1
|
Zhao Y, Tan M, Yin Y, Zhang J, Song Y, Li H, Yan L, Jin Y, Wu Z, Yang T, Jiang T, Li H. Comprehensive macro and micro views on immune cells in ischemic heart disease. Cell Prolif 2024; 57:e13725. [PMID: 39087342 PMCID: PMC11628753 DOI: 10.1111/cpr.13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Ischemic heart disease (IHD) is a prevalent cardiovascular condition that remains the primary cause of death due to its adverse ventricular remodelling and pathological changes in end-stage heart failure. As a complex pathologic condition, it involves intricate regulatory processes at the cellular and molecular levels. The immune system and cardiovascular system are closely interconnected, with immune cells playing a crucial role in maintaining cardiac health and influencing disease progression. Consequently, alterations in the cardiac microenvironment are influenced and controlled by various immune cells, such as macrophages, neutrophils, dendritic cells, eosinophils, and T-lymphocytes, along with the cytokines they produce. Furthermore, studies have revealed that Gata6+ pericardial cavity macrophages play a key role in regulating immune cell migration and subsequent myocardial tissue repair post IHD onset. This review outlines the role of immune cells in orchestrating inflammatory responses and facilitating myocardial repair following IHD, considering both macro and micro views. It also discusses innovative immune cell-based therapeutic strategies, offering new insights for further research on the pathophysiology of ischemic heart disease and immune cell-targeted therapy for IHD.
Collapse
Affiliation(s)
- Yongjian Zhao
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Mingyue Tan
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- Department of Geriatrics, Southwest HospitalThe Third Military Medical University (Army Medical University)ChongqingChina
| | - Yunfei Yin
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Jun Zhang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yiyi Song
- Suzhou Medical College of Soochow UniversityJiangsuChina
| | - Hang Li
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Lin Yan
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yifeng Jin
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Ziyue Wu
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Tianke Yang
- Department of Ophthalmology, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Tingbo Jiang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Hongxia Li
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
2
|
Ma L, Cai L, Pan J, Cheng Z, Lv Y, Zheng J, Xu P, Zhang H, Chen X, Huang Y, Luo X, Zhao J, Xu L. The immunopathology of coronary microembolization and the underlying inflammopathophysiological mechanisms. Allergol Immunopathol (Madr) 2024; 52:137-146. [PMID: 39515808 DOI: 10.15586/aei.v52i6.1170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/22/2024] [Indexed: 11/16/2024]
Abstract
In coronary microembolization, inflammatory cell infiltration, patchy necrosis, and extensive intra-myocardial hemorrhage are dominant, which induce myocardial dysfunction with clinical symptoms of chronic ischemic cardiomyopathy. Microembolization can lead to obstruction of the coronary microvessels and result in the micro-infarction of the heart. The inflammation and elevated expression of the tumor necrosis factor in cardiomyocytes and the activation of extracellular ERK are involved in initiating the inflammatory response mechanism. The PI3K/Akt signaling pathway is the enriched pathway, and for controlling, inhibition of PI3K/Akt is necessary. Furthermore, the release of cytokines and the activation of inflammasomes contribute to the enhancement of vascular permeability, which results in edema within the myocardium. The immune response and inflammation represent the primary triggers in this process. The ability to control immune response and inflammation reactions may lead to the development of new therapies for microembolization.
Collapse
Affiliation(s)
- Li Ma
- Department of Cardiovascular Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Liping Cai
- Health Management Center, Wuhan Third Hospital, Wuhan, China
| | - Jiayue Pan
- Xiangtao College of Medicine, Xiangtao College Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Zimin Cheng
- Department of Cardiovascular Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Yuanyuan Lv
- Department of Cardiovascular Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jie Zheng
- Department of Cardiovascular Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Peicheng Xu
- Department of Cardiovascular Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Hong Zhang
- Department of Cardiovascular Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Xinyu Chen
- Department of Cardiovascular Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Yimeng Huang
- Department of Cardiovascular Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Xiaolei Luo
- Department of Cardiovascular Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jinhe Zhao
- Department of Cardiovascular Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China;
| | - Liang Xu
- Department of ICU, Wuhan Wuchang Hospital, Wuhan, China;
| |
Collapse
|
3
|
Dai H, Ye J, Wang S, Li X, Li W. Myeloperoxidase and its derivative hypochlorous acid combined clinical indicators predict new-onset atrial fibrillation in sepsis: a case-control study. BMC Cardiovasc Disord 2024; 24:377. [PMID: 39030470 PMCID: PMC11264794 DOI: 10.1186/s12872-024-04034-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUD New-onset atrial fibrillation (NOAF) is a common complication of sepsis and linked to higher death rates in affected patients. The lack of effective predictive tools hampers early risk assessment for the development of NOAF. This study aims to develop practical and effective predictive tools for identifying the risk of NOAF. METHODS This case-control study retrospectively analyzed patients with sepsis admitted to the emergency department of Xinhua Hospital, Shanghai Jiao Tong University School of Medicine from September 2017 to January 2023. Based on electrocardiographic reports and electrocardiogram monitoring records, patients were categorized into NOAF and non-NOAF groups. Laboratory tests, including myeloperoxidase (MPO) and hypochlorous acid (HOCl), were collected, along with demographic data and comorbidities. Least absolute shrinkage and selection operator regression and multivariate logistic regression analyses were employed to identify predictors. The area under the curve (AUC) was used to evaluate the predictive model's performance in identifying NOAF. RESULTS A total of 389 patients with sepsis were included in the study, of which 63 developed NOAF. MPO and HOCl levels were significantly higher in the NOAF group compared to the non-NOAF group. Multivariate logistic regression analysis identified MPO, HOCl, tumor necrosis factor-α (TNF-α), white blood cells (WBC), and the Acute Physiology and Chronic Health Evaluation II (APACHE II) score as independent risk factors for NOAF in sepsis. Additionally, a nomogram model developed using these independent risk factors achieved an AUC of 0.897. CONCLUSION The combination of MPO and its derivative HOCl with clinical indicators improves the prediction of NOAF in sepsis. The nomogram model can serve as a practical predictive tool for the early identification of NOAF in patients with sepsis.
Collapse
Affiliation(s)
- Hui Dai
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jiawei Ye
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shangyuan Wang
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xingyao Li
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Wenjie Li
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
4
|
Lai B, Huang B, Li L. Causal relationship between inflammatory markers and left ventricle geometry and function: A 2-sample Mendelian randomization study. Medicine (Baltimore) 2024; 103:e38735. [PMID: 38996142 PMCID: PMC11245243 DOI: 10.1097/md.0000000000038735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/07/2024] [Indexed: 07/14/2024] Open
Abstract
Studies have shown that some inflammatory markers can predict the risk of cardiovascular disease (CVD) and affect the structure and function of the heart. However, a causal relationship between inflammatory markers and the cardiac structure and function has not yet been established. Thus, we conducted a 2-sample Mendelian randomization (MR) study to explore the potential causal relationship between inflammatory markers and prognostically-related left ventricular (LV) parameters. Instrumental variables (IVs) for C-reactive protein (CRP), interleukin-6 (IL-6), and myeloperoxidase (MPO) levels were selected from the databases of large genome-wide association studies (GWAS). Summary statistics for LV parameters, including LV mass, ejection fraction, end-diastolic and systolic volumes, and the ratio of LV mass to end-diastolic volume, were obtained from cardiovascular magnetic resonance studies of the UK Biobank (n = 16923). The inverse-variance weighted (IVW) method was the primary analytical method used, and was complemented with the MR-Egger, weighted median, simple mode, weighted mode, and MR pleiotropy residual sum and outlier (MR-PRESSO) methods. Sensitivity analysis was performed to evaluate the robustness of the results. CRP was significantly associated with the LV mass in the IVW method (β = -0.13 g [95% confidence interval [CI], 0.78 g-1.00 g], P = .046). A higher standard deviation of genetically-predicted CRP levels was associated with a 0.13 ± 0.06 g lower LV mass. No causal relationships of IL-6 and MPO with LV parameters were found. No evidence of heterogeneity and pleiotropy was detected. Sensitivity analyses confirmed the robustness of the results. Two-sample MR analysis revealed a causal association between increased CRP level and decreased LV mass, whereas IL-6 and MPO levels did not influence the LV parameters. However, further research is required to validate our findings.
Collapse
Affiliation(s)
- Bolin Lai
- Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Bin Huang
- Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Li Li
- Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Wang Y, Shou X, Wu Y, Li D. Immuno-inflammatory pathogenesis in ischemic heart disease: perception and knowledge for neutrophil recruitment. Front Immunol 2024; 15:1411301. [PMID: 39050842 PMCID: PMC11266024 DOI: 10.3389/fimmu.2024.1411301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
Ischemic heart disease (IHD) can trigger responses from the innate immune system, provoke aseptic inflammatory processes, and result in the recruitment and accumulation of neutrophils. Excessive recruitment of neutrophils is a potential driver of persistent cardiac inflammation. Once recruited, neutrophils are capable of secreting a plethora of inflammatory and chemotactic agents that intensify the inflammatory cascade. Additionally, neutrophils may obstruct microvasculature within the inflamed region, further augmenting myocardial injury in the context of IHD. Immune-related molecules mediate the recruitment process of neutrophils, such as immune receptors and ligands, immune active molecules, and immunocytes. Non-immune-related molecular pathways represented by pro-resolving lipid mediators are also involved in the regulation of NR. Finally, we discuss novel regulating strategies, including targeted intervention, agents, and phytochemical strategies. This review describes in as much detail as possible the upstream molecular mechanism and external intervention strategies for regulating NR, which represents a promising therapeutic avenue for IHD.
Collapse
Affiliation(s)
- Yumeng Wang
- Department of Traditional Chinese Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xintian Shou
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Wu
- Department of Cardiovascular, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dong Li
- Department of Cardiovascular, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Quinn M, Zhang RYK, Bello I, Rye KA, Thomas SR. Myeloperoxidase as a Promising Therapeutic Target after Myocardial Infarction. Antioxidants (Basel) 2024; 13:788. [PMID: 39061857 PMCID: PMC11274265 DOI: 10.3390/antiox13070788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Coronary artery disease (CAD) and myocardial infarction (MI) remain leading causes of death and disability worldwide. CAD begins with the formation of atherosclerotic plaques within the intimal layer of the coronary arteries, a process driven by persistent arterial inflammation and oxidation. Myeloperoxidase (MPO), a mammalian haem peroxidase enzyme primarily expressed within neutrophils and monocytes, has been increasingly recognised as a key pro-inflammatory and oxidative enzyme promoting the development of vulnerable coronary atherosclerotic plaques that are prone to rupture, and can precipitate a MI. Mounting evidence also implicates a pathogenic role for MPO in the inflammatory process that follows a MI, which is characterised by the rapid infiltration of activated neutrophils into the damaged myocardium and the release of MPO. Excessive and persistent cardiac inflammation impairs normal cardiac healing post-MI, resulting in adverse cardiac outcomes and poorer long-term cardiac function, and eventually heart failure. This review summarises the evidence for MPO as a significant oxidative enzyme contributing to the inappropriate inflammatory responses driving the progression of CAD and poor cardiac healing after a MI. It also details the proposed mechanisms underlying MPO's pathogenic actions and explores MPO as a novel therapeutic target for the treatment of unstable CAD and cardiac damage post-MI.
Collapse
Affiliation(s)
| | | | | | | | - Shane R. Thomas
- Cardiometabolic Disease Research Group, School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Peters VB, Matheis F, Erdmann I, Nemade HN, Muders D, Toubartz M, Torun M, Mehrkens D, Geißen S, Nettersheim FS, Picard F, Guthoff H, Hof A, Arkenberg P, Arand B, Klinke A, Rudolph V, Hansen HP, Bachurski D, Adam M, Hoyer FF, Winkels H, Baldus S, Mollenhauer M. Myeloperoxidase induces monocyte migration and activation after acute myocardial infarction. Front Immunol 2024; 15:1360700. [PMID: 38736886 PMCID: PMC11082299 DOI: 10.3389/fimmu.2024.1360700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/04/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Myocardial infarction (MI) is a significant contributor to morbidity and mortality worldwide. Many individuals who survive the acute event continue to experience heart failure (HF), with inflammatory and healing processes post-MI playing a pivotal role. Polymorphonuclear neutrophils (PMN) and monocytes infiltrate the infarcted area, where PMN release high amounts of the heme enzyme myeloperoxidase (MPO). MPO has numerous inflammatory properties and MPO plasma levels are correlated with prognosis and severity of MI. While studies have focused on MPO inhibition and controlling PMN infiltration into the infarcted tissue, less is known on MPO's role in monocyte function. Methods and results Here, we combined human data with mouse and cell studies to examine the role of MPO on monocyte activation and migration. We revealed a correlation between plasma MPO levels and monocyte activation in a patient study. Using a mouse model of MI, we demonstrated that MPO deficiency led to an increase in splenic monocytes and a decrease in cardiac monocytes compared to wildtype mice (WT). In vitro studies further showed that MPO induces monocyte migration, with upregulation of the chemokine receptor CCR2 and upregulation of inflammatory pathways identified as underlying mechanisms. Conclusion Taken together, we identify MPO as a pro-inflammatory mediator of splenic monocyte recruitment and activation post-MI and provide mechanistic insight for novel therapeutic strategies after ischemic injury.
Collapse
Affiliation(s)
- Vera B.M. Peters
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Friederike Matheis
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Immanuel Erdmann
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Harshal N. Nemade
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - David Muders
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Toubartz
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Merve Torun
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Dennis Mehrkens
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Simon Geißen
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Felix Sebastian Nettersheim
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Felix Picard
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Henning Guthoff
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Alexander Hof
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Per Arkenberg
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Birgit Arand
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anna Klinke
- Clinic for General and Interventional Cardiology/Angiology, Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum Nordrhein Westfalen (NRW), University Hospital of the Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Volker Rudolph
- Clinic for General and Interventional Cardiology/Angiology, Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum Nordrhein Westfalen (NRW), University Hospital of the Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Hinrich Peter Hansen
- Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Daniel Bachurski
- Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Matti Adam
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Friedrich Felix Hoyer
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Holger Winkels
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Stephan Baldus
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Martin Mollenhauer
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
8
|
Hegemann N, Barth L, Döring Y, Voigt N, Grune J. Implications for neutrophils in cardiac arrhythmias. Am J Physiol Heart Circ Physiol 2024; 326:H441-H458. [PMID: 38099844 PMCID: PMC11219058 DOI: 10.1152/ajpheart.00590.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 02/03/2024]
Abstract
Cardiac arrhythmias commonly occur as a result of aberrant electrical impulse formation or conduction in the myocardium. Frequently discussed triggers include underlying heart diseases such as myocardial ischemia, electrolyte imbalances, or genetic anomalies of ion channels involved in the tightly regulated cardiac action potential. Recently, the role of innate immune cells in the onset of arrhythmic events has been highlighted in numerous studies, correlating leukocyte expansion in the myocardium to increased arrhythmic burden. Here, we aim to call attention to the role of neutrophils in the pathogenesis of cardiac arrhythmias and their expansion during myocardial ischemia and infectious disease manifestation. In addition, we will elucidate molecular mechanisms associated with neutrophil activation and discuss their involvement as direct mediators of arrhythmogenicity.
