1
|
Ohanele C, Peoples JN, Karlstaedt A, Geiger JT, Gayle AD, Ghazal N, Sohani F, Brown ME, Davis ME, Porter GA, Faundez V, Kwong JQ. The mitochondrial citrate carrier SLC25A1 regulates metabolic reprogramming and morphogenesis in the developing heart. Commun Biol 2024; 7:1422. [PMID: 39482367 DOI: 10.1038/s42003-024-07110-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
The developing mammalian heart undergoes an important metabolic shift from glycolysis towards mitochondrial oxidation that is critical to support the increasing energetic demands of the maturing heart. Here, we describe a new mechanistic link between mitochondria and cardiac morphogenesis, uncovered by studying mitochondrial citrate carrier (SLC25A1) knockout mice. Slc25a1 null embryos displayed impaired growth, mitochondrial dysfunction and cardiac malformations that recapitulate the congenital heart defects observed in 22q11.2 deletion syndrome, a microdeletion disorder involving the SLC25A1 locus. Importantly, Slc25a1 heterozygous embryos, while overtly indistinguishable from wild type, exhibited an increased frequency of these defects, suggesting Slc25a1 haploinsuffiency and dose-dependent effects. Mechanistically, SLC25A1 may link mitochondria to transcriptional regulation of metabolism through epigenetic control of gene expression to promote metabolic remodeling in the developing heart. Collectively, this work positions SLC25A1 as a novel mitochondrial regulator of cardiac morphogenesis and metabolic maturation, and suggests a role in congenital heart disease.
Collapse
Affiliation(s)
- Chiemela Ohanele
- Graduate Program in Biochemistry, Cell and Developmental Biology; Graduate Division of Biological and Biomedical Sciences; Emory University, Atlanta, GA, USA
- Division of Pediatric Cardiology; Department of Pediatrics; Emory University School of Medicine; and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Jessica N Peoples
- Division of Pediatric Cardiology; Department of Pediatrics; Emory University School of Medicine; and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Anja Karlstaedt
- Department of Cardiology; Smidt Heart Institute; Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joshua T Geiger
- Division of Vascular Surgery; University of Rochester Medical Center, Rochester, NY, USA
| | - Ashley D Gayle
- Division of Pediatric Cardiology; Department of Pediatrics; Emory University School of Medicine; and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Nasab Ghazal
- Graduate Program in Biochemistry, Cell and Developmental Biology; Graduate Division of Biological and Biomedical Sciences; Emory University, Atlanta, GA, USA
- Division of Pediatric Cardiology; Department of Pediatrics; Emory University School of Medicine; and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Fateemaa Sohani
- Division of Pediatric Cardiology; Department of Pediatrics; Emory University School of Medicine; and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Milton E Brown
- Wallace H. Coulter Department of Biomedical Engineering; Emory University School of Medicine, Atlanta, GA, USA
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering; Emory University School of Medicine, Atlanta, GA, USA
| | - George A Porter
- Department of Pediatrics; Division of Cardiology; University of Rochester Medical Center, Rochester, NY, USA
| | - Victor Faundez
- Department of Cell Biology; Emory University School of Medicine, Atlanta, GA, USA
| | - Jennifer Q Kwong
- Division of Pediatric Cardiology; Department of Pediatrics; Emory University School of Medicine; and Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Department of Cell Biology; Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
2
|
Pittorru R, De Lazzari M, Migliore F, Frasson E, Zorzi A, Cipriani A, Brunetti G, De Conti G, Motta R, Perazzolo Marra M, Corrado D. Left Ventricular Non-Compaction: Evolving Concepts. J Clin Med 2024; 13:5674. [PMID: 39407735 PMCID: PMC11477328 DOI: 10.3390/jcm13195674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Left ventricular non-compaction (LVNC) is a rare heart muscle disease defined by the presence of prominent left ventricular trabeculation, deep intertrabecular recesses, and a thin compact layer. Several hypotheses have been proposed regarding its pathogenesis, with the most recently accepted one being that compact layer and trabeculated layers develop independently according to an "allometric growth". The current gold-standard diagnostic criteria (in particular, the Petersen index non-compaction/compaction ratio > 2.3) reflect an excess of myocardial trabeculation, which is not a specific morpho-functional feature of LVNC cardiomyopathy but merely a "phenotypic trait", even described in association with other myocardial disease and over-loading conditions. Accordingly, the European Society of Cardiology (ESC) guidelines have definitively abolished the term 'LVNC cardiomyopathy'. Recently, evolving perspectives led to the restoration of LVNC cardiomyopathy by distinguishing "hypertrabeculation phenotype" and "non-compaction phenotype". It has been proposed that the disease-specific pathophysiologic mechanism is a congenitally underdevelopment of the compact layer accounting for an impairment of the left ventricular systolic function. Future prospective research should focus on the clinical and prognostic relevance of compact layer thinning rather than excessive trabeculation, which could significantly influence the management of patients with LVNC. The review aims to update current knowledge on the pathogenesis, genetics, and diagnostic criteria of LVNC, offering modern insights for future perspectives.
Collapse
Affiliation(s)
- Raimondo Pittorru
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padua, Italy; (R.P.)
| | - Manuel De Lazzari
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padua, Italy; (R.P.)
| | - Federico Migliore
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padua, Italy; (R.P.)
| | - Enrica Frasson
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padua, Italy; (R.P.)
| | - Alessandro Zorzi
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padua, Italy; (R.P.)
| | - Alberto Cipriani
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padua, Italy; (R.P.)
| | - Giulia Brunetti
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padua, Italy; (R.P.)
| | - Giorgio De Conti
- Radiology Unit, University of Padua-Azienda Ospedaliera, 35128 Padua, Italy
| | - Raffaella Motta
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padua, Italy; (R.P.)
| | - Martina Perazzolo Marra
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padua, Italy; (R.P.)
| | - Domenico Corrado
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padua, Italy; (R.P.)
| |
Collapse
|
3
|
Balla C, Margutti A, De Carolis B, Canovi L, Di Domenico A, Vivaldi I, Vitali F, De Raffele M, Malagù M, Sassone B, Biffi M, Selvatici R, Ferlini A, Gualandi F, Bertini M. Cardiac conduction disorders in young adults: Clinical characteristics and genetic background of an underestimated population. Heart Rhythm 2024; 21:1363-1369. [PMID: 38467355 DOI: 10.1016/j.hrthm.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Cardiac conduction disorder (CCD) in patients <50 years old is a rare and mostly unknown condition. OBJECTIVE We aimed to assess clinical characteristics and genetic background of patients <50 years old with CCD of unknown origin. METHODS We retrospectively reviewed a consecutive series of patients with a diagnosis of CCD before the age of 50 years referred to our center between January 2019 and December 2021. Patients underwent complete clinical examination and genetic evaluation. RESULTS We enrolled 39 patients with a median age of 40 years (28-47 years) at the onset of symptoms. A cardiac implantable electronic device was implanted in 69% of the patients. In 15 of 39 CCD index patients (38%), we found a total of 13 different gene variations (3 pathogenic, 6 likely pathogenic, and 4 variants of uncertain significance), mostly in 3 genes (SCN5A, TRPM4, and LMNA). In our cohort, genetic testing led to the decision to implant an implantable cardioverter-defibrillator in 2 patients for the increased risk of sudden cardiac death. CONCLUSION Patients with the occurrence of CCD before the age of 50 years present with a high rate of pathologic gene variations, mostly in 3 genes (SCN5A, TRPM4, and LMNA). The presence of pathogenic variations may add information about the prognosis and lead to an individualized therapeutic approach.
Collapse
Affiliation(s)
- Cristina Balla
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, Cona (Ferrara), Italy.
| | - Alice Margutti
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Beatrice De Carolis
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, Cona (Ferrara), Italy
| | - Luca Canovi
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, Cona (Ferrara), Italy
| | - Assunta Di Domenico
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, Cona (Ferrara), Italy
| | - Ilaria Vivaldi
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesco Vitali
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, Cona (Ferrara), Italy
| | - Martina De Raffele
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, Cona (Ferrara), Italy
| | - Michele Malagù
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, Cona (Ferrara), Italy
| | - Biagio Sassone
- Division of Cardiology, SS.ma Annunziata Hospital, Department of Emergency, AUSL Ferrara, Cento (Ferrara), Italy
| | - Mauro Biffi
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Rita Selvatici
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesca Gualandi
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Matteo Bertini
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, Cona (Ferrara), Italy
| |
Collapse
|
4
|
Snider PL, Sierra Potchanant EA, Sun Z, Edwards DM, Chan KK, Matias C, Awata J, Sheth A, Pride PM, Payne RM, Rubart M, Brault JJ, Chin MT, Nalepa G, Conway SJ. A Barth Syndrome Patient-Derived D75H Point Mutation in TAFAZZIN Drives Progressive Cardiomyopathy in Mice. Int J Mol Sci 2024; 25:8201. [PMID: 39125771 PMCID: PMC11311365 DOI: 10.3390/ijms25158201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Cardiomyopathy is the predominant defect in Barth syndrome (BTHS) and is caused by a mutation of the X-linked Tafazzin (TAZ) gene, which encodes an enzyme responsible for remodeling mitochondrial cardiolipin. Despite the known importance of mitochondrial dysfunction in BTHS, how specific TAZ mutations cause diverse BTHS heart phenotypes remains poorly understood. We generated a patient-tailored CRISPR/Cas9 knock-in mouse allele (TazPM) that phenocopies BTHS clinical traits. As TazPM males express a stable mutant protein, we assessed cardiac metabolic dysfunction and mitochondrial changes and identified temporally altered cardioprotective signaling effectors. Specifically, juvenile TazPM males exhibit mild left ventricular dilation in systole but have unaltered fatty acid/amino acid metabolism and normal adenosine triphosphate (ATP). This occurs in concert with a hyperactive p53 pathway, elevation of cardioprotective antioxidant pathways, and induced autophagy-mediated early senescence in juvenile TazPM hearts. However, adult TazPM males exhibit chronic heart failure with reduced growth and ejection fraction, cardiac fibrosis, reduced ATP, and suppressed fatty acid/amino acid metabolism. This biphasic changeover from a mild-to-severe heart phenotype coincides with p53 suppression, downregulation of cardioprotective antioxidant pathways, and the onset of terminal senescence in adult TazPM hearts. Herein, we report a BTHS genotype/phenotype correlation and reveal that absent Taz acyltransferase function is sufficient to drive progressive cardiomyopathy.
Collapse
Affiliation(s)
- Paige L. Snider
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - Elizabeth A. Sierra Potchanant
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - Zejin Sun
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - Donna M. Edwards
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - Ka-Kui Chan
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - Catalina Matias
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (C.M.); (J.J.B.)
| | - Junya Awata
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA; (J.A.); (M.T.C.)
| | - Aditya Sheth
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - P. Melanie Pride
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - R. Mark Payne
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - Michael Rubart
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - Jeffrey J. Brault
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (C.M.); (J.J.B.)
| | - Michael T. Chin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA; (J.A.); (M.T.C.)
| | - Grzegorz Nalepa
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - Simon J. Conway
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| |
Collapse
|
5
|
Ohanele C, Peoples JN, Karlstaedt A, Geiger JT, Gayle AD, Ghazal N, Sohani F, Brown ME, Davis ME, Porter GA, Faundez V, Kwong JQ. Mitochondrial citrate carrier SLC25A1 is a dosage-dependent regulator of metabolic reprogramming and morphogenesis in the developing heart. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.22.541833. [PMID: 37292906 PMCID: PMC10245819 DOI: 10.1101/2023.05.22.541833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The developing mammalian heart undergoes an important metabolic shift from glycolysis toward mitochondrial oxidation, such that oxidative phosphorylation defects may present with cardiac abnormalities. Here, we describe a new mechanistic link between mitochondria and cardiac morphogenesis, uncovered by studying mice with systemic loss of the mitochondrial citrate carrier SLC25A1. Slc25a1 null embryos displayed impaired growth, cardiac malformations, and aberrant mitochondrial function. Importantly, Slc25a1 heterozygous embryos, which are overtly indistinguishable from wild type, exhibited an increased frequency of these defects, suggesting Slc25a1 haploinsuffiency and dose-dependent effects. Supporting clinical relevance, we found a near-significant association between ultrarare human pathogenic SLC25A1 variants and pediatric congenital heart disease. Mechanistically, SLC25A1 may link mitochondria to transcriptional regulation of metabolism through epigenetic control of gene expression to promote metabolic remodeling in the developing heart. Collectively, this work positions SLC25A1 as a novel mitochondrial regulator of ventricular morphogenesis and cardiac metabolic maturation and suggests a role in congenital heart disease.
