ischemia and on the time between applying the rip and myocardial ischemia occurs. Because there is convincing evidence for many seemingly diverse humoral components in RIP, the most likely explanation is that the overall mechanism is complex like that seen in ischemic preconditioning where multiple components are both in series and in parallel and interact with each other. Inhibition of any single component in the right circumstance may block the resulting protective effect, and selectively activating that component may trigger the protection. Identifying the humoral factors responsible for RIP might be useful in developing drugs that confer RIP's protection in a more comfortable and reliable manner.
Collapse
Affiliation(s)
- Sergey Y Tsibulnikov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Leonid N Maslov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Alexander S Gorbunov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Nikita S Voronkov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Alla A Boshchenko
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Sergey V Popov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Ekaterina S Prokudina
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Nirmal Singh
- 2 Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - James M Downey
- 3 Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
28
|
Benstoem C, Goetzenich A, Stoppe C. The role of propofol for remote ischaemic preconditioning in the setting of cardiac surgery - a Cochrane systematic review. Br J Anaesth 2019; 119:1234-1235. [PMID: 29156026 DOI: 10.1093/bja/aex357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
29
|
Jiang Q, Xiang B, Wang H, Huang K, Kong H, Hu S. Remote ischaemic preconditioning ameliorates sinus rhythm restoration rate through Cox maze radiofrequency procedure associated with inflammation reaction reduction. Basic Res Cardiol 2019; 114:14. [PMID: 30838448 DOI: 10.1007/s00395-019-0723-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/07/2019] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
Abstract
Remote ischaemic preconditioning (RIPC) as adjuvant to selective heart surgery attenuates cardiac injury and atrial fibrillation (AF) occurrence. We investigated its effect on sinus rhythm (SR) restoration rate in permanent AF patients undergoing Cox maze (CM) radiofrequency ablation with concomitant mitral valve surgery. From May 2013 to May 2017, 206 patients with rheumatic valve disease concomitant with permanent AF were randomized to receive prosthesis valve replacement and CM radiofrequency ablation procedure with (n = 104) or without (n = 102) RIPC (intermittent arm ischaemia through three cycles of 5-min inflation, followed by 5-min deflation of a blood pressure cuff). The primary end point of the study was freedom from cumulative AF without using antiarrhythmic drugs 1 year after operation; the secondary end points included inflammation reaction index over 48 h postoperatively and clinical outcomes. Baseline characteristics and preoperative data did not differ between groups. The SR restoration rates were significantly higher in the RIPC group, 85.6%, 83.7%, and 82.7%, than those in the control group, 72.5%, 70.6%, and 69.6%, at discharge, 6 months and 12 months, respectively, after the radiofrequency ablation procedure (P < 0.05). The serum concentration of high sensitivity C-reactive protein and neutrophil-lymphocyte ratio were significantly decreased at 12 h, 24 h, and 48 h postoperatively in the RIPC group compared to those in the control group (P < 0.05). RIPC induced by brief ischaemia and reperfusion of the arm ameliorated SR restoration rate in patients with permanent AF through CM radiofrequency ablation procedure and was associated with reduction of postoperative systemic inflammation reaction index.
Collapse
Affiliation(s)
- Qin Jiang
- Department of Cardiac Surgery, Sichuan Provincial People's Hospital, Affiliated Hospital of University of Electronic Science and Technology, #32, Western Section 2, 1st Ring Road, Chengdu, 610072, China.
| | - Bo Xiang
- Department of Cardiac Surgery, Sichuan Provincial People's Hospital, Affiliated Hospital of University of Electronic Science and Technology, #32, Western Section 2, 1st Ring Road, Chengdu, 610072, China
| | - Haitao Wang
- Department of Cardiac Surgery, Sichuan Provincial People's Hospital, Affiliated Hospital of University of Electronic Science and Technology, #32, Western Section 2, 1st Ring Road, Chengdu, 610072, China
| | - Keli Huang
- Department of Cardiac Surgery, Sichuan Provincial People's Hospital, Affiliated Hospital of University of Electronic Science and Technology, #32, Western Section 2, 1st Ring Road, Chengdu, 610072, China
| | - Hong Kong
- Department of Heart Failure, Sichuan Provincial People's Hospital, Affiliated Hospital of University of Electronic Science and Technology, #32, Western Section 2, 1st Ring Road, Chengdu, 610072, China
| | - Shengshou Hu
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| |
Collapse
|
30
|
|
31
|
Is there an effect of ischemic conditioning on myocardial contractile function following acute myocardial ischemia/reperfusion injury? Biochim Biophys Acta Mol Basis Dis 2019; 1865:822-830. [PMID: 30660684 DOI: 10.1016/j.bbadis.2018.12.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
Abstract
Ischemic conditioning induces cardioprotection; the final infarct size following a myocardial ischemic event is reduced. However, whether ischemic conditioning has long-term beneficial effects on myocardial contractile function following such an ischemic event needs further elucidation. To date, ex vivo studies have shown that ischemic conditioning improves the contractile recovery of isolated ventricular papillary muscle or atrial trabeculae following simulated ischemia. However, in vivo animal studies and studies in patients undergoing elective cardiac surgery show conflicting results. At the subcellular level, it is known that ischemic conditioning improved energy metabolism, preserved mitochondrial respiration, ATP production, and Ca2+ homeostasis in isolated mitochondria from the myocardium. Ischemic conditioning also presents with post-translational modifications of proteins in the contractile machinery of the myocardium. The beneficial effects on myocardial contractile function need further elucidation. This article is part of a Special Issue entitled: The power of metabolism: Linking energy supply and demand to contractile function edited by Torsten Doenst, Michael Schwarzer and Christine Des Rosiers.
