1
|
Shah S, Nawaz HS, Qazi MS, Jain H, Lucke-Wold B. Living biodrugs and how tissue source influences mesenchymal stem cell therapeutics for heart failure. World J Cardiol 2024; 16:619-625. [DOI: 10.4330/wjc.v16.i11.619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/21/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024] Open
Abstract
In this editorial we comment on the article by Safwan M et al. We especially focused on the cardiac function restoration by the use of mesenchymal stem cells (MSCs) therapy for heart failure (HF), which has emerged as a new treatment approach as “Living Biodrugs”. HF remains a significant clinical challenge due to the heart’s inability to pump blood effectively, despite advancements in medical and device-based therapies. MSCs have emerged as a promising therapeutic approach, offering benefits beyond traditional treatments through their ability to modulate inflammation, reduce fibrosis, and promote endogenous tissue regeneration. MSCs can be derived from various tissues, including bone marrow and umbilical cord. Umbilical cord-derived MSCs exhibit superior expansion capabilities, making them an attractive option for HF therapy. Conversely, bone marrow-derived MSCs have been extensively studied for their potential to improve cardiac function but face challenges related to cell retention and delivery. Future research is focusing on optimizing MSC sources, enhancing differentiation and immune modulation, and improving delivery methods to overcome current limitations.
Collapse
Affiliation(s)
- Siddharth Shah
- Lillian S Wells Department of Neurosurgery, University of Florida, Gainesville, FL 32608, United States
| | - Huzaifa Sabir Nawaz
- Department of Internal Medicine, Services Institute of Medical Sciences, Lahore 54000, Pakistan
| | - Muhammad Saeed Qazi
- Department of Internal Medicine, Bilawal Medical College for Boys, Jamshoro 54000, Pakistan
| | - Hritvik Jain
- Department of Internal Medicine, All India Institute of Medical Sciences, Jodhpur 400022, India
| | - Brandon Lucke-Wold
- Lillian S Wells Department of Neurosurgery, University of Florida, Gainesville, FL 32608, United States
| |
Collapse
|
2
|
Joladarashi D, Thej C, Mallaredy V, Magadum A, Cimini M, Gonzalez C, Truongcao M, Nigro JT, Sethi MK, Gibb AA, Benedict C, Koch WJ, Kishore R. GPC3-mediated metabolic rewiring of diabetic mesenchymal stromal cells enhances their cardioprotective functions via PKM2 activation. iScience 2024; 27:111021. [PMID: 39429777 PMCID: PMC11490746 DOI: 10.1016/j.isci.2024.111021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/02/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Mesenchymal stromal cells (MSC) are promising stem cell therapy for treating cardiovascular and other degenerative diseases. Diabetes affects the functional capability of MSC and impedes cell-based therapy. Despite numerous studies, the impact of diabetes on MSC myocardial reparative activity, metabolic fingerprint, and the mechanism of dysfunction remains inadequately perceived. We demonstrated that the transplantation of diabetic-MSC (db/db-MSC) into the ischemic myocardium of mice does not confer cardiac benefit post-MI. Metabolomic studies identified defective energy metabolism in db/db-MSC. Furthermore, we found that glypican-3 (GPC3), a heparan sulfate proteoglycan, is highly upregulated in db/db-MSC and is involved in metabolic alterations in db/db-MSC via pyruvate kinase M2 (PKM2) activation. GPC3-knockdown reprogrammed-db/db-MSC restored their energy metabolic rates, immunomodulation, angiogenesis, and cardiac reparative activities. Together, these data indicate that GPC3-metabolic reprogramming in diabetic MSC may represent a strategy to enhance MSC-based therapeutics for myocardial repair in diabetic patients.