Collapse
|
6
|
Latchupatula L, Benayon M, Mansoor M, Luu J. Myosin Heavy Chain 7 (MYH7) Variant Associated Cardiovascular Disease: An Unusual Case of Heart Failure in a Young Male. Cureus 2024; 16:e61252. [PMID: 38813076 PMCID: PMC11135834 DOI: 10.7759/cureus.61252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 05/31/2024] Open
Abstract
A 37-year-old male with type two diabetes presented to the hospital with new-onset heart failure and renal dysfunction. His left ventricular (LV) ejection fraction was less than 10%. Transthoracic echocardiography and cardiovascular magnetic resonance (CMR) imaging also revealed severe bicuspid aortic valve stenosis, dilated cardiomyopathy with LV hypertrophy, prominent LV trabeculations, and features suggestive of mild myocarditis with active inflammation. While myocarditis was suspected on CMR imaging, his mild degree of myocardial involvement did not explain the entirety of his clinical presentation, degree of LV dysfunction, or other structural abnormalities. An extensive work-up for his LV dysfunction was unremarkable for ischemic, metabolic, infiltrative, infectious, toxic, oncologic, connective tissue, and autoimmune etiologies. Genetic testing was positive for a myosin heavy chain 7 (MYH7) variant, which was deemed likely to be a unifying etiology underlying his presentation. The MYH7 sarcomere gene allows beta-myosin expression in heart ventricles, with variants associated with hypertrophic and dilated cardiomyopathies, congenital heart diseases, myocarditis, and excessive trabeculation (formerly known as left ventricular noncompaction). This case highlights the diverse array of cardiac pathologies that can present with MYH7 gene variants and reviews an extensive work-up for this unusual presentation of heart failure in a young patient.
Collapse
Affiliation(s)
| | - Myles Benayon
- Internal Medicine, McMaster University, Hamilton, CAN
| | | | - Judy Luu
- Cardiology, McGill University, Montreal, CAN
| |
Collapse
|
7
|
O’Neill T, Kang P, Hagendorff A, Tayal B. The Clinical Applications of Left Atrial Strain: A Comprehensive Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:693. [PMID: 38792875 PMCID: PMC11123486 DOI: 10.3390/medicina60050693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024]
Abstract
Left atrial (LA) strain imaging, which measures the deformation of the LA using speckle-tracing echocardiography (STE), has emerged recently as an exciting tool to help provide diagnostic and prognostic information for patients with a broad range of cardiovascular (CV) pathologies. Perhaps due to the LA's relatively thin-walled architecture compared with the more muscular structure of the left ventricle (LV), functional changes in the left atrium often precede changes in the LV, making LA strain (LAS) an earlier marker for underlying pathology than many conventional echocardiographic parameters. LAS imaging is typically divided into three phases according to the stage of the cardiac cycle: reservoir strain, which is characterized by LA filling during systole; conduit strain, which describes LA deformation during passive LV filling; and booster strain, which provides information on the LA atrium during LA systole in late ventricular diastole. While additional large-population studies are still needed to further solidify the role of LAS in routine clinical practice, this review will discuss the current evidence of its use in different pathologies and explore the possibilities of its applications in the future.
Collapse
Affiliation(s)
- Thomas O’Neill
- Department of Internal Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Puneet Kang
- Department of Internal Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Andreas Hagendorff
- Department of Cardiology, Leipzig University Hospital, 04103 Leipzig, Germany;
| | - Bhupendar Tayal
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
8
|
Amor-Salamanca A, Santana Rodríguez A, Rasoul H, Rodríguez-Palomares JF, Moldovan O, Hey TM, Delgado MG, Cuenca DL, de Castro Campos D, Basurte-Elorz MT, Macías-Ruiz R, Fuentes Cañamero ME, Galvin J, Bilbao Quesada R, de la Higuera Romero L, Trujillo-Quintero JP, García-Cruz LM, Cárdenas-Reyes I, Jiménez-Jáimez J, García-Hernández S, Valverde-Gómez M, Gómez-Díaz I, Limeres Freire J, García-Pinilla JM, Gimeno-Blanes JR, Savattis K, García-Pavía P, Ochoa JP. Role of TBX20 Truncating Variants in Dilated Cardiomyopathy and Left Ventricular Noncompaction. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004404. [PMID: 38353104 PMCID: PMC11019988 DOI: 10.1161/circgen.123.004404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/07/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND Less than 40% of patients with dilated cardiomyopathy (DCM) have a pathogenic/likely pathogenic genetic variant identified. TBX20 has been linked to congenital heart defects; although an association with left ventricular noncompaction (LVNC) and DCM has been proposed, it is still considered a gene with limited evidence for these phenotypes. This study sought to investigate the association between the TBX20 truncating variant (TBX20tv) and DCM/LVNC. METHODS TBX20 was sequenced by next-generation sequencing in 7463 unrelated probands with a diagnosis of DCM or LVNC, 22 773 probands of an internal comparison group (hypertrophic cardiomyopathy, channelopathies, or aortic diseases), and 124 098 external controls (individuals from the gnomAD database). Enrichment of TBX20tv in DCM/LVNC was calculated, cosegregation was determined in selected families, and clinical characteristics and outcomes were analyzed in carriers. RESULTS TBX20tv was enriched in DCM/LVNC (24/7463; 0.32%) compared with internal (1/22 773; 0.004%) and external comparison groups (4/124 098; 0.003%), with odds ratios of 73.23 (95% CI, 9.90-541.45; P<0.0001) and 99.76 (95% CI, 34.60-287.62; P<0.0001), respectively. TBX20tv was cosegregated with DCM/LVNC phenotype in 21 families for a combined logarythm of the odds score of 4.53 (strong linkage). Among 57 individuals with TBX20tv (49.1% men; mean age, 35.9±20.8 years), 41 (71.9%) exhibited DCM/LVNC, of whom 14 (34.1%) had also congenital heart defects. After a median follow-up of 6.9 (95% CI, 25-75:3.6-14.5) years, 9.7% of patients with DCM/LVNC had end-stage heart failure events and 4.8% experienced malignant ventricular arrhythmias. CONCLUSIONS TBX20tv is associated with DCM/LVNC; congenital heart defect is also present in around one-third of cases. TBX20tv-associated DCM/LVNC is characterized by a nonaggressive phenotype, with a low incidence of major cardiovascular events. TBX20 should be considered a definitive gene for DCM and LVNC and routinely included in genetic testing panels for these phenotypes.
Collapse
Affiliation(s)
- Almudena Amor-Salamanca
- Cardiology Department, Health in Code SL, A Coruña, Spain (A.A.-S., L.d.l.H.R., I.C.-R., S.G.-H., M.V.-G., I.G.-D., J.P.O.)
| | - Alfredo Santana Rodríguez
- Clinical Genetics Unit, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas de Gran Canaria, Spain (A.S.R., L.M.G.-C.)
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Spain (A.S.R., L.M.G.-C.)
| | - Hazhee Rasoul
- Inherited Cardiovascular Diseases Unit, St. Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom (H.R., K.S.)
| | - José F. Rodríguez-Palomares
- Cardiovascular Imaging Unit and Inherited Cardiac Diseases Unit, Cardiology Department, Vall d′Hebron University Hospital, Barcelona, Spain (J.F.R.-P., J.L.F.)
- Vall d′Hebron Rsrch Unit, Barcelona, Spain (J.F.R.-P.)
- Universitat Autònoma Barcelona, Spain (J.F.R.-P., J.P.T.-Q.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (J.F.R.-P., M.G.D., J.M.G.-P., J.R.G.-B., P.G.-P.)
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, ERN GUARD-Heart, Amsterdam, The Netherlands (J.F.R.-P., J.L.F., J.R.G.-B., P.G.-P.)
| | - Oana Moldovan
- Serviço de Genética Médica, Department de Pediatria, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Portugal (O.M.)
| | - Thomas Morris Hey
- Department of Cardiology, The Clinic of Inherited Cardiovascular Diseases, Odense University Hospital, Denmark (T.M.H.)
| | - María Gallego Delgado
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (J.F.R.-P., M.G.D., J.M.G.-P., J.R.G.-B., P.G.-P.)
- Cardiology Department, Hospital Universitario de Salamanca, Spain (M.G.D.)
- Biomedical Research Institute of Salamanca, Gerencia Regional de Salud de Castilla y León, Spain (M.G.D.)
| | - David López Cuenca
- Department of Cardiology, Inherited Cardiac Diseases Unit, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain (D.L.C., J.R.G.-B.)
| | - Daniel de Castro Campos
- Department of Cardiology, Heart Failure and Inherited Cardiac Diseases Unit, Hospital Universitario Puerta de Hierro, IDIPHISA, Madrid, Spain (D.d.C.C., P.G.-P., J.P.O.)
| | | | - Rosa Macías-Ruiz
- Cardiology Department, Hospital Universitario Virgen de las Nieves, Granada, Spain (R.M.-R., J.J.-J.)
- Instituto de Investigación Biosanitaria Instituto de Investigación Biosanitaria de Granada (IBS-GRANADA), Spain (R.M.-R., J.J.-J.)
| | | | - Joseph Galvin
- Department of Cardiology, University College Dublin School of Medicine, Mater Misericordiae University Hospital, Ireland (J.G.)
| | | | - Luis de la Higuera Romero
- Cardiology Department, Health in Code SL, A Coruña, Spain (A.A.-S., L.d.l.H.R., I.C.-R., S.G.-H., M.V.-G., I.G.-D., J.P.O.)
| | - Juan Pablo Trujillo-Quintero
- Universitat Autònoma Barcelona, Spain (J.F.R.-P., J.P.T.-Q.)
- Center for Genomic Medicine, Parc Taulí Hospital Universitari, Sabadell, Spain (J.P.T.-Q.)
- Institut d’Investigació i Innovació Parc Taulí, Sabadell, Spain (J.P.T.-Q.)
| | - Loida María García-Cruz
- Clinical Genetics Unit, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas de Gran Canaria, Spain (A.S.R., L.M.G.-C.)
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Spain (A.S.R., L.M.G.-C.)
| | - Ivonne Cárdenas-Reyes
- Cardiology Department, Health in Code SL, A Coruña, Spain (A.A.-S., L.d.l.H.R., I.C.-R., S.G.-H., M.V.-G., I.G.-D., J.P.O.)
| | - Juan Jiménez-Jáimez
- Cardiology Department, Hospital Universitario Virgen de las Nieves, Granada, Spain (R.M.-R., J.J.-J.)
- Instituto de Investigación Biosanitaria Instituto de Investigación Biosanitaria de Granada (IBS-GRANADA), Spain (R.M.-R., J.J.-J.)
| | - Soledad García-Hernández
- Cardiology Department, Health in Code SL, A Coruña, Spain (A.A.-S., L.d.l.H.R., I.C.-R., S.G.-H., M.V.-G., I.G.-D., J.P.O.)
- Inherited Cardiac Diseases Unit, Hospital Universitario San Cecilio, Granada, Spain (S.G.-H.)
| | - María Valverde-Gómez
- Cardiology Department, Health in Code SL, A Coruña, Spain (A.A.-S., L.d.l.H.R., I.C.-R., S.G.-H., M.V.-G., I.G.-D., J.P.O.)
