1
|
Kars ME, Stein D, Stenson PD, Cooper DN, Chung WK, Gruber PJ, Seidman CE, Shen Y, Tristani-Firouzi M, Gelb BD, Itan Y. Deciphering the digenic architecture of congenital heart disease using trio exome sequencing data. Am J Hum Genet 2025; 112:583-598. [PMID: 39983722 PMCID: PMC11947165 DOI: 10.1016/j.ajhg.2025.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 02/23/2025] Open
Abstract
Congenital heart disease (CHD) is the most common congenital anomaly and a leading cause of infant morbidity and mortality. Despite extensive exploration of the monogenic causes of CHD over the last decades, ∼55% of cases still lack a molecular diagnosis. Investigating digenic interactions, the simplest form of oligogenic interactions, using high-throughput sequencing data can elucidate additional genetic factors contributing to the disease. Here, we conducted a comprehensive analysis of digenic interactions in CHD by utilizing a large CHD trio exome sequencing cohort, comprising 3,910 CHD and 3,644 control trios. We extracted pairs of presumably deleterious rare variants observed in CHD-affected and unaffected children but not in a single parent. Burden testing of gene pairs derived from these variant pairs revealed 29 nominally significant gene pairs. These gene pairs showed a significant enrichment for known CHD genes (p < 1.0 × 10-4) and exhibited a shorter average biological distance to known CHD genes than expected by chance (p = 3.0 × 10-4). Utilizing three complementary biological relatedness approaches including network analyses, biological distance calculations, and candidate gene prioritization methods, we prioritized 10 final gene pairs that are likely to underlie CHD. Analysis of bulk RNA-sequencing data showed that these genes are highly expressed in the developing embryonic heart (p < 1 × 10-4). In conclusion, our findings suggest the potential role of digenic interactions in CHD pathogenesis and provide insights into unresolved molecular diagnoses. We suggest that the application of the digenic approach to additional disease cohorts will significantly enhance genetic discovery rates.
Collapse
Affiliation(s)
- Meltem Ece Kars
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David Stein
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter D Stenson
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Peter J Gruber
- Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard University, Boston, MA 02115, USA
| | - Yufeng Shen
- Departments of Systems Biology and Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Martin Tristani-Firouzi
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84113, USA
| | - Bruce D Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Yuval Itan
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
2
|
Maire K, Chamy L, Ghazali S, Carratala-Lasserre M, Zahm M, Bouisset C, Métais A, Combes-Soia L, de la Fuente-Vizuete L, Trad H, Chaubet A, Savignac M, Gonzalez de Peredo A, Subramaniam A, Joffre O, Lutz PG, Lamsoul I. Fine-tuning levels of filamins a and b as a specific mechanism sustaining Th2 lymphocyte functions. Nat Commun 2024; 15:10574. [PMID: 39639023 PMCID: PMC11621393 DOI: 10.1038/s41467-024-53768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
Augmenting the portfolio of therapeutics for type 2-driven diseases is crucial to address unmet clinical needs and to design personalized treatment schemes. An attractive therapy for such diseases would consist in targeting the recruitment of T helper 2 (Th2) lymphocytes to inflammatory sites. Herein, we show the degradation of filamins (FLN) a and b by the ASB2α E3 ubiquitin ligase as a mechanism sustaining Th2 lymphocyte functions. Low levels of FLNa and FLNb confer an elongated shape to Th2 lymphocytes associated with efficient αVβ3 integrin-dependent cell migration. Genes encoding the αVβ3 integrin and ASB2α belong to the core of Th2-specific genes. Using genetically modified mice, we find that increasing the levels of FLNa and FLNb in Th2 lymphocytes reduces airway inflammation through diminished Th2 lymphocyte recruitment in inflamed lungs. Collectively, our results highlight ASB2α and its substrates FLNa and FLNb to alter Th2 lymphocyte-mediated responses.
Collapse
Affiliation(s)
- Kilian Maire
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Léa Chamy
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Samira Ghazali
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | | | - Margot Zahm
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Clément Bouisset
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Arnaud Métais
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lucie Combes-Soia
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Hussein Trad
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Adeline Chaubet
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Magali Savignac
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Anne Gonzalez de Peredo
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Arun Subramaniam
- Sanofi Immunology and Inflammation Research Therapeutic Area, Cambridge, MA, USA
| | - Olivier Joffre
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Pierre G Lutz
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France.
| | - Isabelle Lamsoul
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France.
| |
Collapse
|
3
|
Zhu M, Hwang J, Xu C. Meta-analysis identifies key genes and pathways implicated in Benzo[a]pyrene exposure response. CHEMOSPHERE 2024; 364:143121. [PMID: 39154768 PMCID: PMC11424241 DOI: 10.1016/j.chemosphere.2024.143121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
INTRODUCTION Benzo[a]pyrene (B[a]P) is a carcinogenic polycyclic aromatic hydrocarbon that poses significant risks to human health. B[a]P influences cellular processes via intricate interactions; however, a comprehensive understanding of B[a]P's effects on the transcriptome remains elusive. This study aimed to conduct a comprehensive analysis focused on identifying relevant genes and signaling pathways affected by B[a]P exposure and their impact on human gene expression. METHODS We searched the Gene Expression Omnibus database and identified four studies involving B[a]P exposure in human cells (T lymphocytes, hepatocellular carcinoma cells, and C3A cells). We utilized two approaches for differential expression analysis: the LIMMA package and linear regression. A meta-analysis was utilized to combine log fold changes (FC) and p-values from the identified studies using a random effects model. We identified significant genes at a Bonferroni-adjusted significance level of 0.05 and determined overlapping genes across datasets. Pathway enrichment analysis elucidated key cellular processes modulated by B[a]P exposure. RESULTS The meta-analysis revealed significant upregulation of CYP1B1 (log FC = 1.15, 95% CI: 0.51-1.79, P < 0.05, I2 = 82%) and ASB2 (log FC = 0.44, 95% CI: 0.20-0.67, P < 0.05, I2 = 40%) in response to B[a]P exposure. Pathway analyses identified 26 significantly regulated pathways, with the top including Aryl Hydrocarbon Receptor Signaling (P = 0.00214) and Xenobiotic Metabolism Signaling (P = 0.00550). Key genes CYP1A1, CYP1B1, and CDKN1A were implicated in multiple pathways, highlighting their roles in xenobiotic metabolism, oxidative stress response, and cell cycle regulation. CONCLUSION The results provided insights into the mechanisms of B[a]P toxicity, highlighting CYP1B1's key role in B[a]P bioactivation. The findings underscored the complexity of B[a]P's mechanisms of action and their potential implications for human health. The identified genes and pathways provided a foundation for further exploration and enhanced our understanding of the multifaceted biological activities associated with B[a]P exposure.
