1
|
Hazrati A, Malekpour K, Khorramdelazad H, Rajaei S, Hashemi SM. Therapeutic and immunomodulatory potentials of mesenchymal stromal/stem cells and immune checkpoints related molecules. Biomark Res 2024; 12:35. [PMID: 38515166 PMCID: PMC10958918 DOI: 10.1186/s40364-024-00580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are used in many studies due to their therapeutic potential, including their differentiative ability and immunomodulatory properties. These cells perform their therapeutic functions by using various mechanisms, such as the production of anti-inflammatory cytokines, growth factors, direct cell-to-cell contact, extracellular vesicles (EVs) production, and mitochondrial transfer. However, mechanisms related to immune checkpoints (ICPs) and their effect on the immunomodulatory ability of MSCs are less discussed. The main function of ICPs is to prevent the initiation of unwanted responses and to regulate the immune system responses to maintain the homeostasis of these responses. ICPs are produced by various types of immune system regulatory cells, and defects in their expression and function may be associated with excessive responses that can ultimately lead to autoimmunity. Also, by expressing different types of ICPs and their ligands (ICPLs), tumor cells prevent the formation and durability of immune responses, which leads to tumors' immune escape. ICPs and ICPLs can be produced by MSCs and affect immune cell responses both through their secretion into the microenvironment or direct cell-to-cell interaction. Pre-treatment of MSCs in inflammatory conditions leads to an increase in their therapeutic potential. In addition to the effect that inflammatory environments have on the production of anti-inflammatory cytokines by MSCs, they can increase the expression of various types of ICPLs. In this review, we discuss different types of ICPLs and ICPs expressed by MSCs and their effect on their immunomodulatory and therapeutic potential.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Samira Rajaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Xuan SS, Zhao Y, Zheng Y, Zhu J, Li H, Lu PP, Shao SJ, Guo HD, Mou FF. Electroacupuncture improves cardiac function after myocardial infarction by regulating the mobilization and migration of endogenous stem cells. Acupunct Med 2023; 41:354-363. [PMID: 37337652 DOI: 10.1177/09645284231169485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
OBJECTIVE The aim of this study was to explore the role and mechanisms of electroacupuncture (EA) in the regulation of chemokines in endogenous stem cell mobilization and myocardial regeneration after myocardial infarction (MI). METHODS An MI model was constructed in adult male Sprague-Dawley rats by ligating the left anterior descending coronary artery. After 4 weeks of treatment, echocardiography was used to detect changes in cardiac function, and Masson's trichrome staining was used to detect collagen deposition. In addition, immunofluorescence staining was applied to examine von Willebrand factor (vWF)-positive vessels, the expression of cardiac troponin T (cTnT) and proliferation marker Ki67, and the number of c-kit-positive, C-X-C chemokine receptor type 4 (CXCR4)-positive, and Sca-1-positive endogenous stem cells in the infarcted area. In addition, the expression of stromal cell-derived factor (SDF)-1 and stem cell factor (SCF) was detected. RESULTS EA increased the ejection fraction after MI, reduced collagen deposition and cellular apoptosis, and increased the number of blood vessels compared with an untreated model group. EA significantly promoted cellular proliferation, except for myocardial cells, and significantly increased the number of c-kit-, CXCR4- and Sca-1-positive stem cells. Moreover, the expression of SDF-1 and SCF in myocardial tissue in the EA group was significantly higher than that in the (untreated) MI group. CONCLUSIONS EA appears to promote angiogenesis and reduce collagen deposition, thus improving the cardiac function of rats with MI. The underlying mechanism of action may involve endogenous stem cell mobilization mediated by SDF-1/CXCR4 and SCF/c-kit.
Collapse
Affiliation(s)
- Shou-Song Xuan
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Jiading Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Yue Zhao
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Zheng
- Jiading Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhu
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Han Li
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping-Ping Lu
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shui-Jin Shao
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hai-Dong Guo
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fang-Fang Mou
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Clavellina D, Balkan W, Hare JM. Stem cell therapy for acute myocardial infarction: Mesenchymal Stem Cells and induced Pluripotent Stem Cells. Expert Opin Biol Ther 2023; 23:951-967. [PMID: 37542462 PMCID: PMC10837765 DOI: 10.1080/14712598.2023.2245329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
INTRODUCTION Acute myocardial infarction (AMI) remains a leading cause of death in the United States. The limited capacity of cardiomyocytes to regenerate and the restricted contractility of scar tissue after AMI are not addressed by current pharmacologic interventions. Mesenchymal stem/stromal cells (MSCs) have emerged as a promising therapeutic approach due to their low antigenicity, ease of harvesting, and efficacy and safety in preclinical and clinical studies, despite their low survival and engraftment rates. Other stem cell types, such as induced pluripotent stem cells (iPSCs) also show promise, and optimizing cardiac repair requires integrating emerging technologies and strategies. AREAS COVERED This review offers insights into advancing cell-based therapies for AMI, emphasizing meticulously planned trials with a standardized definition of AMI, for a bench-to-bedside approach. We critically evaluate fundamental studies and clinical trials to provide a comprehensive overview of the advances, limitations and prospects for cell-based therapy in AMI. EXPERT OPINION MSCs continue to show potential promise for treating AMI and its sequelae, but addressing their low survival and engraftment rates is crucial for clinical success. Integrating emerging technologies such as pluripotent stem cells and conducting well-designed trials will harness the full potential of cell-based therapy in AMI management. Collaborative efforts are vital to developing effective stem cell therapies for AMI patients.
Collapse
Affiliation(s)
- Diana Clavellina
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
4
|
Fetuin-A is an immunomodulator and a potential therapeutic option in BMP4-dependent heterotopic ossification and associated bone mass loss. Bone Res 2022; 10:62. [PMID: 36289197 PMCID: PMC9605967 DOI: 10.1038/s41413-022-00232-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 11/08/2022] Open
Abstract
Heterotopic ossification (HO) is the abnormal formation of bone in extraskeletal sites. However, the mechanisms linking HO pathogenesis with bone mass dysfunction remain unclear. Here, we showed that mice harboring injury-induced and BMP4-dependent HO exhibit bone mass loss similar to that presented by patients with HO. Moreover, we found that injury-induced hyperinflammatory responses at the injury site triggered HO initiation but did not result in bone mass loss at 1 day post-injury (dpi). In contrast, a suppressive immune response promoted HO propagation and bone mass loss by 7 dpi. Correcting immune dysregulation by PD1/PDL1 blockade dramatically alleviated HO propagation and bone mass loss. We further demonstrated that fetuin-A (FetA), which has been frequently detected in HO lesions but rarely observed in HO-adjacent normal bone, acts as an immunomodulator to promote PD1 expression and M2 macrophage polarization, leading to immunosuppression. Intervention with recombinant FetA inhibited hyperinflammation and prevented HO and associated bone mass loss. Collectively, our findings provide new insights into the osteoimmunological interactions that occur during HO formation and suggest that FetA is an immunosuppressor and a potential therapeutic option for the treatment of HO.
Collapse
|
5
|
Höving AL, Schmidt KE, Kaltschmidt B, Kaltschmidt C, Knabbe C. The Role of Blood-Derived Factors in Protection and Regeneration of Aged Tissues. Int J Mol Sci 2022; 23:ijms23179626. [PMID: 36077021 PMCID: PMC9455681 DOI: 10.3390/ijms23179626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
Tissue regeneration substantially relies on the functionality of tissue-resident endogenous adult stem cell populations. However, during aging, a progressive decline in organ function and regenerative capacities impedes endogenous repair processes. Especially the adult human heart is considered as an organ with generally low regenerative capacities. Interestingly, beneficial effects of systemic factors carried by young blood have been described in diverse organs including the heart, brain and skeletal muscle of the murine system. Thus, the interest in young blood or blood components as potential therapeutic agents to target age-associated malignancies led to a wide range of preclinical and clinical research. However, the translation of promising results from the murine to the human system remains difficult. Likewise, the establishment of adequate cellular models could help to study the effects of human blood plasma on the regeneration of human tissues and particularly the heart. Facing this challenge, this review describes the current knowledge of blood plasma-mediated protection and regeneration of aging tissues. The current status of preclinical and clinical research examining blood borne factors that act in stem cell-based tissue maintenance and regeneration is summarized. Further, examples of cellular model systems for a more detailed examination of selected regulatory pathways are presented.
Collapse
Affiliation(s)
- Anna L. Höving
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Correspondence:
| | - Kazuko E. Schmidt
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Barbara Kaltschmidt
- AG Molecular Neurobiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Cornelius Knabbe
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
6
|
Han Y, Yang J, Fang J, Zhou Y, Candi E, Wang J, Hua D, Shao C, Shi Y. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Ther 2022; 7:92. [PMID: 35314676 PMCID: PMC8935608 DOI: 10.1038/s41392-022-00932-0] [Citation(s) in RCA: 210] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 11/18/2021] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
AbstractMesenchymal stromal/stem cells (MSCs) possess multi-lineage differentiation and self-renewal potentials. MSCs-based therapies have been widely utilized for the treatment of diverse inflammatory diseases, due to the potent immunoregulatory functions of MSCs. An increasing body of evidence indicates that MSCs exert their therapeutic effects largely through their paracrine actions. Growth factors, cytokines, chemokines, extracellular matrix components, and metabolic products were all found to be functional molecules of MSCs in various therapeutic paradigms. These secretory factors contribute to immune modulation, tissue remodeling, and cellular homeostasis during regeneration. In this review, we summarize and discuss recent advances in our understanding of the secretory behavior of MSCs and the intracellular communication that accounts for their potential in treating human diseases.
Collapse
|
7
|
Sharma A, Gupta S, Archana S, Verma RS. Emerging Trends in Mesenchymal Stem Cells Applications for Cardiac Regenerative Therapy: Current Status and Advances. Stem Cell Rev Rep 2022; 18:1546-1602. [PMID: 35122226 DOI: 10.1007/s12015-021-10314-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 12/29/2022]
Abstract
Irreversible myocardium infarction is one of the leading causes of cardiovascular disease (CVD) related death and its quantum is expected to grow in coming years. Pharmacological intervention has been at the forefront to ameliorate injury-related morbidity and mortality. However, its outcomes are highly skewed. As an alternative, stem cell-based tissue engineering/regenerative medicine has been explored quite extensively to regenerate the damaged myocardium. The therapeutic modality that has been most widely studied both preclinically and clinically is based on adult multipotent mesenchymal stem cells (MSC) delivered to the injured heart. However, there is debate over the mechanistic therapeutic role of MSC in generating functional beating cardiomyocytes. This review intends to emphasize the role and use of MSC in cardiac regenerative therapy (CRT). We have elucidated in detail, the various aspects related to the history and progress of MSC use in cardiac tissue engineering and its multiple strategies to drive cardiomyogenesis. We have further discussed with a focus on the various therapeutic mechanism uncovered in recent times that has a significant role in ameliorating heart-related problems. We reviewed recent and advanced technologies using MSC to develop/create tissue construct for use in cardiac regenerative therapy. Finally, we have provided the latest update on the usage of MSC in clinical trials and discussed the outcome of such studies in realizing the full potential of MSC use in clinical management of cardiac injury as a cellular therapy module.
Collapse
Affiliation(s)
- Akriti Sharma
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India
| | - Santosh Gupta
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India
| | - S Archana
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India.
| |
Collapse
|
8
|
MicroRNAs and exosomes: Cardiac stem cells in heart diseases. Pathol Res Pract 2021; 229:153701. [PMID: 34872024 DOI: 10.1016/j.prp.2021.153701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022]
Abstract
Treating cardiovascular diseases with cardiac stem cells (CSCs) is a valid treatment among various stem cell-based therapies. With supplying the physiological need for cardiovascular cells as their main function, under pathological circumstances, CSCs can also reproduce the myocardial cells. Although studies have identified many of CSCs' functions, our knowledge of molecular pathways that regulate these functions is not complete enough. Either physiological or pathological studies have shown, stem cells proliferation and differentiation could be regulated by microRNAs (miRNAs). How miRNAs regulate CSC behavior is an interesting area of research that can help us study and control the function of these cells in vitro; an achievement that may be beneficial for patients with cardiovascular diseases. The secretome of stem and progenitor cells has been studied and it has been determined that exosomes are the main source of their secretion which are very small vesicles at the nanoscale and originate from endosomes, which are secreted into the extracellular space and act as key signaling organelles in intercellular communication. Mesenchymal stem cells, cardiac-derived progenitor cells, embryonic stem cells, induced pluripotent stem cells (iPSCs), and iPSC-derived cardiomyocytes release exosomes that have been shown to have cardioprotective, immunomodulatory, and reparative effects. Herein, we summarize the regulation roles of miRNAs and exosomes in cardiac stem cells.