Collapse
|
32
|
Pan T, Jia P, Chen N, Fang Y, Liang Y, Guo M, Ding X. Delayed Remote Ischemic Preconditioning ConfersRenoprotection against Septic Acute Kidney Injury via Exosomal miR-21. Theranostics 2019; 9:405-423. [PMID: 30809283 PMCID: PMC6376188 DOI: 10.7150/thno.29832] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/29/2018] [Indexed: 12/26/2022] Open
Abstract
Sepsis is a common and life-threatening systemic disorder, often leading to acute injury of multiple organs. Here, we show that remote ischemic preconditioning (rIPC), elicited by brief episodes of ischemia and reperfusion in femoral arteries, provides protective effects against sepsis-induced acute kidney injury (AKI). Methods: Limb rIPC was conducted on mice in vivo 24 h before the onset of cecal ligation and puncture (CLP), and serum exosomes derived from rIPC mice were infused into CLP-challenged recipients. In vitro, we extracted and identified exosomes from differentiated C2C12 cells (myotubes) subjected to hypoxia and reoxygenation (H/R) preconditioning, and the exosomes were administered to lipopolysaccharide (LPS)-treated mouse tubular epithelial cells (mTECs) or intravenously injected into CLP-challenged miR-21 knockout mice for rescue experiments. Results: Limb rIPC protected polymicrobial septic mice from multiple organ dysfunction, systemic accumulation of inflammatory cytokines and accelerated parenchymal cell apoptosis through upregulation of miR-21 in a hypoxia-inducible factor 1α (HIF-1α)-dependent manner in the ischemic limbs of mice. However, in miR-21 knockout mice or mice that received HIF-1α siRNA injection into hind limb muscles, the organ protection conferred by limb rIPC was abolished. Mechanistically, we discovered that miR-21 was transported from preischemic limbs to remote organs via serum exosomes. In kidneys, the enhanced exosomal miR-21 derived from cultured myotubes with H/R or the serum of mice treated with rIPC integrated into renal tubular epithelial cells and then targeted the downstream PDCD4/NF-κB and PTEN/AKT pathways, exerting anti-inflammatory and anti-apoptotic effects and consequently attenuating sepsis-induced renal injury both in vivo and in vitro. Conclusion: This study demonstrates a critical role for exosomal miR-21 in renoprotection conferred by limb rIPC against sepsis and suggests that rIPC and exosomes might serve as the possible therapeutic strategies for sepsis-induced kidney injury.
Collapse
|
33
|
Benstoem C, Goetzenich A, Autschbach R, Marx G, Stoppe C, Breuer T. Volatile anesthetics versus propofol in the cardiac surgical setting of remote ischemic preconditioning: a secondary analysis of a Cochrane Systematic Review. Minerva Anestesiol 2018; 84:1298-1306. [PMID: 29945432 DOI: 10.23736/s0375-9393.18.12465-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION So far, the concept of remote ischemic preconditioning (RIPC) failed its translation from experimental to clinical studies. In addition to our Cochrane Systematic Review, we systematically assessed the use of the intravenous anesthetic propofol, as a potential confounding factor. EVIDENCE ACQUISITION We searched CENTRAL, MEDLINE, Embase and Web of Science. We included randomized controlled trials comparing RIPC with no RIPC in adult patients scheduled for coronary artery bypass graft surgery (with or without valve surgery) receiving either exclusively propofol or exclusively volatile anesthetics. Two authors independently assessed methodological quality and extracted data. We report odds ratios (ORs) with 95% confidence intervals as our summary statistics are based on random-effects models. EVIDENCE SYNTHESIS We included 14 studies involving 4060 participants. We found no difference in treatment effect between the propofol and volatile anesthetic groups when RIPC or no RIPC is applied on a composite endpoint (all-cause mortality, non-fatal myocardial infarction and/or any new stroke), all-cause mortality, non-fatal myocardial infarction, stroke, or length of stay on ICU. On cardiac markers, RIPC did show a treatment effect on cardiac troponin T measured as AUC 72 hours (SMD -0.80, CI -1.34, -0.25) in the propofol group. However, these findings have to be interpreted with great caution, to date only a very limited number of patients received volatile anesthetics in RIPC trials (minimum N.=15, maximum N.=232). CONCLUSIONS Present data do not permit a final assessment regarding the role of volatile or intravenous anesthetics as a possible confounding factor in RIPC trials.
Collapse
Affiliation(s)
- Carina Benstoem
- Department of Intensive Care Medicine and Intermediate Care, Medical Faculty, RWTH Aachen University, Aachen, Germany -
| | - Andreas Goetzenich
- Department of Thoracic and Cardiovascular Surgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Rüdiger Autschbach
- Department of Thoracic and Cardiovascular Surgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Gernot Marx
- Department of Intensive Care Medicine and Intermediate Care, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Christian Stoppe
- Department of Intensive Care Medicine and Intermediate Care, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Thomas Breuer
- Department of Intensive Care Medicine and Intermediate Care, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
34
|
Kleinbongard P, Gedik N, Kirca M, Stoian L, Frey U, Zandi A, Thielmann M, Jakob H, Peters J, Kamler M, Heusch G. Mitochondrial and Contractile Function of Human Right Atrial Tissue in Response to Remote Ischemic Conditioning. J Am Heart Assoc 2018; 7:e009540. [PMID: 30371229 PMCID: PMC6201459 DOI: 10.1161/jaha.118.009540] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/27/2018] [Indexed: 01/02/2023]
Abstract
Background Remote ischemic preconditioning ( RIPC ) by repeated brief cycles of limb ischemia/reperfusion attenuates myocardial ischemia/reperfusion injury. We aimed to identify a functional parameter reflecting the RIPC -induced protection in human. Therefore, we measured mitochondrial function in right atrial tissue and contractile function of isolated right atrial trabeculae before and during hypoxia/reoxygenation from patients undergoing coronary artery bypass grafting with RIPC or placebo, respectively. Methods and Results One hundred thirty-seven patients under isoflurane anesthesia underwent RIPC (3×5 minutes blood pressure cuff inflation on the left upper arm/5 minutes deflation, n=67) or placebo (cuff uninflated, n=70), and right atrial appendages were harvested before ischemic cardioplegic arrest. Myocardial protection by RIPC was assessed from serum troponin I/T concentrations over 72 hours after surgery. Atrial tissue was obtained for isolation of mitochondria ( RIPC /placebo: n=10/10). Trabeculae were dissected for contractile function measurements at baseline and after hypoxia/reoxygenation (60 min/30 min) and for western blot analysis after hypoxia/reoxygenation ( RIPC /placebo, n=57/60). Associated with cardioprotection by RIPC (26% decrease in the area under the curve of troponin I/T), mitochondrial adenosine diphosphate-stimulated complex I respiration (+10%), adenosine triphosphate production (+46%), and calcium retention capacity (+37%) were greater, whereas reactive oxygen species production (-24%) was less with RIPC than placebo. Contractile function was improved by RIPC (baseline, +7%; reoxygenation, +24%). Expression and phosphorylation of proteins, which have previously been associated with cardioprotection, were not different between RIPC and placebo. Conclusions Cardioprotection by RIPC goes along with improved mitochondrial and contractile function of human right atrial tissue. Clinical Trial Registration URL: https://www.clinicaltrials.gov . Unique identifier: NCT 01406678.