Collapse
Affiliation(s)
- Darukeshwara Joladarashi
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Charan Thej
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Vandana Mallaredy
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ajit Magadum
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Maria Cimini
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Carolina Gonzalez
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - May Truongcao
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Joseph T. Nigro
- Center for Biomedical Mass Spectrometry, Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Manveen K. Sethi
- Center for Biomedical Mass Spectrometry, Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Andrew A. Gibb
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, 580 South Preston Street, Louisville, KY, USA
| | - Cindy Benedict
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Walter J. Koch
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Raj Kishore
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
3
|
Trapana J, Weinerman J, Lee D, Sedani A, Constantinescu D, Best TM, Hornicek FJ, Hare JM. Cell-based therapy in the treatment of musculoskeletal diseases. Stem Cells Transl Med 2024; 13:959-978. [PMID: 39226104 PMCID: PMC11465182 DOI: 10.1093/stcltm/szae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/21/2024] [Indexed: 09/04/2024] Open
Abstract
A limited number of tissues can spontaneously regenerate following injury, and even fewer can regenerate to a state comparable to mature, healthy adult tissue. Mesenchymal stem cells (MSCs) were first described in the 1960s-1970s by Friedenstein et al as a small population of bone marrow cells with osteogenic potential and abilities to differentiate into chondrocytes. In 1991, Arnold Caplan coined the term "mesenchymal cells" after identifying these cells as a theoretical precursor to bone, cartilage, tendon, ligament, marrow stroma, adipocyte, dermis, muscle, and connective tissues. MSCs are derived from periosteum, fat, and muscle. Another attractive property of MSCs is their immunoregulatory and regenerative properties, which result from crosstalk with their microenvironment and components of the innate immune system. Collectively, these properties make MSCs potentially attractive for various therapeutic purposes. MSCs offer potential in sports medicine, aiding in muscle recovery, meniscal tears, and tendon and ligament injuries. In joint disease, MSCs have the potential for chondrogenesis and reversing the effects of osteoarthritis. MSCs have also demonstrated potential application to the treatment of degenerative disc disease of the cervical, thoracic, and lumbar spine.
Collapse
Affiliation(s)
- Justin Trapana
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, United States
| | - Jonathan Weinerman
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
| | - Danny Lee
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
| | - Anil Sedani
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
| | - David Constantinescu
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
| | - Thomas M Best
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, United States
| | - Francis J Hornicek
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, United States
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, United States
| |
Collapse
|
4
|
Tang XL, Wysoczynski M, Gumpert AM, Solanki M, Li Y, Wu WJ, Zheng S, Ruble H, Li H, Stowers H, Zheng S, Ou Q, Tanveer N, Slezak J, Kalra DK, Bolli R. Intravenous infusions of mesenchymal stromal cells have cumulative beneficial effects in a porcine model of chronic ischemic cardiomyopathy. Cardiovasc Res 2024:cvae173. [PMID: 39163570 DOI: 10.1093/cvr/cvae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/08/2024] [Accepted: 08/19/2024] [Indexed: 08/22/2024] Open
Abstract
AIMS The development of cell therapy as a widely-available clinical option for ischemic cardiomyopathy is hindered by the invasive nature of current cell delivery methods. Furthermore, the rapid disappearance of cells after transplantation provides a cogent rationale for using repeated cell doses, which, however, has not been done thus far in clinical trials because it is not feasible with invasive approaches. The goal of this translational study was to test the therapeutic utility of the intravenous route for cell delivery. METHODS AND RESULTS Pigs with chronic ischemic cardiomyopathy induced by myocardial infarction received one or three intravenous doses of allogeneic bone marrow mesenchymal stromal cells (MSCs) or placebo 35 days apart. Rigor guidelines, including blinding and randomization, were strictly followed. A comprehensive assessment of LV function was conducted with three independent methods (echocardiography, magnetic resonance imaging, and hemodynamic studies). The results demonstrate that three doses of MSCs improved both load-dependent and independent indices of left ventricular (LV) function and reduced myocardial hypertrophy and fibrosis; in contrast, one dose failed to produce most of these benefits. CONCLUSIONS To our knowledge, this is the first study to show that intravenous infusion of a cell product improves LV function and structure in a large animal model of chronic ischemic cardiomyopathy and that repeated infusions are necessary to produce robust effects. This study, conducted in a clinically-relevant model, supports a new therapeutic strategy based on repeated intravenous infusions of allogeneic MSCs and provides a foundation for a first-in-human trial testing this strategy in patients with chronic ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Xian-Liang Tang
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, and Institute for Heart Research, Bratislava, Slovakia
| | - Marcin Wysoczynski
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, and Institute for Heart Research, Bratislava, Slovakia
| | - Anna M Gumpert