Collapse
|
9
|
Infante A, Rodríguez CI. Cell and Cell-Free Therapies to Counteract Human Premature and Physiological Aging: MSCs Come to Light. J Pers Med 2021; 11:1043. [PMID: 34683184 PMCID: PMC8541473 DOI: 10.3390/jpm11101043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022] Open
Abstract
The progressive loss of the regenerative potential of tissues is one of the most obvious consequences of aging, driven by altered intercellular communication, cell senescence and niche-specific stem cell exhaustion, among other drivers. Mesenchymal tissues, such as bone, cartilage and fat, which originate from mesenchymal stem cell (MSC) differentiation, are especially affected by aging. Senescent MSCs show limited proliferative capacity and impairment in key defining features: their multipotent differentiation and secretory abilities, leading to diminished function and deleterious consequences for tissue homeostasis. In the past few years, several interventions to improve human healthspan by counteracting the cellular and molecular consequences of aging have moved closer to the clinic. Taking into account the MSC exhaustion occurring in aging, advanced therapies based on the potential use of young allogeneic MSCs and derivatives, such as extracellular vesicles (EVs), are gaining attention. Based on encouraging pre-clinical and clinical data, this review assesses the strong potential of MSC-based (cell and cell-free) therapies to counteract age-related consequences in both physiological and premature aging scenarios. We also discuss the mechanisms of action of these therapies and the possibility of enhancing their clinical potential by exposing MSCs to niche-relevant signals.
Collapse
Affiliation(s)
- Arantza Infante
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Clara I Rodríguez
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain
| |
Collapse
|
10
|
Wu Y, Li YJ, Shi LL, Liu Y, Wang Y, Bao X, Xu W, Yao LY, Mbadhi MN, Chen L, Li S, Li XY, Zhang ZF, Zhao S, Zhang RN, Chen SY, Zhang JX, Jun-mingTang. Spatio-temporal model of Meox1 expression control involvement of Sca-1-positive stem cells in neointima formation through the synergistic effect of Rho/CDC42 and SDF-1α/CXCR4. Stem Cell Res Ther 2021; 12:387. [PMID: 34233723 PMCID: PMC8262022 DOI: 10.1186/s13287-021-02466-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/19/2021] [Indexed: 08/30/2023] Open
Abstract
AIMS Neointimal hyperplasia remains a major obstacle in vascular regeneration. Sca-1-positive progenitor cells residing within the vascular adventitia play a crucial role in the assemblage of vascular smooth muscle cell (VSMC) and the formation of the intimal lesion. However, the underlying mechanisms during vascular injury are still unknown. METHODS AND RESULTS Aneointimal formation rat model was prepared by carotid artery injury using 2F-Forgaty. After vascular injury, Meox1 expressions time-dependently increased during the neointima formation, with its levels concurrently increasing in the adventitia, media, and neointima. Meox1 was highly expressed in the adventitia on the first day after vascular injury compared to the expression levels in the media. Conversely, by the 14th day post-injury, Meox1 was extensively expressed more in the media and neointima than the adventitia. Analogous to the change of Meox1 in injured artery, Sca-1+ progenitor cells increased in the adventitia wall in a time-dependent manner and reached peak levels on the 7th day after injury. More importantly, this effect was abolished by Meox1 knockdown with shRNA. The enhanced expression of SDF-1α after vascular injury was associated with the markedly enhanced expression levels of Sca1+ progenitor cell, and these levels were relatively synchronously increased within neointima by the 7th day after vascular injury. These special effects were abolished by the knockdown of Meox1 with shRNA and inhibition of CXCR4 by its inhibitor, AMD3100. Finally, Meox1 concurrently regulated SDF-1α expressions in VSMC via activating CDC42, and CDC42 inhibition abolished these effects by its inhibitor, ZCL278. Also, Meox1 was involved in activation of the CXCR4 expression of Sca-1+ progenitor cells by CDC42. CONCLUSIONS Spatio-temporal model of Meox1 expression regulates theSca-1+progenitor cell migration during the formation of the neointima through the synergistic effect of Rho/CDC42 and SDF-1α/CXCR4.
Collapse
Affiliation(s)
- Yan Wu
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
| | - Yuan-Jin Li
- Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China.
| | - Liu-Liu Shi
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
| | - Yun Liu
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Yan Wang
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Xin Bao
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Wei Xu
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Lu-Yuan Yao
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Magdaleena Naemi Mbadhi
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Long Chen
- Cental Lab, Guoyao-Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Shan Li
- Department of Biochemistry, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Xing-Yuan Li
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Zhi-Feng Zhang
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.,Faculty of Basic Medical Sciences, Institute of Biomedicine, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Sen Zhao
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Ruo-Nan Zhang
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Shi-You Chen
- The Department of Surgery, University of Missouri, Columbia, USA
| | - Jing-Xuan Zhang
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China. .,Faculty of Basic Medical Sciences, Institute of Biomedicine, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
| | - Jun-mingTang
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China. .,Faculty of Basic Medical Sciences, Institute of Biomedicine, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
| |
Collapse
|
11
|
Beliën H, Evens L, Hendrikx M, Bito V, Bronckaers A. Combining stem cells in myocardial infarction: The road to superior repair? Med Res Rev 2021; 42:343-373. [PMID: 34114238 DOI: 10.1002/med.21839] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/04/2021] [Accepted: 05/29/2021] [Indexed: 12/25/2022]
Abstract
Myocardial infarction irreversibly destroys millions of cardiomyocytes in the ventricle, making it the leading cause of heart failure worldwide. Over the past two decades, many progenitor and stem cell types were proposed as the ideal candidate to regenerate the heart after injury. The potential of stem cell therapy has been investigated thoroughly in animal and human studies, aiming at cardiac repair by true tissue replacement, by immune modulation, or by the secretion of paracrine factors that stimulate endogenous repair processes. Despite some successful results in animal models, the outcome from clinical trials remains overall disappointing, largely due to the limited stem cell survival and retention after transplantation. Extensive interest was developed regarding the combinational use of stem cells and various priming strategies to improve the efficacy of regenerative cell therapy. In this review, we provide a critical discussion of the different stem cell types investigated in preclinical and clinical studies in the field of cardiac repair. Moreover, we give an update on the potential of stem cell combinations as well as preconditioning and explore the future promises of these novel regenerative strategies.
Collapse
Affiliation(s)
- Hanne Beliën
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Agoralaan, Diepenbeek, Belgium
| | - Lize Evens
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Agoralaan, Diepenbeek, Belgium
| | - Marc Hendrikx
- Faculty of Medicine and Life Sciences, UHasselt-Hasselt University, Agoralaan, Diepenbeek, Belgium
| | - Virginie Bito
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Agoralaan, Diepenbeek, Belgium
| | - Annelies Bronckaers
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Agoralaan, Diepenbeek, Belgium
| |
Collapse
|
12
|
Purvis N, Kumari S, Chandrasekera D, Bellae Papannarao J, Gandhi S, van Hout I, Coffey S, Bunton R, Sugunesegran R, Parry D, Davis P, Williams MJA, Bahn A, Katare R. Diabetes induces dysregulation of microRNAs associated with survival, proliferation and self-renewal in cardiac progenitor cells. Diabetologia 2021; 64:1422-1435. [PMID: 33655378 DOI: 10.1007/s00125-021-05405-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
AIMS/HYPOTHESIS Diabetes mellitus causes a progressive loss of functional efficacy in stem cells, including cardiac progenitor cells (CPCs). The underlying molecular mechanism is still not known. MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate genes at the post-transcriptional level. We aimed to determine if diabetes mellitus induces dysregulation of miRNAs in CPCs and to test if in vitro therapeutic modulation of miRNAs would improve the functions of diabetic CPCs. METHODS CPCs were isolated from a mouse model of type 2 diabetes (db/db), non-diabetic mice and human right atrial appendage heart tissue. Total RNA isolated from mouse CPCs was miRNA profiled using Nanostring analysis. Bioinformatic analysis was employed to predict the functional effects of altered miRNAs. MS analysis was applied to determine the targets, which were confirmed by western blot analysis. Finally, to assess the beneficial effects of therapeutic modulation of miRNAs in vitro and in vivo, prosurvival miR-30c-5p was overexpressed in mouse and human diabetic CPCs, and the functional consequences were determined by measuring the level of apoptotic cell death, cardiac function and mitochondrial membrane potential (MMP). RESULTS Among 599 miRNAs analysed in mouse CPCs via Nanostring analysis, 16 miRNAs showed significant dysregulation in the diabetic CPCs. Using bioinformatics tools and quantitative real-time PCR (qPCR) validation, four altered miRNAs (miR-30c-5p, miR-329-3p, miR-376c-3p and miR-495-3p) were identified to play an important role in cell proliferation and survival. Diabetes mellitus significantly downregulated miR-30c-5p, while it upregulated miR-329-3p, miR-376c-3p and miR-495-3p. MS analysis revealed proapoptotic voltage-dependent anion-selective channel 1 (VDAC1) as a direct target for miR-30c-5p, and cell cycle regulator, cyclin-dependent protein kinase 6 (CDK6), as the direct target for miR-329-3p, miR-376c-3p and miR-495-3p. Western blot analyses showed a marked increase in VDAC1 expression, while CDK6 expression was downregulated in diabetic CPCs. Finally, in vitro and in vivo overexpression of miR-30c-5p markedly reduced the apoptotic cell death and preserved MMP in diabetic CPCs via inhibition of VDAC1. CONCLUSIONS/INTERPRETATION Our results demonstrate that diabetes mellitus induces a marked dysregulation of miRNAs associated with stem cell survival, proliferation and differentiation, and that therapeutic overexpression of prosurvival miR-30c-5p reduced diabetes-induced cell death and loss of MMP in CPCs via the newly identified target for miR-30c-5p, VDAC1.
Collapse
Affiliation(s)
- Nima Purvis
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sweta Kumari
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Dhananjie Chandrasekera
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Jayanthi Bellae Papannarao
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sophie Gandhi
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Isabelle van Hout
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sean Coffey
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Richard Bunton
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ramanen Sugunesegran
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Dominic Parry
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Philip Davis
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Michael J A Williams
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Andrew Bahn
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| | - Rajesh Katare
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
13
|
Cardiac Differentiation of Mesenchymal Stem Cells: Impact of Biological and Chemical Inducers. Stem Cell Rev Rep 2021; 17:1343-1361. [PMID: 33864233 DOI: 10.1007/s12015-021-10165-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular disorders (CVDs) are the leading cause of global death, widely occurs due to irreparable loss of the functional cardiomyocytes. Stem cell-based therapeutic approaches, particularly the use of Mesenchymal Stem Cells (MSCs) is an emerging strategy to regenerate myocardium and thereby improving the cardiac function after myocardial infarction (MI). Most of the current approaches often employ the use of various biological and chemical factors as cues to trigger and modulate the differentiation of MSCs into the cardiac lineage. However, the recent advanced methods of using specific epigenetic modifiers and exosomes to manipulate the epigenome and molecular pathways of MSCs to modify the cardiac gene expression yield better profiled cardiomyocyte like cells in vitro. Hitherto, the role of cardiac specific inducers triggering cardiac differentiation at the cellular and molecular level is not well understood. Therefore, the current review highlights the impact and recent trends in employing biological and chemical inducers on cardiac differentiation of MSCs. Thereby, deciphering the interactions between the cellular microenvironment and the cardiac inducers will help us to understand cardiomyogenesis of MSCs. Additionally, the review also provides an insight on skeptical roles of the cell free biological factors and extracellular scaffold assisted mode for manipulation of native and transplanted stem cells towards translational cardiac research.
Collapse
|
14
|
Roosen K, Scheld M, Mandzhalova M, Clarner T, Beyer C, Zendedel A. CXCL12 inhibits inflammasome activation in LPS-stimulated BV2 cells. Brain Res 2021; 1763:147446. [PMID: 33766517 DOI: 10.1016/j.brainres.2021.147446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
The activation of the CXCL12-CXCR4 signaling axis is implicated in the regulation of cell survival, proliferation, and mobilization of bone marrow stem cells into the injured site. We have shown in a previous study that intrathecal administration of CXCL12 reduces spinal cord tissue damage and neuroinflammation and provides functional improvement by reducing inflammasome activity and local inflammatory processes in an experimental spinal cord injury (SCI) rat model. Here, we aimed at investigating whether these neuroprotective effects rely on the control of CXCL12 signaling on microglial activation as microglia cells are known to be the primary immune cells of the brain. LPS induced the expression of the inflammasome components NLRP3, NLRC4 and ASC, the secretion of the cytokines IL-1b and IL-18 and the activation of caspase-1 protease in BV2 cells. Pre-treatment with CXCL12 significantly reduced LPS-induced IL-1b/IL-18 secretion and inflammasome induction. Our results also showed that CXCL12 can suppress caspase-1 activity, which leads to a decrease of SCI-related induction of active IL-1b.
Collapse
Affiliation(s)
- Kenza Roosen
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Miriam Scheld
- Anatomy and Cell Biology, University of Augsburg, 86159 Augsburg, Germany
| | | | - Tim Clarner
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
15
|
Dergilev KV, Shevchenko EK, Tsokolaeva ZI, Beloglazova IB, Zubkova ES, Boldyreva MA, Menshikov MY, Ratner EI, Penkov D, Parfyonova YV. Cell Sheet Comprised of Mesenchymal Stromal Cells Overexpressing Stem Cell Factor Promotes Epicardium Activation and Heart Function Improvement in a Rat Model of Myocardium Infarction. Int J Mol Sci 2020; 21:ijms21249603. [PMID: 33339427 PMCID: PMC7766731 DOI: 10.3390/ijms21249603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Cell therapy of the post-infarcted myocardium is still far from clinical use. Poor survival of transplanted cells, insufficient regeneration, and replacement of the damaged tissue limit the potential of currently available cell-based techniques. In this study, we generated a multilayered construct from adipose-derived mesenchymal stromal cells (MSCs) modified to secrete stem cell factor, SCF. In a rat model of myocardium infarction, we show that transplantation of SCF producing cell sheet induced activation of the epicardium and promoted the accumulation of c-kit positive cells in ischemic muscle. Morphometry showed the reduction of infarct size (16%) and a left ventricle expansion index (0.12) in the treatment group compared to controls (24-28%; 0.17-0.32). The ratio of viable myocardium was more than 1.5-fold higher, reaching 49% compared to the control (28%) or unmodified cell sheet group (30%). Finally, by day 30 after myocardium infarction, SCF-producing cell sheet transplantation increased left ventricle ejection fraction from 37% in the control sham-operated group to 53%. Our results suggest that, combining the genetic modification of MSCs and their assembly into a multilayered construct, we can provide prolonged pleiotropic effects to the damaged heart, induce endogenous regenerative processes, and improve cardiac function.