Collapse
Affiliation(s)
- Petra Kleinbongard
- Institut für PathophysiologieWestdeutsches Herz‐ und GefäßzentrumUniversitätsklinikum EssenGermany
| | - Nilguen Gedik
- Institut für PathophysiologieWestdeutsches Herz‐ und GefäßzentrumUniversitätsklinikum EssenGermany
| | - Mücella Kirca
- Institut für PathophysiologieWestdeutsches Herz‐ und GefäßzentrumUniversitätsklinikum EssenGermany
| | - Leanda Stoian
- Institut für PathophysiologieWestdeutsches Herz‐ und GefäßzentrumUniversitätsklinikum EssenGermany
| | - Ulrich Frey
- Klinik für Anästhesiologie und IntensivmedizinUniversitätsklinikum EssenGermany
| | - Afsaneh Zandi
- Herzchirurgie Essen‐HuttropWestdeutsches Herz‐ und GefäßzentrumUniversitätsklinikum EssenGermany
| | - Matthias Thielmann
- Klinik für Thorax‐ und Kardiovaskuläre ChirurgieWestdeutsches Herz‐ und GefäßzentrumUniversitätsklinikum EssenGermany
| | - Heinz Jakob
- Klinik für Thorax‐ und Kardiovaskuläre ChirurgieWestdeutsches Herz‐ und GefäßzentrumUniversitätsklinikum EssenGermany
| | - Jürgen Peters
- Klinik für Anästhesiologie und IntensivmedizinUniversitätsklinikum EssenGermany
| | - Markus Kamler
- Herzchirurgie Essen‐HuttropWestdeutsches Herz‐ und GefäßzentrumUniversitätsklinikum EssenGermany
| | - Gerd Heusch
- Institut für PathophysiologieWestdeutsches Herz‐ und GefäßzentrumUniversitätsklinikum EssenGermany
| |
Collapse
|
35
|
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia and is associated with pronounced morbidity and mortality. Its prevalence, expected to further increase for the forthcoming years, and associated frequent hospitalizations turn AF into a major health problem. Structural and electrical atrial remodelling underlie the substrate for AF, but the exact mechanisms driving this remodelling remain incompletely understood. Recent studies have shown that microRNAs (miRNA), short non-coding RNAs that regulate gene expression, may be involved in the pathophysiology of AF. MiRNAs have been implicated in AF-induced ion channel remodelling and fibrosis. MiRNAs could therefore provide insight into AF pathophysiology or become novel targets for therapy with miRNA mimics or anti-miRNAs. Moreover, circulating miRNAs have been suggested as a new class of diagnostic and prognostic biomarkers of AF. However, the origin and function of miRNAs in tissue and plasma frequently remain unknown and studies investigating the role of miRNAs in AF vary in design and focus and even present contradicting results. Here, we provide a systematic review of the available clinical and functional studies investigating the tissue and plasma miRNAs in AF and will thereafter discuss the potential of miRNAs as biomarkers or novel therapeutic targets in AF.
Collapse
|
36
|
Ultimo S, Zauli G, Martelli AM, Vitale M, McCubrey JA, Capitani S, Neri LM. Cardiovascular disease-related miRNAs expression: potential role as biomarkers and effects of training exercise. Oncotarget 2018; 9:17238-17254. [PMID: 29682219 PMCID: PMC5908320 DOI: 10.18632/oncotarget.24428] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/20/2018] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are one of the most important causes of mortality worldwide, therefore the need of effective preventive strategies is imperative. Aging is associated with significant changes in both cardiovascular structure and function that lower the threshold for clinical signs and symptoms, making older people more susceptible to CVDs morbidity and mortality. microRNAs (miRNAs) modulate gene expression at post-transcriptional level and increasing evidence has shown that miRNAs are involved in cardiovascular physiology and in the pathogenesis of CVDs. Physical activity is recommended by the medical community and the cardiovascular benefits of exercise are multifactorial and include important systemic effects on skeletal muscle, the peripheral vasculature, metabolism, and neuroendocrine systems, as well as beneficial modifications within the myocardium itself. In this review we describe the role of miRNAs and their dysregulation in several types of CVDs. We provide an overview of miRNAs in CVDs and of the effects of physical activity on miRNA regulation involved in both cardiovascular pathologies and age-related cardiovascular changes and diseases. Circulating miRNAs in response to acute and chronic sport exercise appear to be modulated following training exercise, and may furthermore serve as potential biomarkers for CVDs and different age-related CVDs.