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, and Institute for Heart Research, Bratislava, Slovakia
| | - Mitesh Solanki
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, and Institute for Heart Research, Bratislava, Slovakia
| | - Yan Li
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, and Institute for Heart Research, Bratislava, Slovakia
| | - Wen-Jian Wu
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, and Institute for Heart Research, Bratislava, Slovakia
| | - Shirong Zheng
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, and Institute for Heart Research, Bratislava, Slovakia
| | - Halina Ruble
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, and Institute for Heart Research, Bratislava, Slovakia
| | - Hong Li
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, and Institute for Heart Research, Bratislava, Slovakia
| | - Heather Stowers
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, and Institute for Heart Research, Bratislava, Slovakia
| | - Shengnan Zheng
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, and Institute for Heart Research, Bratislava, Slovakia
| | - Qinghui Ou
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, and Institute for Heart Research, Bratislava, Slovakia
| | - Nida Tanveer
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, and Institute for Heart Research, Bratislava, Slovakia
| | - Jan Slezak
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, and Institute for Heart Research, Bratislava, Slovakia
| | - Dinesh K Kalra
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, and Institute for Heart Research, Bratislava, Slovakia
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, and Institute for Heart Research, Bratislava, Slovakia
| |
Collapse
|
5
|
Sabe SA, Harris DD, Broadwin M, Sellke FW. Cardioprotection in cardiovascular surgery. Basic Res Cardiol 2024; 119:545-568. [PMID: 38856733 DOI: 10.1007/s00395-024-01062-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
Since the invention of cardiopulmonary bypass, cardioprotective strategies have been investigated to mitigate ischemic injury to the heart during aortic cross-clamping and reperfusion injury with cross-clamp release. With advances in cardiac surgical and percutaneous techniques and post-operative management strategies including mechanical circulatory support, cardiac surgeons are able to operate on more complex patients. Therefore, there is a growing need for improved cardioprotective strategies to optimize outcomes in these patients. This review provides an overview of the basic principles of cardioprotection in the setting of cardiac surgery, including mechanisms of cardiac injury in the context of cardiopulmonary bypass, followed by a discussion of the specific approaches to optimizing cardioprotection in cardiac surgery, including refinements in cardiopulmonary bypass and cardioplegia, ischemic conditioning, use of specific anesthetic and pharmaceutical agents, and novel mechanical circulatory support technologies. Finally, translational strategies that investigate cardioprotection in the setting of cardiac surgery will be reviewed, with a focus on promising research in the areas of cell-based and gene therapy. Advances in this area will help cardiologists and cardiac surgeons mitigate myocardial ischemic injury, improve functional post-operative recovery, and optimize clinical outcomes in patients undergoing cardiac surgery.
Collapse
Affiliation(s)
- Sharif A Sabe
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Rhode Island Hospital, Alpert Medical School of Brown University, 2 Dudley Street, MOC 360, Providence, RI, 02905, USA
| | - Dwight D Harris
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Rhode Island Hospital, Alpert Medical School of Brown University, 2 Dudley Street, MOC 360, Providence, RI, 02905, USA
| | - Mark Broadwin
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Rhode Island Hospital, Alpert Medical School of Brown University, 2 Dudley Street, MOC 360, Providence, RI, 02905, USA
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Rhode Island Hospital, Alpert Medical School of Brown University, 2 Dudley Street, MOC 360, Providence, RI, 02905, USA.
| |
Collapse
|
6
|
Lu P, Ruan D, Huang M, Tian M, Zhu K, Gan Z, Xiao Z. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther 2024; 9:166. [PMID: 38945949 PMCID: PMC11214942 DOI: 10.1038/s41392-024-01852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 07/02/2024] Open
Abstract
The applications of hydrogels have expanded significantly due to their versatile, highly tunable properties and breakthroughs in biomaterial technologies. In this review, we cover the major achievements and the potential of hydrogels in therapeutic applications, focusing primarily on two areas: emerging cell-based therapies and promising non-cell therapeutic modalities. Within the context of cell therapy, we discuss the capacity of hydrogels to overcome the existing translational challenges faced by mainstream cell therapy paradigms, provide a detailed discussion on the advantages and principal design considerations of hydrogels for boosting the efficacy of cell therapy, as well as list specific examples of their applications in different disease scenarios. We then explore the potential of hydrogels in drug delivery, physical intervention therapies, and other non-cell therapeutic areas (e.g., bioadhesives, artificial tissues, and biosensors), emphasizing their utility beyond mere delivery vehicles. Additionally, we complement our discussion on the latest progress and challenges in the clinical application of hydrogels and outline future research directions, particularly in terms of integration with advanced biomanufacturing technologies. This review aims to present a comprehensive view and critical insights into the design and selection of hydrogels for both cell therapy and non-cell therapies, tailored to meet the therapeutic requirements of diverse diseases and situations.