- Cardiology Department, Hospital Universitario 12 de Octubre, Madrid, Spain (M.V.-G.)
| | - Iria Gómez-Díaz
- Cardiology Department, Health in Code SL, A Coruña, Spain (A.A.-S., L.d.l.H.R., I.C.-R., S.G.-H., M.V.-G., I.G.-D., J.P.O.)
| | - Javier Limeres Freire
- Cardiovascular Imaging Unit and Inherited Cardiac Diseases Unit, Cardiology Department, Vall d′Hebron University Hospital, Barcelona, Spain (J.F.R.-P., J.L.F.)
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, ERN GUARD-Heart, Amsterdam, The Netherlands (J.F.R.-P., J.L.F., J.R.G.-B., P.G.-P.)
| | - José M. García-Pinilla
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (J.F.R.-P., M.G.D., J.M.G.-P., J.R.G.-B., P.G.-P.)
- Department of Cardiology, Heart Failure and Inherited Cardiac Diseases Unit, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain (J.M.G.-P.)
- Department of Medicine and Dermatology, Universidad de Málaga, Spain (J.M.G.-P.)
| | - Juan R. Gimeno-Blanes
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (J.F.R.-P., M.G.D., J.M.G.-P., J.R.G.-B., P.G.-P.)
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, ERN GUARD-Heart, Amsterdam, The Netherlands (J.F.R.-P., J.L.F., J.R.G.-B., P.G.-P.)
- Department of Cardiology, Inherited Cardiac Diseases Unit, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain (D.L.C., J.R.G.-B.)
| | - Konstantinos Savattis
- Inherited Cardiovascular Diseases Unit, St. Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom (H.R., K.S.)
- Institute for Cardiovascular Science, University College London, United Kingdom (K.S.)
- Biomedical Research Center, National Institute for Health and Care Research (NIHR) University College London Hospitals, United Kingdom (K.S.)
- William Harvey Research Institute, Queen Mary University of London, United Kingdom (K.S.)
| | - Pablo García-Pavía
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (J.F.R.-P., M.G.D., J.M.G.-P., J.R.G.-B., P.G.-P.)
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, ERN GUARD-Heart, Amsterdam, The Netherlands (J.F.R.-P., J.L.F., J.R.G.-B., P.G.-P.)
- Department of Cardiology, Heart Failure and Inherited Cardiac Diseases Unit, Hospital Universitario Puerta de Hierro, IDIPHISA, Madrid, Spain (D.d.C.C., P.G.-P., J.P.O.)
- Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain (P.G.-P.)
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (P.G.-P., J.P.O.)
| | - Juan Pablo Ochoa
- Cardiology Department, Health in Code SL, A Coruña, Spain (A.A.-S., L.d.l.H.R., I.C.-R., S.G.-H., M.V.-G., I.G.-D., J.P.O.)
- Department of Cardiology, Heart Failure and Inherited Cardiac Diseases Unit, Hospital Universitario Puerta de Hierro, IDIPHISA, Madrid, Spain (D.d.C.C., P.G.-P., J.P.O.)
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (P.G.-P., J.P.O.)
| |
Collapse
|
9
|
Ozawa SW, Inomata S, Hata Y, Takarada S, Okabe M, Nakaoka H, Ibuki K, Nishida N, Ichida F, Hirono K. Novel MYH7 Variant in the Neonate of a Mother with Gestational Diabetes Mellitus Showing Left Ventricular Hypertrophy and Noncompaction. Genes (Basel) 2024; 15:381. [PMID: 38540440 PMCID: PMC10969955 DOI: 10.3390/genes15030381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Left ventricular hypertrophy (LVH) is a well-recognized cardiac dysfunction in infants of mothers with gestational diabetes mellitus (GDM). Left ventricular noncompaction (LVNC) is a cardiomyopathy that is morphologically characterized by numerous prominent trabeculations and deep intertrabecular recesses on cardiovascular imaging. However, there have been no case reports on neonates of mothers with GDM showing LVH and LVNC. CASE PRESENTATION A patient, with LVH of a mother with GDM, was delivered at 36 weeks of gestation. Prominent trabeculations in the LV, suggesting LVNC, instead of LVH, were apparent 1 week after birth. A heterozygous deletion variant in the MYH7 gene (NM_000257.4: c.1090T>C, p.Phe364Leu) was discovered through genetic testing using a cardiomyopathy-associated gene panel in the patient and his father and the older brother who had LVNC. The patient is now 5 years old and does not have major cardiac events, although LVNC persisted. This is the first case of LVH secondary to a mother with GDM and LVNC with a novel variant in the MYH7 gene. CONCLUSION Genetic testing should be conducted to obtain an accurate outcome and medical care in a patient with LVH and subsequently prominent hypertrabeculation in the LV.
Collapse
Affiliation(s)
- Sayaka W Ozawa
- Department of Pediatrics, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Satomi Inomata
- Department of Pediatrics, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Yukiko Hata
- Legal Medicine, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Shinya Takarada
- Department of Pediatrics, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Mako Okabe
- Department of Pediatrics, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Hideyuki Nakaoka
- Department of Pediatrics, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Keijiro Ibuki
- Department of Pediatrics, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Naoki Nishida
- Legal Medicine, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Fukiko Ichida
- Department of Pediatrics, International University of Health and Welfare, Tokyo 107-0052, Japan
| | - Keiichi Hirono
- Department of Pediatrics, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
10
|
Wang F, Han S, Fang L, Lin X. A fetal rat model of ventricular noncompaction caused by intrauterine hyperglycemia. Cardiovasc Pathol 2024; 69:107601. [PMID: 38072092 DOI: 10.1016/j.carpath.2023.107601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/17/2023] [Accepted: 12/05/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND This study aims to develop a fetal rat model of ventricular noncompaction (NVM) using streptozotocin (STZ)-induced gestational hyperglycemia and compare it with a retinoic acid (RA) model. METHODS Female SD rats were categorized into STZ, RA, and normal control (NC) groups. The STZ group was given a high-fat diet pre-pregnancy and 35 mg/kg of 2% STZ postpregnancy. The RA group received a 90 mg/kg dose of RA on day 13 postpregnancy. Embryonic myocardial morphology was analyzed through HE staining, and embryonic cardiomyocyte ultrastructures were studied using electron microscopy. Diagnoses of NVM were based on a ratio of noncompact myocardium (N) to compact myocardium (C) >1.4, accompanied by thick myocardial trabeculae and a thin myocardial compaction layer. Kruskal-Wallis test determined N/C ratio differences among groups. RESULTS Both STZ and RA groups displayed significant NVM characteristics. The left ventricular (LV) N/C in the STZ, RA, and NC groups were 1.983 (1.423-3.527), 1.640 (1.197-2.895), and 0.927 (0.806-1.087), respectively, with a statistically significant difference (P<0.001). The right ventricular (RV) N/C in the STZ, RA, and NC groups were 2.097 (1.364-3.081), 1.897 (1.337-2.662), and 0.869 (0.732-1.022), respectively, with a significant difference (P<0.001). Electron microscopy highlighted marked endoplasmic reticulum swelling in embryonic cardiomyocytes from both STZ and RA groups. CONCLUSION Our model underscores the pivotal role of an adverse intrauterine developmental environment in the onset of NVM. This insight holds significant implications for future studies exploring the pathogenesis of NVM.
Collapse
Affiliation(s)
- Fanglu Wang
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Songbo Han
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Ligang Fang
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Xue Lin
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
11
|
Santoro F, Vitale E, Ragnatela I, Cetera R, Leopzzi A, Mallardi A, Matera A, Mele M, Correale M, Brunetti ND. Multidisciplinary approach in cardiomyopathies: From genetics to advanced imaging. Heart Fail Rev 2024; 29:445-462. [PMID: 38041702 DOI: 10.1007/s10741-023-10373-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Cardiomyopathies are myocardial diseases characterized by mechanical and electrical dysfunction of the heart muscle which could lead to heart failure and life-threatening arrhythmias. Certainly, an accurate anamnesis, a meticulous physical examination, and an ECG are cornerstones in raising the diagnostic suspicion. However, cardiovascular imaging techniques are indispensable to diagnose a specific cardiomyopathy, to stratify the risk related to the disease and even to track the response to the therapy. Echocardiography is often the first exam that the patient undergoes, because of its non-invasiveness, wide availability, and cost-effectiveness. Cardiac magnetic resonance imaging allows to integrate and implement the information obtained with the echography. Furthermore, cardiomyopathies' genetic basis has been investigated over the years and the list of genetic mutations deemed potentially pathogenic is expected to grow further. The aim of this review is to show echocardiographic, cardiac magnetic resonance imaging, and genetic features of several cardiomyopathies: dilated cardiomyopathy (DMC), hypertrophic cardiomyopathy (HCM), arrhythmogenic cardiomyopathy (ACM), left ventricular noncompaction cardiomyopathy (LVNC), myocarditis, and takotsubo cardiomyopathy.
Collapse
Affiliation(s)
- Francesco Santoro
- Department of Medical and Surgical Sciences, Cardiology Unit, Policlinico "Riuniti", University of Foggia, Viale Pinto n.1, 71122, Foggia, Italy.
| | - Enrica Vitale
- Department of Medical and Surgical Sciences, Cardiology Unit, Policlinico "Riuniti", University of Foggia, Viale Pinto n.1, 71122, Foggia, Italy
| | - Ilaria Ragnatela
- Department of Medical and Surgical Sciences, Cardiology Unit, Policlinico "Riuniti", University of Foggia, Viale Pinto n.1, 71122, Foggia, Italy
| | - Rosa Cetera
- Department of Medical and Surgical Sciences, Cardiology Unit, Policlinico "Riuniti", University of Foggia, Viale Pinto n.1, 71122, Foggia, Italy
| | | | | | - Annalisa Matera
- Department of Medical and Surgical Sciences, Cardiology Unit, Policlinico "Riuniti", University of Foggia, Viale Pinto n.1, 71122, Foggia, Italy
| | - Marco Mele
- Department of Medical and Surgical Sciences, Cardiology Unit, Policlinico "Riuniti", University of Foggia, Viale Pinto n.1, 71122, Foggia, Italy
| | - Michele Correale
- Department of Medical and Surgical Sciences, Cardiology Unit, Policlinico "Riuniti", University of Foggia, Viale Pinto n.1, 71122, Foggia, Italy
| | - Natale Daniele Brunetti
- Department of Medical and Surgical Sciences, Cardiology Unit, Policlinico "Riuniti", University of Foggia, Viale Pinto n.1, 71122, Foggia, Italy
| |
Collapse
|
12
|
Thompson T, Phimister A, Raskin A. Adolescent Onset of Acute Heart Failure. Med Clin North Am 2024; 108:59-77. [PMID: 37951656 DOI: 10.1016/j.mcna.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Heart failure in adolescents can manifest due to a multitude of causes. Presentation is often quite variable ranging from asymptomatic to decompensated heart failure or sudden cardiac death. Because of the diverse nature of this disease, a thoughtful and extensive evaluation is critical to establishing the diagnosis and treatment plan. Identifying and addressing reversible pathologies often leads to functional cardiac recovery. Some disease states are irreversible and progressive, requiring chronic heart failure management and potentially advanced therapies such as transplantation.