Collapse
Affiliation(s)
- Konstantin V. Dergilev
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow 121552, Russia; (K.V.D.); (Z.I.T.); (I.B.B.); (E.S.Z.); (M.A.B.); (M.Y.M.); (E.I.R.); (D.P.); (Y.V.P.)
| | - Evgeny K. Shevchenko
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow 121552, Russia; (K.V.D.); (Z.I.T.); (I.B.B.); (E.S.Z.); (M.A.B.); (M.Y.M.); (E.I.R.); (D.P.); (Y.V.P.)
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia
- Correspondence:
| | - Zoya I. Tsokolaeva
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow 121552, Russia; (K.V.D.); (Z.I.T.); (I.B.B.); (E.S.Z.); (M.A.B.); (M.Y.M.); (E.I.R.); (D.P.); (Y.V.P.)
- Research Institute of General Reanimatology, Russian Academy of Medical Sciences, Moscow 107031, Russia
| | - Irina B. Beloglazova
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow 121552, Russia; (K.V.D.); (Z.I.T.); (I.B.B.); (E.S.Z.); (M.A.B.); (M.Y.M.); (E.I.R.); (D.P.); (Y.V.P.)
| | - Ekaterina S. Zubkova
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow 121552, Russia; (K.V.D.); (Z.I.T.); (I.B.B.); (E.S.Z.); (M.A.B.); (M.Y.M.); (E.I.R.); (D.P.); (Y.V.P.)
| | - Maria A. Boldyreva
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow 121552, Russia; (K.V.D.); (Z.I.T.); (I.B.B.); (E.S.Z.); (M.A.B.); (M.Y.M.); (E.I.R.); (D.P.); (Y.V.P.)
| | - Mikhail Yu. Menshikov
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow 121552, Russia; (K.V.D.); (Z.I.T.); (I.B.B.); (E.S.Z.); (M.A.B.); (M.Y.M.); (E.I.R.); (D.P.); (Y.V.P.)
| | - Elizaveta I. Ratner
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow 121552, Russia; (K.V.D.); (Z.I.T.); (I.B.B.); (E.S.Z.); (M.A.B.); (M.Y.M.); (E.I.R.); (D.P.); (Y.V.P.)
| | - Dmitry Penkov
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow 121552, Russia; (K.V.D.); (Z.I.T.); (I.B.B.); (E.S.Z.); (M.A.B.); (M.Y.M.); (E.I.R.); (D.P.); (Y.V.P.)
| | - Yelena V. Parfyonova
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow 121552, Russia; (K.V.D.); (Z.I.T.); (I.B.B.); (E.S.Z.); (M.A.B.); (M.Y.M.); (E.I.R.); (D.P.); (Y.V.P.)
- Faculty of Medicine, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
16
|
Zhang X, Wang C, Zhao D, Chen X, Zhang C, Zheng J, Liu X. Zinc deficiency induces abnormal development of the myocardium by promoting SENP5 overexpression. PLoS One 2020; 15:e0242606. [PMID: 33211757 PMCID: PMC7676719 DOI: 10.1371/journal.pone.0242606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/05/2020] [Indexed: 01/09/2023] Open
Abstract
Gestational zinc deficiency is a cause of congenital heart disease in the fetus, and sentrin/small ubiquitin-like modifier (SUMO)-specific proteases (SENPs) as deSUMOylation enzymes play a crucial role in the development of cardiac structures. However, current studies of the regulation and function of SENP in zinc-deficient status during heart development remain limited. In this study, SUMO1 modification was found to gradually decrease during heart development, and the level of SENP5 exhibited a similar trend to SUMO1 conjugation. In addition, zinc deficiency resulted in cardiac dysplasia, increased cell apoptosis, decreased cell viability, and differentiation inhibition of hiPSC-CMs. In order to investigate the function of SENP5 in zinc deficiency, hiPSC-CMs were transfected with SENP5 small interfering RNA. The negative effects of zinc lacking conditions were reversed with depletion of SENP5. It was confirmed that zinc deficiency induced abnormal differentiation of hiPSCs and increased apoptosis of hiPSC-CMs by promoting SENP5 overexpression, which led to cardiac dysplasia. Thus, it was concluded that SENP5 regulates the SUMO1 deconjugation during heart development and zinc deficiency may reduce conjugated SUMO by promoting SENP5 overexpression, which induces abnormal development of the myocardium.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Neonatology, Tianjin Medical University, Tianjin, P.R. China
| | - Cuancuan Wang
- Department of Cardiology, Tianjin Fifth Central Hospital, Tianjin, P.R. China
| | - Dan Zhao
- Department of Neonatology, The Second Hospital of Tianjin Medical University, Tianjin, P.R. China
| | - Xuhong Chen
- Department of Obstetrics and Gynecology, Tianjin Fifth Central Hospital, Tianjin, P.R. China
| | - Chunyan Zhang
- Department of Pharmacy, Tianjin Binhai New Area Hospital of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Jun Zheng
- Department of Neonatology, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, P.R. China
| | - Xiaozhi Liu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin, P.R. China
| |
Collapse
|
17
|
Ryu JS, Jeong EJ, Kim JY, Park SJ, Ju WS, Kim CH, Kim JS, Choo YK. Application of Mesenchymal Stem Cells in Inflammatory and Fibrotic Diseases. Int J Mol Sci 2020; 21:ijms21218366. [PMID: 33171878 PMCID: PMC7664655 DOI: 10.3390/ijms21218366] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells that can be isolated from various tissues in the adult body. MSCs should be characterized by three criteria for regenerative medicine. MSCs must (1) adhere to plastic surfaces, (2) express specific surface antigens, and (3) differentiate into mesodermal lineages, including chondrocytes, osteoblasts, and adipocytes, in vitro. Interestingly, MSCs have immunomodulatory features and secrete trophic factors and immune receptors that regulate the microenvironment in host tissue. These specific and unique therapeutic properties make MSCs ideal as therapeutic agents in vivo. Specifically, pre-clinical and clinical investigators generated inflammatory and fibrotic diseases models, and then transplantation of MSCs into diseases models for therapeutic effects investigation. In this review, we characterize MSCs from various tissues and describe their applications for treating various inflammation and fibrotic diseases.
Collapse
Affiliation(s)
- Jae-Sung Ryu
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University, Daejeon 35365, Korea; (J.-S.R.); (J.-Y.K.)
- Department of Biomedical Informatics, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Eun-Jeong Jeong
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 54538, Korea; (E.-J.J.); (S.J.P.); (W.S.J.)
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Jong-Yeup Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University, Daejeon 35365, Korea; (J.-S.R.); (J.-Y.K.)
- Department of Biomedical Informatics, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Soon Ju Park
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 54538, Korea; (E.-J.J.); (S.J.P.); (W.S.J.)
- Institute for Glycoscience, Wonkwang University, Iksan 54538, Korea
| | - Won Seok Ju
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 54538, Korea; (E.-J.J.); (S.J.P.); (W.S.J.)
- Institute for Glycoscience, Wonkwang University, Iksan 54538, Korea
| | - Chang-Hyun Kim
- College of Medicine, Dongguk University, Goyang 10326, Korea;
| | - Jang-Seong Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34141, Korea
| | - Young-Kug Choo
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 54538, Korea; (E.-J.J.); (S.J.P.); (W.S.J.)
- Institute for Glycoscience, Wonkwang University, Iksan 54538, Korea
- Correspondence:
| |
Collapse
|
18
|
Zhou B, Ge T, Zhou L, Jiang L, Zhu L, Yao P, Yu Q. Dimethyloxalyl Glycine Regulates the HIF-1 Signaling Pathway in Mesenchymal Stem Cells. Stem Cell Rev Rep 2020; 16:702-710. [DOI: 10.1007/s12015-019-09947-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Yang YJ, Qian HY, Song L, Geng YJ, Gao RL, Li N, Wang H, Tian XQ, Huang J, Huang PS, Xu J, Shen R, Lu MJ, Zhao SH, Wu WC, Wu Y, Zhang J, Qian J, Xu JY, Xiong YY. Strengthening effects of bone marrow mononuclear cells with intensive atorvastatin in acute myocardial infarction. Open Heart 2020; 7:e001139. [PMID: 32393654 PMCID: PMC7223465 DOI: 10.1136/openhrt-2019-001139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/20/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To test whether intensive atorvastatin (ATV) increases the efficacy of transplantation with autologous bone marrow mononuclear cells (MNCs) in patients suffering from anterior ST-elevated myocardial infarction (STEMI). METHODS This clinical trial was under a 2×2 factorial design, enrolling 100 STEMI patients, randomly into four groups of regular (RA) or intensive ATV (IA) with MNCs or placebo. The primary endpoint was the change of left ventricular ejection fraction (LVEF) at 1-year follow-up from baseline, primarily assessed by MRI. The secondary endpoints included other parameters of cardiac function, remodelling and regeneration determined by MRI, echocardiography, positron emission tomography (PET) and biomarkers. RESULTS All the STEMI patients with transplantation of MNCs showed significantly increased LVEF change values than those with placebo (p=0.01) with only in the IA+MNCs patients group demonstrating significantly elevation of LVEF than in the IA+placebo group (+12.6% (95%CI 10.4 to 19.3) vs +5.0% (95%CI 4.0 to 10.0), p=0.001), pointing to a better synergy between ATV and MNCs (p=0.019). PET analysis revealed significantly increased viable areas of myocardium (p=0.015), while the scar sizes (p=0.026) and blood aminoterminal pro-B-type natriuretic peptide (p<0.034) reduced. All these above benefits of MNCs were also attributed to IA+MNCs instead of RA+MNCs group of patients with STEMI. CONCLUSIONS Intensive ATV treatment augments the therapeutic efficacy of MNCs in patients with anterior STEMI at the convalescent stage. The treatment with the protocol of intensive ATV and MNC combination offers a clinically essential approach for myocardial infarction. TRIAL REGISTRATION NUMBER NCT00979758.
Collapse
Affiliation(s)
- Yue-Jin Yang
- Department of Cardiology, Center for Coronary Heart Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hai-Yan Qian
- Department of Cardiology, Center for Coronary Heart Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Song
- Department of Cardiology, Center for Coronary Heart Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong-Jian Geng
- The Center for Cardiovascular Biology and Atherosclerosis, Department of Internal Medicine, University of Texas McGovern School of Medicine at Houston, Houston, Texas, USA
| | - Run-Lin Gao
- Department of Cardiology, Center for Coronary Heart Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Na Li
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hong Wang
- Center for Cardiac Critical Care, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Xia-Qiu Tian
- Center for Cardiac Critical Care, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Ji Huang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Pei-Sen Huang
- Department of Cardiology, Center for Coronary Heart Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Xu
- Department of Cardiology, Center for Coronary Heart Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Shen
- Department of Nuclear Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min-Jie Lu
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shi-Hua Zhao
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei-Chun Wu
- Department of Echocardiography, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Wu
- Department of Cardiology, Center for Coronary Heart Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Zhang
- Department of Cardiology, Center for Coronary Heart Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Qian
- Department of Cardiology, Center for Coronary Heart Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun-Yan Xu
- Department of Cardiology, Center for Coronary Heart Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Yan Xiong
- Department of Cardiology, Center for Coronary Heart Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
He F, Zhong X, Lin Z, Lin J, Qiu M, Li X, Hu Z. Plasma exo-hsa_circRNA_0056616: A potential biomarker for lymph node metastasis in lung adenocarcinoma. J Cancer 2020; 11:4037-4046. [PMID: 32368286 PMCID: PMC7196257 DOI: 10.7150/jca.30360] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/04/2020] [Indexed: 12/20/2022] Open
Abstract
Background: To investigate the relationship between CXCR4-related circular RNAs (circRNAs) in exosomes and lymph node metastasis of lung adenocarcinoma. Methods: Totally 41 lung adenocarcinoma tissues (21 with lymph node metastasis and 20 without) were collected. Expression of CXCR4 protein was detected by western blotting analysis. A stable PC9/CXCR4-shRNA and PC14/CXCR4-shRNA knockdown lung adenocarcinoma cell lines were established and subjected to functional assays (cell proliferation, colony formation, migration and invasion) for phenotype changes. Exo-hsa-circRNAs (has-circRNAs in exosomes) were detected in vivo and in vitro. The diagnostic value of differentially expressed exo-has-circRNAs was evaluated. Results: Expression levels of CXCR4 were higher in patients with lymph node metastasis than in those without (P = 0.001). Silencing CXCR4 expression in PC9 and PC14 cell lines with short hairpin RNA could effectively abolish colony formation frequency, proliferation rate, migration rate, and the number of invasive cells (all P < 0.001). Exo_circRNA_0056616 was detected in both PC-9/CXCR4-shRNA cells and lung adenocarcinoma plasma at significantly higher levels than in the corresponding control (P < 0.001). When a receiver operating characteristic (ROC) curve for plasma exo-hsa_circRNA_0056616 levels and diagnosis of lymph node metastasis of lung adenocarcinoma was generated, a cutoff value of 0.394 was identified with an area under the curve of 0.812 (95% confidence interval 0.720-0.903), a sensitivity of 0.792, and specificity of 0.810. Conclusions: Taken together, our findings suggested that CXCR4 was higher in the lung adenocarcinoma tissues with lymph node metastasis. Higher plasma levels of exo-hsa_circRNA_0056616 in these patients also suggest that this circRNA represents a potential biomarker for lymph node metastasis predictor in lung adenocarcinoma.