Collapse
Affiliation(s)
- Niklas Hegemann
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Lukas Barth
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Yannic Döring
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg August University Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg August University Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Jana Grune
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| |
Collapse
|
9
|
Liu Y, Wang D, Jin Y, Sun G, Lou Q, Wang H, Li W. Costunolide ameliorates angiotensin II-induced atrial inflammation and fibrosis by regulating mitochondrial function and oxidative stress in mice: A possible therapeutic approach for atrial fibrillation. Microvasc Res 2024; 151:104600. [PMID: 37666318 DOI: 10.1016/j.mvr.2023.104600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Atrial fibrillation (AF) is a cardiac disease characterized by disordered atrial electrical activity. Atrial inflammation and fibrosis are involved in AF progression. Costunolide (COS) is a sesquiterpene lactone containing anti-inflammatory and anti-fibrotic activities. This study aims to explore the underlying mechanisms by which COS protects against AF. Male C57BL/6 mice (8- to 10-week-old) were infused with angiotensin (Ang) II for 3 weeks. Meanwhile, different doses of COS (COS-L: 10 mg/kg, COS-H: 20 mg/kg) were administered to mice by intragastric treatment. The results showed irregular and rapid heart rates in Ang II-treated mice. Moreover, the levels of inflammatory cytokines and fibrotic factors were elevated in mice. COS triggered a reduction of Ang II-induced inflammation and fibrosis, which conferred a protective effect. Mechanistically, mitochondrial dysfunction with mitochondrial respiration inhibition and aberrant ATP levels were observed after Ang II treatment. Moreover, Ang-II-induced excessive reactive oxygen species caused oxidative stress, which was further aggravated by inhibiting Nrf2 nuclear translocation. Importantly, COS diminished these Ang-II-mediated effects in mice. In conclusion, COS attenuated inflammation and fibrosis in Ang-II-treated mice by alleviating mitochondrial dysfunction and oxidative stress. Our findings represent a potential therapeutic option for AF treatment.
Collapse
Affiliation(s)
- Yushu Liu
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, PR China
| | - Dong Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, PR China
| | - Yimin Jin
- Department of General Practice, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, PR China
| | - Guifang Sun
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, PR China
| | - Qi Lou
- Graduate Student, Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, PR China
| | - Hong Wang
- Graduate Student, Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, PR China
| | - Weimin Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, PR China.
| |
Collapse
|
10
|
Barron M, Hayes H, Bice Z, Pritchard K, Kindel TL. Sleeve Gastrectomy Provides Cardioprotection from Oxidative Stress In Vitro Due to Reduction of Circulating Myeloperoxidase. Nutrients 2023; 15:4776. [PMID: 38004170 PMCID: PMC10675224 DOI: 10.3390/nu15224776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Bariatric surgery, including sleeve gastrectomy (SG), improves systolic and diastolic function, which is independent of weight loss in rodent models. The cause of weight loss-independent improvements in cardiac function are unknown but may originate from the gastrointestinal tract. In this study, we investigated whether a circulating blood factor is a mechanism for acute cardioprotection after SG by testing the utility of rodent SG plasma to reduce metabolic stress in vitro. For the initial experiment, obese male Zucker rats underwent SG, ad lib sham, or pair-fed sham surgeries (n = six SG, n = eight SH, n = eight PF). For all other studies, a second group of Zucker rats underwent SG or ad lib sham surgeries (n = eight SH, n = six SG). Six weeks following surgery, plasma was collected from each group, both in the fasting and post-prandial (pp) state. This plasma was then pooled per surgical group and nutrient state and tested in multiple in vitro cell culture and extra-cellular assays to determine the effect of SG on myotubular metabolic stress compared to the sham surgeries. Post-prandial SG plasma (ppSG), but not fasting SG, pp, or fasting sham plasma, reduced the metabolic stress of the H9c2 cells as measured by lactate dehydrogenase (LDH) release (p < 0.01). Unlike SG, weight reduction through pair-feeding did not prevent H9c2 metabolic stress. The PpSG plasma had the slowest rate of extracellular hydrogen peroxide consumption and peroxidatic activity compared to the pp sham, fasting SG, and fasting sham groups. Redox testing of plasma with aminiobenzoic acid hydrazide and edaravone suggested a pattern supporting myeloperoxidase (MPO), or other peroxidases, as the primary component responsible for reduced metabolic stress with ppSG plasma. The PpSG plasma contained 35% less circulating MPO protein as compared to the pp sham and fasting SG plasma. The plasma from an MPO global knockout rat also prevented metabolic stress of the H9c2 cells, compared to the significant increase in LDH release from the plasma of the WT controls (p < 0.01). The MPO global knockout plasma also had a rate of extracellular hydrogen peroxide consumption and peroxidatic activity comparable to the ppSG plasma. These studies suggest that one of the weight loss-independent mechanisms by which SG improves myocellular function could be a reduced pro-oxidative environment due to lower circulating levels of MPO. It appears that the gastrointestinal tract is of critical importance to these findings, as the MPO levels were only lowered after enteral, nutrient stimulation in the SG rats. If this surgical effect is confirmed in humans, SG may be a unique surgical treatment for multiple diseases with a pathogenesis of inflammation and oxidative damage, including obesity-associated heart failure with preserved ejection fraction.
Collapse
Affiliation(s)
- Matthew Barron
- Department of Surgery, Division of Gastrointestinal and Minimally Invasive Surgery, Medical College of Wisconsin, 8900 W. Doyne Avenue, Milwaukee, WI 53226, USA; (M.B.); (H.H.)
| | - Hailey Hayes
- Department of Surgery, Division of Gastrointestinal and Minimally Invasive Surgery, Medical College of Wisconsin, 8900 W. Doyne Avenue, Milwaukee, WI 53226, USA; (M.B.); (H.H.)
| | - Zachary Bice
- Division of Pediatric Surgery, Children’s Research Institute, Milwaukee, WI 53226, USA; (Z.B.); (K.P.)
| | - Kirkwood Pritchard
- Division of Pediatric Surgery, Children’s Research Institute, Milwaukee, WI 53226, USA; (Z.B.); (K.P.)
| | - Tammy Lyn Kindel
- Department of Surgery, Division of Gastrointestinal and Minimally Invasive Surgery, Medical College of Wisconsin, 8900 W. Doyne Avenue, Milwaukee, WI 53226, USA; (M.B.); (H.H.)
| |
Collapse
|
11
|
Nettersheim FS, Schlüter JD, Kreuzberg W, Mehrkens D, Grimm S, Nemade H, Braumann S, Hof A, Guthoff H, Peters V, Hoyer FF, Kargapolova Y, Lackmann JW, Müller S, Pallasch CP, Hallek M, Sachinidis A, Adam M, Winkels H, Baldus S, Geißen S, Mollenhauer M. Myeloperoxidase is a critical mediator of anthracycline-induced cardiomyopathy. Basic Res Cardiol 2023; 118:36. [PMID: 37656254 PMCID: PMC10474188 DOI: 10.1007/s00395-023-01006-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Cardiotoxicity is a major complication of anthracycline therapy that negatively impacts prognosis. Effective pharmacotherapies for prevention of anthracycline-induced cardiomyopathy (AICM) are currently lacking. Increased plasma levels of the neutrophil-derived enzyme myeloperoxidase (MPO) predict occurrence of AICM in humans. We hypothesized that MPO release causally contributes to AICM. Mice intravenously injected with the anthracycline doxorubicin (DOX) exhibited higher neutrophil counts and MPO levels in the circulation and cardiac tissue compared to saline (NaCl)-treated controls. Neutrophil-like HL-60 cells exhibited increased MPO release upon exposition to DOX. DOX induced extensive nitrosative stress in cardiac tissue alongside with increased carbonylation of sarcomeric proteins in wildtype but not in Mpo-/- mice. Accordingly, co-treatment of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with DOX and MPO aggravated loss of hiPSC-CM-contractility compared to DOX treatment alone. DOX-treated animals exhibited pronounced cardiac apoptosis and inflammation, which was attenuated in MPO-deficient animals. Finally, genetic MPO deficiency and pharmacological MPO inhibition protected mice from the development of AICM. The anticancer efficacy of DOX was unaffected by MPO deficiency. Herein we identify MPO as a critical mediator of AICM. We demonstrate that DOX induces cardiac neutrophil infiltration and release of MPO, which directly impairs cardiac contractility through promoting oxidation of sarcomeric proteins, cardiac inflammation and cardiomyocyte apoptosis. MPO thus emerges as a promising pharmacological target for prevention of AICM.
Collapse
Affiliation(s)
- Felix Sebastian Nettersheim
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - Johannes David Schlüter
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Wiebke Kreuzberg
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Dennis Mehrkens
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Simon Grimm
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Harshal Nemade
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Simon Braumann
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Alexander Hof
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Henning Guthoff
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Vera Peters
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Friedrich Felix Hoyer
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Yulia Kargapolova
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Jan-Wilm Lackmann
- CECAD, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Stefan Müller
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Christian P Pallasch
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, Cologne, Germany
| | - Michael Hallek
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, Cologne, Germany
| | - Agapios Sachinidis
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Neurophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Matti Adam
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Holger Winkels
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Stephan Baldus
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Simon Geißen
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Martin Mollenhauer
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
12
|
Zeller MWG, Wang C, Keliher EJ, Wojtkiewicz GR, Aguirre A, Maresca K, Su C, Buckbinder L, Wang J, Nahrendorf M, Chen JW. Myeloperoxidase PET Imaging Tracks Intracellular and Extracellular Treatment Changes in Experimental Myocardial Infarction. Int J Mol Sci 2023; 24:5704. [PMID: 36982778 PMCID: PMC10057533 DOI: 10.3390/ijms24065704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Myeloperoxidase (MPO) is a highly oxidative, pro-inflammatory enzyme involved in post-myocardial infarction (MI) injury and is a potential therapeutic target. While multiple MPO inhibitors have been developed, the lack of an imaging reporter to select appropriate patients and assess therapeutic efficacy has hampered clinical development. Thus, a translational imaging method to detect MPO activity non-invasively would help to better understand the role MPO plays in MI and facilitate novel therapy development and clinical validation. Interestingly, many MPO inhibitors affect both intracellular and extracellular MPO, but previous MPO imaging methods can only report extracellular MPO activity. In this study, we found that an MPO-specific PET imaging agent (18F-MAPP) can cross cell membranes to report intracellular MPO activity. We showed that 18F-MAPP can track the treatment effect of an MPO inhibitor (PF-2999) at different doses in experimental MI. The imaging results were corroborated by ex vivo autoradiography and gamma counting data. Furthermore, extracellular and intracellular MPO activity assays revealed that 18F-MAPP imaging can report the changes induced by PF-2999 on both intracellular and extracellular MPO activities. These findings support 18F-MAPP as a translational candidate to noninvasively report MPO activity and accelerate drug development against MPO and other related inflammatory targets.
Collapse
Affiliation(s)
- Matthias W. G. Zeller
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA 02129, USA
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Cuihua Wang
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA 02129, USA
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Edmund J. Keliher
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Pfizer World Wide Research and Development, Cambridge, MA 02139, USA
| | - Gregory R. Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Aaron Aguirre
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kevin Maresca
- Pfizer World Wide Research and Development, Cambridge, MA 02139, USA
| | - Chunyan Su
- Pfizer World Wide Research and Development, Cambridge, MA 02139, USA
| | | | - Jing Wang
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA 02129, USA
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - John W. Chen
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA 02129, USA
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
13
|
Zhang RYK, Cochran BJ, Thomas SR, Rye KA. Impact of Reperfusion on Temporal Immune Cell Dynamics After Myocardial Infarction. J Am Heart Assoc 2023; 12:e027600. [PMID: 36789837 PMCID: PMC10111498 DOI: 10.1161/jaha.122.027600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Excessive inflammation and impaired healing of cardiac tissue following a myocardial infarction (MI) can drive the development of heart failure. Cardiac repair begins immediately after the onset of MI and continues for months. The repair process can be divided into the following 3 overlapping phases, each having distinct functions and sequelae: the inflammatory phase, the proliferative phase, and the maturation phase. Macrophages, neutrophils, and lymphocytes are present in the myocardium throughout the repair process and govern the duration and function of each of these phases. However, changes in the functions of these cell types across each phase are poorly characterized. Numerous immunomodulatory therapies that specifically target inflammation have been developed for promoting cardiac repair and preventing heart failure after MI. However, these treatments have been largely unsuccessful in large-scale clinical randomized controlled trials. A potential explanation for this failure is the lack of a thorough understanding of the time-dependent evolution of the functions of immune cells after a major cardiovascular event. Failure to account for this temporal plasticity in cell function may reduce the efficacy of immunomodulatory approaches that target cardiac repair. This review is concerned with how the functions of different immune cells change with time following an MI. Improved understanding of the temporal changes in immune cell function is important for the future development of effective and targeted treatments for preventing heart failure after MI.
Collapse
Affiliation(s)
| | - Blake J Cochran
- School of Medical Sciences University of New South Wales Sydney New South Wales
| | - Shane R Thomas
- School of Medical Sciences University of New South Wales Sydney New South Wales
| | - Kerry-Anne Rye
- School of Medical Sciences University of New South Wales Sydney New South Wales
| |
Collapse
|
14
|
Wang Y, Yang M, Zhang J, Ren J, Liu N, Liu B, Lu L, Yang B. S-Doped carbonized polymer dots inhibit early myocardial fibrosis by regulating mitochondrial function. Biomater Sci 2023; 11:894-907. [PMID: 36524407 DOI: 10.1039/d2bm00578f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Myocardial fibrosis (MF) is a critical pathological lesion in the progression of various acute and chronic cardiovascular diseases. However, there is still a lack of clinically effective drugs and treatments for MF therapies. Herein, for the first time, we developed fluorescent sulfur-doped carbonized polymer dots (S-CPDs) as new nano-antioxidants to reduce the cardiomyocyte damage caused by reactive oxygen species (ROS) in the early stage of fibrotic lesions. In vitro results suggested that the pre-protection of S-CPDs significantly increased the survival rate of H9c2 cells under severe oxidative stress, inhibited the isoproterenol (ISO)-induced hypertrophy of myocardial cells through improving the content of mitochondria related proteins and adenosine triphosphate (ATP) in cells. Moreover, S-CPD administration could effectively decrease cardiac hypertrophy and promote heart function in MF rat models. The rapid internalization, high biocompatibility and fluorescence imaging potential of S-CPDs revealed their promising application prospects in the diagnoses and treatments of cardiovascular diseases.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130021, P.R. China.
| | - Mingxi Yang
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun 130021, P.R. China. .,State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China.
| | - Jiayi Zhang
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun 130021, P.R. China.
| | - Jingyan Ren
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun 130021, P.R. China.
| | - Ning Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130021, P.R. China.
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130021, P.R. China.
| | - Laijin Lu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun 130021, P.R. China.