Collapse
Affiliation(s)
- Tracey Thompson
- Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | |
Collapse
|
13
|
Mendpara V, Endreddy JKR, Gajula S, Ravulapalli P, Kumar M, Kaur P, Thakkar M. Overlapping Phenotypes of Alcoholic Cardiomyopathy and Left Ventricular Non-compaction: A Case Report and Discussion of Converging Cardiomyopathies. Cureus 2023; 15:e48220. [PMID: 38050525 PMCID: PMC10693900 DOI: 10.7759/cureus.48220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/03/2023] [Indexed: 12/06/2023] Open
Abstract
Left ventricular non-compaction cardiomyopathy, often known as LVNC, is a form of congenital cardiomyopathy that is extremely uncommon. It is a condition that may be identified by an elevated number of endomyocardial trabeculations as well as an increase in their prominence. Alcoholic cardiomyopathy, also known as ACM, is a non-ischemic form of dilated cardiomyopathy that is characterized by contractile failure and an enlargement of the heart ventricles. It is not entirely known whether or not there is a clinically significant overlap in phenotypic characteristics between the two illnesses. We report a patient who had previously been diagnosed with ACM and who had cardiac MRI results that fit the criteria for both LVNC and ACM.
Collapse
Affiliation(s)
- Vaidehi Mendpara
- Internal Medicine, Government Medical College, Surat, Surat, IND
| | | | - Sahini Gajula
- Internal Medicine, Gandhi Medical College and Hospital, Secunderabad, IND
| | - Pratyusha Ravulapalli
- Internal Medicine, Apollo Institute of Medical Sciences and Research, Hyderabad, IND
| | | | - Parvinder Kaur
- Internal Medicine, Crimean State Medical University, Simferopol, UKR
| | - Meet Thakkar
- General Medicine, Government Medical College, Surat, Surat, IND
| |
Collapse
|
14
|
DeFilippis EM, Bhagra C, Casale J, Ging P, Macera F, Punnoose L, Rasmusson K, Sharma G, Sliwa K, Thorne S, Walsh MN, Kittleson MM. Cardio-Obstetrics and Heart Failure: JACC: Heart Failure State-of-the-Art Review. JACC. HEART FAILURE 2023; 11:1165-1180. [PMID: 37678960 DOI: 10.1016/j.jchf.2023.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/26/2023] [Accepted: 07/05/2023] [Indexed: 09/09/2023]
Abstract
Heart failure and cardiomyopathy are significant contributors to pregnancy-related deaths, as maternal morbidity and mortality have been increasing over time. In this setting, the role of the multidisciplinary cardio-obstetrics team is crucial to optimizing maternal, obstetrical and fetal outcomes. Although peripartum cardiomyopathy is the most common cardiomyopathy experienced by pregnant individuals, the hemodynamic changes of pregnancy may unmask a pre-existing cardiomyopathy leading to clinical decompensation. Additionally, there are unique management considerations for women with pre-existing cardiomyopathy as well as for those women with advanced heart failure who may be on left ventricular assist device support or have undergone heart transplantation. The purpose of this review is to discuss: 1) preconception counseling; 2) risk stratification and management strategies for pregnant women extending to the postpartum "fourth trimester" with pre-existing heart failure or "pre-heart failure;" 3) the safety of heart failure medications during pregnancy and lactation; and 4) management of pregnancy for women on left ventricular assist device support or after heart transplantation.
Collapse
Affiliation(s)
- Ersilia M DeFilippis
- Division of Cardiology, NewYork-Presbyterian Columbia University Irving Medical Center, New York, New York, USA
| | - Catriona Bhagra
- Department of Cardiology, Cambridge University and Royal Papworth NHS Foundation Trusts, Cambridge, United Kingdom
| | - Jillian Casale
- Department of Pharmacy Services, Cooperman Barnabas Medical Center, Livingston, New Jersey, USA
| | - Patricia Ging
- Department of Pharmacy, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Francesca Macera
- De Gasperis Cardio Center and Transplant Center, Niguarda Hospital, Milan, Italy; Department of Cardiology, Cliniques Universitaires de Bruxelles - Hôpital Erasme, Brussels, Belgium
| | - Lynn Punnoose
- Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kismet Rasmusson
- Intermountain Heart Institute, Intermountain Medical Center, Salt Lake City, Utah, USA
| | - Garima Sharma
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Karen Sliwa
- Cape Heart Institute, Department of Medicine, Division of Cardiology, Faculty of Health Sciences, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Sara Thorne
- Division of Cardiology, Pregnancy & Heart Disease Program, Mount Sinai Hospital & University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | - Michelle M Kittleson
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| |
Collapse
|
15
|
Tikunova SB, Thuma J, Davis JP. Mouse Models of Cardiomyopathies Caused by Mutations in Troponin C. Int J Mol Sci 2023; 24:12349. [PMID: 37569724 PMCID: PMC10419064 DOI: 10.3390/ijms241512349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Cardiac muscle contraction is regulated via Ca2+ exchange with the hetero-trimeric troponin complex located on the thin filament. Binding of Ca2+ to cardiac troponin C, a Ca2+ sensing subunit within the troponin complex, results in a series of conformational re-arrangements among the thin filament components, leading to an increase in the formation of actomyosin cross-bridges and muscle contraction. Ultimately, a decline in intracellular Ca2+ leads to the dissociation of Ca2+ from troponin C, inhibiting cross-bridge cycling and initiating muscle relaxation. Therefore, troponin C plays a crucial role in the regulation of cardiac muscle contraction and relaxation. Naturally occurring and engineered mutations in troponin C can lead to altered interactions among components of the thin filament and to aberrant Ca2+ binding and exchange with the thin filament. Mutations in troponin C have been associated with various forms of cardiac disease, including hypertrophic, restrictive, dilated, and left ventricular noncompaction cardiomyopathies. Despite progress made to date, more information from human studies, biophysical characterizations, and animal models is required for a clearer understanding of disease drivers that lead to cardiomyopathies. The unique use of engineered cardiac troponin C with the L48Q mutation that had been thoroughly characterized and genetically introduced into mouse myocardium clearly demonstrates that Ca2+ sensitization in and of itself should not necessarily be considered a disease driver. This opens the door for small molecule and protein engineering strategies to help boost impaired systolic function. On the other hand, the engineered troponin C mutants (I61Q and D73N), genetically introduced into mouse myocardium, demonstrate that Ca2+ desensitization under basal conditions may be a driving factor for dilated cardiomyopathy. In addition to enhancing our knowledge of molecular mechanisms that trigger hypertrophy, dilation, morbidity, and mortality, these cardiomyopathy mouse models could be used to test novel treatment strategies for cardiovascular diseases. In this review, we will discuss (1) the various ways mutations in cardiac troponin C might lead to disease; (2) relevant data on mutations in cardiac troponin C linked to human disease, and (3) all currently existing mouse models containing cardiac troponin C mutations (disease-associated and engineered).
Collapse
Affiliation(s)
- Svetlana B. Tikunova
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA (J.P.D.)
| | | | | |
Collapse
|
16
|
Tian S, Liang H, Li X, Cao B, Feng L, Wang L. A novel mutation in the TTN gene resulted in left ventricular noncompaction: a case report and literature review. BMC Cardiovasc Disord 2023; 23:352. [PMID: 37460987 DOI: 10.1186/s12872-023-03382-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Left ventricular noncompaction (LVNC) is a specific type of cardiomyopathy characterized by coarse trabeculae and interspersed trabecular crypts within the ventricles. Clinical presentation varies widely and may be nonsignificant or may present with progressive heart failure, malignant arrhythmias, and multiorgan embolism. The mode of inheritance is highly heterogeneous but is most commonly autosomal dominant. The TTN gene encodes titin, which is not only an elastic component of muscle contraction but also mediates multiple signalling pathways in striated muscle cells. In recent years, mutations in the TTN gene have been found to be associated with LVNC, but the exact pathogenesis is still not fully clarified. CASE PRESENTATION In this article, we report a case of an adult LVNC patient with a TTN gene variant, c.87857G > A (p. Trp29286*), that has not been reported previously. This 43-year-old adult male was hospitalized repeatedly for heart failure. Echocardiography showed reduced myocardial contractility, dilated left ventricle with many prominent trabeculae, and a loose texture of the left ventricular layer of myocardium with crypt-like changes. During the out-of-hospital follow-up, the patient had no significant signs or symptoms of discomfort. CONCLUSION This case report enriches the mutational spectrum of the TTN gene in LVNC and provides a basis for genetic counselling and treatment of this patient. Clinicians should improve their understanding of LVNC, focusing on exploring its pathogenesis and genetic characteristics to provide new directions for future diagnosis and treatment.
Collapse
Affiliation(s)
- Shipeng Tian
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, 050000, Hebei, China
| | - Hao Liang
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, 050000, Hebei, China
| | - Xiaolei Li
- Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, 050000, Hebei, China
| | - Boce Cao
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, 050000, Hebei, China
| | - Lu Feng
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, 050000, Hebei, China
- Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Lili Wang
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
17
|
Bustea C, Bungau AF, Tit DM, Iovanovici DC, Toma MM, Bungau SG, Radu AF, Behl T, Cote A, Babes EE. The Rare Condition of Left Ventricular Non-Compaction and Reverse Remodeling. Life (Basel) 2023; 13:1318. [PMID: 37374101 PMCID: PMC10305066 DOI: 10.3390/life13061318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Left ventricular non-compaction (LVNC) is a rare disease defined by morphological criteria, consisting of a two-layered ventricular wall, a thin compacted epicardial layer, and a thick hyper-trabeculated myocardium layer with deep recesses. Controversies still exist regarding whether it is a distinct cardiomyopathy (CM) or a morphological trait of different conditions. This review analyzes data from the literature regarding diagnosis, treatment, and prognosis in LVNC and the current knowledge regarding reverse remodeling in this form of CM. Furthermore, for clear exemplification, we report a case of a 41-year-old male who presented symptoms of heart failure (HF). LVNC CM was suspected at the time of transthoracic echocardiography and was subsequently confirmed upon cardiac magnetic resonance imaging. A favorable remodeling and clinical outcome were registered after including an angiotensin receptor neprilysin inhibitor in the HF treatment. LVNC remains a heterogenous CM, and although a favorable outcome is not commonly encountered, some patients respond well to therapy.
Collapse
Affiliation(s)
- Cristiana Bustea
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Alexa Florina Bungau
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (D.C.I.); (M.M.T.); (S.G.B.); (A.-F.R.)
| | - Delia Mirela Tit
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (D.C.I.); (M.M.T.); (S.G.B.); (A.-F.R.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Diana Carina Iovanovici
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (D.C.I.); (M.M.T.); (S.G.B.); (A.-F.R.)
| | - Mirela Marioara Toma
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (D.C.I.); (M.M.T.); (S.G.B.); (A.-F.R.)
| | - Simona Gabriela Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (D.C.I.); (M.M.T.); (S.G.B.); (A.-F.R.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Andrei-Flavius Radu
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (D.C.I.); (M.M.T.); (S.G.B.); (A.-F.R.)
| | - Tapan Behl
- School of Health Sciences & Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, India;
| | - Adrian Cote
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Elena Emilia Babes
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| |
Collapse
|
18
|
Aiyer S, Kalutskaya E, Agdamag AC, Tang WHW. Genetic Evaluation and Screening in Cardiomyopathies: Opportunities and Challenges for Personalized Medicine. J Pers Med 2023; 13:887. [PMID: 37373876 PMCID: PMC10302702 DOI: 10.3390/jpm13060887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Cardiomyopathy is a major cause of heart failure caused by abnormalities of the heart muscles that make it harder for it to fill or eject blood. With technological advances, it is important for patients and families to understand that there are potential monogenic etiologies of cardiomyopathy. A multidisciplinary approach to clinical genetic screening for cardiomyopathies involving genetic counseling and clinical genetic testing is beneficial for patients and families. With early identification of inherited cardiomyopathy, patients can initiate guideline-directed medical therapies earlier, resulting in a greater likelihood of improving prognoses and health outcomes. Identifying impactful genetic variants will also allow for cascade testing to determine at-risk family members through clinical (phenotype) screening and risk stratification. Addressing genetic variants of uncertain significance and causative variants that may change in pathogenicity is also important to consider. This review will dive into the clinical genetic testing approaches for the various cardiomyopathies, the significance of early detection and treatment, the value of family screening, the personalized treatment process associated with genetic evaluation, and current strategies for clinical genetic testing outreach.