Collapse
Affiliation(s)
- Fei He
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350108, China; Fujian Provincial Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108, China
| | - Xuejing Zhong
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350108, China; Fujian Provincial Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108, China.,Department of Science and Education, The Affiliated Longyan First Hospital of Fujian Medical University, Longyan, 364000, China
| | - Zheng Lin
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350108, China; Fujian Provincial Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108, China
| | - Jianbo Lin
- Department of Chest Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, China
| | - Minglian Qiu
- Department of Chest Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, China
| | - Xu Li
- Department of Chest Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, China
| | - Zhijian Hu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350108, China; Fujian Provincial Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108, China
| |
Collapse
|
21
|
Aceves JL, López RV, Terán PM, Escobedo CM, Marroquín Muciño MA, Castillo GG, Estrada MM, García FR, Quiroz GD, Montaño Estrada LF. Autologous CXCR4+ Hematopoietic Stem Cells Injected into the Scar Tissue of Chronic Myocardial Infarction Patients Normalizes Tissue Contractility and Perfusion. Arch Med Res 2020; 51:135-144. [PMID: 32113784 DOI: 10.1016/j.arcmed.2019.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Chronic myocardial infarction (CMI), represents a public health and a financial burden. Since stem cell transplant is used to regenerate cardiac tissue after acute myocardial infarction. AIM OF THE STUDY To determine if autologous CXCR4 stem cells could restore damaged myocardial tissue in patients with CMI lesions. METHODS 20 NYHA grade III male patients with CMI defined by clinical, biochemical, ECG and echocardiographic parameters were included. Patients were treated with G-CSF for 6 d before isolating their autologous stem cells from PBMCs. Cell phenotyping was done by cytofluorometry using monoclonal antibodies (anti-CXCR4, -CD34, -48, -117, -133, -Ki67, -SDF1 and CXCR4); CXCR4 cell subpopulations isolated by sorting were adjusted to 1 × 108 cells by subpopulation and injected in a circular pattern into the cicatrix previously defined by echocardiography. RESULTS Patients were followed for 6 and 12 months. Six months after cell implant improvements in left ventricle ejection fraction (from 33-50%), stress rate values (from -3/-9% to -18/-22%), stress tests (from 4-12 METS), and the quantity of left ventricle affected segments (3-9) disappeared according to the G-SPECT images. 12 months evaluations did not show significant differences. Interestingly, 3 months after cell implant the ECG showed normal electrical activity in 9 patients whereas after 6 months it was normal in all the patients. CONCLUSIONS These results ratify that locally injected autologous CXCR4+ bone marrow-derived stem cells have a physiological and a clinical impact in patients with CMI.
Collapse
Affiliation(s)
- José Luis Aceves
- Departamento de Cirugía Cardiotorácica, Centro Médico Nacional 20 de noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, Mexico.
| | - Rafael Vilchis López
- Departamento de Cirugía Cardiotorácica, Centro Médico Nacional 20 de noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, Mexico
| | - Paúl Mondragón Terán
- Laboratorio de Medicina Regenerativa e Ingeniería de Tejidos, Centro Médico Nacional 20 de noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, Mexico
| | - Carmen Martínez Escobedo
- Departamento de Cardiología Nuclear, Centro Médico Nacional 20 de noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, Mexico
| | - Mario A Marroquín Muciño
- Laboratorio de Medicina Regenerativa e Ingeniería de Tejidos, Centro Médico Nacional 20 de noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, Mexico
| | - Guillermo García Castillo
- Laboratorio de Medicina Regenerativa e Ingeniería de Tejidos, Centro Médico Nacional 20 de noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, Mexico
| | - Miriam Marmolejo Estrada
- Unidad de Aféresis, Banco de Sangre, Centro Médico Nacional 20 de noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, Mexico
| | - Fernando Rodríguez García
- Unidad de Aféresis, Banco de Sangre, Centro Médico Nacional 20 de noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, Mexico
| | - Guillermo Díaz Quiroz
- Departamento de Cirugía Cardiotorácica, Centro Médico Nacional 20 de noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, Mexico
| | - Luis Felipe Montaño Estrada
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
22
|
Li Calzi S, Cook T, Della Rocca DG, Zhang J, Shenoy V, Yan Y, Espejo A, Rathinasabapathy A, Jacobsen MH, Salazar T, Sandusky GE, Shaw LC, March K, Raizada MK, Pepine CJ, Katovich MJ, Grant MB. Complementary Embryonic and Adult Cell Populations Enhance Myocardial Repair in Rat Myocardial Injury Model. Stem Cells Int 2019; 2019:3945850. [PMID: 31781239 PMCID: PMC6875168 DOI: 10.1155/2019/3945850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/09/2019] [Accepted: 10/01/2019] [Indexed: 11/18/2022] Open
Abstract
We compared the functional outcome of Isl-1+ cardiac progenitors, CD90+ bone marrow-derived progenitor cells, and the combination of the two in a rat myocardial infarction (MI) model. Isl-1+ cells were isolated from embryonic day 12.5 (E12.5) rat hearts and expanded in vitro. Thy-1+/CD90+ cells were isolated from the bone marrow of adult Sprague-Dawley rats by immunomagnetic cell sorting. Six-week-old female Sprague-Dawley rats underwent permanent left anterior descending (LAD) coronary artery ligation and received intramyocardial injection of either saline, Isl-1+ cells, CD90+ cells, or a combination of Isl-1+ and CD90+ cells, at the time of infarction. Cells were delivered transepicardially to the peri-infarct zone. Left ventricular function was assessed by transthoracic echocardiography at 1- and 4-week post-MI and by Millar catheterization (-dP/dt and +dP/dt) at 4-week post-MI. Fluorescence in situ hybridization (Isl-1+cells) and monochrystalline iron oxide nanoparticles labeling (MION; CD90+ cells) were performed to assess biodistribution of transplanted cells. Only the combination of cells demonstrated a significant improvement of cardiac function as assessed by anterior wall contractility, dP/dt (max), and dP/dt (min), compared to Isl-1+ or CD90+ cell monotherapies. In the combination cell group, viable cells were detected at week 4 when anterior wall motion was completely restored. In conclusion, the combination of Isl-1+ cardiac progenitors and adult bone marrow-derived CD90+ cells shows prolonged and robust myocardial tissue repair and provides support for the use of complementary cell populations to enhance myocardial repair.
Collapse
Affiliation(s)
- Sergio Li Calzi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35294-0001, USA
| | - Todd Cook
- Department of Medicine, IUPUI, Indianapolis, IN 46202, USA
| | | | - Juan Zhang
- Department of Pharmacodynamics, University of Florida, Gainesville, FL 32611, USA
| | - Vinayak Shenoy
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32611, USA
| | - Yuanqing Yan
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew Espejo
- Department of Pharmacodynamics, University of Florida, Gainesville, FL 32611, USA
| | | | - Max H. Jacobsen
- Pathology and Laboratory Med., IUPUI, Indianapolis, IN 46202, USA
| | - Tatiana Salazar
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35294-0001, USA
| | | | - Lynn C. Shaw
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35294-0001, USA
| | - Keith March
- Department of Medicine, IUPUI, Indianapolis, IN 46202, USA
| | - Mohan K. Raizada
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32611, USA
| | - Carl J. Pepine
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Michael J. Katovich
- Department of Pharmacodynamics, University of Florida, Gainesville, FL 32611, USA
| | - Maria B. Grant
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35294-0001, USA
| |
Collapse
|
23
|
Acetaldehyde dehydrogenase 2 deficiency exacerbates cardiac fibrosis by promoting mobilization and homing of bone marrow fibroblast progenitor cells. J Mol Cell Cardiol 2019; 137:107-118. [PMID: 31668970 DOI: 10.1016/j.yjmcc.2019.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/22/2022]
Abstract
Cardiac fibrosis is a common feature of various cardiovascular diseases. Previous studies showed that acetaldehyde dehydrogenase 2 (ALDH2) deficiency exacerbated pressure overload-induced heart failure. However, the role and mechanisms of cardiac fibrosis in this process remain largely unknown. This study aimed to investigate the effect of ALDH2 deficiency on cardiac fibrosis in transverse aortic constriction (TAC) induced pressure overload model in mice. Echocardiography and histological analysis revealed cardiac dysfunction and enhanced cardiac fibrosis in TAC-operated animals; ALDH2 deficiency further aggravated these changes. ALDH2 chimeric mice were generated by bone marrow (BM) transplantation of WT mice into the lethally irradiated ALDH2KO mice. The proportion of circulating fibroblast progenitor cells (FPCs) and ROS level in BM after TAC were significantly higher in ALDH2KO mice than in ALDH2 chimeric mice. Furthermore, FPCs were isolated and cultured for in vitro mechanistic studies. The results showed that the stem cell-derived factor 1 (SDF-1)/C-X-C chemokine receptor 4 (CXCR4) axis played a major role in the recruitment of FPCs. In conclusion, our research reveals that increased bone marrow FPCs mobilization and myocardial homing contribute to the enhanced cardiac fibrosis and dysfunction induced by TAC in ALDH2 KO mice via exacerbating accumulation of ROS in BM and myocardial SDF-1 expression.
Collapse
|
24
|
Premer C, Wanschel A, Porras V, Balkan W, Legendre-Hyldig T, Saltzman RG, Dong C, Schulman IH, Hare JM. Mesenchymal Stem Cell Secretion of SDF-1α Modulates Endothelial Function in Dilated Cardiomyopathy. Front Physiol 2019; 10:1182. [PMID: 31616309 PMCID: PMC6769040 DOI: 10.3389/fphys.2019.01182] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/02/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Endothelial dysfunction contributes to the pathophysiology of dilated cardiomyopathy (DCM). Allogeneic but not autologous mesenchymal stem cells (MSCs) improve endothelial function in DCM patients. We hypothesized that these effects are modulated by release of stromal derived factor-1α (SDF-1α). METHODS Plasma TNFα and endothelial progenitor cell-colony forming units (EPC-CFUs) were assessed at baseline and 3-months post-injection in a subset of POSEIDON-DCM patients that received autologous (n = 11) or allogeneic (n = 10) MSCs. SDF-1α secretion by MSCs, endothelial cell (EC) TNFα mRNA expression, and levels of reactive oxygen species (ROS) in response to SDF-1α were measured in vitro. RESULTS As previously shown, DCM patients (n = 21) had reduced EPC-CFUs at baseline (3 ± 3), which were restored to normal by allogeneic MSCs 3-months post-treatment (Δ10 ± 4). DCM patients had elevated baseline plasma TNFα (n = 15, 22 ± 9.4 pg/mL). Allogeneic MSCs (n = 8) decreased, and autologous MSCs (n = 7) increased, plasma TNFα (-7.1 ± 3.1 vs. 22.2 ± 17.1 pg/mL, respectively; P = 0.0005). In culture, autologous MSCs (n = 11) secreted higher levels of SDF-1α than allogeneic MSCs (n = 6) [76.0 (63.7, 100.9) vs. 22.8 (7.2, 43.5) pg/mL, P = 0.0002]. SDF-1α and plasma TNFα negatively correlated with EPC-CFUs in both treatment groups (R = -0.7, P = 0.0004). ECs treated with 20 ng SDF-1α expressed lower levels of TNFα mRNA than cells treated with 100 ng (0.7 ± 0.2 vs. 2.1 ± 0.3, P = 0.0008). SDF-1α at low but not high concentration inhibited the generation of ROS. CONCLUSION MSC secretion of SDF-1α inversely correlates with EPC-CFU production in DCM patients and therefore may be a modulator of MSC therapeutic effect in this clinical setting. CLINICAL TRIAL REGISTRATION https://clinicaltrials.gov/ct2/show/NCT01392625, identifier NCT01392625.