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China.
| |
Collapse
|
15
|
Nian W, Huang Z, Fu C. Immune cells drive new immunomodulatory therapies for myocardial infarction: From basic to clinical translation. Front Immunol 2023; 14:1097295. [PMID: 36761726 PMCID: PMC9903069 DOI: 10.3389/fimmu.2023.1097295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
The high incidence of heart failure secondary to myocardial infarction (MI) has been difficult to effectively address. MI causes strong aseptic inflammation, and infiltration of different immune cells and changes in the local inflammatory microenvironment play a key regulatory role in ventricular remodeling. Therefore, the possibility of improving the prognosis of MI through targeted immunity has been of interest and importance in MI. However, previously developed immune-targeted therapies have not achieved significant success in clinical trials. Here, we propose that the search for therapeutic targets from different immune cells may be more precise and lead to better clinical translation. Specifically, this review summarizes the role and potential therapeutic targets of various immune cells in ventricular remodeling after MI, especially monocytes/macrophages and neutrophils, as a way to demonstrate the importance and potential of immunomodulatory therapies for MI. In addition, we analyze the reasons for the failure of previous immunomodulatory therapies and the issues that need to be addressed, as well as the prospects and targeting strategies of using immune cells to drive novel immunomodulatory therapies, hoping to advance the development of immunomodulatory therapies by providing evidence and new ideas.
Collapse
Affiliation(s)
- Wenjian Nian
- Department of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Zijian Huang
- Department of Cardiology, Yi Ji Shan Hospital affiliated to Wannan Medical College, Wuhu, China.,Anesthesia Laboratory and Training Center, Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Cong Fu
- Department of Cardiology, Yi Ji Shan Hospital affiliated to Wannan Medical College, Wuhu, China.,Anesthesia Laboratory and Training Center, Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| |
Collapse
|
16
|
Wu SJ, He RL, Zhao L, Yu XY, Jiang YN, Guan X, Chen QY, Ren FF, Xie ZY, Wu LP, Li L. Cardiac-Specific Overexpression of Caveolin-1 in Rats With Ischemic Cardiomyopathy Improves Arrhythmogenicity and Cardiac Remodelling. Can J Cardiol 2023; 39:73-86. [PMID: 36240973 DOI: 10.1016/j.cjca.2022.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/16/2022] [Accepted: 10/04/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Ischemic cardiomyopathy (ICM) is associated with electrical and structural remodelling, leading to arrhythmias. Caveolin-1 (Cav1) is a membrane protein involved in the pathogenesis of ischemic injury. Cav1 deficiency has been associated with arrhythmogenicity. The current study aimed to determine how Cav1 overexpression inhibits arrhythmias and cardiac remodelling in ICM. METHODS ICM was modelled using left anterior descending (LAD) artery ligation for 4 weeks. Cardiac-specific Cav1 overexpression in ICM on arrhythmias, excitation-contraction coupling, and cardiac remodelling were investigated using the intramyocardial injection of an adeno-associated virus serotype 9 (AAV-9) system, carrying a specific sequence expressing Cav1 (AAVCav1) under the cardiac troponin T (cTnT) promoter. RESULTS Cav1 overexpression decreased susceptibility to arrhythmias by upregulating gap junction connexin 43 (CX43) and reducing spontaneous irregular proarrhythmogenic Ca2+ waves in ventricular cardiomyocytes. It also alleviated ischemic injury-induced contractility weakness by improving Ca2+ cycling through normalizing Ca2+-handling protein levels and improving Ca2+ homeostasis. Masson stain and immunoblotting revealed that the deposition of excessive fibrosis was attenuated by Cav1 overexpression, inhibiting the transforming growth factor-β (TGF-β)/Smad2 signalling pathway. Coimmunoprecipitation assays demonstrated that the interaction between Cav1 and cSrc modulated CX43 expression and Ca2+-handling protein levels. CONCLUSIONS Cardiac-specific overexpression of Cav1 attenuated ventricular arrhythmia, improved Ca2+ cycling, and attenuated cardiac remodelling. These effects were attributed to modulation of CX43, normalized Ca2+-handling protein levels, improved Ca2+ homeostasis, and attenuated cardiac fibrosis.
Collapse
Affiliation(s)
- Shu-Jie Wu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Rui-Lin He
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Lin Zhao
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Xiao-Yu Yu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Yi-Na Jiang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Xuan Guan
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Qiao-Ying Chen
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Fang-Fang Ren
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Zuo-Yi Xie
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Lian-Pin Wu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Lei Li
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China.
| |
Collapse
|
17
|
Guthoff H, Hof A, Klinke A, Maaß M, Konradi J, Mehrkens D, Geißen S, Nettersheim FS, Braumann S, Michaelsson E, Nies RJ, Lee S, Redzinski MC, Peters VBM, Nemade HN, von Stein P, Winkels H, Rudolph V, Baldus S, Adam M, Mollenhauer M. Protective Effects of Therapeutic Neutrophil Depletion and Myeloperoxidase Inhibition on Left Ventricular Function and Remodeling in Myocardial Infarction. Antioxidants (Basel) 2022; 12:antiox12010033. [PMID: 36670895 PMCID: PMC9854671 DOI: 10.3390/antiox12010033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Myocardial infarction (MI) is a leading cause of morbidity and mortality worldwide. Improved survival has led to an increasing incidence of ischemic cardiomyopathy, making it a major reason for hospitalization in the western world. The inflammatory response in the ischemic myocardium determines the extent of structural remodeling and functional deterioration, with neutrophils (PMN) being a key modulator of the propagation and resolution of inflammation. The heme enzyme myeloperoxidase (MPO) is abundantly expressed in PMN and is an important mediator of their inflammatory capacities. Here, we examine the effects of PMN reduction, MPO deficiency and MPO inhibition in two murine models of MI. Reduction in PMN count resulted in less scar formation and improved cardiac function. Similar results were obtained in genetically MPO deficient mice, suggesting that MPO is a critical factor in PMN-mediated cardiac remodeling. To test our findings in a therapeutic approach, we orally administered the MPO inhibitor AZM198 in the context of MI and could demonstrate improved cardiac function and reduced structural remodeling. Therefore, MPO appears to be a favorable pharmacological target for the prevention of long-term morbidity after MI.
Collapse
Affiliation(s)
- Henning Guthoff
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
- Correspondence:
| | - Alexander Hof
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Anna Klinke
- Clinic for General and Interventional Cardiology/Angiology, Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Martina Maaß
- Division of Dry-Eye and Ocular GVHD, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Jürgen Konradi
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
| | - Dennis Mehrkens
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Simon Geißen
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Felix S. Nettersheim
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Simon Braumann
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Erik Michaelsson
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Z4-46798 Gothenburg, Sweden
| | - Richard J. Nies
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
| | - Samuel Lee
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
| | - Marie-Christin Redzinski
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
| | - Vera B. M. Peters
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Harshal N. Nemade
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
| | - Philipp von Stein
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
| | - Holger Winkels
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Volker Rudolph
- Clinic for General and Interventional Cardiology/Angiology, Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Stephan Baldus
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Matti Adam
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Martin Mollenhauer
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
18
|
Li R, Frangogiannis NG. Integrins in cardiac fibrosis. J Mol Cell Cardiol 2022; 172:1-13. [PMID: 35872324 DOI: 10.1016/j.yjmcc.2022.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 12/14/2022]
Abstract
Cells sense mechanical stress and changes in their matrix environment through the integrins, a family of heterodimeric surface receptors that bind to extracellular matrix ligands and trigger cytoskeletal remodeling, while transducing a wide range of intracellular signals. Integrins have been extensively implicated in regulation of inflammation, repair and fibrosis in many different tissues. This review manuscript discusses the role of integrin-mediated cascades in myocardial fibrosis. In vitro studies have demonstrated that β1 and αv integrins play an important role in fibrogenic conversion of cardiac fibroblast, acting through direct stimulation of FAK/Src cascades, or via accentuation of growth factor signaling. Fibrogenic actions of αv integrins may be mediated, at least in part, through pericellular activation of latent TGF-β stores. In vivo evidence supporting the role of integrin heterodimers in fibrotic cardiac remodeling is limited to associative evidence, and to experiments using pharmacologic inhibitors, or global loss-of-function approaches. Studies documenting in vivo actions of integrins on fibroblasts using cell-specific strategies are lacking. Integrin effects on leukocytes may also contribute to the pathogenesis of fibrotic myocardial responses by mediating recruitment and activation of fibrogenic macrophages. The profile and role of integrins in cardiac fibrosis may be dependent on the underlying pathologic condition. Considering their cell surface localization and the availability of small molecule inhibitors, integrins may be attractive therapeutic targets for patients with heart failure associated with prominent fibrotic remodeling.
Collapse
Affiliation(s)
- Ruoshui Li
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America.
| |
Collapse
|
19
|
Hypochlorous Acid Chemistry in Mammalian Cells—Influence on Infection and Role in Various Pathologies. Int J Mol Sci 2022; 23:ijms231810735. [PMID: 36142645 PMCID: PMC9504810 DOI: 10.3390/ijms231810735] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/19/2022] Open
Abstract
This review discusses the formation of hypochlorous acid HOCl and the role of reactive chlorinated species (RCS), which are catalysed by the enzyme myeloperoxidase MPO, mainly located in leukocytes and which in turn contribute to cellular oxidative stress. The reactions of RCS with various organic molecules such as amines, amino acids, proteins, lipids, carbohydrates, nucleic acids, and DNA are described, and an attempt is made to explain the chemical mechanisms of the formation of the various chlorinated derivatives and the data available so far on the effects of MPO, RCS and halogenative stress. Their presence in numerous pathologies such as atherosclerosis, arthritis, neurological and renal diseases, diabetes, and obesity is reviewed and were found to be a feature of debilitating diseases.
Collapse
|
20
|
Zhou J, Li R, Bao T, Jiang W, Huang Y. Association between serum 25-hydroxyvitamin d and myeloperoxidase: A cross-sectional study of a general population in China. Front Nutr 2022; 9:948691. [PMID: 35983482 PMCID: PMC9379339 DOI: 10.3389/fnut.2022.948691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background Several studies have found a strong association between cardiovascular diseases and myeloperoxidase (MPO) as a marker of oxidative stress. Although the anti-inflammatory effects of vitamin D in adults have been validated, evidence about the relationship between MPO and 25(OH)D is lacking. This study aimed to investigate the relationship between MPO and 25(OH)D in the general Chinese population. Methods From November 2018 to August 2019, a total of 6414 subjects were enrolled in a tertiary referral hospital in China, which included 3,122 women and 3,292 men. The dependent and independent variables were MPO and 25(OH)D, respectively. The confounders included age, sex, body mass index, waist-hip ratio, smoking status, alcohol drinking status, calcium, and parathyroid hormone concentration. Results In the fully adjusted model, we found that MPO decreased by 0.12 (95% CI −0.16, −0.08), ng/mL for each unit (1 nmol/L) increase in 25(OH)D. When 25(OH) D was divided into quartiles, compared with Q1 (< 41.4 nmol/L), the adjusted beta coefficients (β) of MPO in Q2–Q4 were −2.29 (95% CI, −4.31 to −0.27), −4.76 (95% CI, −6.83 to −2.69), and −6.07 (95% CI, −8.23 to −3.92), respectively (P for the trend < 0.0001). When 25(OH) D was divided according to clinical severity, compared with the severely deficient (< 30 nmol/L) s≥ 30, < 50 nmol/L) and sufficient groups (≥ 50 nmol/L) were −2.59 (95% CI, −5.87 to 0.69) and −5.87 (95% CI, −9.17 to −2.57), respectively (P for the trend < 0.0001). Conclusion After adjusting for age, sex, BMI, waist-hip ratio, smoking status, alcohol status, calcium, and PTH, circulating 25(OH)D was negatively associated with MPO.
Collapse
Affiliation(s)
- Junteng Zhou
- Health Management Center, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ruicen Li
- Health Management Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Bao
- Health Management Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Jiang
- Health Management Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Huang
- Health Management Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Yang HT, Li LL, Li SN, Wu JT, Chen K, Song WF, Zhang GB, Ma JF, Fu HX, Cao S, Gao CY, Hu J. MicroRNA-155 inhibition attenuates myocardial infarction-induced connexin 43 degradation in cardiomyocytes by reducing pro-inflammatory macrophage activation. Cardiovasc Diagn Ther 2022; 12:325-339. [PMID: 35800355 PMCID: PMC9253173 DOI: 10.21037/cdt-21-743] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/01/2022] [Indexed: 09/29/2023]
Abstract
BACKGROUND Degradation of pro-inflammatory macrophage-mediated connexin 43 (Cx43) plays an important role in post-myocardial infarction (MI) arrhythmogenesis, microRNA (miR)-155 produced by macrophages has been shown to mediate post-MI effects. We hypothesized that miR-155 inhibition attenuated MI-induced Cx43 degradation by reducing pro-inflammatory macrophage activation. METHODS MI was induced by permanent ligation of the left anterior descending coronary artery in male C57BL/6 mice. Lipopolysaccharide (LPS)-stimulated mice bone marrow-derived macrophages (BMDMs) and hypoxia-induced neonatal rat cardiomyocytes (NRCMs) were used in vitro models. qRT-PCR, Western-blot and immunofluorescence were used to analyze relevant indicators. RESULTS The expression levels of miR-155, interleukin-1 beta (IL-1β), and matrix metalloproteinase (MMP)7 were higher in MI mice and LPS-treated BMDMs than in the sham/control groups, treatment with a miR-155 antagomir reversed these effects. Moreover, miR-155 inhibition reduced ventricular arrhythmias incidence and improved cardiac function in MI mice. Cx43 expression was decreased in MI mice and hypoxia-exposed NRCMs, and hypoxia-induced Cx43 degradation in NRCMs was reduced by application of conditioned medium from LPS-induced BMDMs treated with the miR-155 antagomir, but increased by conditioned medium from BMDMs treated with a miR-155 agomir. Importantly, NRCMs cultured in conditioned medium from LPS-induced BMDMs transfected with small interfering RNA against IL-1β and MMP7 showed decreased hypoxia-mediated Cx43 degradation, and this effect also was diminished by BMDM treatment with the miR-155 agomir. Additionally, siRNA-mediated suppressor of cytokine signaling 1 (SOCS1) knockdown in LPS-induced BMDMs promoted Cx43 degradation in hypoxia-exposed NRCMs, and the effect was reduced by the miR-155 inhibition. CONCLUSIONS MiR-155 inhibition attenuated post-MI Cx43 degradation by reducing macrophage-mediated IL-1β and MMP7 expression through the SOCS1/nuclear factor-κB pathway.