Collapse
Affiliation(s)
- Mingze Zhu
- Department of Occupational and Environmental Health, Hudson College of Public Health, University of Oklahoma Health Sciences, Oklahoma City, OK, 73104, USA
| | - Jooyeon Hwang
- Department of Occupational and Environmental Health, Hudson College of Public Health, University of Oklahoma Health Sciences, Oklahoma City, OK, 73104, USA; Department of Environmental & Occupational Health Sciences, School of Public Health, University of Texas Health Science Center, Houston, TX, 77030, USA; Southwest Center for Occupational and Environmental Health, University of Texas Health Science Center, Houston, TX, 77030, USA.
| | - Chao Xu
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
4
|
Li X, Yu X, Yu F, Fu C, Zhao W, Liu X, Dai C, Gao H, Cheng M, Li B. D-pinitol alleviates diabetic cardiomyopathy by inhibiting the optineurin-mediated endoplasmic reticulum stress and glycophagy signaling pathway. Phytother Res 2024; 38:1681-1694. [PMID: 38311336 DOI: 10.1002/ptr.8134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024]
Abstract
Diabetic cardiomyopathy (DCM) is an important complication resulting in heart failure and death of diabetic patients. However, there is no effective drug for treatments. This study investigated the effect of D-pinitol (DP) on cardiac injury using diabetic mice and glycosylation injury of cardiomyocytes and its molecular mechanisms. We established the streptozotocin-induced SAMR1 and SAMP8 mice and DP (150 mg/kg/day) intragastrically and advanced glycation end-products (AGEs)-induced H9C2 cells. H9C2 cells were transfected with optineurin (OPTN) siRNA and overexpression plasmids. The metabolic disorder indices, cardiac dysfunction, histopathology, immunofluorescence, western blot, and immunoprecipitation were investigated. Our results showed that DP reduced the blood glucose and AGEs, and increased the expression of heart OPTN in diabetic mice and H9C2 cells, thereby inhibiting the endoplasmic reticulum stress (GRP78, CHOP) and glycophagy (STBD1, GABARAPL1), and alleviating the myocardial apoptosis and fibrosis of DCM. The expression of filamin A as an interaction protein of OPTN downregulated by AGEs decreased OPTN abundance. Moreover, OPTN siRNA increased the expression of GRP78, CHOP, STBD1, and GABARAPL1 and inhibited the expression of GAA via GSK3β phosphorylation and FoxO1. DP may be helpful to treat the onset of DCM. Targeting OPTN with DP could be translated into clinical application in the fighting against DCM.
Collapse
Affiliation(s)
- Xiaoli Li
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Yu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Fei Yu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Chunli Fu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Wenqian Zhao
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Xiaosong Liu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Chaochao Dai
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Haiqing Gao
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Mei Cheng
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Baoying Li
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Health Management Center (East Area), Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
5
|
Tindula G, Issac B, Mukherjee SK, Ekramullah SM, Arman DM, Islam J, Suchanda HS, Sun L, Rockowitz S, Christiani DC, Warf BC, Mazumdar M. Genome-wide analysis of spina bifida risk variants in a case-control study from Bangladesh. Birth Defects Res 2024; 116:e2331. [PMID: 38526198 PMCID: PMC10963057 DOI: 10.1002/bdr2.2331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Human studies of genetic risk factors for neural tube defects, severe birth defects associated with long-term health consequences in surviving children, have predominantly been restricted to a subset of candidate genes in specific biological pathways including folate metabolism. METHODS In this study, we investigated the association of genetic variants spanning the genome with risk of spina bifida (i.e., myelomeningocele and meningocele) in a subset of families enrolled from December 2016 through December 2022 in a case-control study in Bangladesh, a population often underrepresented in genetic studies. Saliva DNA samples were analyzed using the Illumina Global Screening Array. We performed genetic association analyses to compare allele frequencies between 112 case and 121 control children, 272 mothers, and 128 trios. RESULTS In the transmission disequilibrium test analyses with trios only, we identified three novel exonic spina bifida risk loci, including rs140199800 (SULT1C2, p = 1.9 × 10-7), rs45580033 (ASB2, p = 4.2 × 10-10), and rs75426652 (LHPP, p = 7.2 × 10-14), after adjusting for multiple hypothesis testing. Association analyses comparing cases and controls, as well as models that included their mothers, did not identify genome-wide significant variants. CONCLUSIONS This study identified three novel single nucleotide polymorphisms involved in biological pathways not previously associated with neural tube defects. The study warrants replication in larger groups to validate findings and to inform targeted prevention strategies.
Collapse
Affiliation(s)
- Gwen Tindula
- Department of Neurology, Boston Children’s Hospital, Boston, MA, 02115, United States
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, United States
| | - Biju Issac
- Research Computing, Information Technology, Boston Children’s Hospital, Boston, MA, 02115, United States
| | - Sudipta Kumer Mukherjee
- Department of Paediatric Neurosurgery, National Institute of Neurosciences and Hospital (NINS), Sher-e-Bangla Nagar, Agargoan, Dhaka-1207, Bangladesh
| | - Sheikh Muhammad Ekramullah
- Department of Paediatric Neurosurgery, National Institute of Neurosciences and Hospital (NINS), Sher-e-Bangla Nagar, Agargoan, Dhaka-1207, Bangladesh
| | - DM Arman
- Department of Paediatric Neurosurgery, National Institute of Neurosciences and Hospital (NINS), Sher-e-Bangla Nagar, Agargoan, Dhaka-1207, Bangladesh
| | - Joynul Islam
- Department of Clinical Neurosurgery, National Institute of Neurosciences and Hospital (NINS), Sher-e-Bangla Nagar, Agargoan, Dhaka-1207, Bangladesh
| | - Hafiza Sultana Suchanda
- Pediatric Neurosurgery Research Committee, National Institute of Neurosciences and Hospital (NINS), Sher-e-Bangla Nagar, Agargoan, Dhaka-1207, Bangladesh
| | - Liang Sun
- Research Computing, Information Technology, Boston Children’s Hospital, Boston, MA, 02115, United States
| | - Shira Rockowitz
- Research Computing, Information Technology, Boston Children’s Hospital, Boston, MA, 02115, United States
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, United States
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - David C. Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, United States
| | - Benjamin C. Warf
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, 02115, United States
| | - Maitreyi Mazumdar
- Department of Neurology, Boston Children’s Hospital, Boston, MA, 02115, United States
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, United States
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, United States
| |
Collapse
|
6
|
Zambrano-Carrasco J, Zou J, Wang W, Sun X, Li J, Su H. Emerging Roles of Cullin-RING Ubiquitin Ligases in Cardiac Development. Cells 2024; 13:235. [PMID: 38334627 PMCID: PMC10854628 DOI: 10.3390/cells13030235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Heart development is a spatiotemporally regulated process that extends from the embryonic phase to postnatal stages. Disruption of this highly orchestrated process can lead to congenital heart disease or predispose the heart to cardiomyopathy or heart failure. Consequently, gaining an in-depth understanding of the molecular mechanisms governing cardiac development holds considerable promise for the development of innovative therapies for various cardiac ailments. While significant progress in uncovering novel transcriptional and epigenetic regulators of heart development has been made, the exploration of post-translational mechanisms that influence this process has lagged. Culling-RING E3 ubiquitin ligases (CRLs), the largest family of ubiquitin ligases, control the ubiquitination and degradation of ~20% of intracellular proteins. Emerging evidence has uncovered the critical roles of CRLs in the regulation of a wide range of cellular, physiological, and pathological processes. In this review, we summarize current findings on the versatile regulation of cardiac morphogenesis and maturation by CRLs and present future perspectives to advance our comprehensive understanding of how CRLs govern cardiac developmental processes.