Collapse
Affiliation(s)
- Courtney Premer
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Amarylis Wanschel
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Valeria Porras
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Tatiana Legendre-Hyldig
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Russell G. Saltzman
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Chunming Dong
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Ivonne Hernandez Schulman
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
- Katz Family Division of Nephrology and Hypertension, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Joshua M. Hare
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
25
|
Wu Y, Liu X, Guo LY, Zhang L, Zheng F, Li S, Li XY, Yuan Y, Liu Y, Yan YW, Chen SY, Wang JN, Zhang JX, Tang JM. S100B is required for maintaining an intermediate state with double-positive Sca-1+ progenitor and vascular smooth muscle cells during neointimal formation. Stem Cell Res Ther 2019; 10:294. [PMID: 31547879 PMCID: PMC6757428 DOI: 10.1186/s13287-019-1400-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Introduction Accumulation of vascular smooth muscle cells (VSMCs) within the neointimal region is a hallmark of atherosclerosis and vessel injury. Evidence has shown that Sca-1-positive (Sca-1+) progenitor cells residing in the vascular adventitia play a crucial role in VSMC assemblages and intimal lesions. However, the underlying mechanisms, especially in the circumstances of vascular injury, remain unknown. Methods and results The neointimal formation model in rats was established by carotid artery balloon injury using a 2F-Forgaty catheter. Most Sca-1+ cells first appeared at the adventitia of the vascular wall. S100B expressions were highest within the adventitia on the first day after vessel injury. Along with the sequentially increasing trend of S100B expression in the intima, media, and adventitia, respectively, the numbers of Sca-1+ cells were prominently increased at the media or neointima during the time course of neointimal formation. Furthermore, the Sca-1+ cells were markedly increased in the tunica media on the third day of vessel injury, SDF-1α expressions were obviously increased, and SDF-1α levels and Sca-1+ cells were almost synchronously increased within the neointima on the seventh day of vessel injury. These effects could effectually be reversed by knockdown of S100B by shRNA, RAGE inhibitor (SPF-ZM1), or CXCR4 blocker (AMD3100), indicating that migration of Sca-1+ cells from the adventitia into the neointima was associated with S100B/RAGE and SDF-1α/CXCR4. More importantly, the intermediate state of double-positive Sca-1+ and α-SMA cells was first found in the neointima of injured arteries, which could be substantially abrogated by using shRNA for S100B or blockade of CXCR4. S100B dose-dependently regulated SDF-1α expressions in VSMCs by activating PI3K/AKT and NF-κB, which were markedly abolished by PI3K/AKT inhibitor wortmannin and enhanced by p65 blocker PDTC. Furthermore, S100B was involved in human umbilical cord-derived Sca-1+ progenitor cells’ differentiation into VSMCs, especially in maintaining the intermediate state of double-positive Sca-1+ and α-SMA. Conclusions S100B triggered neointimal formation in rat injured arteries by maintaining the intermediate state of double-positive Sca-1+ progenitor and VSMCs, which were associated with direct activation of RAGE by S100B and indirect induction of SDF-1α by activating PI3K/AKT and NF-κB. Electronic supplementary material The online version of this article (10.1186/s13287-019-1400-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Wu
- Department of Physiology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xin Liu
- Laboratory Animal Center, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Ling-Yun Guo
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Lei Zhang
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Fei Zheng
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Shan Li
- Department of Biochemistry, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xing-Yuan Li
- Department of Physiology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Ye Yuan
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yu Liu
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yu-Wen Yan
- Department of Physiology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Shi-You Chen
- Department of Physiology & Pharmacology, The University of Georgia, Athens, GA, 30602, USA
| | - Jia-Ning Wang
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Jin-Xuan Zhang
- Department of Physiology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, 442000, Hubei, China. .,Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Jun-Ming Tang
- Department of Physiology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, 442000, Hubei, China. .,Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China. .,Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
26
|
Gude NA, Sussman MA. Cardiac regenerative therapy: Many paths to repair. Trends Cardiovasc Med 2019; 30:338-343. [PMID: 31515053 DOI: 10.1016/j.tcm.2019.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/14/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022]
Abstract
Cardiovascular disease remains the primary cause of death in the United States and in most nations worldwide, despite ongoing intensive efforts to promote cardiac health and treat heart failure. Replacing damaged myocardium represents perhaps the most promising treatment strategy, but also the most challenging given that the adult mammalian heart is notoriously resistant to endogenous repair. Cardiac regeneration following pathologic challenge would require proliferation of surviving tissue, expansion and differentiation of resident progenitors, or transdifferentiation of exogenously applied progenitor cells into functioning myocardium. Adult cardiomyocyte proliferation has been the focus of investigation for decades, recently enjoying a renaissance of interest as a therapeutic strategy for reversing cardiomyocyte loss due in large part to ongoing controversies and frustrations with myocardial cell therapy outcomes. The promise of cardiac cell therapy originated with reports of resident adult cardiac stem cells that could be isolated, expanded and reintroduced into damaged myocardium, producing beneficial effects in preclinical animal models. Despite modest functional improvements, Phase I clinical trials using autologous cardiac derived cells have proven safe and effective, setting the stage for an ongoing multi-center Phase II trial combining autologous cardiac stem cell types to enhance beneficial effects. This overview will examine the history of these two approaches for promoting cardiac repair and attempt to provide context for current and future directions in cardiac regenerative research.
Collapse
Affiliation(s)
- Natalie A Gude
- SDSU Heart Institute and Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Mark A Sussman
- SDSU Heart Institute and Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA.
| |
Collapse
|
27
|
Tian XQ, Yang YJ, Li Q, Xu J, Huang PS, Xiong YY, Li XD, Jin C, Qi K, Jiang LP, Chen GH, Qian L, Liu J, Geng YJ. Combined therapy with atorvastatin and atorvastatin-pretreated mesenchymal stem cells enhances cardiac performance after acute myocardial infarction by activating SDF-1/CXCR4 axis. Am J Transl Res 2019; 11:4214-4231. [PMID: 31396330 PMCID: PMC6684913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/07/2019] [Indexed: 06/10/2023]
Abstract
The SDF-1/CXCR4 signaling plays a critical role in the trafficking of mesenchymal stem cells (MSCs) to the sites of tissue damage. Our recent study demonstrated that atorvastatin (ATV) treatment improved the survival of MSCs, and ATV pretreated MSCs (ATV-MSCs) exhibited enhanced engraftment to injured myocardium. In this study, we investigated whether combined treatment with ATV and ATV-MSCs enhances cardiac repair and regeneration by activating SDF-1/CXCR4 signaling in a rat model of acute myocardial infarction. Rats were randomized into eight groups: the Sham, AMI control and 6 other groups that were subjected to AMI followed by treatment with MSCs, ATV, ATV+MSCs, ATV-MSCs, ATV+ATV-MSCs, ATV+ATV-MSCs+AMD3100 (SDF-1/CXCR4 antagonist), respectively. ATV+ATV-MSCs significantly potentiated targeted recruitment of MSCs to peri-infarct myocardium and resulted in further improvements in cardiac function and reduction in scar size compared with MSCs treatment alone at 4-week after AMI. More importantly, the cardioprotective effects conferred by ATV+ATV-MSCs were almost completely abolished by AMD3100 treatment. Together, our study demonstrated that ATV+ATV-MSCs significantly enhanced the targeted recruitment and survival of transplanted MSCs, and resulted in subsequent cardiac function improvement by augmenting SDF-1/CXCR4 signaling.
Collapse
Affiliation(s)
- Xia-Qiu Tian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100037, People’s Republic of China
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing 100029, People’s Republic of China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100037, People’s Republic of China
| | - Qing Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100037, People’s Republic of China
| | - Jun Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100037, People’s Republic of China
| | - Pei-Sen Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100037, People’s Republic of China
| | - Yu-Yan Xiong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100037, People’s Republic of China
| | - Xiang-Dong Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100037, People’s Republic of China
| | - Chen Jin
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100037, People’s Republic of China
| | - Kang Qi
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100037, People’s Republic of China
| | - Lei-Pei Jiang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100037, People’s Republic of China
| | - Gui-Hao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100037, People’s Republic of China
| | - Li Qian
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina at Chapel HillChapel Hill, North Carolina, 27599, United States
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina at Chapel HillChapel Hill, North Carolina, 27599, United States
| | - Yong-Jian Geng
- The Center for Cardiovascular Biology and Atherosclerosis Research, Department of Internal Medicine, University of Texas Health Science Center at HoustonHouston 77030, Texas, United States
| |
Collapse
|
28
|
Fan M, Huang Y, Chen Z, Xia Y, Chen A, Lu D, Wu Y, Zhang N, Qian J. Efficacy of mesenchymal stem cell therapy in systolic heart failure: a systematic review and meta-analysis. Stem Cell Res Ther 2019; 10:150. [PMID: 31151406 PMCID: PMC6544951 DOI: 10.1186/s13287-019-1258-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/28/2022] Open
Abstract
Background Heart failure (HF) is the end stage of most heart disease. Mesenchymal stem cells (MSCs), with their specific biological effects, have been applied in several clinical trials to evaluate the efficacy in HF therapy. We performed this meta-analysis to review the clinical evidence of their therapeutic effect on HF. Methods Three databases were searched. The outcomes of interest were death, readmission, the 6-min walk test (6MWT), New York Heart Association (NYHA) class and left ventricular ejection fraction (LVEF). The relative risk (RR) and weighted mean difference (WMD) were calculated to evaluate the effects of MSCs on HF compared to placebo. Results A total of nine studies were included, involving 612 patients who underwent MSCs or placebo treatment. The overall rate of death showed a trend of reduction of 36% (RR [CI] = 0.64 [0.35, 1.16], p = 0.143) in the MSC treatment group. The incidence of readmission was reduced by 34% (RR [CI] = 0.66 [0.51, 0.85], p = 0.001). The patients in the MSC treatment group realised an average of 40.44 m (WMD [95% CI] = 40.44 m [19.07, 61.82], p < 0.0001) improvement in 6MWT. The NYHA class was reduced obviously in the MSC group (WMD [95% CI] = − 0.42 [− 0.64, − 0.20], p < 0.0001). The changes of LVEF from baseline were significantly more than 5.25% (WMD [95% CI] = 5.25 [3.58, 6.92], p < 0.0001) in the MSCs group, unlike in the placebo group. Conclusions Our results suggested that MSC treatment is an effective therapy for HF by improving the prognosis and exercise capacity. SCs derived from allosomes have superior therapeutic effects, and intracoronary injection is the optimum MSC delivery approach. Short-term cryopreservation is feasible in MSCs storage or transport.
Collapse
Affiliation(s)
- Mengkang Fan
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yin Huang
- Department of Geriatric Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Zhangwei Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yan Xia
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Ao Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Danbo Lu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yuan Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Ning Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Juying Qian
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
29
|
Williams R. Circulation Research "In This Issue" Anthology. Circ Res 2019; 120:e58-e84. [PMID: 28596178 DOI: 10.1161/res.0000000000000152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Affiliation(s)
- Konstantinos E Hatzistergos
- From the Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, FL.
| | - Anastasia Vedenko
- From the Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, FL
| |
Collapse
|
31
|
Lu D, Liao Y, Zhu SH, Chen QC, Xie DM, Liao JJ, Feng X, Jiang MH, He W. Bone-derived Nestin-positive mesenchymal stem cells improve cardiac function via recruiting cardiac endothelial cells after myocardial infarction. Stem Cell Res Ther 2019; 10:127. [PMID: 31029167 PMCID: PMC6487029 DOI: 10.1186/s13287-019-1217-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Bone-derived mesenchymal stem cell (BMSC) transplantation has been reported to be effective for the treatment of ischemic heart disease, but whether BMSCs are the optimal cell type remains under debate. Increasing numbers of studies have shown that Nestin, an intermediate filament protein, is a potential marker for MSCs, which raises the question of whether Nestin+ cells in BMSCs may play a more crucial role in myocardial repair. METHODS Nestin+ cells were isolated using flow cytometry by gating for CD45- Ter119- CD31- cells from the compact bone of Nestin-GFP transgenic mice, expressing GFP driven by the Nestin promoter. Colony-forming and proliferative curve assays were conducted to determine the proliferative capacity of these cells, while qRT-PCR was used to analyze the mRNA levels of relative chemokines and growth factors. Cardiac endothelial cell (CEC) recruitment was assessed via a transwell assay. Moreover, permanent ligation of the left anterior descending (LAD) coronary artery was performed to establish an acute myocardial infarction (AMI) mouse model. After cell transplantation, conventional echocardiography was conducted 1 and 4 weeks post-MI, and hearts were harvested for hematoxylin-and-eosin (HE) staining and immunofluorescence staining 1 week post-MI. Further evaluation of paracrine factor levels and administration of a neutralizing antibody (TIMP-1, TIMP-2, and CXCL12) or a CXCR4 antagonist (AMD3100) in MI hearts were performed to elucidate the mechanism involved in the chemotactic effect of Nestin+ BMSCs in vivo. RESULTS Compared with Nestin- BMSCs, a greater proliferative capacity of Nestin+ BMSCs was observed, which further exhibited moderately high expression of chemokines instead of growth factors. More CEC recruitment in the Nestin+ BMSC-cocultured group was observed in vitro, while this effect was obviously abolished after treatment with neutralizing antibodies against TIMP-1, TIMP-2, or CXCL12, and more importantly, blocking the CXCL12/CXCR4 axis with a AMD3100 significantly reduced the chemotactic effect of Nestin+ BMSCs. After transplantation into mice exposed to myocardial infarction (MI), Nestin+ BMSC-treated mice showed significantly improved survival and left ventricular function compared with Nestin- BMSC-treated mice. Moreover, endogenous CECs were markedly increased, and chemokine levels were significantly higher, in the infarcted border zone with Nestin+ BMSC treatment. Meanwhile, neutralization of each TIMP-1, TIMP-2, or CXCL12 in vivo could reduce the left ventricular function at 1 and 4 weeks post-MI; importantly, the combined use of these three neutralizing antibodies could make a higher significance on cardiac function. Finally, blocking the CXCL12/CXCR4 axis with AMD3100 significantly reduced the left ventricular function and greatly inhibited Nestin+ BMSC-induced CEC chemotaxis in vivo. CONCLUSIONS These results suggest that Nestin+ BMSC transplantation can improve cardiac function in an AMI model by recruiting resident CECs to the infarcted border region via the CXCL12/CXCR4 chemokine pathway. And we demonstrated that Nestin+BMSC-secreted TIMP-1/2 enhances CXCL12(SDF1α)/CXCR4 axis-driven migration of endogenous Sca-1+ endothelial cells in ischemic heart post-AMI. Taken together, our results show that Nestin is a useful marker for the identification of functional BMSCs and indicate that Nestin+ BMSCs could be a better therapeutic candidate for cardiac repair.