Collapse
Affiliation(s)
- Hai-Tao Yang
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Li-Li Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Song-Nan Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Jin-Tao Wu
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Chen
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei-Feng Song
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Guo-Bao Zhang
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Ji-Fang Ma
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Hai-Xia Fu
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Sheng Cao
- Department of Ultrasound, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chuan-Yu Gao
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Juan Hu
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Shi H, El Kazzi M, Liu Y, Gao A, Schroder AL, Vuong S, Young PA, Rayner BS, Vreden C, King NJC, Witting PK. Multiplex analysis of mass imaging data: Application to the pathology of experimental myocardial infarction. Acta Physiol (Oxf) 2022; 235:e13790. [PMID: 35080155 PMCID: PMC9286669 DOI: 10.1111/apha.13790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 12/28/2022]
Abstract
Aim Imaging mass cytometry (IMC) affords simultaneous immune‐labelling/imaging of multiple antigens in the same tissue. Methods utilizing multiplex data beyond co‐registration are lacking. This study developed and applied an innovative spatial analysis workflow for multiplex imaging data to IMC data determined from cardiac tissues and revealed the mechanism(s) of neutrophil‐mediated post‐myocardial‐infarction damage. Methods IMC produced multiplex images with various redox/inflammatory markers. The cardiac peri‐infarct zone (PIZ) was determined to be up to 240 µm from the infarct border based on the presence of neutrophils. The tissue region beyond the infarct was defined as the remote area (RA). ImageJ was used to quantify the immunoreactivity. Functional assessments included infarct size, cell necro/apoptosis, total thiol assay and echocardiogram. Results Expression of damage markers decreased in order from the infarct area to PIZ and then RA, reflecting the neutrophil density in the regions. Concentrically spaced “shoreline contour analysis” around the cardiac infarct extending into the PIZ showed that immunoreactivity for damage markers decreased linearly with increasing distance from the infarct, concomitant with a decreasing neutrophil‐myeloperoxidase (MPO) gradient from the infarct to the PIZ. Stratifying by concentric bands around individual MPO+‐signal identified that the immunoreactivity of haem‐oxygenase‐1 (HO‐1) and phosphorylated‐p38 mitogen‐activated protein kinase (pP38) peaked near neutrophils. Furthermore, spatial dependence between neutrophils and markers of cardiac cellular damage was confirmed by nearest‐neighbour distance analysis. Post‐infarction tissue exhibited declined functional parameters that were associated with neutrophil migration from the infarct to PIZ. Conclusion This image‐based quantitative protocol revealed the spatial association and provided potential molecular pathways responsible for neutrophil‐mediated damage post‐infarction.
Collapse
Affiliation(s)
- Han Shi
- Redox Biology Group Discipline of Pathology Faculty of Medicine and Health Charles Perkins Centre The University of Sydney Sydney New South Wales Australia
| | - Mary El Kazzi
- Redox Biology Group Discipline of Pathology Faculty of Medicine and Health Charles Perkins Centre The University of Sydney Sydney New South Wales Australia
| | - Yuyang Liu
- Redox Biology Group Discipline of Pathology Faculty of Medicine and Health Charles Perkins Centre The University of Sydney Sydney New South Wales Australia
| | - Antony Gao
- Redox Biology Group Discipline of Pathology Faculty of Medicine and Health Charles Perkins Centre The University of Sydney Sydney New South Wales Australia
| | - Angie L. Schroder
- Redox Biology Group Discipline of Pathology Faculty of Medicine and Health Charles Perkins Centre The University of Sydney Sydney New South Wales Australia
| | - Sally Vuong
- The Heart Research Institute Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
| | - Pamela A. Young
- Australian Centre for Microscopy & Microanalysis Charles Perkins Centre The University of Sydney Sydney New South Wales Australia
| | - Benjamin S. Rayner
- The Heart Research Institute Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
| | - Caryn Vreden
- Immunopathology Group Discipline of Pathology Faculty of Medicine and Health Charles Perkins Centre The University of Sydney Sydney New South Wales Australia
- Sydney Cytometry Facility and Ramaciotti Facility for Human Systems Biology The University of Sydney Sydney New South Wales Australia
| | - Nicholas J. C. King
- Immunopathology Group Discipline of Pathology Faculty of Medicine and Health Charles Perkins Centre The University of Sydney Sydney New South Wales Australia
- Sydney Cytometry Facility and Ramaciotti Facility for Human Systems Biology The University of Sydney Sydney New South Wales Australia
- Marie Bashir Institute for Infectious Disease and Biosecurity The University of Sydney Sydney New South Wales Australia
- The University of Sydney Nano Institute The University of Sydney Sydney New South Wales Australia
| | - Paul K. Witting
- Redox Biology Group Discipline of Pathology Faculty of Medicine and Health Charles Perkins Centre The University of Sydney Sydney New South Wales Australia
- The University of Sydney Nano Institute The University of Sydney Sydney New South Wales Australia
| |
Collapse
|
23
|
Abdul-Ghani S, Skeffington KL, Kim M, Moscarelli M, Lewis PA, Heesom K, Fiorentino F, Emanueli C, Reeves BC, Punjabi PP, Angelini GD, Suleiman MS. Effect of cardioplegic arrest and reperfusion on left and right ventricular proteome/phosphoproteome in patients undergoing surgery for coronary or aortic valve disease. Int J Mol Med 2022; 49:77. [PMID: 35425992 PMCID: PMC9083849 DOI: 10.3892/ijmm.2022.5133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/15/2022] [Indexed: 11/18/2022] Open
Abstract
Our earlier work has shown inter‑disease and intra‑disease differences in the cardiac proteome between right (RV) and left (LV) ventricles of patients with aortic valve stenosis (AVS) or coronary artery disease (CAD). Whether disease remodeling also affects acute changes occuring in the proteome during surgical intervention is unknown. This study investigated the effects of cardioplegic arrest on cardiac proteins/phosphoproteins in LV and RV of CAD (n=6) and AVS (n=6) patients undergoing cardiac surgery. LV and RV biopsies were collected during surgery before ischemic cold blood cardioplegic arrest (pre) and 20 min after reperfusion (post). Tissues were snap frozen, proteins extracted, and the extracts were used for proteomic and phosphoproteomic analysis using Tandem Mass Tag (TMT) analysis. The results were analysed using QuickGO and Ingenuity Pathway Analysis softwares. For each comparision, our proteomic analysis identified more than 3,000 proteins which could be detected in both the pre and Post samples. Cardioplegic arrest and reperfusion were associated with significant differential expression of 24 (LV) and 120 (RV) proteins in the CAD patients, which were linked to mitochondrial function, inflammation and cardiac contraction. By contrast, AVS patients showed differential expression of only 3 LV proteins and 2 RV proteins, despite a significantly longer duration of ischaemic cardioplegic arrest. The relative expression of 41 phosphoproteins was significantly altered in CAD patients, with 18 phosphoproteins showing altered expression in AVS patients. Inflammatory pathways were implicated in the changes in phosphoprotein expression in both groups. Inter‑disease comparison for the same ventricular chamber at both timepoints revealed differences relating to inflammation and adrenergic and calcium signalling. In conclusion, the present study found that ischemic arrest and reperfusion trigger different changes in the proteomes and phosphoproteomes of LV and RV of CAD and AVS patients undergoing surgery, with markedly more changes in CAD patients despite a significantly shorter ischaemic period.
Collapse
Affiliation(s)
- Safa Abdul-Ghani
- Bristol Heart Institute and Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK
- Department of Physiology, Faculty of Medicine, Al-Quds University, Abu-Dis, Palestine
| | - Katie L. Skeffington
- Bristol Heart Institute and Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK
| | - Minjoo Kim
- Bristol Heart Institute and Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK
| | - Marco Moscarelli
- National Heart and Lung Institute, Imperial College, London SW3 6LY, UK
- GVM Care and Research, Anthea Hospital, I-70124 Bari, Italy
| | - Philip A. Lewis
- University of Bristol Proteomics/Bioinformatics Facility, University of Bristol, Bristol BS8 1TD, UK
| | - Kate Heesom
- University of Bristol Proteomics/Bioinformatics Facility, University of Bristol, Bristol BS8 1TD, UK
| | | | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College, London SW3 6LY, UK
| | - Barnaby C. Reeves
- Bristol Heart Institute and Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK
| | | | - Gianni D. Angelini
- Bristol Heart Institute and Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK
| | - M-Saadeh Suleiman
- Bristol Heart Institute and Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK
| |
Collapse
|
24
|
Zhang N, Aiyasiding X, Li WJ, Liao HH, Tang QZ. Neutrophil degranulation and myocardial infarction. Cell Commun Signal 2022; 20:50. [PMID: 35410418 PMCID: PMC8996539 DOI: 10.1186/s12964-022-00824-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/26/2021] [Indexed: 11/21/2022] Open
Abstract
Myocardial infarction (MI) is one of the most common cardiac emergencies with high morbidity and is a leading cause of death worldwide. Since MI could develop into a life-threatening emergency and could also seriously affect the life quality of patients, continuous efforts have been made to create an effective strategy to prevent the occurrence of MI and reduce MI-related mortality. Numerous studies have confirmed that neutrophils play important roles in inflammation and innate immunity, which provide the first line of defense against microorganisms by producing inflammatory cytokines and chemokines, releasing reactive oxygen species, and degranulating components of neutrophil cytoplasmic granules to kill pathogens. Recently, researchers reported that neutrophils are closely related to the severity and prognosis of patients with MI, and neutrophil to lymphocyte ratio in post-MI patients had predictive value for major adverse cardiac events. Neutrophils have been increasingly recognized to exert important functions in MI. Especially, granule proteins released by neutrophil degranulation after neutrophil activation have been suggested to involve in the process of MI. This article reviewed the current research progress of neutrophil granules in MI and discusses neutrophil degranulation associated diagnosis and treatment strategies. Video abstract
Collapse
Affiliation(s)
- Nan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Xiahenazi Aiyasiding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Wen-Jing Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Hai-Han Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China. .,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, People's Republic of China. .,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China. .,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, People's Republic of China. .,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
25
|
Hohl M, Selejan SR, Wintrich J, Lehnert U, Speer T, Schneider C, Mauz M, Markwirth P, Wong DWL, Boor P, Kazakov A, Mollenhauer M, Linz B, Klinkhammer BM, Hübner U, Ukena C, Moellmann J, Lehrke M, Wagenpfeil S, Werner C, Linz D, Mahfoud F, Böhm M. Renal Denervation Prevents Atrial Arrhythmogenic Substrate Development in CKD. Circ Res 2022; 130:814-828. [PMID: 35130718 DOI: 10.1161/circresaha.121.320104] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND In patients with chronic kidney disease (CKD), atrial fibrillation (AF) is highly prevalent and represents a major risk factor for stroke and death. CKD is associated with atrial proarrhythmic remodeling and activation of the sympathetic nervous system. Whether reduction of the sympathetic nerve activity by renal denervation (RDN) inhibits AF vulnerability in CKD is unknown. METHODS Left atrial (LA) fibrosis was analyzed in samples from patients with AF and concomitant CKD (estimated GFR, <60 mL/min per 1.73 m2) using picrosirius red and compared with AF patients without CKD and patients with sinus rhythm with and without CKD. In a translational approach, male Sprague Dawley rats were fed with 0.25% adenine (AD)-containing chow for 16 weeks to induce CKD. At week 5, AD-fed rats underwent RDN or sham operation (AD). Rats on normal chow served as control. After 16 weeks, cardiac function and AF susceptibility were assessed by echocardiography, radiotelemetry, electrophysiological mapping, and burst stimulation, respectively. LA tissue was histologically analyzed for sympathetic innervation using tyrosine hydroxylase staining, and LA fibrosis was determined using picrosirius red. RESULTS Sirius red staining demonstrated significantly increased LA fibrosis in patients with AF+CKD compared with AF without CKD or sinus rhythm. In rats, AD demonstrated LA structural changes with enhanced sympathetic innervation compared with control. In AD, LA enlargement was associated with prolonged duration of induced AF episodes, impaired LA conduction latency, and increased absolute conduction inhomogeneity. RDN treatment improved LA remodeling and reduced LA diameter compared with sham-operated AD. Furthermore, RDN decreased AF susceptibility and ameliorated LA conduction latency and absolute conduction inhomogeneity, independent of blood pressure reduction and renal function. CONCLUSIONS In an experimental rat model of CKD, RDN inhibited progression of atrial structural and electrophysiological remodeling. Therefore, RDN represents a potential therapeutic tool to reduce the risk of AF in CKD, independent of changes in renal function and blood pressure.
Collapse
Affiliation(s)
- Mathias Hohl
- Department of Internal Medicine III, Saarland University Hospital and Saarland University, Homburg/Saar, Germany (M.H., S.-R.S., J.W., U.L., C.S., M. Mauz, P.M., A.K., C.U., C.W., D.L., F.M., M.B.)
| | - Simina-Ramona Selejan
- Department of Internal Medicine III, Saarland University Hospital and Saarland University, Homburg/Saar, Germany (M.H., S.-R.S., J.W., U.L., C.S., M. Mauz, P.M., A.K., C.U., C.W., D.L., F.M., M.B.)
| | - Jan Wintrich
- Department of Internal Medicine III, Saarland University Hospital and Saarland University, Homburg/Saar, Germany (M.H., S.-R.S., J.W., U.L., C.S., M. Mauz, P.M., A.K., C.U., C.W., D.L., F.M., M.B.)
| | - Ulrike Lehnert
- Department of Internal Medicine III, Saarland University Hospital and Saarland University, Homburg/Saar, Germany (M.H., S.-R.S., J.W., U.L., C.S., M. Mauz, P.M., A.K., C.U., C.W., D.L., F.M., M.B.)
| | - Thimoteus Speer
- Klinik für Innere Medizin IV, Universität des Saarlandes, Homburg/Saar, Germany (T.S.).,Translational Cardio-Renal Medicine, Saarland University, Homburg/Saar, Germany. (T.S.)
| | - Clara Schneider
- Department of Internal Medicine III, Saarland University Hospital and Saarland University, Homburg/Saar, Germany (M.H., S.-R.S., J.W., U.L., C.S., M. Mauz, P.M., A.K., C.U., C.W., D.L., F.M., M.B.)
| | - Muriel Mauz
- Department of Internal Medicine III, Saarland University Hospital and Saarland University, Homburg/Saar, Germany (M.H., S.-R.S., J.W., U.L., C.S., M. Mauz, P.M., A.K., C.U., C.W., D.L., F.M., M.B.)
| | - Philipp Markwirth
- Department of Internal Medicine III, Saarland University Hospital and Saarland University, Homburg/Saar, Germany (M.H., S.-R.S., J.W., U.L., C.S., M. Mauz, P.M., A.K., C.U., C.W., D.L., F.M., M.B.)
| | - Dickson W L Wong
- Institut für Pathologie Universitätsklinikum Aachen, Germany (D.W.L.W., P.B., B.M.K.)
| | - Peter Boor
- Institut für Pathologie Universitätsklinikum Aachen, Germany (D.W.L.W., P.B., B.M.K.)
| | - Andrey Kazakov
- Department of Internal Medicine III, Saarland University Hospital and Saarland University, Homburg/Saar, Germany (M.H., S.-R.S., J.W., U.L., C.S., M. Mauz, P.M., A.K., C.U., C.W., D.L., F.M., M.B.)
| | - Martin Mollenhauer
- Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, University of Cologne, Germany (M. Mollenhauer)
| | - Benedikt Linz
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Denmark (B.L.)
| | | | - Ulrich Hübner
- Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, Homburg/Saar, Germany (U.H.)
| | - Christian Ukena
- Department of Internal Medicine III, Saarland University Hospital and Saarland University, Homburg/Saar, Germany (M.H., S.-R.S., J.W., U.L., C.S., M. Mauz, P.M., A.K., C.U., C.W., D.L., F.M., M.B.)
| | - Julia Moellmann
- Department of Internal Medicine I-Cardiology, University Hospital Aachen, Germany (J.M., M.L.)
| | - Michael Lehrke
- Department of Internal Medicine I-Cardiology, University Hospital Aachen, Germany (J.M., M.L.)
| | - Stefan Wagenpfeil
- Institut für Medizinische Biometrie, Epidemiologie und Medizinische Informatik, Saarland University, Homburg/Saar, Germany. (S.W.)
| | - Christian Werner
- Department of Internal Medicine III, Saarland University Hospital and Saarland University, Homburg/Saar, Germany (M.H., S.-R.S., J.W., U.L., C.S., M. Mauz, P.M., A.K., C.U., C.W., D.L., F.M., M.B.)