Collapse
Affiliation(s)
- Josue Zambrano-Carrasco
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (J.Z.-C.); (J.Z.)
| | - Jianqiu Zou
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (J.Z.-C.); (J.Z.)
| | - Wenjuan Wang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (J.Z.-C.); (J.Z.)
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Jie Li
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (J.Z.-C.); (J.Z.)
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (J.Z.-C.); (J.Z.)
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
7
|
Bernheim S, Borgel A, Le Garrec JF, Perthame E, Desgrange A, Michel C, Guillemot L, Sart S, Baroud CN, Krezel W, Raimondi F, Bonnet D, Zaffran S, Houyel L, Meilhac SM. Identification of Greb1l as a genetic determinant of crisscross heart in mice showing torsion of the heart tube by shortage of progenitor cells. Dev Cell 2023; 58:2217-2234.e8. [PMID: 37852253 DOI: 10.1016/j.devcel.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/28/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
Despite their burden, most congenital defects remain poorly understood, due to lack of knowledge of embryological mechanisms. Here, we identify Greb1l mutants as a mouse model of crisscross heart. Based on 3D quantifications of shape changes, we demonstrate that torsion of the atrioventricular canal occurs together with supero-inferior ventricles at E10.5, after heart looping. Mutants phenocopy partial deficiency in retinoic acid signaling, which reflect overlapping pathways in cardiac precursors. Spatiotemporal gene mapping and cross-correlated transcriptomic analyses further reveal the role of Greb1l in maintaining a pool of dorsal pericardial wall precursor cells during heart tube elongation, likely by controlling ribosome biogenesis and cell differentiation. Consequently, we observe growth arrest and malposition of the outflow tract, which are predictive of abnormal tube remodeling in mutants. Our work on a rare cardiac malformation opens novel perspectives on the origin of a broader spectrum of congenital defects associated with GREB1L in humans.
Collapse
Affiliation(s)
- Ségolène Bernheim
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France
| | - Adrien Borgel
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France
| | - Jean-François Le Garrec
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France
| | - Emeline Perthame
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France; Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015 Paris, France
| | - Audrey Desgrange
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France
| | - Cindy Michel
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France
| | - Laurent Guillemot
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France
| | - Sébastien Sart
- Institut Pasteur, Université Paris Cité, Physical Microfluidics and Bio-Engineering, Department of Genomes and Genetics, 75015 Paris, France
| | - Charles N Baroud
- Institut Pasteur, Université Paris Cité, Physical Microfluidics and Bio-Engineering, Department of Genomes and Genetics, 75015 Paris, France; Laboratoire d'Hydrodynamique, CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut de la Santé et de la Recherche Médicale (U1258), Centre National de la Recherche Scientifique (UMR7104), Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, 67404 Illkirch, France
| | - Francesca Raimondi
- Pediatric Radiology Unit, Hôpital universitaire Necker-Enfants Malades, APHP, Université Paris Cité, 149 Rue de Sèvres, 75015 Paris, France; M3C-Necker, Hôpital universitaire Necker-Enfants Malades, APHP, Université Paris Cité, 149 Rue de Sèvres, 75015 Paris, France
| | - Damien Bonnet
- M3C-Necker, Hôpital universitaire Necker-Enfants Malades, APHP, Université Paris Cité, 149 Rue de Sèvres, 75015 Paris, France
| | | | - Lucile Houyel
- M3C-Necker, Hôpital universitaire Necker-Enfants Malades, APHP, Université Paris Cité, 149 Rue de Sèvres, 75015 Paris, France
| | - Sigolène M Meilhac
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France.
| |
Collapse
|
8
|
Liu H, Wang L, Xu H, Tan B, Yi Q, Deng H, Chen Y, He B, Tian J, Zhu J. Quantitative proteomic and phosphoproteomic analysis reveal the relationship between mitochondrial dysfunction and cytoskeletal remodeling in hiPSC-CMs deficient in PINK1. J Transl Med 2023; 21:581. [PMID: 37649075 PMCID: PMC10466879 DOI: 10.1186/s12967-023-04467-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are seed cells that can be used for alternative treatment of myocardial damage. However, their immaturity limits their clinical application. Mitochondrial development accompanies cardiomyocyte maturation, and PINK1 plays an important role in the regulation of mitochondrial quality. However, the role and mechanism of PINK1 in cardiomyocyte development remain unclear. METHODS We used proteomic and phosphoproteomic to identify protein and phosphosite changes in hiPSC-CMs deficient in PINK1. Bioinformatics analysis was performed to identify the potential biological functions and regulatory mechanisms of these differentially expressed proteins and validate potential downstream mechanisms. RESULTS Deletion of PINK1 resulted in mitochondrial structural breakdown and dysfunction, accompanied by disordered myofibrils arrangement. hiPSC-CMs deficient in PINK1 exhibited significantly decreased expression of mitochondrial ATP synthesis proteins and inhibition of the oxidative phosphorylation pathway. In contrast, the expression of proteins related to cardiac pathology was increased, and the phosphoproteins involved in cytoskeleton construction were significantly altered. Mechanistically, PINK1 deletion damaged the mitochondrial cristae of hiPSC-CMs and reduced the efficiency of mitochondrial respiratory chain assembly. CONCLUSION The significantly differentially expressed proteins identified in this study highlight the important role of PINK1 in regulating mitochondrial quality in hiPSC-CMs. PINK1-mediated mitochondrial respiratory chain assembly is the basis for mitochondrial function. Whereas the cytoskeleton may be adaptively altered in response to mitochondrial dysfunction caused by PINK1 deletion, inadequate energy supply hinders myocardial development. These findings facilitate the exploration of the mechanism of PINK1 in cardiomyocyte development and guide efforts to promote the maturation of hiPSC-CMs.
Collapse
Affiliation(s)
- Huiwen Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Li Wang
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Xu
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Tan
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Yi
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hongrong Deng
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yunxia Chen
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bolin He
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Blood Transfusion, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Tian
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Cardiovascular (Internal Medicine), Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Zhu
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
9
|
Perez-Bermejo JA, Judge LM, Jensen CL, Wu K, Watry HL, Truong A, Ho JJ, Carter M, Runyon WV, Kaake RM, Pulido EH, Mandegar MA, Swaney DL, So PL, Krogan NJ, Conklin BR. Functional analysis of a common BAG3 allele associated with protection from heart failure. NATURE CARDIOVASCULAR RESEARCH 2023; 2:615-628. [PMID: 39195919 DOI: 10.1038/s44161-023-00288-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 05/18/2023] [Indexed: 08/29/2024]
Abstract
Multiple genetic association studies have correlated a common allelic block linked to the BAG3 gene with a decreased incidence of heart failure, but the molecular mechanism remains elusive. In this study, we used induced pluripotent stem cells to test if the only coding variant in this allele block, BAG3C151R, alters protein and cellular function in human cardiomyocytes. Quantitative protein interaction analysis identified changes in BAG3C151R protein partners specific to cardiomyocytes. Knockdown of genes encoding for BAG3-interacting factors in cardiomyocytes followed by myofibrillar analysis revealed that BAG3C151R associates more strongly with proteins involved in the maintenance of myofibrillar integrity. Finally, we demonstrate that cardiomyocytes expressing the BAG3C151R variant have improved response to proteotoxic stress in a dose-dependent manner. This study suggests that BAG3C151R could be responsible for the cardioprotective effect of the haplotype block, by increasing cardiomyocyte protection from stress. Preferential binding partners of BAG3C151R may reveal potential targets for cardioprotective therapies.