Collapse
Affiliation(s)
- Sahana Aiyer
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Emilia Kalutskaya
- Boonshoft School of Medicine, Wright State University, Fairborn, OH 45435, USA
| | - Arianne C. Agdamag
- Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - W. H. Wilson Tang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
19
|
Lu YW, Liang Z, Guo H, Fernandes T, Espinoza-Lewis RA, Wang T, Li K, Li X, Singh GB, Wang Y, Cowan D, Mably JD, Philpott CC, Chen H, Wang DZ. PCBP1 regulates alternative splicing of AARS2 in congenital cardiomyopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.540420. [PMID: 37293078 PMCID: PMC10245752 DOI: 10.1101/2023.05.18.540420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alanyl-transfer RNA synthetase 2 (AARS2) is a nuclear encoded mitochondrial tRNA synthetase that is responsible for charging of tRNA-Ala with alanine during mitochondrial translation. Homozygous or compound heterozygous mutations in the Aars2 gene, including those affecting its splicing, are linked to infantile cardiomyopathy in humans. However, how Aars2 regulates heart development, and the underlying molecular mechanism of heart disease remains unknown. Here, we found that poly(rC) binding protein 1 (PCBP1) interacts with the Aars2 transcript to mediate its alternative splicing and is critical for the expression and function of Aars2. Cardiomyocyte-specific deletion of Pcbp1 in mice resulted in defects in heart development that are reminiscent of human congenital cardiac defects, including noncompaction cardiomyopathy and a disruption of the cardiomyocyte maturation trajectory. Loss of Pcbp1 led to an aberrant alternative splicing and a premature termination of Aars2 in cardiomyocytes. Additionally, Aars2 mutant mice with exon-16 skipping recapitulated heart developmental defects observed in Pcbp1 mutant mice. Mechanistically, we found dysregulated gene and protein expression of the oxidative phosphorylation pathway in both Pcbp1 and Aars2 mutant hearts; these date provide further evidence that the infantile hypertrophic cardiomyopathy associated with the disorder oxidative phosphorylation defect type 8 (COXPD8) is mediated by Aars2. Our study therefore identifies Pcbp1 and Aars2 as critical regulators of heart development and provides important molecular insights into the role of disruptions in metabolism on congenital heart defects.
Collapse
|
20
|
Li D, Wang C. Advances in symptomatic therapy for left ventricular non-compaction in children. Front Pediatr 2023; 11:1147362. [PMID: 37215603 PMCID: PMC10192632 DOI: 10.3389/fped.2023.1147362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Left ventricular non-compaction is a complex cardiomyopathy and the third largest childhood cardiomyopathy, for which limited knowledge is available. Both pathogenesis and prognosis are still under investigation. Currently, no effective treatment strategy exists to reduce its incidence or severity, and symptomatic treatment is the only clinical treatment strategy. Treatment strategies are constantly explored in clinical practice, and some progress has been made in coping with the corresponding symptoms because the prognosis of children with left ventricular non-compaction is usually poor if there are complications. In this review, we summarized and discussed the coping methods for different left ventricular non-compaction symptoms.
Collapse
Affiliation(s)
| | - Ce Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Zhang Z, Xu K, Ji L, Zhang H, Yin J, Zhou M, Wang C, Yang S. A novel loss-of-function mutation in NRAP is associated with left ventricular non-compaction cardiomyopathy. Front Cardiovasc Med 2023; 10:1097957. [PMID: 36815016 PMCID: PMC9940605 DOI: 10.3389/fcvm.2023.1097957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/06/2023] [Indexed: 02/08/2023] Open
Abstract
Background The nebulin-related-anchoring protein (NRAP) gene encodes actin-associated ankyrin. Few studies reported the association of the NRAP gene with cardiomyopathy. Thus, the genetic role of this gene in cardiomyopathy remains to be investigated. Methods The clinical data of the rare case of left ventricular non-compaction (LVNC) were collected and analyzed. Whole-exome sequencing (WES) was performed on related family members. Western blot was used to detect the effect of mutation on the NRAP protein expression. The effect of the c.259delC variant on myocardial development was further evaluated in a zebrafish model. Results A novel homozygous frameshift mutation c.259delC of NRAP was found in the proband with LVNC. It was found that c.259delC decreased the expression of NRAP by Western blot. In the zebrafish model, the heart development was affected while knocking out the NRAP gene, which showed pericardial edema. The pathological manifestations were uneven hypertrophy, disordered arrangement of cardiomyocytes, enlarged intercellular space, and loose muscle fibers. RNA-sequencing (RNA-seq) showed that the expression of genes related to heart development decreased significantly, and the NRAP gene mutation could participate in biological processes (BPs) such as myocardial contraction, cell adhesion, myosin coarse filament assembly of striated muscle, myosin complex composition, and muscle α-actin binding. Conclusion We identified a rare case of LVNC associated with a novel homozygous NRAP frameshift variant. This study further strengthened the evidence linking mutations in the NRAP gene with LVNC, providing a new clue for further study of LVNC. NRAP may be one of the pathogenic genes of cardiomyopathy.
Collapse
Affiliation(s)
- Zhongman Zhang
- Department of Cardiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Kangkang Xu
- Department of Cardiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Lianfu Ji
- Department of Cardiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Han Zhang
- Department of Cardiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Yin
- Department of Cardiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Zhou
- Department of Cardiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Chunli Wang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China,Chunli Wang,
| | - Shiwei Yang
- Department of Cardiology, Children’s Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Shiwei Yang,
| |
Collapse
|
22
|
Vučković S, Dinani R, Nollet EE, Kuster DWD, Buikema JW, Houtkooper RH, Nabben M, van der Velden J, Goversen B. Characterization of cardiac metabolism in iPSC-derived cardiomyocytes: lessons from maturation and disease modeling. STEM CELL RESEARCH & THERAPY 2022; 13:332. [PMID: 35870954 PMCID: PMC9308297 DOI: 10.1186/s13287-022-03021-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/25/2022] [Indexed: 12/02/2022]
Abstract
Background Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have emerged as a powerful tool for disease modeling, though their immature nature currently limits translation into clinical practice. Maturation strategies increasingly pay attention to cardiac metabolism because of its pivotal role in cardiomyocyte development and function. Moreover, aberrances in cardiac metabolism are central to the pathogenesis of cardiac disease. Thus, proper modeling of human cardiac disease warrants careful characterization of the metabolic properties of iPSC-CMs. Methods Here, we examined the effect of maturation protocols on healthy iPSC-CMs applied in 23 studies and compared fold changes in functional metabolic characteristics to assess the level of maturation. In addition, pathological metabolic remodeling was assessed in 13 iPSC-CM studies that focus on hypertrophic cardiomyopathy (HCM), which is characterized by abnormalities in metabolism. Results Matured iPSC-CMs were characterized by mitochondrial maturation, increased oxidative capacity and enhanced fatty acid use for energy production. HCM iPSC-CMs presented varying degrees of metabolic remodeling ranging from compensatory to energy depletion stages, likely due to the different types of mutations and clinical phenotypes modeled. HCM further displayed early onset hypertrophy, independent of the type of mutation or disease stage. Conclusions Maturation strategies improve the metabolic characteristics of iPSC-CMs, but not to the level of the adult heart. Therefore, a combination of maturation strategies might prove to be more effective. Due to early onset hypertrophy, HCM iPSC-CMs may be less suitable to detect early disease modifiers in HCM and might prove more useful to examine the effects of gene editing and new drugs in advanced disease stages. With this review, we provide an overview of the assays used for characterization of cardiac metabolism in iPSC-CMs and advise on which metabolic assays to include in future maturation and disease modeling studies.
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03021-9.
Collapse
|
23
|
Faber JW, Wüst RCI, Dierx I, Hummelink JA, Kuster DWD, Nollet E, Moorman AFM, Sánchez-Quintana D, van der Wal AC, Christoffels VM, Jensen B. Equal force generation potential of trabecular and compact wall ventricular cardiomyocytes. iScience 2022; 25:105393. [PMID: 36345331 PMCID: PMC9636041 DOI: 10.1016/j.isci.2022.105393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/20/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Trabecular myocardium makes up most of the ventricular wall of the human embryo. A process of compaction in the fetal period presumably changes ventricular wall morphology by converting ostensibly weaker trabecular myocardium into stronger compact myocardium. Using developmental series of embryonic and fetal humans, mice and chickens, we show ventricular morphogenesis is driven by differential rates of growth of trabecular and compact layers rather than a process of compaction. In mouse, fetal cardiomyocytes are relatively weak but adult cardiomyocytes from the trabecular and compact layer show an equally large force generating capacity. In fetal and adult humans, trabecular and compact myocardium are not different in abundance of immunohistochemically detected vascular, mitochondrial and sarcomeric proteins. Similar findings are made in human excessive trabeculation, a congenital malformation. In conclusion, trabecular and compact myocardium is equally equipped for force production and their proportions are determined by differential growth rates rather than by compaction.
Collapse
Affiliation(s)
- Jaeike W Faber
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | - Rob C I Wüst
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Inge Dierx
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | - Janneke A Hummelink
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | - Diederik W D Kuster
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | - Edgar Nollet
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | - Antoon F M Moorman
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | | | - Allard C van der Wal
- Department of Pathology, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | - Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| |
Collapse
|
24
|
Sanna GD, Piga A, Parodi G, Sinagra G, Papadakis M, Pantazis A, Sharma S, Gati S, Finocchiaro G. The Electrocardiogram in the Diagnosis and Management of Patients With Left Ventricular Non-Compaction. Curr Heart Fail Rep 2022; 19:476-490. [PMID: 36227527 DOI: 10.1007/s11897-022-00580-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE OF THE REVIEW Left ventricular non-compaction (LVNC) is characterised by prominent left ventricular trabeculae and deep inter-trabecular recesses. Although considered a distinct cardiomyopathy, prominent trabeculations may also be found in other cardiomyopathies, in athletes or during pregnancy. Clinical presentation includes heart failure symptoms, systemic embolic events, arrhythmias and sudden cardiac death. Currently, LVNC diagnosis relies on imaging criteria, and clinicians face several challenges in the assessment of patients with prominent trabeculations. In this review, we summarise the available information on the role of the ECG in the diagnosis and management of LVNC. RECENT FINDINGS ECG abnormalities have been reported in 75-94% of adults and children with LVNC. The lack of specificity of these ECG abnormalities does not allow (in isolation) to diagnose the condition. However, when considered in a set of diagnostic criteria including family history, clinical information, and imaging features, the ECG may differentiate between physiological and pathological findings or may provide clues raising the possibility of specific underlying conditions. Finally, some ECG features in LVNC constitute ominous signs that require a stricter patient surveillance or specific therapeutic measures. The ECG remains a cornerstone in the diagnosis and management of patients with cardiomyopathies, including LVNC.