Collapse
Affiliation(s)
- Dihan Lu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yan Liao
- Key Laboratory for Stem Cells and Tissue Engineering, Center for Stem Cell Biology and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Shuang-Hua Zhu
- Department of Cardiology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Qiao-Chao Chen
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Dong-Mei Xie
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Jian-Jun Liao
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xia Feng
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Mei Hua Jiang
- Key Laboratory for Stem Cells and Tissue Engineering, Center for Stem Cell Biology and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People's Republic of China. .,Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Wen He
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
32
|
Hatzistergos KE, Williams AR, Dykxhoorn D, Bellio MA, Yu W, Hare JM. Tumor Suppressors RB1 and CDKN2a Cooperatively Regulate Cell-Cycle Progression and Differentiation During Cardiomyocyte Development and Repair. Circ Res 2019; 124:1184-1197. [PMID: 30744497 DOI: 10.1161/circresaha.118.314063] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE Although rare cardiomyogenesis is reported in the adult mammalian heart, whether this results from differentiation or proliferation of cardiomyogenic cells remains controversial. The tumor suppressor genes RB1 (retinoblastoma) and CDKN2a (cyclin-dependent kinase inhibitor 2a) are critical cell-cycle regulators, but their roles in human cardiomyogenesis remains unclear. OBJECTIVE We hypothesized that developmental activation of RB1 and CDKN2a cooperatively cause permanent cell-cycle withdrawal of human cardiac precursors (CPCs) driving terminal differentiation into mature cardiomyocytes, and that dual inactivation of these tumor suppressor genes promotes myocyte cell-cycle reentry. METHODS AND RESULTS Directed differentiation of human pluripotent stem cells (hPSCs) into cardiomyocytes revealed that RB1 and CDKN2a are upregulated at the onset of cardiac precursor specification, simultaneously with GATA4 (GATA-binding protein 4) homeobox genes PBX1 (pre-B-cell leukemia transcription factor 1) and MEIS1 (myeloid ecotropic viral integration site 1 homolog), and remain so until terminal cardiomyocyte differentiation. In both GATA4+ hPSC cardiac precursors and postmitotic hPSC-cardiomyocytes, RB1 is hyperphosphorylated and inactivated. Transient, stage-specific, depletion of RB1 during hPSC differentiation enhances cardiomyogenesis at the cardiac precursors stage, but not in terminally differentiated hPSC-cardiomyocytes, by transiently upregulating GATA4 expression through a cell-cycle regulatory pathway involving CDKN2a. Importantly, cytokinesis in postmitotic hPSC-cardiomyocytes can be induced with transient, dual RB1, and CDKN2a silencing. The relevance of this pathway in vivo was suggested by findings in a porcine model of cardiac cell therapy post-MI, whereby dual RB1 and CDKN2a inactivation in adult GATA4+ cells correlates with the degree of scar size reduction and endogenous cardiomyocyte mitosis, particularly in response to combined transendocardial injection of adult human hMSCs (bone marrow-derived mesenchymal stromal cells) and cKit+ cardiac cells. CONCLUSIONS Together these findings reveal an important and coordinated role for RB1 and CDKN2a in regulating cell-cycle progression and differentiation during human cardiomyogenesis. Moreover, transient, dual inactivation of RB1 and CDKN2a in endogenous adult GATA4+ cells and cardiomyocytes mediates, at least in part, the beneficial effects of cell-based therapy in a post-MI large mammalian model, a finding with potential clinical implications.
Collapse
Affiliation(s)
- Konstantinos E Hatzistergos
- From the Interdisciplinary Stem Cell Institute (K.E.H., A.R.W., M.A.B., W.Y., J.M.H.), University of Miami, Miller School of Medicine, FL
- Department of Cell Biology (K.E.H.), University of Miami, Miller School of Medicine, FL
| | - Adam R Williams
- From the Interdisciplinary Stem Cell Institute (K.E.H., A.R.W., M.A.B., W.Y., J.M.H.), University of Miami, Miller School of Medicine, FL
- Department of Surgery (A.R.W.), University of Miami, Miller School of Medicine, FL
- Department of Surgery, Duke University School of Medicine, Durham, NC (A.R.W.)
| | - Derek Dykxhoorn
- Department of Human Genetics (D.D.), University of Miami, Miller School of Medicine, FL
- John P. Hussman Institute for Human Genomics (D.D.), University of Miami, Miller School of Medicine, FL
| | - Michael A Bellio
- From the Interdisciplinary Stem Cell Institute (K.E.H., A.R.W., M.A.B., W.Y., J.M.H.), University of Miami, Miller School of Medicine, FL
| | - Wendou Yu
- From the Interdisciplinary Stem Cell Institute (K.E.H., A.R.W., M.A.B., W.Y., J.M.H.), University of Miami, Miller School of Medicine, FL
- Department of Pediatrics (W.Y.), University of Miami, Miller School of Medicine, FL
| | - Joshua M Hare
- From the Interdisciplinary Stem Cell Institute (K.E.H., A.R.W., M.A.B., W.Y., J.M.H.), University of Miami, Miller School of Medicine, FL
- Department of Molecular and Cellular Pharmacology (J.M.H.), University of Miami, Miller School of Medicine, FL
- Cardiology Division, Department of Medicine (J.M.H.), University of Miami, Miller School of Medicine, FL
| |
Collapse
|
33
|
ILK promotes survival and self-renewal of hypoxic MSCs via the activation of lncTCF7-Wnt pathway induced by IL-6/STAT3 signaling. Gene Ther 2019; 26:165-176. [PMID: 30814673 DOI: 10.1038/s41434-018-0055-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/15/2018] [Accepted: 12/10/2018] [Indexed: 01/02/2023]
Abstract
Mesenchymal stem cells (MSCs) have been applied in treating various diseases including myocardial infarction (MI) and achieved a bit of success; however, the decreased survival rate of MSCs after transplantation greatly limited the efficacy for cell therapy. How to improve the MSC survival rate in stem cell transplantation has undoubtedly become urgent and genetic engineering may be an ideal and feasible way. In this study, we explored the effects on MSCs survival and self-renewal by overexpression of integrin-linked kinase (ILK) in MSCs under hypoxic stimulation and aimed to reveal the molecular mechanisms from the point of paracrine function of MSCs. We first found that overexpression of ILK induced the expression and secretion of IL-6 increased significantly in MSCs under hypoxic stimulation, and the survival and self-renewal of MSCs exposed to hypoxia were enhanced after ILK overexpression. Then the activation of JAK2/STAT3 signaling was detected because of the increased IL-6, and an lncRNA, named lncTCF7, was upregulated remarkably, promoting the activation of Wnt pathway that was required for keeping cell viability and stemness of MSCs. Moreover, we further verified that inhibition of STAT3 signaling by WP1066 and silencing lncTCF7 expression eliminated the protective effects of ILK overexpression on cell survival and self-renewal of MSCs under hypoxic sitmulation. In conclusion, our results uncovered a novel function of ILK to promote MSC survival and self-renewal, suggesting more application potentials of MSC cell therapy on MI.
Collapse
|
34
|
Involvement of CXCR4 in Normal and Abnormal Development. Cells 2019; 8:cells8020185. [PMID: 30791675 PMCID: PMC6406665 DOI: 10.3390/cells8020185] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/30/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023] Open
Abstract
CXC motif chemokine receptor type 4 (CXCR4) is associated with normal and abnormal development, including oncogenesis. The ligand of CXCR4 is stromal cell-derived factor (SDF), also known as CXC motif ligand (CXCL) 12. Through the SDF-1/CXCR4 axis, both homing and migration of hematopoietic (stem) cells are regulated through niches in the bone marrow. Outside of the bone marrow, however, SDF-1 can recruit CXCR4-positive cells from the bone marrow. SDF/CXCR4 has been implicated in the maintenance and/or differentiation of stemness, and tissue-derived stem cells can be associated with SDF-1 and CXCR4 activity. CXCR4 plays a role in multiple pathways involved in carcinogenesis and other pathologies. Here, we summarize reports detailing the functions of CXCR4. We address the molecular signature of CXCR4 and how this molecule and cells expressing it are involved in either normal (maintaining stemness or inducing differentiation) or abnormal (developing cancer and other pathologies) events. As a constituent of stem cells, the SDF-1/CXCR4 axis influences downstream signal transduction and the cell microenvironment.
Collapse
|
35
|
Wang B, Gu TX, Yu FM, Zhang GW, Zhao Y. Overexpression of miR-210 promotes the potential of cardiac stem cells against hypoxia. SCAND CARDIOVASC J 2019; 52:367-371. [PMID: 30668175 DOI: 10.1080/14017431.2019.1567932] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To evaluate the effects of miR-210 on cardiac stem cells (CSCs) against hypoxia-induced injury. METHODS CSCs were isolated from rat ventricular wall and cultured until passage 4. After exposure to hypoxia for 6 h, the expression of miR-210 was determined. Thereafter, transfection of miR-210 mimic and inhibitor was carried out. 1 week later, in vitro experiments were performed to measure the expression of caspase-8-associated protein 2 (Casp8ap2), Caspase 8, protein tyrosine phosphatase, non-receptor type 2 (PTPN2) and CXC chemokine receptor 4 (CXCR4), as well as migration and apoptosis of CSCs under hypoxic condition. RESULTS Hypoxia induced a significant up-regulation of miR-210 expression in CSCs. Notably, the expression of Casp8ap2, Caspase8, PTPN2 was dramatically inhibited by overexpression of miR-210 in CSCsmiR-210 Group (P < .05), but no changes in CXCR4 (P > .05), compared with the control. Additionally, a decreased apoptosis of CSCs was detected in CSCsmiR-210 Group (26.22 ± 1.15%, P < .001), compared with Control Group (34.97 ± 0.63%). Moreover, the migration of CSCs was significantly promoted in CSCsmiR-210 Group (45.73 ± 2.4, P < .001), compared with Control Group (19.6 ± 1.11). Meanwhile, down-regulation of miR-210 reversed these results (P < .05). CONCLUSIONS miR-210 was a hypoxia responsive element in CSCs, and its up-regulation inhibited apoptosis of CSCs and promoted their migration under hypoxic condition, through regulating its target genes Casp8ap2/Caspase 8 and PTPN2, which may provide a new strategy for cell therapy of ischemic heart disease.
Collapse
Affiliation(s)
- Bin Wang
- a Department of Cardiac Surgery , The First Hospital of China Medical University , Shenyang , China.,b Department of Cardiac Surgery , Harrison International Pease Hospital , Hengshui , China
| | - Tian-Xiang Gu
- a Department of Cardiac Surgery , The First Hospital of China Medical University , Shenyang , China
| | - Fu-Min Yu
- a Department of Cardiac Surgery , The First Hospital of China Medical University , Shenyang , China
| | - Guang-Wei Zhang
- a Department of Cardiac Surgery , The First Hospital of China Medical University , Shenyang , China
| | - Ye Zhao
- a Department of Cardiac Surgery , The First Hospital of China Medical University , Shenyang , China
| |
Collapse
|
36
|
Landin AM, Hare JM. The quest for a successful cell-based therapeutic approach for heart failure. Eur Heart J 2018; 38:661-664. [PMID: 28073861 DOI: 10.1093/eurheartj/ehw626] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Ana Marie Landin
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
37
|
Abstract
KIT is a receptor tyrosine kinase that after binding to its ligand stem cell factor activates signaling cascades linked to biological processes such as proliferation, differentiation, migration and cell survival. Based on studies performed on SCF and/or KIT mutant animals that presented anemia, sterility, and/or pigmentation disorders, KIT signaling was mainly considered to be involved in the regulation of hematopoiesis, gametogenesis, and melanogenesis. More recently, novel animal models and ameliorated cellular and molecular techniques have led to the discovery of a widen repertoire of tissue compartments and functions that are being modulated by KIT. This is the case for the lung, heart, nervous system, gastrointestinal tract, pancreas, kidney, liver, and bone. For this reason, the tyrosine kinase inhibitors that were originally developed for the treatment of hemato-oncological diseases are being currently investigated for the treatment of non-oncological disorders such as asthma, rheumatoid arthritis, and alzheimer's disease, among others. The beneficial effects of some of these tyrosine kinase inhibitors have been proven to depend on KIT inhibition. This review will focus on KIT expression and regulation in healthy and pathologic conditions other than cancer. Moreover, advances in the development of anti-KIT therapies, including tyrosine kinase inhibitors, and their application will be discussed.