Collapse
Affiliation(s)
| | - Luke M Judge
- Gladstone Institutes, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Kenneth Wu
- Gladstone Institutes, San Francisco, CA, USA
| | | | | | - Jaclyn J Ho
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | | | - Robyn M Kaake
- Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Danielle L Swaney
- Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Po-Lin So
- Gladstone Institutes, San Francisco, CA, USA
| | - Nevan J Krogan
- Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce R Conklin
- Gladstone Institutes, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Innovative Genomics Institute, Berkeley, CA, USA.
| |
Collapse
|
10
|
Roles of Cullin-RING Ubiquitin Ligases in Cardiovascular Diseases. Biomolecules 2022; 12:biom12030416. [PMID: 35327608 PMCID: PMC8946067 DOI: 10.3390/biom12030416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/18/2022] Open
Abstract
Maintenance of protein homeostasis is crucial for virtually every aspect of eukaryotic biology. The ubiquitin-proteasome system (UPS) represents a highly regulated quality control machinery that protects cells from a variety of stress conditions as well as toxic proteins. A large body of evidence has shown that UPS dysfunction contributes to the pathogenesis of cardiovascular diseases. This review highlights the latest findings regarding the physiological and pathological roles of cullin-RING ubiquitin ligases (CRLs), an essential player in the UPS, in the cardiovascular system. To inspire potential therapeutic invention, factors regulating CRL activities are also discussed.
Collapse
|
11
|
Palmquist-Gomes P, Meilhac SM. Shaping the mouse heart tube from the second heart field epithelium. Curr Opin Genet Dev 2022; 73:101896. [PMID: 35026527 DOI: 10.1016/j.gde.2021.101896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/03/2022]
Abstract
As other tubular organs, the embryonic heart develops from an epithelial sheet of cells, referred to as the heart field. The second heart field, which lies in the dorsal pericardial wall, constitutes a transient cell reservoir, integrating patterning and polarity cues. Conditional mutants have shown that impairment of the epithelial architecture of the second heart field is associated with congenital heart defects. Here, taking the mouse as a model, we review the epithelial properties of the second heart field and how they are modulated upon cardiomyocyte differentiation. Compared to other cases of tubulogenesis, the cellular dynamics in the second heart field are only beginning to be revealed. A challenge for the future will be to unravel key physical forces driving heart tube morphogenesis.
Collapse
Affiliation(s)
- Paul Palmquist-Gomes
- Université de Paris, Imagine- Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, Paris, F-75015, France
| | - Sigolène M Meilhac
- Université de Paris, Imagine- Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, Paris, F-75015, France.
| |
Collapse
|
12
|
Lee JG, Kim G, Park SG, Yon JM, Yeom J, Song HE, Cheong SA, Lim JS, Sung YH, Kim K, Yoo HJ, Hong EJ, Nam KH, Seong JK, Kim CJ, Nam SY, Baek IJ. Lipid signatures reflect the function of the murine primary placentation. Biol Reprod 2021; 106:583-596. [PMID: 34850819 DOI: 10.1093/biolre/ioab219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/02/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
The placenta regulates maternal-fetal communication, and its defect leads to significant pregnancy complications. The maternal and embryonic circulations are primitively connected in early placentation, but the function of the placenta during this developmentally essential period is relatively unknown. We thus performed a comparative proteomic analysis of the placenta before and after primary placentation and found that the metabolism and transport of lipids were characteristically activated in this period. The placental fatty acid (FA) carriers in specific placental compartments were upregulated according to gestational age, and metabolomic analysis also showed that the placental transport of FAs increased in a time-dependent manner. Further analysis of two mutant mice models with embryonic lethality revealed that lipid-related signatures could reflect the functional state of the placenta. Our findings highlight the importance of the nutrient transport function of the primary placenta in the early gestational period and the role of lipids in embryonic development.
Collapse
Affiliation(s)
- Jong Geol Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Korea Mouse Phenotyping Center, Seoul, Republic of Korea
| | - Globinna Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seul Gi Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea.,Biomedical Mouse Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongwon-Gun, Republic of Korea
| | - Jung-Min Yon
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeonghun Yeom
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ha Eun Song
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung-A Cheong
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Korea Mouse Phenotyping Center, Seoul, Republic of Korea
| | - Joon Seo Lim
- Clinical Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young Hoon Sung
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyunggon Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyun Ju Yoo
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Korea Mouse Phenotyping Center, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ki-Hoan Nam
- Korea Mouse Phenotyping Center, Seoul, Republic of Korea.,Biomedical Mouse Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongwon-Gun, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul, Republic of Korea.,College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Chong Jai Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Yoon Nam
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - In-Jeoung Baek
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Korea Mouse Phenotyping Center, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
13
|
Min KD, Asakura M, Shirai M, Yamazaki S, Ito S, Fu HY, Asanuma H, Asano Y, Minamino T, Takashima S, Kitakaze M. ASB2 is a novel E3 ligase of SMAD9 required for cardiogenesis. Sci Rep 2021; 11:23056. [PMID: 34845242 PMCID: PMC8630118 DOI: 10.1038/s41598-021-02390-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022] Open
Abstract
Cardiogenesis requires the orchestrated spatiotemporal tuning of BMP signalling upon the balance between induction and counter-acting suppression of the differentiation of the cardiac tissue. SMADs are key intracellular transducers and the selective degradation of SMADs by the ubiquitin-proteasome system is pivotal in the spatiotemporal tuning of BMP signalling. However, among three SMADs for BMP signalling, SMAD1/5/9, only the specific E3 ligase of SMAD9 remains poorly investigated. Here, we report for the first time that SMAD9, but not the other SMADs, is ubiquitylated by the E3 ligase ASB2 and targeted for proteasomal degradation. ASB2, as well as Smad9, is conserved among vertebrates. ASB2 expression was specific to the cardiac region from the very early stage of cardiac differentiation in embryogenesis of mouse. Knockdown of Asb2 in zebrafish resulted in a thinned ventricular wall and dilated ventricle, which were rescued by simultaneous knockdown of Smad9. Abundant Smad9 protein leads to dysregulated cardiac differentiation through a mechanism involving Tbx2, and the BMP signal conducted by Smad9 was downregulated under quantitative suppression of Smad9 by Asb2. Our findings demonstrate that ASB2 is the E3 ligase of SMAD9 and plays a pivotal role in cardiogenesis through regulating BMP signalling.
Collapse
Affiliation(s)
- Kyung-Duk Min
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibe- Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Masanori Asakura
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibe- Shimmachi, Suita, Osaka, 564-8565, Japan
- Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - Manabu Shirai
- Department of Bioscience, National Cerebral and Cardiovascular Center, Osaka, Japan
- Omics Research Center, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Satoru Yamazaki
- Department of Cell Biology, National Cerebral and Cardiovascular Center, Osaka, Japan
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Shin Ito
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibe- Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Hai Ying Fu
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibe- Shimmachi, Suita, Osaka, 564-8565, Japan
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hiroshi Asanuma
- Department of Internal Medicine, Meiji University of Integrative Medicine, Kyoto, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tetsuo Minamino
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masafumi Kitakaze
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibe- Shimmachi, Suita, Osaka, 564-8565, Japan.