Collapse
Affiliation(s)
- Simona Ultimo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,CoreLab, Azienda Ospedaliero, Universitaria di Parma, Parma, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
37
|
Abstract
Rapid admission and acute interventional treatment combined with modern antithrombotic pharmacologic therapy have improved outcomes in patients with ST elevation myocardial infarction. The next major target to further advance outcomes needs to address ischemia-reperfusion injury, which may contribute significantly to the final infarct size and hence mortality and postinfarction heart failure. Mechanical conditioning strategies including local and remote ischemic pre-, per-, and postconditioning have demonstrated consistent cardioprotective capacities in experimental models of acute ischemia-reperfusion injury. Their translation to the clinical scenario has been challenging. At present, the most promising mechanical protection strategy of the heart seems to be remote ischemic conditioning, which increases myocardial salvage beyond acute reperfusion therapy. An additional aspect that has gained recent focus is the potential of extended conditioning strategies to improve physical rehabilitation not only after an acute ischemia-reperfusion event such as acute myocardial infarction and cardiac surgery but also in patients with heart failure. Experimental and preliminary clinical evidence suggests that remote ischemic conditioning may modify cardiac remodeling and additionally enhance skeletal muscle strength therapy to prevent muscle waste, known as an inherent component of a postoperative period and in heart failure. Blood flow restriction exercise and enhanced external counterpulsation may represent cardioprotective corollaries. Combined with exercise, remote ischemic conditioning or, alternatively, blood flow restriction exercise may be of aid in optimizing physical rehabilitation in populations that are not able to perform exercise practice at intensity levels required to promote optimal outcomes.
Collapse
Affiliation(s)
- Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital , Aarhus , Denmark
| | | | | |
Collapse
|
38
|
Ong SB, Katwadi K, Kwek XY, Ismail NI, Chinda K, Ong SG, Hausenloy DJ. Non-coding RNAs as therapeutic targets for preventing myocardial ischemia-reperfusion injury. Expert Opin Ther Targets 2018; 22:247-261. [DOI: 10.1080/14728222.2018.1439015] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sang-Bing Ong
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Khairunnisa Katwadi
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Xiu-Yi Kwek
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Nur Izzah Ismail
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Kroekkiat Chinda
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Biomedical Research Unit in Cardiovascular Sciences (BRUCS), Naresuan University, Phitsanulok, Thailand
| | - Sang-Ging Ong
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Derek J Hausenloy
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore, Singapore
- National Heart Research Institute of Singapore, National Heart CentreSingapore, Singapore
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, UK
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| |
Collapse
|
39
|
Liu H, Fu L, Sun X, Peng W, Chen Z, Li Y. Remote ischemic conditioning improves myocardial parameters and clinical outcomes during primary percutaneous coronary intervention: a meta-analysis of randomized controlled trials. Oncotarget 2018; 9:8653-8664. [PMID: 29492224 PMCID: PMC5823569 DOI: 10.18632/oncotarget.23818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/04/2017] [Indexed: 01/10/2023] Open
Abstract
We conducted a systematic review and meta-analysis to evaluate the effects of remote ischemic conditioning on myocardial parameters and clinical outcomes in ST segment elevation acute myocardial infarction (STEMI) patients undergoing primary percutaneous coronary intervention. Ten eligible randomized controlled trials with 1006 STEMI patients were identified. Compared with controls, remote ischemic conditioning reduced the myocardial enzyme levels (standardized mean difference =-0.86; 95% CI: -1.44 to -0.28; P = 0.004; I2 = 94.5%), and increased the incidence of complete ST-segment resolution [odds ratio (OR) = 1.74; 95% CI: 1.09 to 2.77; P = 0.02; I2 = 47.9%]. Remote ischemic conditioning patients had a lower risk of all-cause mortality (OR = 0.27; 95% CI: 0.12 to 0.62; P = 0.002; I2 = 0.0%) and lower major adverse cardiovascular and cerebrovascular events rate (OR=0.45; 95% CI: 0.27 to 0.75; P = 0.002; I2 = 0.0%). Meta-analysis suggested that remote ischemic conditioning conferred cardioprotection by reducing myocardial enzymes and increasing the incidence of complete ST-segment resolution in patients after STEMI. As a result, clinical outcomes were improved in terms of mortality and incidence of major adverse cardiovascular and cerebrovascular events.
Collapse
Affiliation(s)
- Hai Liu
- Third Department of Cardiac Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Li Fu
- Institute of Clinical Medicine, Department of Endocrinology, The Central Hospital of Loudi Affiliated to the University of South China, Loudi 417000, China
| | - Xiangke Sun
- Department of Cardiology, The Central Hospital of Loudi Affiliated to the University of South China, Loudi 417000, China
| | - Wei Peng
- Department of Cardiology, The Central Hospital of Loudi Affiliated to the University of South China, Loudi 417000, China
| | - Zhiwei Chen
- Department of Cardiology, The Central Hospital of Loudi Affiliated to the University of South China, Loudi 417000, China
| | - Yiliang Li
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Postdoctoral Research Workstation of Neurology, Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|
40
|
Therapeutic potential of omega-3 fatty acid-derived epoxyeicosanoids in cardiovascular and inflammatory diseases. Pharmacol Ther 2017; 183:177-204. [PMID: 29080699 DOI: 10.1016/j.pharmthera.2017.10.016] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Numerous benefits have been attributed to dietary long-chain omega-3 polyunsaturated fatty acids (n-3 LC-PUFAs), including protection against cardiac arrhythmia, triglyceride-lowering, amelioration of inflammatory, and neurodegenerative disorders. This review covers recent findings indicating that a variety of these beneficial effects are mediated by "omega-3 epoxyeicosanoids", a class of novel n-3 LC-PUFA-derived lipid mediators, which are generated via the cytochrome P450 (CYP) epoxygenase pathway. CYP enzymes, previously identified as arachidonic acid (20:4n-6; AA) epoxygenases, accept eicosapentaenoic acid (20:5n-3; EPA) and docosahexaenoic acid (22:6n-3; DHA), the major fish oil n-3 LC-PUFAs, as efficient alternative substrates. In humans and rodents, dietary EPA/DHA supplementation causes a profound shift of the endogenous CYP-eicosanoid profile from AA- to EPA- and DHA-derived metabolites, increasing, in particular, the plasma and tissue levels of 17,18-epoxyeicosatetraenoic acid (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP). Based on preclinical studies, these omega-3 epoxyeicosanoids display cardioprotective, vasodilatory, anti-inflammatory, and anti-allergic properties that contribute to the beneficial effects of n-3 LC-PUFAs in diverse disease conditions ranging from cardiac disease, bronchial disorders, and intraocular neovascularization, to allergic intestinal inflammation and inflammatory pain. Increasing evidence also suggests that background nutrition as well as genetic and disease state-related factors could limit the response to EPA/DHA-supplementation by reducing the formation and/or enhancing the degradation of omega-3 epoxyeicosanoids. Recently, metabolically robust synthetic analogs mimicking the biological activities of 17,18-EEQ have been developed. These drug candidates may overcome limitations of dietary EPA/DHA supplementation and provide novel options for the treatment of cardiovascular and inflammatory diseases.