| | - Dominik Linz
- Department of Internal Medicine III, Saarland University Hospital and Saarland University, Homburg/Saar, Germany (M.H., S.-R.S., J.W., U.L., C.S., M. Mauz, P.M., A.K., C.U., C.W., D.L., F.M., M.B.).,Cardiovascular Research Institute Maastricht, University Maastricht, the Netherlands (D.L.)
| | - Felix Mahfoud
- Department of Internal Medicine III, Saarland University Hospital and Saarland University, Homburg/Saar, Germany (M.H., S.-R.S., J.W., U.L., C.S., M. Mauz, P.M., A.K., C.U., C.W., D.L., F.M., M.B.)
| | - Michael Böhm
- Department of Internal Medicine III, Saarland University Hospital and Saarland University, Homburg/Saar, Germany (M.H., S.-R.S., J.W., U.L., C.S., M. Mauz, P.M., A.K., C.U., C.W., D.L., F.M., M.B.)
| |
Collapse
|
26
|
Koyani CN, Scheruebel S, Jin G, Kolesnik E, Zorn-Pauly K, Mächler H, Hoefler G, von Lewinski D, Heinzel FR, Pelzmann B, Malle E. Hypochlorite-Modified LDL Induces Arrhythmia and Contractile Dysfunction in Cardiomyocytes. Antioxidants (Basel) 2021; 11:25. [PMID: 35052529 PMCID: PMC8772905 DOI: 10.3390/antiox11010025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 02/05/2023] Open
Abstract
Neutrophil-derived myeloperoxidase (MPO) and its potent oxidant, hypochlorous acid (HOCl), gained attention as important oxidative mediators in cardiac damage and dysfunction. As cardiomyocytes generate low-density lipoprotein (LDL)-like particles, we aimed to identify the footprints of proatherogenic HOCl-LDL, which adversely affects cellular signalling cascades in various cell types, in the human infarcted myocardium. We performed immunohistochemistry for MPO and HOCl-LDL in human myocardial tissue, investigated the impact of HOCl-LDL on electrophysiology and contractility in primary cardiomyocytes, and explored underlying mechanisms in HL-1 cardiomyocytes and human atrial appendages using immunoblot analysis, qPCR, and silencing experiments. HOCl-LDL reduced ICa,L and IK1, and increased INaL, leading to altered action potential characteristics and arrhythmic events including early- and delayed-afterdepolarizations. HOCl-LDL altered the expression and function of CaV1.2, RyR2, NCX1, and SERCA2a, resulting in impaired contractility and Ca2+ homeostasis. Elevated superoxide anion levels and oxidation of CaMKII were mediated via LOX-1 signaling in HL-1 cardiomyocytes. Furthermore, HOCl-LDL-mediated alterations of cardiac contractility and electrophysiology, including arrhythmic events, were ameliorated by the CaMKII inhibitor KN93 and the INaL blocker, ranolazine. This study provides an explanatory framework for the detrimental effects of HOCl-LDL compared to native LDL and cardiac remodeling in patients with high MPO levels during the progression of cardiovascular disease.
Collapse
Affiliation(s)
- Chintan N. Koyani
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria;
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8036 Graz, Austria; (G.J.); (E.K.); (D.v.L.)
| | - Susanne Scheruebel
- Division of Biophysics, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (S.S.); (K.Z.-P.)
| | - Ge Jin
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8036 Graz, Austria; (G.J.); (E.K.); (D.v.L.)
- The 2nd Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ewald Kolesnik
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8036 Graz, Austria; (G.J.); (E.K.); (D.v.L.)
| | - Klaus Zorn-Pauly
- Division of Biophysics, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (S.S.); (K.Z.-P.)
| | - Heinrich Mächler
- Department of Surgery, Division of Cardiac Surgery, Medical University of Graz, 8036 Graz, Austria;
| | - Gerald Hoefler
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria;
| | - Dirk von Lewinski
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8036 Graz, Austria; (G.J.); (E.K.); (D.v.L.)
| | - Frank R. Heinzel
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, 13353 Berlin, Germany;
- Deutsches Zentrum für Herz-Kreislauf-Forschung (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Brigitte Pelzmann
- Division of Biophysics, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (S.S.); (K.Z.-P.)
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria;
| |
Collapse
|
27
|
He L, Liu R, Yue H, Zhu G, Fu L, Chen H, Guo Y, Qin C. NETs promote pathogenic cardiac fibrosis and participate in ventricular aneurysm formation after ischemia injury through the facilitation of perivascular fibrosis. Biochem Biophys Res Commun 2021; 583:154-161. [PMID: 34735877 DOI: 10.1016/j.bbrc.2021.10.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023]
Abstract
Fibrosis has been widely investigated in acute phase of myocardial infarction (MI). However, the mechanism of sustained fibrosis after MI hasn't been elucidated, which eventually gives rise to ventricular aneurysm (VA) formation chronic while lethal. Neutrophil as vital cell facilitating the fibrotic repair after acute MI may not project its effect to chronic phase unless neutrophil extracellular traps (NETs) were secreted and accumulating. The aim of this study was to investigate whether NETs contribute to the sustained fibrosis and VA formation after MI. We identified NETs in ventricular aneurysm of patients. Accordingly, NETs increased in peripheral blood of VA patients. Moreover, in rat VA NETs were also identified. Stimulated by NETs, the migration of fibroblast was enhanced and the differentiation of cardiac myofibroblast was initiated. Smad, MAPK and RhoA signaling pathways were activated by NETs incubation. And additional deposition with DNase I to disrupt NETs and abrogated NETs induced fibrosis both in vivo and vitro. These results collectively demonstrate a novel profibrotic role for NETs in chronic cardiac fibrosis and VA formation.
Collapse
Affiliation(s)
- Li He
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ruiqi Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Honghua Yue
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Guonian Zhu
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, China
| | - Li Fu
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Chen
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China.
| | - Chaoyi Qin
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
28
|
Mollenhauer M, Bokredenghel S, Geißen S, Klinke A, Morstadt T, Torun M, Strauch S, Schumacher W, Maass M, Konradi J, Peters VBM, Berghausen E, Vantler M, Rosenkranz S, Mehrkens D, Braumann S, Nettersheim F, Hof A, Simsekyilmaz S, Winkels H, Rudolph V, Baldus S, Adam M, Freyhaus HT. Stamp2 Protects From Maladaptive Structural Remodeling and Systolic Dysfunction in Post-Ischemic Hearts by Attenuating Neutrophil Activation. Front Immunol 2021; 12:701721. [PMID: 34691017 PMCID: PMC8527169 DOI: 10.3389/fimmu.2021.701721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
The six-transmembrane protein of prostate 2 (Stamp2) acts as an anti-inflammatory protein in macrophages by protecting from overt inflammatory signaling and Stamp2 deficiency accelerates atherosclerosis in mice. Herein, we describe an unexpected role of Stamp2 in polymorphonuclear neutrophils (PMN) and characterize Stamp2’s protective effects in myocardial ischemic injury. In a murine model of ischemia and reperfusion (I/R), echocardiography and histological analyses revealed a pronounced impairment of cardiac function in hearts of Stamp2-deficient- (Stamp2-/-) mice as compared to wild-type (WT) animals. This difference was driven by aggravated cardiac fibrosis, as augmented fibroblast-to-myofibroblast transdifferentiation was observed which was mediated by activation of the redox-sensitive p38 mitogen-activated protein kinase (p38 MAPK). Furthermore, we observed increased production of reactive oxygen species (ROS) in Stamp2-/- hearts after I/R, which is the likely cause for p38 MAPK activation. Although myocardial macrophage numbers were not affected by Stamp2 deficiency after I/R, augmented myocardial infiltration by polymorphonuclear neutrophils (PMN) was observed, which coincided with enhanced myeloperoxidase (MPO) plasma levels. Primary PMN isolated from Stamp2-/- animals exhibited a proinflammatory phenotype characterized by enhanced nuclear factor (NF)-κB activity and MPO secretion. To prove the critical role of PMN for the observed phenotype after I/R, antibody-mediated PMN depletion was performed in Stamp2-/- mice which reduced deterioration of LV function and adverse structural remodeling to WT levels. These data indicate a novel role of Stamp2 as an anti-inflammatory regulator of PMN and fibroblast-to-myofibroblast transdifferentiation in myocardial I/R injury.
Collapse
Affiliation(s)
- Martin Mollenhauer
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Senai Bokredenghel
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Simon Geißen
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Anna Klinke
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany.,Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum Nordrhein-Westfalen, University Hospital Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Tobias Morstadt
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Merve Torun
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Sabrina Strauch
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Wibke Schumacher
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Martina Maass
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Jürgen Konradi
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Vera B M Peters
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Eva Berghausen
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Marius Vantler
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Stephan Rosenkranz
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Dennis Mehrkens
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Simon Braumann
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Felix Nettersheim
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Alexander Hof
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Sakine Simsekyilmaz
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Holger Winkels
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Volker Rudolph
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany.,Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum Nordrhein-Westfalen, University Hospital Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Stephan Baldus
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Matti Adam
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Henrik Ten Freyhaus
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| |
Collapse
|
29
|
The Predictive role of Neutrophil-to-Lymphocyte Ratio (NLR) and Mean Platelet Volume-to-Lymphocyte Ratio (MPVLR) for Cardiovascular Events in Adult Patients with Acute Heart Failure. Mediators Inflamm 2021; 2021:6889733. [PMID: 34671226 PMCID: PMC8523242 DOI: 10.1155/2021/6889733] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/22/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction The inflammatory response plays a potential role for the pathogenesis and adverse outcomes of heart failure (HF). We aimed to explore the predictive role of baseline neutrophil-to-lymphocyte ratio (NLR) and mean platelet volume-to-lymphocyte ratio (MPVLR) on cardiovascular events (CVEs) in patients hospitalized with acute HF. Materials and Methods A retrospective cohort study was conducted in 321 patients with HF between January 2017 and December 2019. The association between their NLR, MPVLR, and combined NLR and MPVLR and CVEs, rehospitalization for HF, in-hospital death, and a composite outcome was explored by survival analysis using a Cox proportional hazard model. They were separately investigated and compared with the area under the receiver operating characteristics curve (AUC). Results Up to the end of the 3-year follow-up, 96 (29.9%) had CVEs, 106 (33.0%) died, 62 (19.3%) were rehospitalized with HF, and 21 (6.5%) died during admission. The NLR and MPVLR were significantly associated with CVEs (adjusted HR for NLR ≥ 3.29, 3.11; 95% CI, 1.98-4.89; MPVLR ≥ 8.57, 2.86; 95% CI, 1.87-4.39), readmissions for HF (adjusted HR for NLR ≥ 3.58, 2.70; 95% CI, 1.58-4.61; MPVLR ≥ 6.43, 2.84; 95% CI,1.59-5.07), in-hospital mortality (adjusted HR for NLR ≥ 3.29, 9.54; 95% CI, 2.19-41.40; MPVLR ≥ 8.57, 7.87; 95% CI, 2.56-24.19), and composite outcome (adjusted HR for NLR ≥ 3.32, 4.76; 95% CI, 3.29-6.89; MPVLR ≥ 7.07, 3.64; 95% CI, 2.58-5.15). The AUC of NLR and MPVLR for CVEs were 0.67 (95% CI, 0.61-0.72) and 0.63 (95% CI, 0.58-0.69). Combined NLR and MPVLR increased the AUC to 0.77 (95% CI, 0.72-0.83) with statistical significance. Conclusion The elevated NLR and MPVLR on admission in patients with acute HF were independently associated with worse CVEs, rehospitalization for HF, in-hospital death, and composite outcomes. These economical biomarkers should be considered in the management and follow-up care of patients with acute HF.
Collapse
|
30
|
Ivabradine Ameliorates Cardiac Function in Heart Failure with Preserved and Reduced Ejection Fraction via Upregulation of miR-133a. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1257283. [PMID: 34630844 PMCID: PMC8494584 DOI: 10.1155/2021/1257283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/04/2021] [Indexed: 11/21/2022]
Abstract
Heart failure (HF) is a clinical syndrome caused by impairment of ventricular filling, ejection of blood, or both and is categorized as HF with reduced ejection fraction (HFrEF) or HF with preserved ejection fraction (HFpEF) based on left ventricular function. Cardiac fibrosis contributes to left ventricular dysfunction and leads to the development of HF. Ivabradine, an If current selective specific inhibitor, has been shown to improve the prognosis of patients with HF. However, the effects of ivabradine on cardiac function and fibrosis in HFpEF and HFrEF and the underlying mechanism remain unclear. In the present study, we utilized mouse models to mimic HFpEF and HFrEF and evaluated the therapeutic effects of ivabradine. By treating mice with different doses (10 mg/kg/d and 20 mg/kg/d) of ivabradine for 4 or 8 weeks, we found that a high dose of ivabradine improved cardiac diastolic function in HFpEF mice and ameliorated cardiac diastolic and systolic function and ventricular tachycardia incidence in HFrEF mice. Moreover, ivabradine significantly reduced the activation of cardiac fibroblasts and myocardial fibrosis in mice. Mechanistically, microRNA-133a, which was upregulated by ivabradine, targeted connective tissue growth factor and collagen 1 in cardiac fibroblasts and might contribute to the protective role of ivabradine. Together, our work utilized mouse models to study HFpEF and HFrEF, demonstrated the protective role of ivabradine in HFpEF and HFrEF, and elucidated the potential underlying mechanism, which provides an effective strategy for related diseases.
Collapse
|
31
|
He J, Gong M, Wang Z, Liu D, Xie B, Luo C, Li G, Tse G, Liu T. Cardiac abnormalities after induction of endoplasmic reticulum stress are associated with mitochondrial dysfunction and connexin43 expression. Clin Exp Pharmacol Physiol 2021; 48:1371-1381. [PMID: 34133785 DOI: 10.1111/1440-1681.13541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/30/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum (ER) is responsible for protein synthesis and calcium storage. ER stress, reflected by protein unfolding and calcium handling abnormalities, has been studied as a pathogenic factor in cardiovascular diseases. The aim of this study is to examine the effects of ER stress on mechanical and electrophysiological functions in the heart and explore the underlying molecular mechanisms. A total of 30 rats were randomly divided into control, ER stress inducer (tunicamycin[TN]) and ER stress inhibitor (tunicamycin+4-phenylbutyric acid [4-PBA]) groups. ER stress induction led to significantly systolic and diastolic dysfunction as reflected by maximal increasing/decreasing rate of left intraventricular pressure (±dp/dt), left ventricular peaksystolic pressure(LVSP) and LV end-diastolic pressure(LVEDP). Epicardial mapping performed in vivo revealed reduced conduction velocity and increased conduction heterogeneity associated with the development of spontaneous ventricular tachycardia. Masson's trichrome staining revealed marked fibrosis in the myocardial interstitial and sub-pericardial regions, and thickened epicardium. Western blot analysis revealed increased pro-fibrotic factor transforming growth factor-β1 (TGF-β1), decreased mitochondrial biogenesis protein peroxlsome proliferator-activated receptor-γ coactlvator-1α (PGC-1a), and decreased mitochondrial fusion protein mitofusin-2 (MFN2). These changes were associated with mitochondria dysfunction and connexin 43(CX43)translocation to mitochondria. These abnormalities can be partially prevented by the ER stress inhibitor 4-PBA. Our study shows that ER stress induction can produce cardiac electrical and mechanism dysfunction as well as structural remodelling. Mitochondrial function alterations are contributed by CX43 transposition to mitochondria. These abnormalities can be partially prevented by the ER stress inhibitor 4-PBA.