- Hanwa Daini Senboku Hospital, Sakai, Osaka, Japan.
| |
Collapse
|
14
|
BCL11A promotes myeloid leukemogenesis by repressing PU.1 target genes. Blood Adv 2021; 6:1827-1843. [PMID: 34714913 PMCID: PMC8941473 DOI: 10.1182/bloodadvances.2021004558] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022] Open
Abstract
BCL11A promotes myeloid leukemogenesis via the repression of PU.1 target genes. Inhibition of corepressors abrogates the BCL11A function, inducing growth suppression and inhibition of engraftment in AML.
The transcriptional repressor BCL11A is involved in hematological malignancies, B-cell development, and fetal-to-adult hemoglobin switching. However, the molecular mechanism by which it promotes the development of myeloid leukemia remains largely unknown. We find that Bcl11a cooperates with the pseudokinase Trib1 in the development of acute myeloid leukemia (AML). Bcl11a promotes the proliferation and engraftment of Trib1-expressing AML cells in vitro and in vivo. Chromatin immunoprecipitation sequencing analysis showed that, upon DNA binding, Bcl11a is significantly associated with PU.1, an inducer of myeloid differentiation, and that Bcl11a represses several PU.1 target genes, such as Asb2, Clec5a, and Fcgr3. Asb2, as a Bcl11a target gene that modulates cytoskeleton and cell-cell interaction, plays a key role in Bcl11a-induced malignant progression. The repression of PU.1 target genes by Bcl11a is achieved by sequence-specific DNA-binding activity and recruitment of corepressors by Bcl11a. Suppression of the corepressor components HDAC and LSD1 reverses the repressive activity. Moreover, treatment of AML cells with the HDAC inhibitor pracinostat and the LSD1 inhibitor GSK2879552 resulted in growth inhibition in vitro and in vivo. High BCL11A expression is associated with worse prognosis in humans with AML. Blocking of BCL11A expression upregulates the expression of PU.1 target genes and inhibits the growth of HL-60 cells and their engraftment to the bone marrow, suggesting that BCL11A is involved in human myeloid malignancies via the suppression of PU.1 transcriptional activity.
Collapse
|
15
|
Bandaru S, Ala C, Zhou AX, Akyürek LM. Filamin A Regulates Cardiovascular Remodeling. Int J Mol Sci 2021; 22:ijms22126555. [PMID: 34207234 PMCID: PMC8235345 DOI: 10.3390/ijms22126555] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 01/25/2023] Open
Abstract
Filamin A (FLNA) is a large actin-binding cytoskeletal protein that is important for cell motility by stabilizing actin networks and integrating them with cell membranes. Interestingly, a C-terminal fragment of FLNA can be cleaved off by calpain to stimulate adaptive angiogenesis by transporting multiple transcription factors into the nucleus. Recently, increasing evidence suggests that FLNA participates in the pathogenesis of cardiovascular and respiratory diseases, in which the interaction of FLNA with transcription factors and/or cell signaling molecules dictate the function of vascular cells. Localized FLNA mutations associate with cardiovascular malformations in humans. A lack of FLNA in experimental animal models disrupts cell migration during embryogenesis and causes anomalies, including heart and vessels, similar to human malformations. More recently, it was shown that FLNA mediates the progression of myocardial infarction and atherosclerosis. Thus, these latest findings identify FLNA as an important novel mediator of cardiovascular development and remodeling, and thus a potential target for therapy. In this update, we summarized the literature on filamin biology with regard to cardiovascular cell function.
Collapse
Affiliation(s)
- Sashidar Bandaru
- Division of Clinical Pathology, Sahlgrenska Academy Hospital, 413 45 Gothenburg, Sweden;
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (C.A.); (A.-X.Z.)
| | - Chandu Ala
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (C.A.); (A.-X.Z.)
| | - Alex-Xianghua Zhou
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (C.A.); (A.-X.Z.)
| | - Levent M. Akyürek
- Division of Clinical Pathology, Sahlgrenska Academy Hospital, 413 45 Gothenburg, Sweden;
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (C.A.); (A.-X.Z.)
- Correspondence:
| |
Collapse
|
16
|
Liu M, Xu Z, Zhang C, Yang C, Feng J, Lu Y, Zhang W, Chen W, Xu X, Sun X, Yang M, Liu W, Zhou T, Yang Y. NudC L279P Mutation Destabilizes Filamin A by Inhibiting the Hsp90 Chaperoning Pathway and Suppresses Cell Migration. Front Cell Dev Biol 2021; 9:671233. [PMID: 34262899 PMCID: PMC8273881 DOI: 10.3389/fcell.2021.671233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/31/2021] [Indexed: 11/29/2022] Open
Abstract
Filamin A, the first discovered non-muscle actin filament cross-linking protein, plays a crucial role in regulating cell migration that participates in diverse cellular and developmental processes. However, the regulatory mechanism of filamin A stability remains unclear. Here, we find that nuclear distribution gene C (NudC), a cochaperone of heat shock protein 90 (Hsp90), is required to stabilize filamin A in mammalian cells. Immunoprecipitation-mass spectrometry and western blotting analyses reveal that NudC interacts with filamin A. Overexpression of human NudC-L279P (an evolutionarily conserved mutation in NudC that impairs its chaperone activity) not only decreases the protein level of filamin A but also results in actin disorganization and the suppression of cell migration. Ectopic expression of filamin A is able to reverse these defects induced by the overexpression of NudC-L279P. Furthermore, Hsp90 forms a complex with filamin A. The inhibition of Hsp90 ATPase activity by either geldanamycin or radicicol decreases the protein stability of filamin A. In addition, ectopic expression of Hsp90 efficiently restores NudC-L279P overexpression-induced protein stability and functional defects of filamin A. Taken together, these data suggest NudC L279P mutation destabilizes filamin A by inhibiting the Hsp90 chaperoning pathway and suppresses cell migration.
Collapse
Affiliation(s)
- Min Liu
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhangqi Xu
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Zhang
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunxia Yang
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaxing Feng
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqing Lu
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Zhang
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenwen Chen
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyang Xu
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxia Sun
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingyang Yang
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Liu
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianhua Zhou
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Cancer Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Yuehong Yang
- Department of Cell Biology, and Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Park SG, Kim EK, Nam KH, Lee JG, Baek IJ, Lee BJ, Nam SY. Heart defects and embryonic lethality in Asb2 knock out mice correlate with placental defects. Cells Dev 2021; 165:203663. [PMID: 33993984 DOI: 10.1016/j.cdev.2021.203663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/03/2021] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
Asb2, ankyrin repeat, and SOCS box protein 2 form an E3 ubiquitin ligase complex. Asb2 ubiquitin ligase activity drives the degradation of filamins, which have essential functions in humans. The placenta is a temporary organ that forms during pregnancy, and normal placentation is important for survival and growth of the fetus. Recent studies have shown that approximately 25-30% of knockout (KO) mice have non-viable offspring, and 68% of knockout lines exhibit placental dysmorphologies. There are very few studies on Asb2, with insufficient research on its role in placental development. Therefore, we generated Asb2 knockout mice and undertook to investigate Asb2 expression during organogenesis, and to identify its role in early embryonic and placental development. The external morphology of KO embryos revealed abnormal phenotypes including growth retardation, pericardial effusion, pale color, and especially heart beat defect from E 9.5. Furthermore, Asb2 expression was observed in the heart from E 9.5, indicating that it is specifically expressed during early heart formation, resulting in embryonic lethality. Histological analysis of E 10.5 KO heart showed malformations such as failure of chamber formation, reduction in trabeculated myocardium length, absence of mesenchymal cells, and destruction of myocardium wall. Moreover, the histological results of Asb2-deficient placenta showed abnormal phenotypes including small labyrinth and reduced vascular complexity, indicating that failure to establish mature circulatory pattern affects the embryonic development and results in early mortality. Collectively, our results demonstrate that Asb2 knockout mice have placental defects, that subsequently result in failure to form a normal cardiac septum, and thereby result in embryo mortality in utero at around E 9.5.