Collapse
Affiliation(s)
- Giuseppe D Sanna
- Cardiovascular Department, Sassari University Hospital, Sassari, Italy. .,Clinical and Interventional Cardiology, Sassari University Hospital, Via Enrico De Nicola, 07100, Sassari, Italy.
| | - Anna Piga
- Cardiovascular Department, Sassari University Hospital, Sassari, Italy
| | - Guido Parodi
- Cardiovascular Department, Sassari University Hospital, Sassari, Italy
| | | | - Michael Papadakis
- Cardiology Clinical Academic Group, St. George's, University of London, London, UK
| | - Antonis Pantazis
- Cardiovascular Research Centre, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Sanjay Sharma
- Cardiology Clinical Academic Group, St. George's, University of London, London, UK
| | - Sabiha Gati
- Cardiovascular Research Centre, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Gherardo Finocchiaro
- Cardiovascular Research Centre, Royal Brompton and Harefield NHS Foundation Trust, London, UK.,Cardiothoracic Centre, Guy's and St Thomas' Hospital, London, UK.,King's College London, London, UK
| |
Collapse
|
25
|
Groh WJ, Bhakta D, Tomaselli GF, Aleong RG, Teixeira RA, Amato A, Asirvatham SJ, Cha YM, Corrado D, Duboc D, Goldberger ZD, Horie M, Hornyak JE, Jefferies JL, Kääb S, Kalman JM, Kertesz NJ, Lakdawala NK, Lambiase PD, Lubitz SA, McMillan HJ, McNally EM, Milone M, Namboodiri N, Nazarian S, Patton KK, Russo V, Sacher F, Santangeli P, Shen WK, Sobral Filho DC, Stambler BS, Stöllberger C, Wahbi K, Wehrens XHT, Weiner MM, Wheeler MT, Zeppenfeld K. 2022 HRS expert consensus statement on evaluation and management of arrhythmic risk in neuromuscular disorders. Heart Rhythm 2022; 19:e61-e120. [PMID: 35500790 DOI: 10.1016/j.hrthm.2022.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 11/04/2022]
Abstract
This international multidisciplinary document is intended to guide electrophysiologists, cardiologists, other clinicians, and health care professionals in caring for patients with arrhythmic complications of neuromuscular disorders (NMDs). The document presents an overview of arrhythmias in NMDs followed by detailed sections on specific disorders: Duchenne muscular dystrophy, Becker muscular dystrophy, and limb-girdle muscular dystrophy type 2; myotonic dystrophy type 1 and type 2; Emery-Dreifuss muscular dystrophy and limb-girdle muscular dystrophy type 1B; facioscapulohumeral muscular dystrophy; and mitochondrial myopathies, including Friedreich ataxia and Kearns-Sayre syndrome, with an emphasis on managing arrhythmic cardiac manifestations. End-of-life management of arrhythmias in patients with NMDs is also covered. The document sections were drafted by the writing committee members according to their area of expertise. The recommendations represent the consensus opinion of the expert writing group, graded by class of recommendation and level of evidence utilizing defined criteria. The recommendations were made available for public comment; the document underwent review by the Heart Rhythm Society Scientific and Clinical Documents Committee and external review and endorsement by the partner and collaborating societies. Changes were incorporated based on these reviews. By using a breadth of accumulated available evidence, the document is designed to provide practical and actionable clinical information and recommendations for the diagnosis and management of arrhythmias and thus improve the care of patients with NMDs.
Collapse
Affiliation(s)
- William J Groh
- Ralph H. Johnson VA Medical Center and Medical University of South Carolina, Charleston, South Carolina
| | - Deepak Bhakta
- Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | - Anthony Amato
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | - Domenico Corrado
- Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova, Padova, Italy
| | - Denis Duboc
- Cardiology Department, Hôpital Cochin, AP-HP, Université de Paris, Paris, France
| | - Zachary D Goldberger
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Minoru Horie
- Shiga University of Medical Sciences, Otsu, Japan
| | | | | | - Stefan Kääb
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Jonathan M Kalman
- Royal Melbourne Hospital and University of Melbourne, Melbourne, Victoria, Australia
| | | | - Neal K Lakdawala
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Pier D Lambiase
- Barts Heart Centre, St Bartholomew's Hospital, University College London, and St Bartholomew's Hospital London, London, United Kingdom
| | | | - Hugh J McMillan
- Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | - Narayanan Namboodiri
- Sree Chitra Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | | | | | | | - Frederic Sacher
- Bordeaux University Hospital, LIRYC Institute, Bordeaux, France
| | | | | | | | | | - Claudia Stöllberger
- Second Medical Department with Cardiology and Intensive Care Medicine, Klinik Landstraße, Vienna, Austria
| | - Karim Wahbi
- Cardiology Department, Hôpital Cochin, AP-HP, Université de Paris, Paris, France
| | | | | | | | | |
Collapse
|
26
|
Hirono K, Ichida F. Left ventricular noncompaction: a disorder with genotypic and phenotypic heterogeneity-a narrative review. Cardiovasc Diagn Ther 2022; 12:495-515. [PMID: 36033229 PMCID: PMC9412206 DOI: 10.21037/cdt-22-198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/21/2022] [Indexed: 01/10/2023]
Abstract
Background and Objective Left ventricular noncompaction (LVNC) is a cardiomyopathy characterized by excessive trabecular formation and deep recesses in the ventricular wall, with a bilaminar structure consisting of an endocardial noncompaction layer and an epicardial compacted layer. Although genetic variants have been reported in patients with LVNC, understanding of LVNC and its pathogenesis has not yet been fully elucidated. We addressed the latest findings on genes reported to be associated with LVNC morphogenesis and possible pathologies to understand the diverse spectrum between genotype and phenotype in LVNC. Also, the latest findings and issues related to the diagnosis of LVNC were summarized. Methods This article is written as a commentary narrative review and will provide an update on the current literature and available data on common forms of LVNC published in the past 30 years in English through to May 2022 using PubMed. Key Content and Findings Familial forms of LVNC are frequent, and autosomal dominant mode of inheritance has been predominantly observed. Several of the candidate causative genes are also mutated in other cardiomyopathies, suggesting a possible shared molecular and/or cellular etiology. The most common gene functions were sarcomere function whereas genes in mice LVNC models were involved in heart development. Echocardiography and cardiac magnetic resonance imaging (CMR) are useful for diagnosis although there are no unified criteria due to overdiagnosis of imaging, poor consistency between techniques, and lack of association between trabecular severity and adverse clinical outcomes. Conclusions This review reflects the current lack of clarity regarding the pathogenesis and significance of LVNC and showed the complexity of imaging diagnostic criteria, interpretation of the role of LVNC as a cause, and uncertainty regarding the specific genetic basis of LVNC.
Collapse
Affiliation(s)
- Keiichi Hirono
- Department of Pediatrics, Graduate School of Medicine, University of Toyama, Toyama, Japan
| | - Fukiko Ichida
- Department of Pediatrics, International University of Health and Welfare, Tokyo, Japan
| |
Collapse
|
27
|
Left Ventricular Non-Compaction Cardiomyopathy-Still More Questions than Answers. J Clin Med 2022; 11:jcm11144135. [PMID: 35887898 PMCID: PMC9315982 DOI: 10.3390/jcm11144135] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/24/2022] Open
Abstract
Left ventricular non-compaction (LVNC) describes the phenotypical phenomena characterized by the presence of excessive trabeculation of the left ventricle which forms a deep recess filled with blood. Considering the lack of a uniform definition of LVNC as well as the "golden standard" it is difficult to estimate the actual incidence of the disease, however, seems to be overdiagnosed, due to unspecific diagnostic criteria. The non-compacted myocardium may appear both as a disease representation or variant of the norm or as an adaptive phenomenon. This article covers different approaches to incidence, pathogenesis, diagnostics, and treatment of LVNC as well as recommendations for patients during follow-up.
Collapse
|
28
|
Jensen B, Strijkers GJ, Petersen SE, Sheppard MN, Oostra R, Christoffels VM. Reply to Stöllberger et al. J Anat 2022; 240:1207-1209. [PMID: 35106781 PMCID: PMC9119612 DOI: 10.1111/joa.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Bjarke Jensen
- Department of Medical BiologyAmsterdam Cardiovascular SciencesUniversity of AmsterdamAmsterdam UMCAmsterdamThe Netherlands
| | - Gustav J. Strijkers
- Department of Biomedical Engineering and PhysicsAmsterdam Cardiovascular SciencesUniversity of AmsterdamAmsterdam UMCAmsterdamThe Netherlands
| | - Steffen E. Petersen
- William Harvey Research InstituteNIHR Barts Biomedical Research CentreQueen Mary University of LondonLondonUnited Kingdom
- Barts Heart CentreSt Bartholomew’s HospitalBarts Health NHS TrustLondonUnited Kingdom
| | - Mary N. Sheppard
- Department of Cardiovascular PathologyCardiology Clinical Academic Group, Molecular and Clinical Sciences Research InstituteSt George’s University of LondonLondonUnited Kingdom
| | - Roelof‐Jan Oostra
- Department of Medical BiologyAmsterdam Cardiovascular SciencesUniversity of AmsterdamAmsterdam UMCAmsterdamThe Netherlands
| | - Vincent M. Christoffels
- Department of Medical BiologyAmsterdam Cardiovascular SciencesUniversity of AmsterdamAmsterdam UMCAmsterdamThe Netherlands
| |
Collapse
|
29
|
Rojanasopondist P, Nesheiwat L, Piombo S, Porter GA, Ren M, Phoon CKL. Genetic Basis of Left Ventricular Noncompaction. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003517. [PMID: 35549379 DOI: 10.1161/circgen.121.003517] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Left ventricular noncompaction (LVNC) is the third most common pediatric cardiomyopathy characterized by a thinned myocardium and prominent trabeculations. Next-generation genetic testing has led to a rapid increase in the number of genes reported to be associated with LVNC, but we still have little understanding of its pathogenesis. We sought to grade the strength of the gene-disease relationship for all genes reported to be associated with LVNC and identify molecular pathways that could be implicated. METHODS Following a systematic PubMed review, all genes identified with LVNC were graded using a validated, semi-quantitative system based on all published genetic and experimental evidence created by the Clinical Genome Resource (ClinGen). Genetic pathway analysis identified molecular processes and pathways associated with LVNC. RESULTS We identified 189 genes associated with LVNC: 11 (6%) were classified as definitive, 21 (11%) were classified as moderate, and 140 (74%) were classified as limited, but 17 (9%) were classified as no evidence. Of the 32 genes classified as definitive or moderate, the most common gene functions were sarcomere function (n=11; 34%), transcriptional/translational regulator (n=6; 19%), mitochondrial function (n=3; 9%), and cytoskeletal protein (n=3; 9%). Furthermore, 18 (56%) genes were implicated in noncardiac syndromic presentations. Lastly, 3 genetic pathways (cardiomyocyte differentiation via BMP receptors, factors promoting cardiogenesis in vertebrates, and Notch signaling) were found to be unique to LVNC and not overlap with pathways identified in dilated cardiomyopathy and hypertrophic cardiomyopathy. CONCLUSIONS LVNC is a genetically heterogeneous cardiomyopathy. Distinct from dilated or hypertrophic cardiomyopathies, LVNC appears to arise from abnormal developmental processes.