Collapse
Affiliation(s)
- Jinli He
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Mengqi Gong
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China.,Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zaojia Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Daiqi Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bingxin Xie
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Cunjin Luo
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Kent and Medway Medical School, Canterbury, UK
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
32
|
Kuzheleva EA, Garganeeva AA, Aleksandrenko VA, Fedyunina VA, Ogurkova ON. Growth differentiation factor 15 associations with clinical features of chronic heart failure with midrange ejection fraction and preserved ejection fraction depending on the history of myocardial infarction. ACTA ACUST UNITED AC 2021; 61:59-64. [PMID: 34112076 DOI: 10.18087/cardio.2021.5.n1449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/18/2021] [Accepted: 03/29/2021] [Indexed: 11/18/2022]
Abstract
Aim To analyze associations between levels of the inflammatory marker, growth differentiation factor 15 (GDF-15), and echocardiographic indexes in CHF patients with mid-range and preserved left ventricular ejection fraction (LV EF) depending on the history of myocardial infarction (MI).Material and methods This study included 34 CHF patients with preserved and mid-range LV EF after MI (group 1, n=19) and without a history of MI (group 2, n=15). Serum concentration of GDF-15 was measured with enzyme immunoassay (BioVendor, Czech Republic). Statistical analysis was performed with STATISTICA 10.0.Results Patients of the study groups were age-matched [62 (58;67) and 64 (60;70) years, p=0.2] but differed in the gender; group 1 consisted of men only (100 %) whereas in group 2, the proportion of men was 53.3 % (p=0.001). Median concentration of GDF-15 was 2385 (2274; 2632.5) and 1997 (1534;2691) pg/ml in groups 1 and 2, respectively (p=0.09). Patients without MI showed a moderate negative correlation between LV EF and GDF-15 concentration (r= - 0.51, p=0.050) and a pronounced correlation between GDF-15 and LV stroke volume (r= -0.722, p=0.002). For patients after MI, a correlation between the level of GDF-15 and the degree of systolic dysfunction was not found (р>0.05).Conclusion Blood concentration of the inflammatory marker, GDF-15, correlates with LV EF and stroke volume in CHF patients with preserved or mid-range LV EF and without a history of MI while no such correlations were observed for patients with a history of MI.
Collapse
Affiliation(s)
- E A Kuzheleva
- Research Institute for Cardiology, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - A A Garganeeva
- Research Institute for Cardiology, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - V A Aleksandrenko
- Research Institute for Cardiology, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - V A Fedyunina
- Research Institute for Cardiology, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - O N Ogurkova
- Research Institute for Cardiology, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
33
|
Kargapolova Y, Geißen S, Zheng R, Baldus S, Winkels H, Adam M. The Enzymatic and Non-Enzymatic Function of Myeloperoxidase (MPO) in Inflammatory Communication. Antioxidants (Basel) 2021; 10:antiox10040562. [PMID: 33916434 PMCID: PMC8066882 DOI: 10.3390/antiox10040562] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Abstract
Myeloperoxidase is a signature enzyme of polymorphonuclear neutrophils in mice and humans. Being a component of circulating white blood cells, myeloperoxidase plays multiple roles in various organs and tissues and facilitates their crosstalk. Here, we describe the current knowledge on the tissue- and lineage-specific expression of myeloperoxidase, its well-studied enzymatic activity and incoherently understood non-enzymatic role in various cell types and tissues. Further, we elaborate on Myeloperoxidase (MPO) in the complex context of cardiovascular disease, innate and autoimmune response, development and progression of cancer and neurodegenerative diseases.
Collapse
|
34
|
Crosslinking of human plasma C-reactive protein to human serum albumin via disulfide bond oxidation. Redox Biol 2021; 41:101925. [PMID: 33714740 PMCID: PMC7966873 DOI: 10.1016/j.redox.2021.101925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 01/08/2023] Open
Abstract
Inter- and intra-molecular crosslinks can generate protein dysfunction, and are associated with protein aggregate accumulation in aged and diseased tissues. Crosslinks formed between multiple amino acid side chains can be reversible or irreversible. Disulfides formed either enzymatically, or as a result of oxidant-mediated reactions, are a major class of reversible crosslinks. Whilst these are commonly generated via oxidation of Cys thiol groups, they are also formed by ‘oxidant-mediated thiol-disulfide reactions’ via initial disulfide oxidation to a thiosulfinate or zwitterionic peroxide, and subsequent reaction with another thiol including those on other proteins. This generates new intermolecular protein-protein crosslinks. Here we demonstrate that photooxidation, or reaction with the biological oxidants HOCl and ONOOH, of the single disulfide present in the major human plasma inflammatory protein, C-reactive protein (CRP) can give rise to reversible disulfide bond formation with human serum albumin (HSA). This occurs in an oxidant dose-, or illumination-time-, dependent manner. These CRP-HSA crosslinks are formed both in isolated protein systems, and in fresh human plasma samples containing high, but not low, levels of CRP. The inter-protein crosslinks which involve Cys36 of CRP and Cys34 of HSA, have been detected by both immunoblotting and mass spectrometry (MS). The yield of protein-protein crosslinks depends on the nature and extent of oxidant exposure, and can be reversed by dithiothreitol and tris(2-carboxyethyl)phosphine hydrochloride. These data indicate that oxidation of disulfide bonds in proteins can be a source of novel inter-protein crosslinks, which may help rationalize the accumulation of crosslinked proteins in aged and diseased tissues. C-reactive protein (CRP) is a major acute phase inflammatory protein in human plasma. Oxidation of the single Cys36-Cys97 disulfide in CRP generates reactive intermediates. The oxidized disulfide reacts with Cys34 of human serum albumin to forms a new crosslink. The inter-protein CRP-HSA crosslink has been characterized by immunoblotting and LS-MS/MS. This novel crosslink may be a long-lived plasma marker of inflammation-induced damage.
Collapse
|
35
|
Ling S, Xu JW. NETosis as a Pathogenic Factor for Heart Failure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6687096. [PMID: 33680285 PMCID: PMC7929675 DOI: 10.1155/2021/6687096] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Heart failure threatens the lives of patients and reduces their quality of life. Heart failure, especially heart failure with preserved ejection fraction, is closely related to systemic and local cardiac persistent chronic low-grade aseptic inflammation, microvascular damage characterized by endothelial dysfunction, oxidative stress, myocardial remodeling, and fibrosis. However, the initiation and development of persistent chronic low-grade aseptic inflammation is unexplored. Oxidative stress-mediated neutrophil extracellular traps (NETs) are the main immune defense mechanism against external bacterial infections. Furthermore, NETs play important roles in noninfectious diseases. After the onset of myocardial infarction, atrial fibrillation, or myocarditis, neutrophils infiltrate the damaged tissue and aggravate inflammation. In tissue injury, damage-related molecular patterns (DAMPs) may induce pattern recognition receptors (PRRs) to cause NETs, but whether NETs are directly involved in the pathogenesis and development of heart failure and the mechanism is still unclear. In this review, we analyzed the markers of heart failure and heart failure-related diseases and comorbidities, such as mitochondrial DNA, high mobility box group box 1, fibronectin extra domain A, and galectin-3, to explore their role in inducing NETs and to investigate the mechanism of PRRs, such as Toll-like receptors, receptor for advanced glycation end products, cGAS-STING, and C-X-C motif chemokine receptor 2, in activating NETosis. Furthermore, we discussed oxidative stress, especially the possibility that imbalance of thiol redox and MPO-derived HOCl promotes the production of 2-chlorofatty acid and induces NETosis, and analyzed the possibility of NETs triggering coronary microvascular thrombosis. In some heart diseases, the deletion or blocking of neutrophil-specific myeloperoxidase and peptidylarginine deiminase 4 has shown effectiveness. According to the results of current pharmacological studies, MPO and PAD4 inhibitors are effective at least for myocardial infarction, atherosclerosis, and certain autoimmune diseases, whose deterioration can lead to heart failure. This is essential for understanding NETosis as a therapeutic factor of heart failure and the related new pathophysiology and therapeutics of heart failure.
Collapse
Affiliation(s)
- Shuang Ling
- Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jin-Wen Xu
- Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
36
|
Dufeys C, Daskalopoulos EP, Castanares-Zapatero D, Conway SJ, Ginion A, Bouzin C, Ambroise J, Bearzatto B, Gala JL, Heymans S, Papageorgiou AP, Vinckier S, Cumps J, Balligand JL, Vanhaverbeke M, Sinnaeve P, Janssens S, Bertrand L, Beauloye C, Horman S. AMPKα1 deletion in myofibroblasts exacerbates post-myocardial infarction fibrosis by a connexin 43 mechanism. Basic Res Cardiol 2021; 116:10. [PMID: 33564961 PMCID: PMC7873123 DOI: 10.1007/s00395-021-00846-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
We have previously demonstrated that systemic AMP-activated protein kinase α1 (AMPKα1) invalidation enhanced adverse LV remodelling by increasing fibroblast proliferation, while myodifferentiation and scar maturation were impaired. We thus hypothesised that fibroblastic AMPKα1 was a key signalling element in regulating fibrosis in the infarcted myocardium and an attractive target for therapeutic intervention. The present study investigates the effects of myofibroblast (MF)-specific deletion of AMPKα1 on left ventricular (LV) adaptation following myocardial infarction (MI), and the underlying molecular mechanisms. MF-restricted AMPKα1 conditional knockout (cKO) mice were subjected to permanent ligation of the left anterior descending coronary artery. cKO hearts exhibit exacerbated post-MI adverse LV remodelling and are characterised by exaggerated fibrotic response, compared to wild-type (WT) hearts. Cardiac fibroblast proliferation and MF content significantly increase in cKO infarcted hearts, coincident with a significant reduction of connexin 43 (Cx43) expression in MFs. Mechanistically, AMPKα1 influences Cx43 expression by both a transcriptional and a post-transcriptional mechanism involving miR-125b-5p. Collectively, our data demonstrate that MF-AMPKα1 functions as a master regulator of cardiac fibrosis and remodelling and might constitute a novel potential target for pharmacological anti-fibrotic applications.
Collapse
Affiliation(s)
- Cécile Dufeys
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 55, Avenue Hippocrate, 1200, Brussels, Belgium
| | - Evangelos-Panagiotis Daskalopoulos
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 55, Avenue Hippocrate, 1200, Brussels, Belgium
| | - Diego Castanares-Zapatero
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 55, Avenue Hippocrate, 1200, Brussels, Belgium
| | - Simon J Conway
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Audrey Ginion
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 55, Avenue Hippocrate, 1200, Brussels, Belgium
| | - Caroline Bouzin
- IREC Imaging Platform, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Jérôme Ambroise
- Centre de Technologies Moléculaires Appliquées, Institut de Recherche Expérimentale et Clinique, UCL, Brussels, Belgium
| | - Bertrand Bearzatto
- Centre de Technologies Moléculaires Appliquées, Institut de Recherche Expérimentale et Clinique, UCL, Brussels, Belgium
| | - Jean-Luc Gala
- Centre de Technologies Moléculaires Appliquées, Institut de Recherche Expérimentale et Clinique, UCL, Brussels, Belgium
| | - Stephane Heymans
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Anna-Pia Papageorgiou
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Cardiovascular Sciences, KU Leuven, Louvain, Belgium
| | - Stefan Vinckier
- Center for Cancer Biology, University of Leuven and VIB, Louvain, Belgium
| | - Julien Cumps
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 55, Avenue Hippocrate, 1200, Brussels, Belgium
| | - Jean-Luc Balligand
- Pôle de Pharmacologie et de Thérapeutique (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Maarten Vanhaverbeke
- Department of Cardiovascular Sciences, KU Leuven, Louvain, Belgium
- Department of Cardiovascular Medicine, Leuven University Hospitals, Louvain, Belgium
| | - Peter Sinnaeve
- Department of Cardiovascular Sciences, KU Leuven, Louvain, Belgium
- Department of Cardiovascular Medicine, Leuven University Hospitals, Louvain, Belgium
| | - Stefan Janssens
- Department of Cardiovascular Sciences, KU Leuven, Louvain, Belgium
- Department of Cardiovascular Medicine, Leuven University Hospitals, Louvain, Belgium
| | - Luc Bertrand
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 55, Avenue Hippocrate, 1200, Brussels, Belgium
| | - Christophe Beauloye
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 55, Avenue Hippocrate, 1200, Brussels, Belgium
- Division of Cardiology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Sandrine Horman
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 55, Avenue Hippocrate, 1200, Brussels, Belgium.
| |
Collapse
|
37
|
Prasch J, Bernhart E, Reicher H, Kollroser M, Rechberger GN, Koyani CN, Trummer C, Rech L, Rainer PP, Hammer A, Malle E, Sattler W. Myeloperoxidase-Derived 2-Chlorohexadecanal Is Generated in Mouse Heart during Endotoxemia and Induces Modification of Distinct Cardiomyocyte Protein Subsets In Vitro. Int J Mol Sci 2020; 21:ijms21239235. [PMID: 33287422 PMCID: PMC7730634 DOI: 10.3390/ijms21239235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Sepsis is a major cause of mortality in critically ill patients and associated with cardiac dysfunction, a complication linked to immunological and metabolic aberrations. Cardiac neutrophil infiltration and subsequent release of myeloperoxidase (MPO) leads to the formation of the oxidant hypochlorous acid (HOCl) that is able to chemically modify plasmalogens (ether-phospholipids) abundantly present in the heart. This reaction gives rise to the formation of reactive lipid species including aldehydes and chlorinated fatty acids. During the present study, we tested whether endotoxemia increases MPO-dependent lipid oxidation/modification in the mouse heart. In hearts of lipopolysaccharide-injected mice, we observed significantly higher infiltration of MPO-positive cells, increased fatty acid content, and formation of 2-chlorohexadecanal (2-ClHDA), an MPO-derived plasmalogen modification product. Using murine HL-1 cardiomyocytes as in vitro model, we show that exogenously added HOCl attacks the cellular plasmalogen pool and gives rise to the formation of 2-ClHDA. Addition of 2-ClHDA to HL-1 cardiomyocytes resulted in conversion to 2-chlorohexadecanoic acid and 2-chlorohexadecanol, indicating fatty aldehyde dehydrogenase-mediated redox metabolism. However, a recovery of only 40% indicated the formation of non-extractable (protein) adducts. To identify protein targets, we used a clickable alkynyl analog, 2-chlorohexadec-15-yn-1-al (2-ClHDyA). After Huisgen 1,3-dipolar cycloaddition of 5-tetramethylrhodamine azide (N3-TAMRA) and two dimensional-gel electrophoresis (2D-GE), we were able to identify 51 proteins that form adducts with 2-ClHDyA. Gene ontology enrichment analyses revealed an overrepresentation of heat shock and chaperone, energy metabolism, and cytoskeletal proteins as major targets. Our observations in a murine endotoxemia model demonstrate formation of HOCl-modified lipids in the heart, while pathway analysis in vitro revealed that the chlorinated aldehyde targets specific protein subsets, which are central to cardiac function.