Collapse
Affiliation(s)
- Seul Gi Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Eun-Kyoung Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 34141, Republic of Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 34141, Republic of Korea
| | - Jong Geol Lee
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - In-Jeoung Baek
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Beom Jun Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Sang-Yoon Nam
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
18
|
Goodman CA, Davey JR, Hagg A, Parker BL, Gregorevic P. Dynamic Changes to the Skeletal Muscle Proteome and Ubiquitinome Induced by the E3 Ligase, ASB2β. Mol Cell Proteomics 2021; 20:100050. [PMID: 33516941 PMCID: PMC8042406 DOI: 10.1016/j.mcpro.2021.100050] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
Ubiquitination is a posttranslational protein modification that has been shown to have a range of effects, including regulation of protein function, interaction, localization, and degradation. We have previously shown that the muscle-specific ubiquitin E3 ligase, ASB2β, is downregulated in models of muscle growth and that overexpression ASB2β is sufficient to induce muscle atrophy. To gain insight into the effects of increased ASB2β expression on skeletal muscle mass and function, we used liquid chromatography coupled to tandem mass spectrometry to investigate ASB2β-mediated changes to the skeletal muscle proteome and ubiquitinome, via a parallel analysis of remnant diGly-modified peptides. The results show that viral vector-mediated ASB2β overexpression in murine muscles causes progressive muscle atrophy and impairment of force-producing capacity, while ASB2β knockdown induces mild muscle hypertrophy. ASB2β-induced muscle atrophy and dysfunction were associated with the early downregulation of mitochondrial and contractile protein abundance and the upregulation of proteins involved in proteasome-mediated protein degradation (including other E3 ligases), protein synthesis, and the cytoskeleton/sarcomere. The overexpression ASB2β also resulted in marked changes in protein ubiquitination; however, there was no simple relationship between changes in ubiquitination status and protein abundance. To investigate proteins that interact with ASB2β and, therefore, potential ASB2β targets, Flag-tagged wild-type ASB2β, and a mutant ASB2β lacking the C-terminal SOCS box domain (dSOCS) were immunoprecipitated from C2C12 myotubes and subjected to label-free proteomic analysis to determine the ASB2β interactome. ASB2β was found to interact with a range of cytoskeletal and nuclear proteins. When combined with the in vivo ubiquitinomic data, our studies have identified novel putative ASB2β target substrates that warrant further investigation. These findings provide novel insight into the complexity of proteome and ubiquitinome changes that occur during E3 ligase-mediated skeletal muscle atrophy and dysfunction.
Collapse
Affiliation(s)
- Craig A Goodman
- Department of Physiology, Centre for Muscle Research (CMR), The University of Melbourne, Victoria, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Sunshine Hospital, The University of Melbourne, St Albans, Victoria, Australia
| | - Jonathan R Davey
- Department of Physiology, Centre for Muscle Research (CMR), The University of Melbourne, Victoria, Australia; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Adam Hagg
- Department of Physiology, Centre for Muscle Research (CMR), The University of Melbourne, Victoria, Australia; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Benjamin L Parker
- Department of Physiology, Centre for Muscle Research (CMR), The University of Melbourne, Victoria, Australia; Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney, NSW, Australia.
| | - Paul Gregorevic
- Department of Physiology, Centre for Muscle Research (CMR), The University of Melbourne, Victoria, Australia; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; Department of Neurology, The University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
19
|
Lamsoul I, Dupré L, Lutz PG. Molecular Tuning of Filamin A Activities in the Context of Adhesion and Migration. Front Cell Dev Biol 2020; 8:591323. [PMID: 33330471 PMCID: PMC7714767 DOI: 10.3389/fcell.2020.591323] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/05/2020] [Indexed: 01/08/2023] Open
Abstract
The dynamic organization of actin cytoskeleton meshworks relies on multiple actin-binding proteins endowed with distinct actin-remodeling activities. Filamin A is a large multi-domain scaffolding protein that cross-links actin filaments with orthogonal orientation in response to various stimuli. As such it plays key roles in the modulation of cell shape, cell motility, and differentiation throughout development and adult life. The essentiality and complexity of Filamin A is highlighted by mutations that lead to a variety of severe human disorders affecting multiple organs. One of the most conserved activity of Filamin A is to bridge the actin cytoskeleton to integrins, thereby maintaining the later in an inactive state. We here review the numerous mechanisms cells have developed to adjust Filamin A content and activity and focus on the function of Filamin A as a gatekeeper to integrin activation and associated adhesion and motility.
Collapse
Affiliation(s)
- Isabelle Lamsoul
- Centre de Physiopathologie de Toulouse Purpan, INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Loïc Dupré
- Centre de Physiopathologie de Toulouse Purpan, INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Pierre G Lutz
- Centre de Physiopathologie de Toulouse Purpan, INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| |
Collapse
|
20
|
Li J, Zou J, Littlejohn R, Liu J, Su H. Neddylation, an Emerging Mechanism Regulating Cardiac Development and Function. Front Physiol 2020; 11:612927. [PMID: 33391028 PMCID: PMC7773599 DOI: 10.3389/fphys.2020.612927] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Defects in protein quality control have been increasingly recognized as pathogenic factors in the development of heart failure, a persistent devastating disease lacking efficacious therapies. Ubiquitin and ubiquitin-like proteins, a family of post-translational modifying polypeptides, play important roles in controlling protein quality by maintaining the stability and functional diversity of the proteome. NEDD8 (neural precursor cell expressed, developmentally downregulated 8), a small ubiquitin-like protein, was discovered two decades ago but until recently the biological significance of NEDD8 modifications (neddylation) in the heart has not been appreciated. In this review, we summarize the current knowledge of the biology of neddylation, highlighting several mechanisms by which neddylation regulates the function of its downstream targets, and discuss the expanding roles for neddylation in cardiac physiology and disease, with an emphasis on cardiac protein quality control. Finally, we outline challenges linked to the study of neddylation in health and disease.