Collapse
|
41
|
Song Y, Song JW, Lee S, Jun JH, Kwak YL, Shim JK. Effects of remote ischemic preconditioning in patients with concentric myocardial hypertrophy: A randomized, controlled trial with molecular insights. Int J Cardiol 2017; 249:36-41. [PMID: 28893433 DOI: 10.1016/j.ijcard.2017.08.073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 06/19/2017] [Accepted: 08/29/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Efficacy of remote ischemic preconditioning (RIPC) for cardioprotection in cardiac surgery is controversial. We aimed to evaluate the clinical and molecular effects of RIPC on the concentrically hypertrophied myocardium. METHODS Seventy-two aortic stenosis patients receiving aortic valve replacement (AVR) under sevoflurane anesthesia were randomly allocated to RIPC (3cycles of 5-min inflation [300mmHg] and deflation on the left arm) or control (deflated cuff placement) group. The primary endpoints were 24-h area under the curve (AUC) for serum creatine kinase (CK)-MB and troponin (Tn)-T levels. The secondary endpoints were myocardial activation of cell signaling pathways, including reperfusion injury salvage kinases (RISK), signal transducer and activator of transcription (STAT), nitric oxide synthase (NOS), and apoptosis related molecules, obtained from right atrial tissue before and after cardiopulmonary bypass (CPB). RESULTS There were no intergroup differences in 24-h AUCs of CK-MB and Tn-T. Phosphorylations of RISK pathway molecules were not enhanced by RIPC before and after CPB. Phosphorylation of STAT5 was significantly lower in the RIPC group before and after CPB. Phosphorylations of STAT3 and endothelial NOS were not enhanced by RIPC before and after CPB. Expression level of cleaved caspases-3/caspase-3 was significantly higher in the RIPC group before CPB. CONCLUSIONS RIPC did not provide clinical benefits or activate protective signaling in patients with concentric left ventricular hypertrophy undergoing AVR.
Collapse
Affiliation(s)
- Young Song
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea; Anesthesia and Pain Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Jong Wook Song
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea; Anesthesia and Pain Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Sak Lee
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji-Hae Jun
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Young-Lan Kwak
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea; Anesthesia and Pain Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Jae-Kwang Shim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea; Anesthesia and Pain Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.
| |
Collapse
|
42
|
Riggs CL, Podrabsky JE. Small noncoding RNA expression during extreme anoxia tolerance of annual killifish (Austrofundulus limnaeus) embryos. Physiol Genomics 2017; 49:505-518. [DOI: 10.1152/physiolgenomics.00016.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/10/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022] Open
Abstract
Small noncoding RNAs (sncRNA) have recently emerged as specific and rapid regulators of gene expression, involved in a myriad of cellular and organismal processes. MicroRNAs, a class of sncRNAs, are differentially expressed in diverse taxa in response to environmental stress, including anoxia. In most vertebrates, a brief period of oxygen deprivation results in severe tissue damage or death. Studies on sncRNA and anoxia have focused on these anoxia-sensitive species. Studying sncRNAs in anoxia-tolerant organisms may provide insight into adaptive mechanisms supporting anoxia tolerance. Embryos of the annual killifish Austrofundulus limnaeus are the most anoxia-tolerant vertebrates known, surviving over 100 days at their peak tolerance at 25°C. Their anoxia tolerance and physiology vary over development, such that both anoxia-tolerant and anoxia-sensitive phenotypes comprise the species. This allows for a robust comparison to identify sncRNAs essential to anoxia-tolerance. For this study, RNA sequencing was used to identify and quantify expression of sncRNAs in four embryonic stages of A. limnaeus in response to an exposure to anoxia and subsequent aerobic recovery. Unique stage-specific patterns of expression were identified that correlate with anoxia tolerance. In addition, embryos of A. limnaeus appear to constitutively express stress-responsive miRNAs. Most differentially expressed sncRNAs were expressed at higher levels during recovery. Many novel groups of sncRNAs with expression profiles suggesting a key role in anoxia tolerance were identified, including sncRNAs derived from mitochondrial tRNAs. This global analysis has revealed groups of candidate sncRNAs that we hypothesize support anoxia tolerance.