Collapse
Affiliation(s)
- Pakdee Rojanasopondist
- Division of Pediatric Cardiology, Department of Pediatrics (P.R., L.N., S.P., C.K.L.P.), NYU Grossman School of Medicine, NY
| | - Leigh Nesheiwat
- Division of Pediatric Cardiology, Department of Pediatrics (P.R., L.N., S.P., C.K.L.P.), NYU Grossman School of Medicine, NY
| | - Sebastian Piombo
- Division of Pediatric Cardiology, Department of Pediatrics (P.R., L.N., S.P., C.K.L.P.), NYU Grossman School of Medicine, NY
| | - George A Porter
- Division of Pediatric Cardiology, Department of Pediatrics, University of Rochester School of Medicine, NY (G.A.P.)
| | - Mindong Ren
- Departments of Anesthesiology and Cell Biology (M.R.), NYU Grossman School of Medicine, NY
| | - Colin K L Phoon
- Division of Pediatric Cardiology, Department of Pediatrics (P.R., L.N., S.P., C.K.L.P.), NYU Grossman School of Medicine, NY
| |
Collapse
|
30
|
Maddali MM, Thomas E, Al-Abri IA, Patel MH, Al-Maskari SN, Al-Yamani MI. Dilated Cardiomyopathy Phenotype Associated Left Ventricular Noncompaction And Congenital Long QT Syndrome Type-2 In Infancy With KCNH2 Gene Mutation: Anesthetic Considerations. J Cardiothorac Vasc Anesth 2022; 36:3662-3667. [DOI: 10.1053/j.jvca.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 11/11/2022]
|
31
|
Franciosi S, Abrams DJ, Ingles J, Sanatani S. Sudden Cardiac Arrest in the Paediatric Population. CJC PEDIATRIC AND CONGENITAL HEART DISEASE 2022; 1:45-59. [PMID: 37969243 PMCID: PMC10642157 DOI: 10.1016/j.cjcpc.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/03/2022] [Indexed: 11/17/2023]
Abstract
Sudden cardiac arrest in the young is a rare event with a range of potential causes including cardiomyopathies, ion channelopathies, and autonomic nervous system dysfunction. Investigations into the cause involve a multidisciplinary team, including cardiologists, geneticists, and psychologists. In addition to a detailed medical history, family history and circumstances surrounding the event are important in determining the cause. Clinical investigations including an electrocardiogram are fundamental in diagnosis and should be interpreted cautiously because some children may have atypical presentations and an evolving phenotype. The potential for misdiagnosis exists that could lead to incorrect long-term management strategies. If an inherited condition is suspected, genetic testing of the patient and cascade screening of family members is recommended with genetic counselling and psychological support. Medical management is left to the treating physician acknowledging that a clear diagnosis cannot be made in approximately half of cases. Secondary prevention implantable defibrillators are widely deployed but can be associated with complications in young patients. A plan for safe return to activity is recommended along with a proper transition of care into adulthood. Broad screening of the general population for arrhythmia syndromes is not recommended; preventative measures include screening paediatric patients for risk factors by their primary care physician. Several milestone events or activities that take place in youth could be used as opportunities to promote safety. Further work into risk stratification of this paediatric population through patient registries and greater awareness of cardiopulmonary resuscitation and automated external defibrillator use in saving lives is warranted.
Collapse
Affiliation(s)
- Sonia Franciosi
- BC Children’s Hospital Heart Centre, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dominic J. Abrams
- Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jodie Ingles
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Shubhayan Sanatani
- BC Children’s Hospital Heart Centre, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
32
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JG, Coats AJ, Crespo-Leiro MG, Farmakis D, Gilard M, Heyman S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CS, Lyon AR, McMurray JJ, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GM, Ruschitzka F, Skibelund AK. Guía ESC 2021 sobre el diagnóstico y tratamiento de la insuficiencia cardiaca aguda y crónica. Rev Esp Cardiol 2022. [DOI: 10.1016/j.recesp.2021.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Zhao Q, Yan S, Lu J, Parker DJ, Wu H, Sun Q, Crossman DK, Liu S, Wang Q, Sesaki H, Mitra K, Liu K, Jiao K. Drp1 regulates transcription of ribosomal protein genes in embryonic hearts. J Cell Sci 2022; 135:274456. [PMID: 35099001 PMCID: PMC8919333 DOI: 10.1242/jcs.258956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 01/10/2022] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial dysfunction causes severe congenital cardiac abnormalities and prenatal/neonatal lethality. The lack of sufficient knowledge regarding how mitochondrial abnormalities affect cardiogenesis poses a major barrier for the development of clinical applications that target mitochondrial deficiency-induced inborn cardiomyopathies. Mitochondrial morphology, which is regulated by fission and fusion, plays a key role in determining mitochondrial activity. Dnm1l encodes a dynamin-related GTPase, Drp1, which is required for mitochondrial fission. To investigate the role of Drp1 in cardiogenesis during the embryonic metabolic shift period, we specifically inactivated Dnm1l in second heart field-derived structures. Mutant cardiomyocytes in the right ventricle (RV) displayed severe defects in mitochondrial morphology, ultrastructure and activity. These defects caused increased cell death, decreased cell survival, disorganized cardiomyocytes and embryonic lethality. By characterizing this model, we reveal an AMPK-SIRT7-GABPB axis that relays the reduced cellular energy level to decrease transcription of ribosomal protein genes in cardiomyocytes. We therefore provide the first genetic evidence in mouse that Drp1 is essential for RV development. Our research provides further mechanistic insight into how mitochondrial dysfunction causes pathological molecular and cellular alterations during cardiogenesis.
Collapse
Affiliation(s)
- Qiancong Zhao
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China,Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shun Yan
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jin Lu
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Danitra J. Parker
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Huiying Wu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China,Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Qianchuang Sun
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China,Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David K. Crossman
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shanrun Liu
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Qin Wang
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kasturi Mitra
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kexiang Liu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China,Authors for correspondence (; )
| | - Kai Jiao
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA,Present address: Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1462 Laney Walker Blvd. CA4092, Augusta, GA 30912, USA
| |
Collapse
|
34
|
Left Ventricular Noncompaction Is Associated with Valvular Regurgitation and a Variety of Arrhythmias. J Cardiovasc Dev Dis 2022; 9:jcdd9020049. [PMID: 35200702 PMCID: PMC8876824 DOI: 10.3390/jcdd9020049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/29/2022] [Indexed: 02/05/2023] Open
Abstract
Left ventricular noncompaction (LVNC) is a type of cardiomyopathy characterized anatomically by prominent ventricular trabeculation and deep intertrabecular recesses. The mortality associated with LVNC ranges from 5% to 47%. The etiology of LVNC is yet to be fully understood, although decades have passed since its recognition as a clinical entity globally. Furthermore, critical questions, i.e., whether LVNC represents an acquired pathology or has a congenital origin and whether the reduced contractile function in LVNC patients is a cause or consequence of noncompaction, remain to be addressed. In this study, to answer some of these questions, we analyzed the clinical features of LVNC patients. Out of 9582 subjects screened for abnormal cardiac functions, 45 exhibit the characteristics of LVNC, and 1 presents right ventricular noncompaction (RVNC). We found that 40 patients show valvular regurgitation, 39 manifest reduced systolic contractions, and 46 out of the 46 present different forms of arrhythmias that are not restricted to be caused by the noncompact myocardium. This retrospective examination of LVNC patients reveals some novel findings: LVNC is associated with regurgitation in most patients and arrhythmias in all patients. The thickness ratio of the trabecular layer to compact layer negatively correlates with fractional shortening, and reduced contractility might result from LVNC. This study adds evidence to support a congenital origin of LVNC that might benefit the diagnosis and subsequent characterization of LVNC patients.
Collapse
|
35
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 2022; 24:4-131. [PMID: 35083827 DOI: 10.1002/ejhf.2333] [Citation(s) in RCA: 976] [Impact Index Per Article: 488.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
Document Reviewers: Rudolf A. de Boer (CPG Review Coordinator) (Netherlands), P. Christian Schulze (CPG Review Coordinator) (Germany), Magdy Abdelhamid (Egypt), Victor Aboyans (France), Stamatis Adamopoulos (Greece), Stefan D. Anker (Germany), Elena Arbelo (Spain), Riccardo Asteggiano (Italy), Johann Bauersachs (Germany), Antoni Bayes-Genis (Spain), Michael A. Borger (Germany), Werner Budts (Belgium), Maja Cikes (Croatia), Kevin Damman (Netherlands), Victoria Delgado (Netherlands), Paul Dendale (Belgium), Polychronis Dilaveris (Greece), Heinz Drexel (Austria), Justin Ezekowitz (Canada), Volkmar Falk (Germany), Laurent Fauchier (France), Gerasimos Filippatos (Greece), Alan Fraser (United Kingdom), Norbert Frey (Germany), Chris P. Gale (United Kingdom), Finn Gustafsson (Denmark), Julie Harris (United Kingdom), Bernard Iung (France), Stefan Janssens (Belgium), Mariell Jessup (United States of America), Aleksandra Konradi (Russia), Dipak Kotecha (United Kingdom), Ekaterini Lambrinou (Cyprus), Patrizio Lancellotti (Belgium), Ulf Landmesser (Germany), Christophe Leclercq (France), Basil S. Lewis (Israel), Francisco Leyva (United Kingdom), AleVs Linhart (Czech Republic), Maja-Lisa Løchen (Norway), Lars H. Lund (Sweden), Donna Mancini (United States of America), Josep Masip (Spain), Davor Milicic (Croatia), Christian Mueller (Switzerland), Holger Nef (Germany), Jens-Cosedis Nielsen (Denmark), Lis Neubeck (United Kingdom), Michel Noutsias (Germany), Steffen E. Petersen (United Kingdom), Anna Sonia Petronio (Italy), Piotr Ponikowski (Poland), Eva Prescott (Denmark), Amina Rakisheva (Kazakhstan), Dimitrios J. Richter (Greece), Evgeny Schlyakhto (Russia), Petar Seferovic (Serbia), Michele Senni (Italy), Marta Sitges (Spain), Miguel Sousa-Uva (Portugal), Carlo G. Tocchetti (Italy), Rhian M. Touyz (United Kingdom), Carsten Tschoepe (Germany), Johannes Waltenberger (Germany/Switzerland) All experts involved in the development of these guidelines have submitted declarations of interest. These have been compiled in a report and published in a supplementary document simultaneously to the guidelines. The report is also available on the ESC website www.escardio.org/guidelines For the Supplementary Data which include background information and detailed discussion of the data that have provided the basis for the guidelines see European Heart Journal online.
Collapse
|
36
|
Kinnamon DD. The central role of family-based approaches in understanding the genetic architecture of left ventricular noncompaction. Int J Cardiol 2022; 353:75-76. [PMID: 35066014 DOI: 10.1016/j.ijcard.2022.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/14/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Daniel D Kinnamon
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University, 384 Biomedical Research Tower, 460 West 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
37
|
Collyer J, Xu F, Munkhsaikhan U, Alberson NF, Orgil BO, Zhang W, Czosek RJ, Lu L, Jefferies JL, Towbin JA, Purevjav E. Combining whole exome sequencing with in silico analysis and clinical data to identify candidate variants in pediatric left ventricular noncompaction. Int J Cardiol 2022; 347:29-37. [PMID: 34752814 DOI: 10.1016/j.ijcard.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Understanding the overall variant burden in pediatric patients with left ventricular noncompaction (LVNC) has clinical implications. Whole exome sequencing (WES) allows detection of coding variants in both candidate cardiomyopathy genes and those included on commercial panels. Other lines of evidence, including in silico analysis, are necessary to reduce the overwhelming number of variants to those most likely having a phenotypic impact. METHODS Five families, including five pediatric probands with LVNC, 5 other affected, and 10 unaffected family members, had WES performed, followed by bioinformatics filtering and Sanger sequencing. Review of the HGMD, variant classification by ACMG guidelines, and clinical information were used to further refine complex genotypes. RESULTS One nonsense and eleven missense variants were identified. In Family 1, affected siblings carried digenic heterozygous variants: E1350K-MYH7 and A276V-ANKRD1. The proband also carried heterozygous W143X-NRG1. Four affected members of Family 2 carried K184Q-MYH7 while unaffected members did not. In Family 3, homozygous A161T-MYH7 and heterozygous P4935T-OBSCN variants were identified in the proband with the latter being absent in his unaffected brother. In Family 4, proband's father and half-sibling have mild hypertrabeculation and carry T3796I-PLEC. The proband, carrying T3796I-PLEC and V2878A-OBSCN, demonstrated higher trabeculation burden. The proband in Family 5 carried four variants, R3247W-PLEC, C92Y-ERG, T1233M-NCOR2, and E54K-HIST1H4B. Application of ACMG criteria and clinical data revealed that W143X-NRG1, P4935T-OBSCN, and V2878A-OBSCN likely have no phenotypic role. CONCLUSIONS We report nine variants, including novel T3796I-PLEC and biallelic A161T-MYH7, likely contributing to phenotypes ranging from asymptomatic hypertrabeculation to severe LVNC with heart failure.