Collapse
Affiliation(s)
- Jie Li
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jianqiu Zou
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Rodney Littlejohn
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jinbao Liu
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
21
|
Blondelle J, Biju A, Lange S. The Role of Cullin-RING Ligases in Striated Muscle Development, Function, and Disease. Int J Mol Sci 2020; 21:E7936. [PMID: 33114658 PMCID: PMC7672578 DOI: 10.3390/ijms21217936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
The well-orchestrated turnover of proteins in cross-striated muscles is one of the fundamental processes required for muscle cell function and survival. Dysfunction of the intricate protein degradation machinery is often associated with development of cardiac and skeletal muscle myopathies. Most muscle proteins are degraded by the ubiquitin-proteasome system (UPS). The UPS involves a number of enzymes, including E3-ligases, which tightly control which protein substrates are marked for degradation by the proteasome. Recent data reveal that E3-ligases of the cullin family play more diverse and crucial roles in cross striated muscles than previously anticipated. This review highlights some of the findings on the multifaceted functions of cullin-RING E3-ligases, their substrate adapters, muscle protein substrates, and regulatory proteins, such as the Cop9 signalosome, for the development of cross striated muscles, and their roles in the etiology of myopathies.
Collapse
Affiliation(s)
- Jordan Blondelle
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Andrea Biju
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Stephan Lange
- Department of Medicine, University of California, La Jolla, CA 92093, USA
- Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| |
Collapse
|
22
|
Under construction: The dynamic assembly, maintenance, and degradation of the cardiac sarcomere. J Mol Cell Cardiol 2020; 148:89-102. [PMID: 32920010 DOI: 10.1016/j.yjmcc.2020.08.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/11/2022]
Abstract
The sarcomere is the basic contractile unit of striated muscle and is a highly ordered protein complex with the actin and myosin filaments at its core. Assembling the sarcomere constituents into this organized structure in development, and with muscle growth as new sarcomeres are built, is a complex process coordinated by numerous factors. Once assembled, the sarcomere requires constant maintenance as its continuous contraction is accompanied by elevated mechanical, thermal, and oxidative stress, which predispose proteins to misfolding and toxic aggregation. To prevent protein misfolding and maintain sarcomere integrity, the sarcomere is monitored by an assortment of protein quality control (PQC) mechanisms. The need for effective PQC is heightened in cardiomyocytes which are terminally differentiated and must survive for many years while preserving optimal mechanical output. To prevent toxic protein aggregation, molecular chaperones stabilize denatured sarcomere proteins and promote their refolding. However, when old and misfolded proteins cannot be salvaged by chaperones, they must be recycled via degradation pathways: the calpain and ubiquitin-proteasome systems, which operate under basal conditions, and the stress-responsive autophagy-lysosome pathway. Mutations to and deficiency of the molecular chaperones and associated factors charged with sarcomere maintenance commonly lead to sarcomere structural disarray and the progression of heart disease, highlighting the necessity of effective sarcomere PQC for maintaining cardiac function. This review focuses on the dynamic regulation of assembly and turnover at the sarcomere with an emphasis on the chaperones involved in these processes and describes the alterations to chaperones - through mutations and deficient expression - implicated in disease progression to heart failure.
Collapse
|
23
|
Reimann L, Schwäble AN, Fricke AL, Mühlhäuser WWD, Leber Y, Lohanadan K, Puchinger MG, Schäuble S, Faessler E, Wiese H, Reichenbach C, Knapp B, Peikert CD, Drepper F, Hahn U, Kreutz C, van der Ven PFM, Radziwill G, Djinović-Carugo K, Fürst DO, Warscheid B. Phosphoproteomics identifies dual-site phosphorylation in an extended basophilic motif regulating FILIP1-mediated degradation of filamin-C. Commun Biol 2020; 3:253. [PMID: 32444788 PMCID: PMC7244511 DOI: 10.1038/s42003-020-0982-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/01/2020] [Indexed: 01/10/2023] Open
Abstract
The PI3K/Akt pathway promotes skeletal muscle growth and myogenic differentiation. Although its importance in skeletal muscle biology is well documented, many of its substrates remain to be identified. We here studied PI3K/Akt signaling in contracting skeletal muscle cells by quantitative phosphoproteomics. We identified the extended basophilic phosphosite motif RxRxxp[S/T]xxp[S/T] in various proteins including filamin-C (FLNc). Importantly, this extended motif, located in a unique insert in Ig-like domain 20 of FLNc, is doubly phosphorylated. The protein kinases responsible for this dual-site phosphorylation are Akt and PKCα. Proximity proteomics and interaction analysis identified filamin A-interacting protein 1 (FILIP1) as direct FLNc binding partner. FILIP1 binding induces filamin degradation, thereby negatively regulating its function. Here, dual-site phosphorylation of FLNc not only reduces FILIP1 binding, providing a mechanism to shield FLNc from FILIP1-mediated degradation, but also enables fast dynamics of FLNc necessary for its function as signaling adaptor in cross-striated muscle cells.
Collapse
Affiliation(s)
- Lena Reimann
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Anja N Schwäble
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Anna L Fricke
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Wignand W D Mühlhäuser
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Yvonne Leber
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121, Bonn, Germany
| | - Keerthika Lohanadan
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121, Bonn, Germany
| | - Martin G Puchinger
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, A-1030, Vienna, Austria
| | - Sascha Schäuble
- Jena University Language & Information Engineering (JULIE) Lab, Friedrich-Schiller-University Jena, 07743, Jena, Germany
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Erik Faessler
- Jena University Language & Information Engineering (JULIE) Lab, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Heike Wiese
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Institute of Pharmacology and Toxicology, University of Ulm, 89081, Ulm, Germany
| | - Christa Reichenbach
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Bettina Knapp
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Christian D Peikert
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Bioinformatics Research & Development, BioNTech SE, 55131, Mainz, Germany
| | - Friedel Drepper
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Udo Hahn
- Jena University Language & Information Engineering (JULIE) Lab, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Clemens Kreutz
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Peter F M van der Ven
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121, Bonn, Germany
| | - Gerald Radziwill
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Kristina Djinović-Carugo
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, A-1030, Vienna, Austria
| | - Dieter O Fürst
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121, Bonn, Germany
| | - Bettina Warscheid
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
24
|
Yamak A, Hu D, Mittal N, Buikema JW, Ditta S, Lutz PG, Moog-Lutz C, Ellinor PT, Domian IJ. Loss of Asb2 Impairs Cardiomyocyte Differentiation and Leads to Congenital Double Outlet Right Ventricle. iScience 2020; 23:100959. [PMID: 32179481 PMCID: PMC7078385 DOI: 10.1016/j.isci.2020.100959] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/17/2019] [Accepted: 02/26/2020] [Indexed: 11/21/2022] Open
Abstract
Defining the pathways that control cardiac development facilitates understanding the pathogenesis of congenital heart disease. Herein, we identify enrichment of a Cullin5 Ub ligase key subunit, Asb2, in myocardial progenitors and differentiated cardiomyocytes. Using two conditional murine knockouts, Nkx+/Cre.Asb2fl/fl and AHF-Cre.Asb2fl/fl, and tissue clarifying technique, we reveal Asb2 requirement for embryonic survival and complete heart looping. Deletion of Asb2 results in upregulation of its target Filamin A (Flna), and concurrent Flna deletion partially rescues embryonic lethality. Conditional AHF-Cre.Asb2 knockouts harboring one Flna allele have double outlet right ventricle (DORV), which is rescued by biallelic Flna excision. Transcriptomic and immunofluorescence analyses identify Tgfβ/Smad as downstream targets of Asb2/Flna. Finally, using CRISPR/Cas9 genome editing, we demonstrate Asb2 requirement for human cardiomyocyte differentiation suggesting a conserved mechanism between mice and humans. Collectively, our study provides deeper mechanistic understanding of the role of the ubiquitin proteasome system in cardiac development and suggests a previously unidentified murine model for DORV. Flna removal partially rescues embryonic lethality of Asb2-heart-specific knockout AHF-Asb2 knockouts harboring one Flna allele have double outlet right ventricle Asb2-Flna regulate TGFβ-Smad2 signaling in the heart Conserved role of Asb2 in heart morphogenesis between mice and humans