Collapse
Affiliation(s)
- Claire L. Riggs
- Department of Biology, Portland State University, Portland, Oregon
| | | |
Collapse
|
43
|
miR-125a, miR-139 and miR-324 contribute to Urocortin protection against myocardial ischemia-reperfusion injury. Sci Rep 2017; 7:8898. [PMID: 28827743 PMCID: PMC5566224 DOI: 10.1038/s41598-017-09198-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/21/2017] [Indexed: 12/20/2022] Open
Abstract
Urocortin 1 and 2 (Ucn-1 and Ucn-2) have established protective actions against myocardial ischemia-reperfusion (I/R) injuries. However, little is known about their role in posttranscriptional regulation in the process of cardioprotection. Herein, we investigated whether microRNAs play a role in urocortin-induced cardioprotection. Administration of Ucn-1 and Ucn-2 at the beginning of reperfusion significantly restored cardiac function, as evidenced ex vivo in Langendorff-perfused rat hearts and in vivo in rat subjected to I/R. Experiments using microarray and qRT-PCR determined that the addition of Ucn-1 at reperfusion modulated the expression of several miRNAs with unknown role in cardiac protection. Ucn-1 enhanced the expression of miR-125a-3p, miR-324-3p; meanwhile it decreased miR-139-3p. Similarly, intravenous infusion of Ucn-2 in rat model of I/R mimicked the effect of Ucn-1 on miR-324-3p and miR-139-3p. The effect of Ucn-1 involves the activation of corticotropin-releasing factor receptor-2, Epac2 and ERK1/2. Moreover, the overexpression of miR-125a-3p, miR-324-3p and miR-139-3p promoted dysregulation of genes expression involved in cell death and apoptosis (BRCA1, BIM, STAT2), in cAMP and Ca2+ signaling (PDE4a, CASQ1), in cell stress (NFAT5, XBP1, MAP3K12) and in metabolism (CPT2, FoxO1, MTRF1, TAZ). Altogether, these data unveil a novel role of urocortin in myocardial protection, involving posttranscriptional regulation with miRNAs.
Collapse
|
44
|
Gedik N, Krüger M, Thielmann M, Kottenberg E, Skyschally A, Frey UH, Cario E, Peters J, Jakob H, Heusch G, Kleinbongard P. Proteomics/phosphoproteomics of left ventricular biopsies from patients with surgical coronary revascularization and pigs with coronary occlusion/reperfusion: remote ischemic preconditioning. Sci Rep 2017; 7:7629. [PMID: 28794502 PMCID: PMC5550488 DOI: 10.1038/s41598-017-07883-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/22/2017] [Indexed: 12/18/2022] Open
Abstract
Remote ischemic preconditioning (RIPC) by repeated brief cycles of limb ischemia/reperfusion reduces myocardial ischemia/reperfusion injury. In left ventricular (LV) biopsies from patients undergoing coronary artery bypass grafting (CABG), only the activation of signal transducer and activator of transcription 5 was associated with RIPC’s cardioprotection. We have now used an unbiased, non-hypothesis-driven proteomics and phosphoproteomics approach to analyze LV biopsies from patients undergoing CABG and from pigs undergoing coronary occlusion/reperfusion without (sham) and with RIPC. False discovery rate-based statistics identified a higher prostaglandin reductase 2 expression at early reperfusion with RIPC than with sham in patients. In pigs, the phosphorylation of 116 proteins was different between baseline and early reperfusion with RIPC and/or with sham. The identified proteins were not identical for patients and pigs, but in-silico pathway analysis of proteins with ≥2-fold higher expression/phosphorylation at early reperfusion with RIPC in comparison to sham revealed a relation to mitochondria and cytoskeleton in both species. Apart from limitations of the proteomics analysis per se, the small cohorts, the sampling/sample processing and the number of uncharacterized/unverifiable porcine proteins may have contributed to this largely unsatisfactory result.
Collapse
Affiliation(s)
- Nilgün Gedik
- Institute for Pathophysiology, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Marcus Krüger
- Institute for Genetics Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and University of Cologne, Cologne, Germany
| | - Matthias Thielmann
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg- Essen, Essen, Germany
| | - Eva Kottenberg
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Andreas Skyschally
- Institute for Pathophysiology, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Ulrich H Frey
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Elke Cario
- Experimental Gastroenterology, Department of Gastroenterology and Hepatology, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Jürgen Peters
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Heinz Jakob
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg- Essen, Essen, Germany
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany.
| |
Collapse
|
45
|
Ravingerová T, Farkašová V, Griecsová L, Muráriková M, Carnická S, Lonek L, Ferko M, Slezak J, Zálešák M, Adameova A, Khandelwal VKM, Lazou A, Kolar F. Noninvasive approach to mend the broken heart: Is "remote conditioning" a promising strategy for application in humans? Can J Physiol Pharmacol 2017; 95:1204-1212. [PMID: 28683229 DOI: 10.1139/cjpp-2017-0200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Currently, there are no satisfactory interventions to protect the heart against the detrimental effects of ischemia-reperfusion injury. Although ischemic preconditioning (PC) is the most powerful form of intrinsic cardioprotection, its application in humans is limited to planned interventions, due to its short duration and technical requirements. However, many organs/tissues are capable of producing "remote" PC (RPC) when subjected to brief bouts of ischemia-reperfusion. RPC was first described in the heart where brief ischemia in one territory led to protection in other area. Later on, RPC started to be used in patients with acute myocardial infarction, albeit with ambiguous results. It is hypothesized that the connection between the signal triggered in remote organ and protection induced in the heart can be mediated by humoral and neural pathways, as well as via systemic response to short sublethal ischemia. However, although RPC has a potentially important clinical role, our understanding of the mechanistic pathways linking the local stimulus to the remote organ remains incomplete. Nevertheless, RPC appears as a cost-effective and easily performed intervention. Elucidation of protective mechanisms activated in the remote organ may have therapeutic and diagnostic implications in the management of myocardial ischemia and lead to development of pharmacological RPC mimetics.