Collapse
Affiliation(s)
- John Collyer
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States of America; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States of America
| | - Fuyi Xu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States of America; School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Undral Munkhsaikhan
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States of America; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States of America
| | - Neely F Alberson
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States of America; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States of America
| | - Buyan-Ochir Orgil
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States of America; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States of America
| | - Wenying Zhang
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America; Laboratory of Genetics and Genomics, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Richard J Czosek
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - John L Jefferies
- Division of Adult Cardiovascular Diseases, University of Tennessee Health Science Center, Memphis, TN, United States of America; Pediatric Cardiology, Le Bonheur Children's Hospital, Memphis, TN, United States of America; Pediatric Cardiology, St. Jude Children's Research Hospital, Memphis, TN, United States of America
| | - Jeffrey A Towbin
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States of America; Pediatric Cardiology, Le Bonheur Children's Hospital, Memphis, TN, United States of America; Pediatric Cardiology, St. Jude Children's Research Hospital, Memphis, TN, United States of America
| | - Enkhsaikhan Purevjav
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States of America; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States of America.
| |
Collapse
|
38
|
Guigui SA, Horvath SA, Arenas IA, Mihos CG. Cardiac geometry, function and mechanics in left ventricular non-compaction cardiomyopathy with preserved ejection fraction. J Echocardiogr 2022; 20:144-150. [PMID: 34997537 DOI: 10.1007/s12574-021-00560-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Left ventricular non-compaction (LVNC) cardiomyopathy in adults has primarily been studied with a phenotypic expression of low ejection fraction (EF) and dilated cardiomyopathy; however, data on LVNC with preserved EF is scarce. The present study aimed to evaluate cardiac geometry and mechanics in LVNC patients with preserved EF. METHODS A retrospective cohort study of patients diagnosed with LVNC and a preserved EF between 2008 and 2019 was performed. LVNC was defined according to the presence of established transthoracic 2D echocardiographic (TTE) criteria as follows: (1) prominent LV trabeculations with deep recesses; (2) bi-layered myocardial appearance; and, (3) systolic non-compacted:compacted ratio≥ 2. Subjects were matched 1:1 to controls without LVNC referred for routine TTE. Geometric, functional and mechanics parameters were analyzed in the two cohorts using 2D and speckle-tracking TTE. RESULTS Seventeen patients with LVNC and preserved EF were identified. Compared with controls, patients with LVNC had similar LV systolic function and chamber dimensions, but a larger mass and relative wall thickness, and more abnormal LV geometry (76% vs. 18%, p = 0.002), LA remodeling, and pulmonary hypertension. Global longitudinal strain was significantly decreased (-15.4 ± 3.2 vs. -18.9 ± 2.8%, p = < 0.01) and the prevalence of rigid body rotation was significantly increased (57% vs. 14%, p = 0.05) in the LVNC population. The peak twist values were comparable in both cohorts. CONCLUSIONS Impaired LV geometry and longitudinal mechanics, as well as increased myocardial stiffness as expressed by rigid body rotation, characterize LVNC with preserved EF when compared with controls.
Collapse
Affiliation(s)
- Sarah A Guigui
- Echocardiography Laboratory, Columbia University Division of Cardiology, Mount Sinai Heart Institute, 4300 Alton Road, De Hirsch Meyer Tower Suite 2070, Miami Beach, FL, 33140, USA
| | - Sofia A Horvath
- Echocardiography Laboratory, Columbia University Division of Cardiology, Mount Sinai Heart Institute, 4300 Alton Road, De Hirsch Meyer Tower Suite 2070, Miami Beach, FL, 33140, USA
| | - Ivan A Arenas
- Echocardiography Laboratory, Columbia University Division of Cardiology, Mount Sinai Heart Institute, 4300 Alton Road, De Hirsch Meyer Tower Suite 2070, Miami Beach, FL, 33140, USA
| | - Christos G Mihos
- Echocardiography Laboratory, Columbia University Division of Cardiology, Mount Sinai Heart Institute, 4300 Alton Road, De Hirsch Meyer Tower Suite 2070, Miami Beach, FL, 33140, USA.
| |
Collapse
|
39
|
Mani A, Dubey MK, Ojha V. Hypertrophic cardiomyopathy with associated ventricular non-compaction—double whammy. Indian J Thorac Cardiovasc Surg 2021; 38:350-352. [PMID: 35528996 PMCID: PMC9023638 DOI: 10.1007/s12055-021-01280-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022] Open
|
40
|
Riekerk HCE, Coolen BF, J Strijkers G, van der Wal AC, Petersen SE, Sheppard MN, Oostra RJ, Christoffels VM, Jensen B. Higher spatial resolution improves the interpretation of the extent of ventricular trabeculation. J Anat 2021; 240:357-375. [PMID: 34569075 PMCID: PMC8742974 DOI: 10.1111/joa.13559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
The ventricular walls of the human heart comprise an outer compact layer and an inner trabecular layer. In the context of an increased pre-test probability, diagnosis left ventricular noncompaction cardiomyopathy is given when the left ventricle is excessively trabeculated in volume (trabecular vol >25% of total LV wall volume) or thickness (trabecular/compact (T/C) >2.3). Here, we investigated whether higher spatial resolution affects the detection of trabeculation and thus the assessment of normal and excessively trabeculated wall morphology. First, we screened left ventricles in 1112 post-natal autopsy hearts. We identified five excessively trabeculated hearts and this low prevalence of excessive trabeculation is in agreement with pathology reports but contrasts the prevalence of approximately 10% of the population found by in vivo non-invasive imaging. Using macroscopy, histology and low- and high-resolution MRI, the five excessively trabeculated hearts were compared with six normal hearts and seven abnormally trabeculated and excessive trabeculation-negative hearts. Some abnormally trabeculated hearts could be considered excessively trabeculated macroscopically because of a trabecular outflow or an excessive number of trabeculations, but they were excessive trabeculation-negative when assessed with MRI-based measurements (T/C <2.3 and vol <25%). The number of detected trabeculations and T/C ratio were positively correlated with higher spatial resolution. Using measurements on high resolution MRI and with histological validation, we could not replicate the correlation between trabeculations of the left and right ventricle that has been previously reported. In conclusion, higher spatial resolution may affect the sensitivity of diagnostic measurements and in addition could allow for novel measurements such as counting of trabeculations.
Collapse
Affiliation(s)
- Hanne C E Riekerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Bram F Coolen
- Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Gustav J Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Allard C van der Wal
- Department of Pathology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Steffen E Petersen
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, UK.,Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Mary N Sheppard
- Department of Cardiovascular Pathology, Cardiology Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - Roelof-Jan Oostra
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
41
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gardner RS, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Piepoli MF, Price S, Rosano GMC, Ruschitzka F, Skibelund AK. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
42
|
2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
43
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gardner RS, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Piepoli MF, Price S, Rosano GMC, Ruschitzka F, Skibelund AK. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
44
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gardner RS, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Piepoli MF, Price S, Rosano GMC, Ruschitzka F, Skibelund AK. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
45
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021; 42:3599-3726. [PMID: 34447992 DOI: 10.1093/eurheartj/ehab368] [Citation(s) in RCA: 5737] [Impact Index Per Article: 1912.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
46
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gardner RS, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Piepoli MF, Price S, Rosano GMC, Ruschitzka F, Skibelund AK. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
47
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gardner RS, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Piepoli MF, Price S, Rosano GMC, Ruschitzka F, Skibelund AK. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
48
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gardner RS, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Piepoli MF, Price S, Rosano GMC, Ruschitzka F, Skibelund AK. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
49
|
Srivastava S, Yavari M, Al-Abcha A, Banga S, Abela G. Ventricular non-compaction review. Heart Fail Rev 2021; 27:1063-1076. [PMID: 34232438 DOI: 10.1007/s10741-021-10128-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 11/24/2022]
Abstract
Left ventricular non-compaction cardiomyopathy (LVNC) is a rare and unclassified cardiomyopathy that carries the potential to cause heart failure, arrhythmias, and embolic events within adults. The diagnosis of this cardiomyopathy can be based off a variety of echocardiographic, cardiac magnetic resonance (CMR), and computed tomography (CT) imaging criteria; none of which have been standardized to establish a firm diagnosis. This is further complicated by the observation from prior studies that LVNC may present as different forms of cardiomyopathy, each with its own subset of nuances that may change treatment strategies. Management of such cardiomyopathy has been debated in terms of anticoagulation, electrophysiologic studies to prevent arrhythmia, as well as heart failure prevention. Not enough data exists in regard to establishing firm guidelines for management. The following article aims to provide a comprehensive review in regard to the etiologies, pathogenesis, diagnostic criteria, management, and treatment of LVNC.
Collapse
Affiliation(s)
- Shaurya Srivastava
- Department of Internal Medicine, Michigan State University, East Lansing, USA.
| | - Majid Yavari
- Department of Internal Medicine, Michigan State University, East Lansing, USA
| | - Abdullah Al-Abcha
- Department of Internal Medicine, Michigan State University, East Lansing, USA
| | - Sandeep Banga
- Sparrow Hospital, Transthoracic Cardiovascular Institute, Lansing, USA
| | - George Abela
- Department of Internal Medicine, Michigan State University, East Lansing, USA
| |
Collapse
|
50
|
Mavrogeni SI, Markousis-Mavrogenis G, Vartela V, Manolopoulou D, Abate E, Hamadanchi A, Rigopoulos AG, Kolovou G, Noutsias M. The pivotal role of cardiovascular imaging in the identification and risk stratification of non-compaction cardiomyopathy patients. Heart Fail Rev 2021; 25:1007-1015. [PMID: 31784859 DOI: 10.1007/s10741-019-09898-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-compaction cardiomyopathy (NCM) is a heterogeneous myocardial disease that can finally lead to heart failure, arrhythmias, and/or embolic events. Therefore, early diagnosis and treatment is of paramount importance. Furthermore, genetic assessment and counseling are crucial for individual risk assessment and family planning. Echocardiography is the first-line imaging modality. However, it is hampered by interobserver variability, depends among others on the quality of the acoustic window, cannot assess reliably the right ventricle and the apex, and cannot provide tissue characterization. Cardiovascular magnetic resonance (CMR) provides a 3D approach allowing imaging of the entire heart, including both left and right ventricle, with low operator variability or limitations due to patient's body structure. Furthermore, tissue characterization, using late gadolinium enhancement (LGE), allows the detection of fibrotic areas possibly representing the substrate for potentially lethal arrhythmias, predicts the severity of LV systolic dysfunction, and differentiates apical thrombus from fibrosis. Conversely, besides being associated with high costs, CMR has long acquisition/processing times, lack of expertise among cardiologists/radiologists, and limited availability. Additionally, in cases of respiratory and/or cardiac motion artifacts or arrhythmias, the cine images may be blurred. However, CMR cannot be applied to patients with not CMR-compatible implanted devices and LGE may be not available in patients with severely reduced GFR. Nevertheless, native T1 mapping can provide detailed tissue characterization in such cases. This tremendous potential of CMR makes this modality the ideal tool for better risk stratification of NCM patient, based not only on functional but also on tissue characterization information.
Collapse
Affiliation(s)
- Sophie I Mavrogeni
- Onassis Cardiac Surgery Center, Athens, Greece. .,Department of Cardiology, and National and Kapodistrian University of Athens, Leoforos Andrea Syngrou 356, Kallithea, 17674, Athens, Greece.
| | | | | | | | - Elena Abate
- Mid-German Heart Center, Department of Internal Medicine III (KIM-III), Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120, Halle (Saale), Germany
| | - Ali Hamadanchi
- Department of Internal Medicine I, Division of Cardiology, Pneumology, Angiology and Intensive Medical Care, University Hospital Jena, Friedrich-Schiller-University Jena, Jena, Germany
| | - Angelos G Rigopoulos
- Mid-German Heart Center, Department of Internal Medicine III (KIM-III), Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120, Halle (Saale), Germany
| | | | - Michel Noutsias
- Mid-German Heart Center, Department of Internal Medicine III (KIM-III), Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120, Halle (Saale), Germany
| |
Collapse
|