Collapse
Affiliation(s)
- Abir Yamak
- Harvard Medical School, Boston, MA 02115, USA; Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, CPZN3200, Boston, MA 02114, USA; Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Dongjian Hu
- Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, CPZN3200, Boston, MA 02114, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Nikhil Mittal
- Harvard Medical School, Boston, MA 02115, USA; Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, CPZN3200, Boston, MA 02114, USA
| | - Jan W Buikema
- Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, CPZN3200, Boston, MA 02114, USA; University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
| | - Sheraz Ditta
- Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, CPZN3200, Boston, MA 02114, USA; Department of Pharmaceutical Sciences, Utrecht University, 3512 JE Utrecht, Netherlands
| | - Pierre G Lutz
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Christel Moog-Lutz
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Patrick T Ellinor
- Harvard Medical School, Boston, MA 02115, USA; Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, CPZN3200, Boston, MA 02114, USA; Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ibrahim J Domian
- Harvard Medical School, Boston, MA 02115, USA; Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, CPZN3200, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
25
|
Shaping Striated Muscles with Ubiquitin Proteasome System in Health and Disease. Trends Mol Med 2019; 25:760-774. [PMID: 31235369 DOI: 10.1016/j.molmed.2019.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/03/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Abstract
For long-lived contractile cells, such as striated muscle cells, maintaining proteome integrity is a challenging task. These cells require hundreds of components that must be properly synthesized, folded, and incorporated into the basic contractile unit, the sarcomere. Muscle protein quality control in cells is mainly guaranteed by the ubiquitin-proteasome system (UPS), the lysosome-autophagy system, and various molecular chaperones. Recent studies establish the concept of dedicated UPS in the regulation of sarcomere assembly during development and in adult life to maintain the intricate and interwoven organization of protein complexes in muscle. Failure of sarcomere protein quality control often represents the basis of severe myopathies and cardiomyopathies in human, further highlighting its importance in producing and maintaining the contractile machinery of muscle cells in shape.
Collapse
|
26
|
Spinner CA, Lamsoul I, Métais A, Febrissy C, Moog-Lutz C, Lutz PG. The E3 Ubiquitin Ligase Asb2α in T Helper 2 Cells Negatively Regulates Antitumor Immunity in Colorectal Cancer. Cancer Immunol Res 2019; 7:1332-1344. [PMID: 31175139 DOI: 10.1158/2326-6066.cir-18-0562] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/14/2019] [Accepted: 06/05/2019] [Indexed: 11/16/2022]
Abstract
The escape of cancer cells from host immunosurveillance involves a shift in immune responses, including an imbalance in Th1 and Th2 cells. A Th1-dominated immune response predicts positive outcomes in colorectal cancer. The E3 ubiquitin ligase, Asb2α, is expressed in Th2 cells, but its roles in T-cell maturation and cancer are unclear. We provide evidence that the Th2 master regulator, Gata3, induces Asb2 Loss of Asb2 did not affect Th differentiation ex vivo, but reduced IL4 production from Th2 cells. We found that high ASB2 expression was associated with poor outcome in colorectal cancer. Loss of Asb2 from hematopoietic cells promoted a Th1 response and attenuated colitis-associated tumorigenesis in mice. Diminished Th2 function correlated with increased IFNγ production and an enhanced type 1 antitumor immune response in Asb2-deficient mice. Our work suggests that Asb2α promotes a Th2 phenotype in vivo, which in turn is associated with tumor progression in a mouse model of colitis.
Collapse
Affiliation(s)
- Camille A Spinner
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Isabelle Lamsoul
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Arnaud Métais
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Chanaëlle Febrissy
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Christel Moog-Lutz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre G Lutz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
27
|
Xia M, Luo W, Jin H, Yang Z. HAND2-mediated epithelial maintenance and integrity in cardiac outflow tract morphogenesis. Development 2019; 146:dev.177477. [PMID: 31201155 DOI: 10.1242/dev.177477] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/03/2019] [Indexed: 01/06/2023]
Abstract
During embryogenesis, epithelial organization is the prerequisite for organogenesis, in particular, for establishing the tubular structure. Recent studies provided hints about epithelial formation in early heart development, which has not been systemically explored. Here, we revealed a gradient of HAND2 protein in the cardiac progenitors in the anterior dorsal pericardial wall (aDPW) and adjacent transition zone (TZ) in the outflow tract (OFT). Deletion of Hand2 caused cell arrest and accumulation in the TZ leading to defective morphogenesis. While apicobasal cell polarity was unaffected, the key epithelial elements of adherens junction and cell-matrix adhesion were disrupted in the TZ of Hand2 mutant mice, indicating poorly formed epithelium. RNA-seq analysis revealed altered regulation of the contractile fiber and actin cytoskeleton, which affected cardiomyocyte differentiation. Furthermore, we have identified Stars as being transcriptionally controlled by HAND2. STARS facilitates actin polymerization that is essential for anchoring the adhesive molecules to create cell adhesion. Thus, we have uncovered a new function of HAND2 in mediating epithelial maintenance and integrity in OFT morphogenesis. Meanwhile, this study provides insights to understanding cardiac progenitor contribution to OFT development.
Collapse
Affiliation(s)
- Meng Xia
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Wen Luo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Hengwei Jin
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| |
Collapse
|
28
|
Chen A, Chen Z, Xia Y, Lu D, Jia J, Hu K, Sun A, Zou Y, Qian J, Ge J. Proteomics Analysis of Myocardial Tissues in a Mouse Model of Coronary Microembolization. Front Physiol 2018; 9:1318. [PMID: 30283360 PMCID: PMC6157402 DOI: 10.3389/fphys.2018.01318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/31/2018] [Indexed: 01/30/2023] Open
Abstract
Coronary microembolization (CME) is an important clinical problem, and it is related to poor outcome. The specific molecular mechanisms of CME are not fully understood. In the present study, we established a mice model of CME. Isobaric tags for relative and absolute quantitation (iTRAQ) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) technologies identified 249 differentially expressed proteins in the myocardial tissues of CME mice as compared with sham-operated mice. Bioinformatics analysis demonstrated that these differentially expressed proteins were enriched in several energy metabolism or cytoskeleton organization related processes or pathways. Quantitative PCR and Western blotting validation experiments revealed that succinate dehydrogenase (SDHA and SDHB) were upregulated, Rho GDP dissociation inhibitor α (RhoGDIα) and Filamin-A (FLNA) were downregulated significantly in CME mice. These findings indicated that the alternations of the cytoskeleton and energy metabolism pathways play important roles in the pathogenesis of CME, future studies are warranted to verify if targeting these molecules might be useful to alleviate CME injury or not.
Collapse
Affiliation(s)
- Ao Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhangwei Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Xia
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Danbo Lu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianguo Jia
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kai Hu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Aijun Sun
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunzeng Zou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Juying Qian
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|