Collapse
|
38
|
Zeglinski MR, Moghadam AR, Ande SR, Sheikholeslami K, Mokarram P, Sepehri Z, Rokni H, Mohtaram NK, Poorebrahim M, Masoom A, Toback M, Sareen N, Saravanan S, Jassal DS, Hashemi M, Marzban H, Schaafsma D, Singal P, Wigle JT, Czubryt MP, Akbari M, Dixon IM, Ghavami S, Gordon JW, Dhingra S. Myocardial Cell Signaling During the Transition to Heart Failure. Compr Physiol 2018; 9:75-125. [DOI: 10.1002/cphy.c170053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Pagano F, Picchio V, Angelini F, Iaccarino A, Peruzzi M, Cavarretta E, Biondi-Zoccai G, Sciarretta S, De Falco E, Chimenti I, Frati G. The Biological Mechanisms of Action of Cardiac Progenitor Cell Therapy. Curr Cardiol Rep 2018; 20:84. [PMID: 30105430 DOI: 10.1007/s11886-018-1031-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW Cell therapy for cardiovascular diseases is regarded as a rapidly growing field within regenerative medicine. Different cellular populations enriched for cardiac progenitor cells (CPCs), or derivate a-cellular products, are currently under preclinical and clinical evaluation. Here, we have reviewed the described mechanisms whereby resident post-natal CPCs, isolated in different ways, act as a therapeutic product on the damaged myocardium. RECENT FINDINGS Several biological mechanisms of action have been described which can explain the multiple therapeutic effects of CPC treatment observed on cardiac function and remodelling. These mechanisms span from direct cardiovascular differentiation, through induction of resident progenitor proliferation, to paracrine effects on cardiac and non-cardiac cells mediated by exosomes and non-coding RNAs. All the reported mechanisms of action support an integrated view including cardiomyogenesis, cardioprotection, and anti-fibrotic effects. Moreover, future developments of CPC therapy approaches may support cell-free strategies, exploiting effective pleiotropic cell-derived products, such as exosomes.
Collapse
Affiliation(s)
- Francesca Pagano
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
| | - Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
| | - Francesco Angelini
- Medical Oncology Unit, San Filippo Neri Hospital, Via Giovanni Martinotti, 20, 00135, Rome, Italy.,Experimental and Clinical Pharmacology Unit, CRO-National Cancer Institute, Via Franco Gallini 2, 33081, Aviano (PN), Italy
| | - Alessandra Iaccarino
- Department of Thoracic Surgery, "La Sapienza" University of Rome, viale Regina Margherita 324, 00161, Rome, Italy
| | - Mariangela Peruzzi
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
| | - Elena Cavarretta
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
| | - Giuseppe Biondi-Zoccai
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Corso della Repubblica 79, 04100, Latina, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed Institute, Via Atinense 18, 86077, Pozzilli (IS), Italy
| | - Sebastiano Sciarretta
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Corso della Repubblica 79, 04100, Latina, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed Institute, Via Atinense 18, 86077, Pozzilli (IS), Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Corso della Repubblica 79, 04100, Latina, Italy.
| | - Giacomo Frati
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Corso della Repubblica 79, 04100, Latina, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed Institute, Via Atinense 18, 86077, Pozzilli (IS), Italy
| |
Collapse
|
40
|
Fish KM. Mesenchymal Stem Cells Drive Cardiac Stem Cell Chemotaxis, Proliferation, and Phenotype via CXCR4 and cKit Signaling. Circ Res 2018; 119:891-2. [PMID: 27688303 DOI: 10.1161/circresaha.116.309733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kenneth Michael Fish
- From the Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY.
| |
Collapse
|
41
|
Chen J, Wei J, Huang Y, Ma Y, Ni J, Li M, Zhu Y, Gao X, Fan G. Danhong Injection Enhances the Therapeutic Efficacy of Mesenchymal Stem Cells in Myocardial Infarction by Promoting Angiogenesis. Front Physiol 2018; 9:991. [PMID: 30093864 PMCID: PMC6070728 DOI: 10.3389/fphys.2018.00991] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 07/06/2018] [Indexed: 01/07/2023] Open
Abstract
Stem cell-based therapies have the potential to dramatically transform the treatment and prognosis of myocardial infarction (MI), and mesenchymal stem cells (MSCs) have been suggested as a promising cell population to ameliorate the heart remodeling in post-MI. However, poor implantation and survival in ischemic myocardium restrict its efficacy and application. In this study, we sought to use the unique mode of action of Chinese medicine to improve this situation. Surrounding the myocardial infarct area, we performed a multi-point MSC transplantation and administered in conjunction with Danhong injection, which is mainly used for the treatment of MI. Our results showed that the MSC survival rate and cardiac function were improved significantly through the small animal imaging system and echocardiography, respectively. Moreover, histological analysis showed that MSC combined with DHI intervention significantly reduced myocardial infarct size in myocardial infarcted mice and significantly increased MSC resident. To investigate the mechanism of DHI promoting MSC survival and cell migration, PCR and WB experiments were performed. Our results showed that DHI could promote the expression of CXC chemokine receptor 4 in MSC and enhance the expression of stromal cell–derived factor-1 in myocardium, and this effect can be inhibited by AMD3100 (an SDF1/CXCR4 antagonist). Additionally, MSC in combination with DHI interfered with MI in mice and this signifies that when combined, the duo could the expression of vascular endothelial growth factor (VEGF) in the marginal zone of infarction compared with when either MSC or DHI are used individually. Based on these results, we conclude that DHI enhances the residence of MSCs in cardiac tissue by modulating the SDF1/CXCR4 signaling pathway. These findings have important therapeutic implications for Chinese medicine-assisted cell-based therapy strategies.
Collapse
Affiliation(s)
- Jingrui Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Wei
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuting Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuling Ma
- Oxford Chinese Medicine Research Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Jingyu Ni
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Min Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
42
|
Tompkins BA, Rieger AC, Florea V, Banerjee MN, Natsumeda M, Nigh ED, Landin AM, Rodriguez GM, Hatzistergos KE, Schulman IH, Hare JM. Comparison of Mesenchymal Stem Cell Efficacy in Ischemic Versus Nonischemic Dilated Cardiomyopathy. J Am Heart Assoc 2018; 7:JAHA.117.008460. [PMID: 30005555 PMCID: PMC6064862 DOI: 10.1161/jaha.117.008460] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM) differ in histopathology and prognosis. Although transendocardial delivery of mesenchymal stem cells is safe and provides cardiovascular benefits in both, a comparison of mesenchymal stem cell efficacy in ICM versus DCM has not been done. Methods and Results We conducted a subanalysis of 3 single‐center, randomized, and blinded clinical trials: (1) TAC‐HFT (Transendocardial Autologous Mesenchymal Stem Cells and Mononuclear Bone Marrow Cells in Ischemic Heart Failure Trial); (2) POSEIDON (A Phase I/II, Randomized Pilot Study of the Comparative Safety and Efficacy of Transendocardial Injection of Autologous Mesenchymal Stem Cells Versus Allogeneic Mesenchymal Stem Cells in Patients With Chronic Ischemic Left Ventricular Dysfunction Secondary to Myocardial Infarction); and (3) POSEIDON‐DCM (Percutaneous Stem Cell Injection Delivery Effects on Neomyogenesis in Dilated Cardiomyopathy). Baseline and 1‐year cardiac structure and function and quality‐of‐life data were compared in a post hoc pooled analysis including ICM (n=46) and DCM (n=33) patients who received autologous or allogeneic mesenchymal stem cells. Ejection fraction improved in DCM by 7% (within‐group, P=0.002) compared to ICM (1.5%; within‐group, P=0.14; between‐group, P=0.003). Similarly, stroke volume increased in DCM by 10.59 mL (P=0.046) versus ICM (−0.2 mL; P=0.73; between‐group, P=0.02). End‐diastolic volume improved only in ICM (10.6 mL; P=0.04) and end‐systolic volume improved only in DCM (17.8 mL; P=0.049). The sphericity index decreased only in ICM (−0.04; P=0.0002). End‐diastolic mass increased in ICM (23.1 g; P<0.0001) versus DCM (−4.1 g; P=0.34; between‐group, P=0.007). The 6‐minute walk test improved in DCM (31.1 m; P=0.009) and ICM (36.3 m; P=0.006) with no between‐group difference (P=0.79). The New York Heart Association class improved in DCM (P=0.005) and ICM (P=0.02; between‐group P=0.20). The Minnesota Living with Heart Failure Questionnaire improved in DCM (−19.5; P=0.002) and ICM (−6.4; P=0.03; δ between‐group difference P=0.042) patients. Conclusions Mesenchymal stem cell therapy is beneficial in DCM and ICM patients, despite variable effects on cardiac phenotypic outcomes. Whereas cardiac function improved preferentially in DCM patients, ICM patients experienced reverse remodeling. Mesenchymal stem cell therapy enhanced quality of life and functional capacity in both etiologies. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifiers: TAC‐HFT: NCT00768066, POSEIDON: NCT01087996, POSEIDON‐DCM: NCT01392625.
Collapse
Affiliation(s)
- Bryon A Tompkins
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL.,Department of Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Angela C Rieger
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Victoria Florea
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Monisha N Banerjee
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL.,Department of Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Makoto Natsumeda
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Evan D Nigh
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Ana Marie Landin
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Gianna M Rodriguez
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL
| | | | - Ivonne Hernandez Schulman
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL.,Katz Family Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, FL
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL .,Cardiovascular Division, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
43
|
Li B, Meng X, Zhang L. microRNAs and cardiac stem cells in heart development and disease. Drug Discov Today 2018; 24:233-240. [PMID: 29852125 DOI: 10.1016/j.drudis.2018.05.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/24/2018] [Accepted: 05/22/2018] [Indexed: 12/20/2022]
Abstract
Cumulative evidence has proven that proliferation, differentiation and migration of cardiac stem cells (CSCs) dominate early heart development and contribute to the later occurrence of heart disease. Among other mechanisms, microRNAs work as the 'fine-tuning' to modulate the levels of target genes in a specific cell type. The distinct microRNA signatures in CSCs reveal the stages and functions of CSCs. The focus of this review is to summarize recent knowledge advances in CSC proliferation, differentiation and migration and to discuss how microRNAs regulate these processes during heart development and in heart disease. Better understanding of microRNA regulation on CSCs under different situations will enable the unveiling of the mechanisms of heart disease and open new avenues in the therapeutic potentials of microRNA modulation to treat heart disease.
Collapse
Affiliation(s)
- Bo Li
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Xianmei Meng
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
44
|
Bagno L, Hatzistergos KE, Balkan W, Hare JM. Mesenchymal Stem Cell-Based Therapy for Cardiovascular Disease: Progress and Challenges. Mol Ther 2018; 26:1610-1623. [PMID: 29807782 DOI: 10.1016/j.ymthe.2018.05.009] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/30/2018] [Accepted: 05/10/2018] [Indexed: 12/17/2022] Open
Abstract
Administration of mesenchymal stem cells (MSCs) to diseased hearts improves cardiac function and reduces scar size. These effects occur via the stimulation of endogenous repair mechanisms, including regulation of immune responses, tissue perfusion, inhibition of fibrosis, and proliferation of resident cardiac cells, although rare events of transdifferentiation into cardiomyocytes and vascular components are also described in animal models. While these improvements demonstrate the potential of stem cell therapy, the goal of full cardiac recovery has yet to be realized in either preclinical or clinical studies. To reach this goal, novel cell-based therapeutic approaches are needed. Ongoing studies include cell combinations, incorporation of MSCs into biomaterials, or pre-conditioning or genetic manipulation of MSCs to boost their release of paracrine factors, such as exosomes, growth factors, microRNAs, etc. All of these approaches can augment therapeutic efficacy. Further study of the optimal route of administration, the correct dose, the best cell population(s), and timing for treatment are parameters that still need to be addressed in order to achieve the goal of complete cardiac regeneration. Despite significant progress, many challenges remain.