Collapse
Affiliation(s)
- Táňa Ravingerová
- a Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Veronika Farkašová
- a Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Griecsová
- a Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martina Muráriková
- a Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Slavka Carnická
- a Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - L'ubomír Lonek
- a Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslav Ferko
- a Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Slezak
- a Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Zálešák
- a Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Adriana Adameova
- b Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | | | - Antigone Lazou
- d School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Frantisek Kolar
- e Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
46
|
van Schaardenburgh M, Wohlwend M, Rognmo Ø, Mattsson EJR. Exercise in claudicants increase or decrease walking ability and the response relates to mitochondrial function. J Transl Med 2017; 15:130. [PMID: 28592294 PMCID: PMC5463401 DOI: 10.1186/s12967-017-1232-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/31/2017] [Indexed: 12/02/2022] Open
Abstract
Background Exercise of patients with intermittent claudication improves walking performance. Exercise does not usually increase blood flow, but seems to increase muscle mitochondrial enzyme activities. Although exercise is beneficial in most patients, it might be harmful in some. The mitochondrial response to exercise might therefore differ between patients. Our hypothesis was that changes in walking performance relate to changes in mitochondrial function after 8 weeks of exercise. At a subgroup level, negative responders decrease and positive responders increase mitochondrial capacity. Methods Two types of exercise were studied, calf raising and walking (n = 28). We wanted to see whether there were negative and positive responders, independent of type of exercise. Measurements of walking performance, peripheral hemodynamics, mitochondrial respiration and content (citrate synthase activity) were obtained on each patient before and after the intervention period. Multiple linear regression was used to test whether changes in peak walking time relate to mitochondrial function. Subgroups of negative (n = 8) and positive responders (n = 8) were defined as those that either decreased or increased peak walking time following exercise. Paired t test and analysis of covariance was used to test changes within and between subgroups. Results Changes in peak walking time were related to changes in mitochondrial respiration supported by electron transferring flavoprotein (ETF + CI)P (p = 0.004), complex I (CI + ETF)P (p = 0.003), complex I + complex II (CI + CII + ETF)P (p = 0.037) and OXPHOS coupling efficiency (p = 0.046) in the whole group. Negative responders had more advanced peripheral arterial disease. Mitochondrial respiration supported by electron transferring flavoprotein (ETF + CI)P (p = 0.0013), complex I (CI + ETF)P (p = 0.0005), complex I + complex II (CI + CII + ETF)P (p = 0.011) and electron transfer system capacity (CI + CII + ETF)E (p = 0.021) and OXPHOS coupling efficiency decreased in negative responders (p = 0.0007) after exercise. Positive responders increased citrate synthase activity (p = 0.010). Conclusions Changes in walking performance seem to relate to changes in mitochondrial function after exercise. Negative responders have more advanced peripheral arterial disease and decrease, while positive responders increase mitochondrial capacity. Trial registration ClinicalTrials.gov ID: NCT023110256
Collapse
Affiliation(s)
- Michel van Schaardenburgh
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, PO box 8905, 7491, Trondheim, Norway.
| | - Martin Wohlwend
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, PO box 8905, 7491, Trondheim, Norway
| | - Øivind Rognmo
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, PO box 8905, 7491, Trondheim, Norway
| | - Erney J R Mattsson
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, PO box 8905, 7491, Trondheim, Norway.,Department of Vascular Surgery, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
47
|
Lau JK, Pennings GJ, Yong A, Kritharides L. Cardiac Remote Ischaemic Preconditioning: Mechanistic and Clinical Considerations. Heart Lung Circ 2017; 26:545-553. [DOI: 10.1016/j.hlc.2016.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/04/2016] [Indexed: 12/15/2022]
|
48
|
Kancirová I, Jašová M, Muráriková M, Sumbalová Z, Uličná O, Ravingerová T, Waczulíková I, Ziegelhöffer A, Ferko M. Cardioprotection induced by remote ischemic preconditioning preserves the mitochondrial respiratory function in acute diabetic myocardium. Physiol Res 2017; 65:S611-S619. [PMID: 28006943 DOI: 10.33549/physiolres.933533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A 2×2 factorial design was used to evaluate possible preservation of mitochondrial functions in two cardioprotective experimental models, remote ischemic preconditioning and streptozotocin-induced diabetes mellitus, and their interaction during ischemia/reperfusion injury (I/R) of the heart. Male Wistar rats were randomly allocated into four groups: control (C), streptozotocin-induced diabetic (DM), preconditioned (RPC) and preconditioned streptozotocin-induced diabetic (DM+RPC). RPC was conducted by 3 cycles of 5-min hind-limb ischemia and 5-min reperfusion. DM was induced by a single dose of 65 mg/kg streptozotocin. Isolated hearts were exposed to ischemia/reperfusion test according to Langendorff. Thereafter mitochondria were isolated and the mitochondrial respiration was measured. Additionally, the ATP synthase activity measurements on the same preparations were done. Animals of all groups subjected to I/R exhibited a decreased state 3 respiration with the least change noted in DM+RPC group associated with no significant changes in state 2 respiration. In RPC, DM and DM+RPC group, no significant changes in the activity of ATP synthase were observed after I/R injury. These results suggest that the endogenous protective mechanisms of RPC and DM do preserve the mitochondrial function in heart when they act in combination.