Collapse
Affiliation(s)
- Jürgen Prasch
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (J.P.); (E.B.); (H.R.); (C.N.K.); (C.T.); (E.M.)
| | - Eva Bernhart
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (J.P.); (E.B.); (H.R.); (C.N.K.); (C.T.); (E.M.)
| | - Helga Reicher
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (J.P.); (E.B.); (H.R.); (C.N.K.); (C.T.); (E.M.)
| | | | - Gerald N. Rechberger
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria;
- Center for Explorative Lipidomics, BioTechMed Graz, 8010 Graz, Austria
| | - Chintan N. Koyani
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (J.P.); (E.B.); (H.R.); (C.N.K.); (C.T.); (E.M.)
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8010 Graz, Austria; (L.R.); (P.P.R.)
| | - Christopher Trummer
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (J.P.); (E.B.); (H.R.); (C.N.K.); (C.T.); (E.M.)
| | - Lavinia Rech
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8010 Graz, Austria; (L.R.); (P.P.R.)
| | - Peter P. Rainer
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8010 Graz, Austria; (L.R.); (P.P.R.)
| | - Astrid Hammer
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria;
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (J.P.); (E.B.); (H.R.); (C.N.K.); (C.T.); (E.M.)
| | - Wolfgang Sattler
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (J.P.); (E.B.); (H.R.); (C.N.K.); (C.T.); (E.M.)
- Center for Explorative Lipidomics, BioTechMed Graz, 8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-71950
| |
Collapse
|
38
|
Bostan MM, Stătescu C, Anghel L, Șerban IL, Cojocaru E, Sascău R. Post-Myocardial Infarction Ventricular Remodeling Biomarkers-The Key Link between Pathophysiology and Clinic. Biomolecules 2020; 10:E1587. [PMID: 33238444 PMCID: PMC7700609 DOI: 10.3390/biom10111587] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Studies in recent years have shown increased interest in developing new methods of evaluation, but also in limiting post infarction ventricular remodeling, hoping to improve ventricular function and the further evolution of the patient. This is the point where biomarkers have proven effective in early detection of remodeling phenomena. There are six main processes that promote the remodeling and each of them has specific biomarkers that can be used in predicting the evolution (myocardial necrosis, neurohormonal activation, inflammatory reaction, hypertrophy and fibrosis, apoptosis, mixed processes). Some of the biomarkers such as creatine kinase-myocardial band (CK-MB), troponin, and N-terminal-pro type B natriuretic peptide (NT-proBNP) were so convincing that they immediately found their place in the post infarction patient evaluation protocol. Others that are related to more complex processes such as inflammatory biomarkers, atheroma plaque destabilization biomarkers, and microRNA are still being studied, but the results so far are promising. This article aims to review the markers used so far, but also the existing data on new markers that could be considered, taking into consideration the most important studies that have been conducted so far.
Collapse
Affiliation(s)
- Maria-Madălina Bostan
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania; (M.-M.B.); (R.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M.Georgescu”, 700503 Iasi, Romania
| | - Cristian Stătescu
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania; (M.-M.B.); (R.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M.Georgescu”, 700503 Iasi, Romania
| | - Larisa Anghel
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania; (M.-M.B.); (R.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M.Georgescu”, 700503 Iasi, Romania
| | | | - Elena Cojocaru
- Department of Morphofunctional Sciences I—Pathology, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania;
| | - Radu Sascău
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania; (M.-M.B.); (R.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M.Georgescu”, 700503 Iasi, Romania
| |
Collapse
|
39
|
p38 MAPK Pathway in the Heart: New Insights in Health and Disease. Int J Mol Sci 2020; 21:ijms21197412. [PMID: 33049962 PMCID: PMC7582802 DOI: 10.3390/ijms21197412] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
The p38 mitogen-activated kinase (MAPK) family controls cell adaptation to stress stimuli. p38 function has been studied in depth in relation to cardiac development and function. The first isoform demonstrated to play an important role in cardiac development was p38α; however, all p38 family members are now known to collaborate in different aspects of cardiomyocyte differentiation and growth. p38 family members have been proposed to have protective and deleterious actions in the stressed myocardium, with the outcome of their action in part dependent on the model system under study and the identity of the activated p38 family member. Most studies to date have been performed with inhibitors that are not isoform-specific, and, consequently, knowledge remains very limited about how the different p38s control cardiac physiology and respond to cardiac stress. In this review, we summarize the current understanding of the role of the p38 pathway in cardiac physiology and discuss recent advances in the field.
Collapse
|
40
|
El Kazzi M, Rayner BS, Chami B, Dennis JM, Thomas SR, Witting PK. Neutrophil-Mediated Cardiac Damage After Acute Myocardial Infarction: Significance of Defining a New Target Cell Type for Developing Cardioprotective Drugs. Antioxid Redox Signal 2020; 33:689-712. [PMID: 32517486 PMCID: PMC7475094 DOI: 10.1089/ars.2019.7928] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Significance: Acute myocardial infarction (AMI) is a leading cause of death worldwide. Post-AMI survival rates have increased with the introduction of angioplasty as a primary coronary intervention. However, reperfusion after angioplasty represents a clinical paradox, restoring blood flow to the ischemic myocardium while simultaneously inducing ion and metabolic imbalances that stimulate immune cell recruitment and activation, mitochondrial dysfunction and damaging oxidant production. Recent Advances: Preclinical data indicate that these metabolic imbalances contribute to subsequent heart failure through sustaining local recruitment of inflammatory leukocytes and oxidative stress, cardiomyocyte death, and coronary microvascular disturbances, which enhance adverse cardiac remodeling. Both left ventricular dysfunction and heart failure are strongly linked to inflammation and immune cell recruitment to the damaged myocardium. Critical Issues: Overall, therapeutic anti-inflammatory and antioxidant agents identified in preclinical trials have failed in clinical trials. Future Directions: The versatile neutrophil-derived heme enzyme, myeloperoxidase (MPO), is gaining attention as an important oxidative mediator of reperfusion injury, vascular dysfunction, adverse ventricular remodeling, and atrial fibrillation. Accordingly, there is interest in therapeutically targeting neutrophils and MPO activity in the setting of heart failure. Herein, we discuss the role of post-AMI inflammation linked to myocardial damage and heart failure, describe previous trials targeting inflammation and oxidative stress post-AMI, highlight the potential adverse impact of neutrophil and MPO, and detail therapeutic options available to target MPO clinically in AMI patients.
Collapse
Affiliation(s)
- Mary El Kazzi
- Discipline of Pathology, Charles Perkins Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
| | | | - Belal Chami
- Discipline of Pathology, Charles Perkins Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Joanne Marie Dennis
- Discipline of Pathology, Charles Perkins Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Shane Ross Thomas
- Department of Pathology, School of Medical Sciences, The University of New South Wales, Sydney, Australia
| | - Paul Kenneth Witting
- Discipline of Pathology, Charles Perkins Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
| |
Collapse
|
41
|
Mollenhauer M, Mehrkens D, Klinke A, Lange M, Remane L, Friedrichs K, Braumann S, Geißen S, Simsekyilmaz S, Nettersheim FS, Lee S, Peinkofer G, Geisler AC, Geis B, Schwoerer AP, Carrier L, Freeman BA, Dewenter M, Luo X, El-Armouche A, Wagner M, Adam M, Baldus S, Rudolph V. Nitro-fatty acids suppress ischemic ventricular arrhythmias by preserving calcium homeostasis. Sci Rep 2020; 10:15319. [PMID: 32948795 PMCID: PMC7501300 DOI: 10.1038/s41598-020-71870-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 07/22/2020] [Indexed: 12/01/2022] Open
Abstract
Nitro-fatty acids are electrophilic anti-inflammatory mediators which are generated during myocardial ischemic injury. Whether these species exert anti-arrhythmic effects in the acute phase of myocardial ischemia has not been investigated so far. Herein, we demonstrate that pretreatment of mice with 9- and 10-nitro-octadec-9-enoic acid (nitro-oleic acid, NO2-OA) significantly reduced the susceptibility to develop acute ventricular tachycardia (VT). Accordingly, epicardial mapping revealed a markedly enhanced homogeneity in ventricular conduction. NO2-OA treatment of isolated cardiomyocytes lowered the number of spontaneous contractions upon adrenergic isoproterenol stimulation and nearly abolished ryanodine receptor type 2 (RyR2)-dependent sarcoplasmic Ca2+ leak. NO2-OA also significantly reduced RyR2-phosphorylation by inhibition of increased CaMKII activity. Thus, NO2-OA might be a novel pharmacological option for the prevention of VT development.
Collapse
Affiliation(s)
- Martin Mollenhauer
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany.
| | - Dennis Mehrkens
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Anna Klinke
- Clinic for General and Interventional Cardiology/ Angiology, Herz- Und Diabeteszentrum NRW, Ruhr-Universitaet Bochum, Bad Oeynhausen, Germany
| | - Max Lange
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Lisa Remane
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Kai Friedrichs
- Clinic for General and Interventional Cardiology/ Angiology, Herz- Und Diabeteszentrum NRW, Ruhr-Universitaet Bochum, Bad Oeynhausen, Germany
| | - Simon Braumann
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Simon Geißen
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Sakine Simsekyilmaz
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Felix S Nettersheim
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Samuel Lee
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Gabriel Peinkofer
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Anne C Geisler
- General and Interventional Cardiology University Heart Center Hamburg, University Hospital Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Bianca Geis
- General and Interventional Cardiology University Heart Center Hamburg, University Hospital Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Alexander P Schwoerer
- Department of Cellular and Integrative Physiology, University Medical Center Hamburg Eppendorf, DZHK (German Centre of Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Lucie Carrier
- Experimental Pharmacology and Toxicology, University Hospital Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthias Dewenter
- Institute of Experimental Cardiology, University of Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site, Heidelberg/Mannheim, Germany
| | - Xiaojing Luo
- Department of Pharmacology and Toxicology, Technische Universitaet Dresden, Dresden, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Technische Universitaet Dresden, Dresden, Germany
| | - Michael Wagner
- Department of Pharmacology and Toxicology, Technische Universitaet Dresden, Dresden, Germany
- Clinic for Internal Medicine and Cardiology, Heart Center Dresden, Dresden, Germany
| | - Matti Adam
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Stephan Baldus
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Volker Rudolph
- Clinic for General and Interventional Cardiology/ Angiology, Herz- Und Diabeteszentrum NRW, Ruhr-Universitaet Bochum, Bad Oeynhausen, Germany
| |
Collapse
|
42
|
Macedo FN, Souza DSD, Araújo JEDS, Dantas CO, Miguel-Dos-Santos R, Silva-Filha E, Rabelo TK, Dos Santos RV, Zhang R, Barreto AS, Vasconcelos CMLD, Lauton-Santos S, Santos MRVD, Quintans-Júnior LJ, Santana-Filho VJ, Mesquita TRR. NOX-dependent reactive oxygen species production underlies arrhythmias susceptibility in dexamethasone-treated rats. Free Radic Biol Med 2020; 152:1-7. [PMID: 32147395 DOI: 10.1016/j.freeradbiomed.2020.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022]
Abstract
Dexamethasone is the most clinically used glucocorticoid with an established role in the treatment of a wide spectrum of inflammatory-related diseases. While the therapeutic actions are well known, dexamethasone treatment causes a number of cardiovascular side effects, which are complex, frequent and, in some cases, clinically unnoticeable. Here, we investigated whether a therapeutic regimen of dexamethasone affects cardiac arrhythmogenesis, focusing on the contribution of Nox-derived reactive oxygen species (ROS). Male Wistar rats were treated with dexamethasone (2 mg/kg, i.p.) for 7 days. Afterward, hemodynamic measurements, autonomic modulation, left ventricular function, cardiac fibrosis, reactive oxygen species (ROS) generation, Nox protein expression, superoxide dismutase (SOD) and catalase activities, and arrhythmias incidence were evaluated. Here, we show that dexamethasone increases blood pressure, associated with enhanced cardiac and vascular sympathetic modulation. Moreover, a marked increase in the cardiac ROS generation was observed, whereas the enhanced SOD activity did not prevent the higher levels of lipid peroxidation in the dexamethasone group. On the other hand, increased cardiac Nox 4 expression and hydrogen peroxide decomposition rate was observed in dexamethasone-treated rats, while Nox 2 remained unchanged. Interestingly, although preserved ventricular contractility and β-adrenergic responsiveness, we found that dexamethasone-treated rats displayed greater interstitial and perivascular fibrosis than control. Surprisingly, despite the absence of arrhythmias at basal condition, we demonstrated, by in vivo and ex vivo approaches, that dexamethasone-treated rats are more susceptible to develop harmful forms of ventricular arrhythmias when challenged with pharmacological drugs or burst pacing-induced arrhythmias. Notably, concomitant treatment with apocynin, an inhibitor of NADPH oxidase, prevented these ectopic ventricular events. Together, our results reveal that hearts become arrhythmogenic during dexamethasone treatment, uncovering the pivotal role of ROS-generating NADPH oxidases for arrhythmias vulnerability.
Collapse
Affiliation(s)
- Fabricio Nunes Macedo
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil; Estácio University of Sergipe, Aracaju, Brazil
| | | | | | | | - Rodrigo Miguel-Dos-Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil; Department of Circulation and Medical Imaging, St. Olav's Hospital, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | | | - Robervan Vidal Dos Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil; Estácio University of Sergipe, Aracaju, Brazil
| | - Rui Zhang
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, United States; Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - André Sales Barreto
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil; Department of Health Education, Federal University of Sergipe, Lagarto, Brazil
| | | | | | | | | | | | - Thássio Ricardo Ribeiro Mesquita
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil; Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, United States.
| |
Collapse
|
43
|
Ramachandra CJA, Ja KPMM, Chua J, Cong S, Shim W, Hausenloy DJ. Myeloperoxidase As a Multifaceted Target for Cardiovascular Protection. Antioxid Redox Signal 2020; 32:1135-1149. [PMID: 31847538 DOI: 10.1089/ars.2019.7971] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Significance: Myeloperoxidase (MPO) is a heme peroxidase that is primarily expressed by neutrophils. It has the capacity to generate several reactive species, essential for its inherent antimicrobial activity and innate host defense. Dysregulated MPO release, however, can lead to tissue damage, as seen in several diseases. Increased MPO levels in circulation are therefore widely associated with conditions of increased oxidative stress and inflammation. Recent Advances: Several studies have shown a strong correlation between MPO and cardiovascular disease (CVD), through which elevated levels of circulating MPO are linked to poor prognosis with increased risk of CVD-related mortality. Accordingly, circulating MPO is considered a "high-risk" biomarker for patients with acute coronary syndrome, atherosclerosis, heart failure, hypertension, and stroke, thereby implicating MPO as a multifaceted target for cardiovascular protection. Consistently, recent studies that target MPO in animal models of CVD have demonstrated favorable outcomes with regard to disease progression. Critical Issues: Although most of these studies have established a critical link between circulating MPO and worsening cardiac outcomes, the mechanisms by which MPO exerts its detrimental effects in CVD remain unclear. Future Directions: Elucidating the mechanisms by which elevated MPO leads to poor prognosis and, conversely, investigating the beneficial effects of therapeutic MPO inhibition on alleviating disease phenotype will facilitate future MPO-targeted clinical trials for improving CVD-related outcomes.