Collapse
Affiliation(s)
- Luiza Bagno
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Konstantinos E Hatzistergos
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Cell Biology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
45
|
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX
| |
Collapse
|
46
|
Gude NA, Firouzi F, Broughton KM, Ilves K, Nguyen KP, Payne CR, Sacchi V, Monsanto MM, Casillas AR, Khalafalla FG, Wang BJ, Ebeid DE, Alvarez R, Dembitsky WP, Bailey BA, van Berlo J, Sussman MA. Cardiac c-Kit Biology Revealed by Inducible Transgenesis. Circ Res 2018; 123:57-72. [PMID: 29636378 DOI: 10.1161/circresaha.117.311828] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/24/2018] [Accepted: 04/09/2018] [Indexed: 12/24/2022]
Abstract
RATIONALE Biological significance of c-Kit as a cardiac stem cell marker and role(s) of c-Kit+ cells in myocardial development or response to pathological injury remain unresolved because of varied and discrepant findings. Alternative experimental models are required to contextualize and reconcile discordant published observations of cardiac c-Kit myocardial biology and provide meaningful insights regarding clinical relevance of c-Kit signaling for translational cell therapy. OBJECTIVE The main objectives of this study are as follows: demonstrating c-Kit myocardial biology through combined studies of both human and murine cardiac cells; advancing understanding of c-Kit myocardial biology through creation and characterization of a novel, inducible transgenic c-Kit reporter mouse model that overcomes limitations inherent to knock-in reporter models; and providing perspective to reconcile disparate viewpoints on c-Kit biology in the myocardium. METHODS AND RESULTS In vitro studies confirm a critical role for c-Kit signaling in both cardiomyocytes and cardiac stem cells. Activation of c-Kit receptor promotes cell survival and proliferation in stem cells and cardiomyocytes of either human or murine origin. For creation of the mouse model, the cloned mouse c-Kit promoter drives Histone2B-EGFP (enhanced green fluorescent protein; H2BEGFP) expression in a doxycycline-inducible transgenic reporter line. The combination of c-Kit transgenesis coupled to H2BEGFP readout provides sensitive, specific, inducible, and persistent tracking of c-Kit promoter activation. Tagging efficiency for EGFP+/c-Kit+ cells is similar between our transgenic versus a c-Kit knock-in mouse line, but frequency of c-Kit+ cells in cardiac tissue from the knock-in model is 55% lower than that from our transgenic line. The c-Kit transgenic reporter model reveals intimate association of c-Kit expression with adult myocardial biology. Both cardiac stem cells and a subpopulation of cardiomyocytes express c-Kit in uninjured adult heart, upregulating c-Kit expression in response to pathological stress. CONCLUSIONS c-Kit myocardial biology is more complex and varied than previously appreciated or documented, demonstrating validity in multiple points of coexisting yet heretofore seemingly irreconcilable published findings.
Collapse
Affiliation(s)
- Natalie A Gude
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Fareheh Firouzi
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Kathleen M Broughton
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Kelli Ilves
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Kristine P Nguyen
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Christina R Payne
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Veronica Sacchi
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Megan M Monsanto
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Alexandria R Casillas
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Farid G Khalafalla
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Bingyan J Wang
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - David E Ebeid
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Roberto Alvarez
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Walter P Dembitsky
- San Diego State University, CA; Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | | | - Jop van Berlo
- Department of Medicine, University of Minnesota, Minneapolis (J.v.B.)
| | - Mark A Sussman
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| |
Collapse
|
47
|
Hatzistergos KE, Jiang Z, Valasaki K, Takeuchi LM, Balkan W, Atluri P, Saur D, Seidler B, Tsinoremas N, DiFede DL, Hare JM. Simulated Microgravity Impairs Cardiac Autonomic Neurogenesis from Neural Crest Cells. Stem Cells Dev 2018; 27:819-830. [PMID: 29336212 DOI: 10.1089/scd.2017.0265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Microgravity-induced alterations in the autonomic nervous system (ANS) contribute to derangements in both the mechanical and electrophysiological function of the cardiovascular system, leading to severe symptoms in humans following space travel. Because the ANS forms embryonically from neural crest (NC) progenitors, we hypothesized that microgravity can impair NC-derived cardiac structures. Accordingly, we conducted in vitro simulated microgravity experiments employing NC genetic lineage tracing in mice with cKitCreERT2/+, Isl1nLacZ, and Wnt1-Cre reporter alleles. Inducible fate mapping in adult mouse hearts and pluripotent stem cells (iPSCs) demonstrated reduced cKitCreERT2/+-mediated labeling of both NC-derived cardiomyocytes and autonomic neurons (P < 0.0005 vs. controls). Whole transcriptome analysis, suggested that this effect was associated with repressed cardiac NC- and upregulated mesoderm-related gene expression profiles, coupled with abnormal bone morphogenetic protein (BMP)/transforming growth factor beta (TGF-β) and Wnt/β-catenin signaling. To separate the manifestations of simulated microgravity on NC versus mesodermal-cardiac derivatives, we conducted Isl1nLacZ lineage analyses, which indicated an approximately 3-fold expansion (P < 0.05) in mesoderm-derived Isl-1+ pacemaker sinoatrial nodal cells; and an approximately 3-fold reduction (P < 0.05) in cardiac NC-derived ANS cells, including sympathetic nerves and Isl-1+ cardiac ganglia. Finally, NC-specific fate mapping with a Wnt1-Cre reporter iPSC model of murine NC development confirmed that simulated microgravity directly impacted the in vitro development of cardiac NC progenitors and their contribution to the sympathetic and parasympathetic innervation of the iPSC-derived myocardium. Altogether, these findings reveal an important role for gravity in the development of NCs and their postnatal derivatives, and have important therapeutic implications for human space exploration, providing insights into cellular and molecular mechanisms of microgravity-induced cardiomyopathies/channelopathies.
Collapse
Affiliation(s)
| | - Zhijie Jiang
- 2 Center for Computational Sciences, University of Miami , Miller School of Medicine, Miami, Florida
| | | | - Lauro M Takeuchi
- 1 Interdisciplinary Stem Cell Institute, University of Miami , Miami, Florida
| | - Wayne Balkan
- 1 Interdisciplinary Stem Cell Institute, University of Miami , Miami, Florida
| | - Preethi Atluri
- 1 Interdisciplinary Stem Cell Institute, University of Miami , Miami, Florida
| | - Dieter Saur
- 3 Department of Medicine II, Klinikum rechts der Isar, Technische Universität München , München, Germany .,4 German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK) , Heidelberg, Germany
| | - Barbara Seidler
- 3 Department of Medicine II, Klinikum rechts der Isar, Technische Universität München , München, Germany .,4 German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK) , Heidelberg, Germany
| | - Nicholas Tsinoremas
- 2 Center for Computational Sciences, University of Miami , Miller School of Medicine, Miami, Florida
| | - Darcy L DiFede
- 1 Interdisciplinary Stem Cell Institute, University of Miami , Miami, Florida
| | - Joshua M Hare
- 1 Interdisciplinary Stem Cell Institute, University of Miami , Miami, Florida
| |
Collapse
|
48
|
Wierzbinski KR, Szymanski T, Rozwadowska N, Rybka JD, Zimna A, Zalewski T, Nowicka-Bauer K, Malcher A, Nowaczyk M, Krupinski M, Fiedorowicz M, Bogorodzki P, Grieb P, Giersig M, Kurpisz MK. Potential use of superparamagnetic iron oxide nanoparticles for in vitro and in vivo bioimaging of human myoblasts. Sci Rep 2018; 8:3682. [PMID: 29487326 PMCID: PMC5829264 DOI: 10.1038/s41598-018-22018-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/12/2018] [Indexed: 02/07/2023] Open
Abstract
Myocardial infarction (MI) is one of the most frequent causes of death in industrialized countries. Stem cells therapy seems to be very promising for regenerative medicine. Skeletal myoblasts transplantation into postinfarction scar has been shown to be effective in the failing heart but shows limitations such, e.g. cell retention and survival. We synthesized and investigated superparamagnetic iron oxide nanoparticles (SPIONs) as an agent for direct cell labeling, which can be used for stem cells imaging. High quality, monodisperse and biocompatible DMSA-coated SPIONs were obtained with thermal decomposition and subsequent ligand exchange reaction. SPIONs' presence within myoblasts was confirmed by Prussian Blue staining and inductively coupled plasma mass spectrometry (ICP-MS). SPIONs' influence on tested cells was studied by their proliferation, ageing, differentiation potential and ROS production. Cytotoxicity of obtained nanoparticles and myoblast associated apoptosis were also tested, as well as iron-related and coating-related genes expression. We examined SPIONs' impact on overexpression of two pro-angiogenic factors introduced via myoblast electroporation method. Proposed SPION-labeling was sufficient to visualize firefly luciferase-modified and SPION-labeled cells with magnetic resonance imaging (MRI) combined with bioluminescence imaging (BLI) in vivo. The obtained results demonstrated a limited SPIONs' influence on treated skeletal myoblasts, not interfering with basic cell functions.
Collapse
Affiliation(s)
| | - Tomasz Szymanski
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.,Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland.,Wielkopolska Centre of Advanced Technologies, Adam Mickiewicz University, Poznan, Poland
| | | | - Jakub D Rybka
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland.,Wielkopolska Centre of Advanced Technologies, Adam Mickiewicz University, Poznan, Poland
| | - Agnieszka Zimna
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Tomasz Zalewski
- NanoBioMedical Centre, Adam Mickiewicz University, Poznan, Poland
| | | | - Agnieszka Malcher
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Michal Krupinski
- The Henryk Niewodniczanski Institute, Institute of Nuclear Physics Polish Academy of Sciences, Cracow, Poland
| | - Michal Fiedorowicz
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Bogorodzki
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Grieb
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Michal Giersig
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland.,Wielkopolska Centre of Advanced Technologies, Adam Mickiewicz University, Poznan, Poland.,Institute of Experimental Physics, Freie Universität Berlin, Berlin, Germany
| | - Maciej K Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.
| |
Collapse
|
49
|
Chang P, Zhang B, Shao L, Song W, Shi W, Wang L, Xu T, Li D, Gao X, Qu Y, Dong L, Wang J. Mesenchymal stem cells over-expressing cxcl12 enhance the radioresistance of the small intestine. Cell Death Dis 2018; 9:154. [PMID: 29402989 PMCID: PMC5833479 DOI: 10.1038/s41419-017-0222-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/07/2017] [Indexed: 12/18/2022]
Abstract
The chemokine C-X-C motif chemokine 12 (CXCL12) greatly impacts various biological processes in mammals, including cell survival, growth and migration. Mesenchymal stem cells (MSCs) are promising tools for carrying foreign genes to treat radiation-induced injuries in the intestinal epithelium. In this study, human adipose-derived MSCs were constructed to over-express the mouse cxcl12 gene to treat such injuries. In vitro, because of the high levels of mouse CXCL12 in conditioned medium produced by mouse cxcl12 gene-modified cells, phosphorylation of Akt at Ser473 and Erk1/2 at Thr202/Thr204 was increased within crypt cells of irradiated organoids compared with unmodified controls. Moreover, intracellular stabilization of β-catenin was achieved after treatment of mouse cxcl12 gene-modified cells with conditioned medium. As a result, survival of crypt cells was maintained and their proliferation was promoted. When delivering mouse cxcl12 gene-modified cells into irradiated BALB/c nude mice, mice were rescued despite the clearance of cells from the host within 1 week. Irradiated mice that received mouse cxcl12 gene-modified MSCs exhibited reduced serum levels of interleukin-1α (IL-1α) and IL-6 as well as elevated levels of CXCL12. Additionally, epithelial recovery from radiation stress was accelerated compared with the irradiated-alone controls. Moreover, mouse cxcl12 gene-modified MSCs were superior to unmodified cells at strengthening host repair responses to radiation stress as well as presenting increased serum CXCL12 levels and decreased serum IL-1α levels. Furthermore, the number of crypt cells that were positive for phosphorylated Akt at Ser473 and phosphorylated Erk1/2 at Thr202/Thr204 increased following treatment with mouse cxcl12 gene-modified MSCs. Thus, cxcl12 gene-modified MSCs confer radioresistance to the intestinal epithelium.
Collapse
Affiliation(s)
- Pengyu Chang
- State Key Laboratory of Electroanalytical Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, 130021, Changchun, China
| | - Boyin Zhang
- Department of Orthopedics Surgery, China-Japan Union Hospital of Jilin University, 130033, Changchun, China
| | - Lihong Shao
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, 130021, Changchun, China
| | - Wei Song
- Department of Oncology, First Bethune Hospital of Jilin University, 130021, Changchun, China
| | - Weiyan Shi
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, 130021, Changchun, China
| | - Libo Wang
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, 130021, Changchun, China
| | - Tiankai Xu
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, 130021, Changchun, China
| | - Dong Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, 130021, Changchun, China
- Jilin Province Key Laboratory of Infectious Diseases, Laboratory of Molecular Virology, 130061, Changchun, China
| | - Xiuzhu Gao
- Jilin Province Key Laboratory of Infectious Diseases, Laboratory of Molecular Virology, 130061, Changchun, China
- Department of Hepatology, First Bethune Hospital of Jilin University, Jilin University, 130021, Changchun, China
| | - Yaqin Qu
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, 130021, Changchun, China
| | - Lihua Dong
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, 130021, Changchun, China.
| | - Jin Wang
- State Key Laboratory of Electroanalytical Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.
- Department of Chemistry and Physics, State University of New York at Stony Brook, New York, NY, 11794-3400, USA.
| |
Collapse
|
50
|
Regenerative Medicine Applications of Mesenchymal Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1089:115-141. [PMID: 29767289 DOI: 10.1007/5584_2018_213] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A major research challenge is to develop therapeutics that assist with healing damaged tissues and organs because the human body has limited ability to restore the majority of these tissues and organs to their original state. Tissue engineering (TE) and regenerative medicine (RM) promises to offer efficient therapeutic biological strategies that use mesenchymal stem cells (MSCs). MSCs possess the capability for self-renewal, multilineage differentiation, and immunomodulatory properties that make them attractive for clinical applications. They have been extensively investigated in numerous preclinical and clinical settings in an attempt to overcome their challenges and promote tissue regeneration and repair. This review explores the exciting opportunities afforded by MSCs, their desirable properties as cellular therapeutics in RM, and implicates their potential use in clinical practice. Here, we attempt to identify challenges and issues that determine the clinical efficacy of MSCs as treatment for skeletal and non-skeletal tissues.
Collapse
|