Collapse
Affiliation(s)
- I Kancirová
- Institute for Heart Research, Slovak Academy of Sciences, Centre of Excellence of SAS NOREG, Bratislava, Slovak Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Benstoem C, Stoppe C, Liakopoulos OJ, Ney J, Hasenclever D, Meybohm P, Goetzenich A. Remote ischaemic preconditioning for coronary artery bypass grafting (with or without valve surgery). Cochrane Database Syst Rev 2017; 5:CD011719. [PMID: 28475274 PMCID: PMC6481544 DOI: 10.1002/14651858.cd011719.pub3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Despite substantial improvements in myocardial preservation strategies, coronary artery bypass grafting (CABG) is still associated with severe complications. It has been reported that remote ischaemic preconditioning (RIPC) reduces reperfusion injury in people undergoing cardiac surgery and improves clinical outcome. However, there is a lack of synthesised information and a need to review the current evidence from randomised controlled trials (RCTs). OBJECTIVES To assess the benefits and harms of remote ischaemic preconditioning in people undergoing coronary artery bypass grafting, with or without valve surgery. SEARCH METHODS In May 2016 we searched CENTRAL, MEDLINE, Embase and Web of Science. We also conducted a search of ClinicalTrials.gov and the International Clinical Trials Registry Platform (ICTRP). We also checked reference lists of included studies. We did not apply any language restrictions. SELECTION CRITERIA We included RCTs in which people scheduled for CABG (with or without valve surgery) were randomly assigned to receive RIPC or sham intervention before surgery. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trials for inclusion, extracted data and checked them for accuracy. We calculated mean differences (MDs), standardised mean differences (SMDs) and risk ratios (RR) using a random-effects model. We assessed quality of the trial evidence for all primary outcomes using the GRADE methodology. We completed a 'Risk of bias' assessment for all studies and performed sensitivity analysis by excluding studies judged at high or unclear risk of bias for sequence generation, allocation concealment and incomplete outcome data. We contacted authors for missing data. Our primary endpoints were 1) composite endpoint (including all-cause mortality, non-fatal myocardial infarction or any new stroke, or both) assessed at 30 days after surgery, 2) cardiac troponin T (cTnT, ng/L) at 48 hours and 72 hours, and as area under the curve (AUC) 72 hours (µg/L) after surgery, and 3) cardiac troponin I (cTnI, ng/L) at 48 hours, 72 hours, and as area under the curve (AUC) 72 hours (µg/L) after surgery. MAIN RESULTS We included 29 studies involving 5392 participants (mean age = 64 years, age range 23 to 86 years, 82% male). However, few studies contributed data to meta-analyses due to inconsistency in outcome definition and reporting. In general, risk of bias varied from low to high risk of bias across included studies, and insufficient detail was provided to inform judgement in several cases. The quality of the evidence of key outcomes ranged from moderate to low quality due to the presence of moderate or high statistical heterogeneity, imprecision of results or due to limitations in the design of individual studies.Compared with no RIPC, we found that RIPC has no treatment effect on the rate of the composite endpoint with RR 0.99 (95% confidence interval (CI) 0.78 to 1.25); 2 studies; 2463 participants; moderate-quality evidence. Participants randomised to RIPC showed an equivalent or better effect regarding the amount of cTnT release measured at 72 hours after surgery with SMD -0.32 (95% CI -0.65 to 0.00); 3 studies; 1120 participants; moderate-quality evidence; and expressed as AUC 72 hours with SMD -0.49 (95% CI -0.96 to -0.02); 3 studies; 830 participants; moderate-quality evidence. We found the same result in favour of RIPC for the cTnI release measured at 48 hours with SMD -0.21 (95% CI -0.40 to -0.02); 5 studies; 745 participants; moderate-quality evidence; and measured at 72 hours after surgery with SMD -0.37 (95% CI -0.59 to -0.15); 2 studies; 459 participants; moderate-quality evidence. All other primary outcomes showed no differences between groups (cTnT release measured at 48 hours with SMD -0.14, 95% CI -0.33 to 0.06; 4 studies; 1792 participants; low-quality evidence and cTnI release measured as AUC 72 hours with SMD -0.17, 95% CI -0.48 to 0.14; 2 studies; 159 participants; moderate-quality evidence).We also found no differences between groups for all-cause mortality after 30 days, non-fatal myocardial infarction after 30 days, any new stroke after 30 days, acute renal failure after 30 days, length of stay on the intensive care unit (days), any complications and adverse effects related to ischaemic preconditioning. We did not assess many patient-centred/salutogenic-focused outcomes. AUTHORS' CONCLUSIONS We found no evidence that RIPC has a treatment effect on clinical outcomes (measured as a composite endpoint including all-cause mortality, non-fatal myocardial infarction or any new stroke, or both, assessed at 30 days after surgery). There is moderate-quality evidence that RIPC has no treatment effect on the rate of the composite endpoint including all-cause mortality, non-fatal myocardial infarction or any new stroke assessed at 30 days after surgery, or both. We found moderate-quality evidence that RIPC reduces the cTnT release measured at 72 hours after surgery and expressed as AUC (72 hours). There is moderate-quality evidence that RIPC reduces the amount of cTnI release measured at 48 hours, and measured 72 hours after surgery. Adequately-designed studies, especially focusing on influencing factors, e.g. with regard to anaesthetic management, are encouraged and should systematically analyse the commonly used medications of people with cardiovascular diseases.
Collapse
Affiliation(s)
- Carina Benstoem
- University Hospital AachenDepartment of Cardiothoracic SurgeryPauwelsstrasse 30AachenNorth Rhine WestphaliaGermany52074
| | - Christian Stoppe
- RWTH Aachen UniversityDepartment of Intensive Care MedicinePauwelsstrasse 30AachenNorth Rhine WestphaliaGermany52074
| | - Oliver J Liakopoulos
- Heart Center, University of CologneDepartment of Cardiothoracic SurgeryKerpener Str. 62CologneGermany50937
| | - Julia Ney
- University Hospital RWTH AachenDepartment of AnaesthesiologyPauwelsstrasse 30AachenGermany
| | - Dirk Hasenclever
- University of LeipzigInstitute for Medical Informatics, Statistics & Epidemiology (IMISE)Haertelstrasse 16‐18LeipzigGermany
| | - Patrick Meybohm
- University Hospital FrankfurtDepartment of Anaesthesiology, Intensive Care and Pain TherapyTheodor‐Stern‐Kai 7Frankfurt am MainGermany60590
| | - Andreas Goetzenich
- University Hospital AachenDepartment of Cardiothoracic SurgeryPauwelsstrasse 30AachenNorth Rhine WestphaliaGermany52074
| | | |
Collapse
|
50
|
Van Schaardenburgh M, Wohlwend M, Rognmo Ø, Mattsson E. Calf raise exercise increases walking performance in patients with intermittent claudication. J Vasc Surg 2017; 65:1473-1482. [DOI: 10.1016/j.jvs.2016.12.106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/06/2016] [Indexed: 01/12/2023]
|