Collapse
Affiliation(s)
- Chrishan J A Ramachandra
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - K P Myu Mai Ja
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Jasper Chua
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore.,Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Shuo Cong
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Winston Shim
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore
| | - Derek J Hausenloy
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,The Hatter Cardiovascular Institute, University College London, London, United Kingdom.,Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| |
Collapse
|
44
|
Li X, Rosenkrans ZT, Wang J, Cai W. PET imaging of macrophages in cardiovascular diseases. Am J Transl Res 2020; 12:1491-1514. [PMID: 32509158 PMCID: PMC7270023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/14/2020] [Indexed: 06/11/2023]
Abstract
Cardiovascular diseases (CVDs) have been the leading cause of death in United States. While tremendous progress has been made for treating CVDs over the year, the high prevalence and substantial medical costs requires the necessity for novel methods for the early diagnosis and treatment monitoring of CVDs. Macrophages are a promising target due to its crucial role in the progress of CVDs (atherosclerosis, myocardial infarction and inflammatory cardiomyopathies). Positron emission tomography (PET) is a noninvasive imaging technique with high sensitivity and provides quantitive functional information of the macrophages in CVDs. Although 18F-FDG can be taken up by active macrophages, the PET imaging tracer is non-specific and susceptible to blood glucose levels. Thus, developing more specific PET tracers will help us understand the role of macrophages in CVDs. Moreover, macrophage-targeted PET imaging will further improve the diagnosis, treatment monitoring, and outcome prediction for patients with CVDs. In this review, we summarize various targets-based tracers for the PET imaging of macrophages in CVDs and highlight research gaps to advise future directions.
Collapse
Affiliation(s)
- Xiang Li
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical UniversityXi’an 710032, Shaanxi, China
- Department of Radiology and Medical Physics, University of Wisconsin-MadisonMadison, WI 53705, USA
| | - Zachary T Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin-MadisonMadison, WI 53705, USA
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical UniversityXi’an 710032, Shaanxi, China
| | - Weibo Cai
- Department of Radiology and Medical Physics, University of Wisconsin-MadisonMadison, WI 53705, USA
- Department of Pharmaceutical Sciences, University of Wisconsin-MadisonMadison, WI 53705, USA
| |
Collapse
|
45
|
Okyere AD, Tilley DG. Leukocyte-Dependent Regulation of Cardiac Fibrosis. Front Physiol 2020; 11:301. [PMID: 32322219 PMCID: PMC7156539 DOI: 10.3389/fphys.2020.00301] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/17/2020] [Indexed: 12/24/2022] Open
Abstract
Cardiac fibrosis begins as an intrinsic response to injury or ageing that functions to preserve the tissue from further damage. Fibrosis results from activated cardiac myofibroblasts, which secrete extracellular matrix (ECM) proteins in an effort to replace damaged tissue; however, excessive ECM deposition leads to pathological fibrotic remodeling. At this extent, fibrosis gravely disturbs myocardial compliance, and ultimately leads to adverse outcomes like heart failure with heightened mortality. As such, understanding the complexity behind fibrotic remodeling has been a focal point of cardiac research in recent years. Resident cardiac fibroblasts and activated myofibroblasts have been proven integral to the fibrotic response; however, several findings point to additional cell types that may contribute to the development of pathological fibrosis. For one, leukocytes expand in number after injury and exhibit high plasticity, thus their distinct role(s) in cardiac fibrosis is an ongoing and controversial field of study. This review summarizes current findings, focusing on both direct and indirect leukocyte-mediated mechanisms of fibrosis, which may provide novel targeted strategies against fibrotic remodeling.
Collapse
Affiliation(s)
- Ama Dedo Okyere
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Douglas G Tilley
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
46
|
Wu SJ, Lin ZH, Lin YZ, Rao ZH, Lin JF, Wu LP, Li L. Dexmedetomidine Exerted Anti-arrhythmic Effects in Rat With Ischemic Cardiomyopathy via Upregulation of Connexin 43 and Reduction of Fibrosis and Inflammation. Front Physiol 2020; 11:33. [PMID: 32116751 PMCID: PMC7020758 DOI: 10.3389/fphys.2020.00033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/15/2020] [Indexed: 12/20/2022] Open
Abstract
Background Persistent myocardial ischemia post-myocardial infarction can lead to fatal ventricular arrhythmias such as ventricular tachycardia and fibrillation, both of which carry high mortality rates. Dexmedetomidine (Dex) is a highly selective α2-agonist used in surgery for congenital cardiac disease because of its antiarrhythmic properties. Dex has previously been reported to prevent or terminate various arrhythmias. The purpose of the present study was to determine the anti-arrhythmic properties of Dex in the context of ischemic cardiomyopathy (ICM) after myocardial infarction. Methods and Results We randomly allocated 48 rats with ICM, created by persistent ligation of the left anterior descending artery for 4 weeks, into six groups: Sham (n = 8), Sham + BML (n = 8), ICM (n = 8), ICM + BML (n = 8), ICM + Dex (n = 8), and ICM + Dex + BML (n = 8). Treatments started after ICM was confirmed (the day after echocardiographic measurement) and continued for 4 weeks (inject intraperitoneally, daily). Dex inhibited the generation of collagens, cytokines, and other inflammatory mediators in rats with ICM via the suppression of NF-κB activation and increased the distribution of connexin 43 (Cx43) via phosphorylation of adenosine 5′-monophosphate-activated protein kinase (AMPK). Dex reduced the occurrence of spontaneous ventricular arrhythmias (ventricular premature beat or ventricular tachycardia), decreased the inducibility quotient of ventricular arrhythmias induced by PES, and partly improved cardiac contraction. The AMPK antagonist BML-275 dihydrochloride (BML) partly weakened the cardioprotective effect of Dex. Conclusion Dex conferred anti-arrhythmic effects in the context of ICM via upregulation of Cx43 and suppression of inflammation and fibrosis. The anti-arrhythmic and anti-inflammatory properties of Dex may be mediated by phosphorylation of AMPK and subsequent suppression of NF-κB activation.
Collapse
Affiliation(s)
- Shu-Jie Wu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhong-Hao Lin
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuan-Zheng Lin
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhi-Heng Rao
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jia-Feng Lin
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lian-Pin Wu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Li
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
47
|
Yang Q, Ai W, Nie L, Yan C, Wu S. Vildagliptin reduces myocardial ischemia-induced arrhythmogenesis via modulating inflammatory responses and promoting expression of genes regulating mitochondrial biogenesis in rats with type-II diabetes. J Interv Card Electrophysiol 2019; 59:517-526. [PMID: 31853804 DOI: 10.1007/s10840-019-00679-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE Fatal arrhythmias are one of the main manifestations of ischemic heart disease in diabetic patients. Here, we investigated the effect of pretreatment with vildagliptin on myocardial arrhythmias, inflammatory responses, and expression of genes regulating mitochondrial biogenesis following cardiac ischemic injury in type II diabetic male Wistar rats. METHODS Chronic diabetes was modeled by a high-fat diet and low-dose streptozotocin method and lasted for 12 weeks. Vildagliptin (6 mg/dl) was orally administered during the last 4 weeks of the diabetic period. Then, rats' hearts (n = 8/each group) were immediately isolated and transferred to the Langendorff apparatus, in which left anterior descending coronary artery was tightened for 35 min to induce regional ischemia. Electrocardiography was continuously recorded and myocardial arrhythmias were interpreted according to the Lambeth Convention. Inflammatory cytokines in left ventricular samples were measured using ELISA kits, and gene expression was assayed using real-time PCR. RESULTS Diabetic groups showed increased incidence and duration of ventricular fibrillation (VF) than controls (P < 0.05). Pretreatment of diabetic rats with vildagliptin resulted in a significant decrease in number, duration, and severity of premature ventricular complexes (PVC), tachycardia (VT), and VF during ischemia, compared to non-treated diabetic group (P < 0.05). Additionally, vildagliptin significantly increased the expression of genes PGC-1α, SIRT-1, and NRF-2 and reduced the levels of myeloperoxidase, creatine kinase release, and myocardial content of TNF-α and IL-1β in nondiabetic and diabetic rats as compared to corresponding controls (P < 0.01-0.05). CONCLUSION Vildagliptin preconditioning reduced the occurrence and severity of fatal ventricular arrhythmias induced by myocardial ischemia in type II diabetic rats through increased activity of mitochondrial biogenesis-regulating genes and reduction of inflammatory reactions.
Collapse
Affiliation(s)
- Qin Yang
- Department of Cardiology, Jiangxi Provincial People's Hospital affiliated to Nanchang University, 330006, Jiangxi, China
| | - Wenwei Ai
- Department of General Medicine, Jiangxi Provincial People's Hospital affiliated to Nanchang University, 330006, Jiangxi, China
| | - Lei Nie
- Department of Geriatric, Jiangxi Provincial People's Hospital affiliated to Nanchang University, 330006, Jiangxi, China
| | - Chen Yan
- Department of Cardiology, Harbin Fifth Hospital, Harbin, Heilongjiang, 330006, China
| | - Su Wu
- Department of General Medicine, Jiangxi Provincial People's Hospital affiliated to Nanchang University, 330006, Jiangxi, China.
| |
Collapse
|
48
|
Piek A, Koonen DPY, Schouten EM, Lindtstedt EL, Michaëlsson E, de Boer RA, Silljé HHW. Pharmacological myeloperoxidase (MPO) inhibition in an obese/hypertensive mouse model attenuates obesity and liver damage, but not cardiac remodeling. Sci Rep 2019; 9:18765. [PMID: 31822739 PMCID: PMC6904581 DOI: 10.1038/s41598-019-55263-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Lifestyle factors are important drivers of chronic diseases, including cardiovascular syndromes, with low grade inflammation as a central player. Attenuating myeloperoxidase (MPO) activity, an inflammatory enzyme associated with obesity, hypertension and heart failure, could have protective effects on multiple organs. Herein, the effects of the novel oral available MPO inhibitor AZM198 were studied in an obese/hypertensive mouse model which displays a cardiac phenotype. Eight week old male C57BL6/J mice received 16 weeks of high fat diet (HFD) combined with angiotensin II (AngII) infusion during the last 4 weeks, with low fat diet and saline infusion as control. Treated animals showed therapeutic AZM198 levels (2.1 µM), corresponding to 95% MPO inhibition. AZM198 reduced elevated circulating MPO levels in HFD/AngII mice to normal values. Independent of food intake, bodyweight increase and fat accumulation were attenuated by AZM198, alongside with reduced visceral adipose tissue (VAT) inflammation and attenuated severity of nonalcoholic steatohepatitis. The HFD/AngII perturbation caused impaired cardiac relaxation and contraction, and increased cardiac hypertrophy and fibrosis. AZM198 treatment did, however, not improve these cardiac parameters. Thus, AZM198 had positive effects on the main lipid controlling tissues in the body, namely adipose tissue and liver. This did, however, not directly result in improved cardiac function.
Collapse
Affiliation(s)
- Arnold Piek
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Debby P Y Koonen
- Department of Pediatrics, Section Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elisabeth-Maria Schouten
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Eva L Lindtstedt
- Early Cardiovascular, Renal and Metabolism, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Erik Michaëlsson
- Early Cardiovascular, Renal and Metabolism, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
49
|
Wong B, Saiva L, Buckley J, Galvin J. A first case report of dapsone inducing recurrent ventricular arrhythmia. Eur Heart J Case Rep 2019; 3:1-6. [PMID: 31911974 PMCID: PMC6939790 DOI: 10.1093/ehjcr/ytz158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/17/2019] [Accepted: 09/02/2019] [Indexed: 11/14/2022]
Abstract
Background Ventricular arrhythmias (VAs) are life-threatening arrhythmias which are associated with significant morbidity and mortality. Ventricular arrhythmias are induced by a change in the myocardial environment altering cardiomyocyte electrophysiology. The substrate for VA includes myocardial scar, electrolyte disturbances, and drugs altering cellular electrophysiology. Case summary Here, we present a case of a 52-year-old man with known ischaemic cardiomyopathy, presenting with VA storms secondary to dapsone, an anti-microbial used in this case for the prophylaxis of pneumocystis pneumonia. This is the first case linking dapsone to the development of VAs. Ventricular arrhythmias storm occurred towards the end of the course of anti-microbial therapy and the patient was referred for sympathectomy. However, following the end of treatment, no further VA occurred and sympathectomy was therefore avoided. Discussion The underlying mechanism for the association between dapsone treatment and VA is unclear and a prolonged QTc was not observed in our case. It is important to recognize that every drug has many physiological effects and in patients with underlying diseases whereby there is already an unfavourable environment, additional drugs can lower the threshold of triggering an arrhythmia and the result can be life-threatening. In a patient with ischaemic cardiomyopathy, where underlying substrate for VA may already exist, the introduction of dapsone could lower the threshold for development of arrhythmia.
Collapse
Affiliation(s)
- Bethany Wong
- Cardiology Department, Connolly Hospital, Mill Rd, Abbotstown, Dublin 15, 15 X40D, Ireland
| | - Lavanya Saiva
- Cardiology Department, Connolly Hospital, Mill Rd, Abbotstown, Dublin 15, 15 X40D, Ireland
| | - John Buckley
- Cardiology Department, Connolly Hospital, Mill Rd, Abbotstown, Dublin 15, 15 X40D, Ireland
| | - Joseph Galvin
- Cardiology Department, Connolly Hospital, Mill Rd, Abbotstown, Dublin 15, 15 X40D, Ireland
| |
Collapse
|
50
|
Reitz CJ, Alibhai FJ, Khatua TN, Rasouli M, Bridle BW, Burris TP, Martino TA. SR9009 administered for one day after myocardial ischemia-reperfusion prevents heart failure in mice by targeting the cardiac inflammasome. Commun Biol 2019; 2:353. [PMID: 31602405 PMCID: PMC6776554 DOI: 10.1038/s42003-019-0595-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 08/23/2019] [Indexed: 12/18/2022] Open
Abstract
Reperfusion of patients after myocardial infarction (heart attack) triggers cardiac inflammation that leads to infarct expansion and heart failure (HF). We previously showed that the circadian mechanism is a critical regulator of reperfusion injury. However, whether pharmacological targeting using circadian medicine limits reperfusion injury and protects against HF is unknown. Here, we show that short-term targeting of the circadian driver REV-ERB with SR9009 benefits long-term cardiac repair post-myocardial ischemia reperfusion in mice. Gain and loss of function studies demonstrate specificity of targeting REV-ERB in mice. Treatment for just one day abates the cardiac NLRP3 inflammasome, decreasing immunocyte recruitment, and thereby allowing the vulnerable infarct to heal. Therapy is given in vivo, after reperfusion, and promotes efficient repair. This study presents downregulation of the cardiac inflammasome in fibroblasts as a cellular target of SR9009, inviting more targeted therapeutic investigations in the future.
Collapse
Affiliation(s)
- Cristine J. Reitz
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G2W1 Canada
| | - Faisal J. Alibhai
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G2W1 Canada
| | - Tarak N. Khatua
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G2W1 Canada
| | - Mina Rasouli
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G2W1 Canada
| | - Byram W. Bridle
- Department of Pathobiology, University of Guelph, Guelph, Ontario N1G2W1 Canada
| | - Thomas P. Burris
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, MO 63104 USA
| | - Tami A. Martino
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G2W1 Canada
| |
Collapse
|