Collapse
Affiliation(s)
- Peilin Lu
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Dongxue Ruan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Meiqi Huang
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Mi Tian
- Department of Stomatology, Chengdu Second People's Hospital, Chengdu, 610021, PR China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Ziqi Gan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China.
| |
Collapse
|
7
|
Fatehi Hassanabad A, Zarzycki AN, Fedak PWM. Cellular and molecular mechanisms driving cardiac tissue fibrosis: On the precipice of personalized and precision medicine. Cardiovasc Pathol 2024; 71:107635. [PMID: 38508436 DOI: 10.1016/j.carpath.2024.107635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Cardiac fibrosis is a significant contributor to heart failure, a condition that continues to affect a growing number of patients worldwide. Various cardiovascular comorbidities can exacerbate cardiac fibrosis. While fibroblasts are believed to be the primary cell type underlying fibrosis, recent and emerging data suggest that other cell types can also potentiate or expedite fibrotic processes. Over the past few decades, clinicians have developed therapeutics that can blunt the development and progression of cardiac fibrosis. While these strategies have yielded positive results, overall clinical outcomes for patients suffering from heart failure continue to be dire. Herein, we overview the molecular and cellular mechanisms underlying cardiac tissue fibrosis. To do so, we establish the known mechanisms that drive fibrosis in the heart, outline the diagnostic tools available, and summarize the treatment options used in contemporary clinical practice. Finally, we underscore the critical role the immune microenvironment plays in the pathogenesis of cardiac fibrosis.
Collapse
Affiliation(s)
- Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Anna N Zarzycki
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
8
|
Abouzid MR, Umer AM, Jha SK, Akbar UA, Khraisat O, Saleh A, Mohamed K, Esteghamati S, Kamel I. Stem Cell Therapy for Myocardial Infarction and Heart Failure: A Comprehensive Systematic Review and Critical Analysis. Cureus 2024; 16:e59474. [PMID: 38832190 PMCID: PMC11145929 DOI: 10.7759/cureus.59474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2024] [Indexed: 06/05/2024] Open
Abstract
In exploring therapeutic options for ischemic heart disease (IHD) and heart failure, cell-based cardiac repair has gained prominence. This systematic review delves into the current state of knowledge surrounding cell-based therapies for cardiac repair. Employing a comprehensive search across relevant databases, the study identifies 35 included studies with diverse cell types and methodologies. Encouragingly, these findings reveal the promise of cell-based therapies in cardiac repair, demonstrating significant enhancements in left ventricular ejection fraction (LVEF) across the studies. Mechanisms of action involve growth factors that stimulate angiogenesis, differentiation, and the survival of transplanted cells. Despite these positive outcomes, challenges persist, including low engraftment rates, limitations in cell differentiation, and variations in clinical reproducibility. The optimal dosage and frequency of cell administration remain subjects of debate, with potential benefits from repeated dosing. Additionally, the choice between autologous and allogeneic stem cell transplantation poses a critical decision. This systematic review underscores the potential of cell-based therapies for cardiac repair, bearing implications for innovative treatments in heart diseases. However, further research is imperative to optimize cell type selection, delivery techniques, and long-term efficacy, fostering a more comprehensive understanding of cell-based cardiac repair.
Collapse
Affiliation(s)
- Mohamed R Abouzid
- Internal Medicine, Baptist Hospitals of Southeast Texas, Beaumont, USA
| | - Ahmed Muaaz Umer
- Internal Medicine Residency, Camden Clark Medical Center, Parkersburg, USA
| | - Suman Kumar Jha
- Internal Medicine, Sheer Memorial Adventist Hospital, Banepa, NPL
| | - Usman A Akbar
- Internal Medicine, Camden Clark Medical Center, Parkersburg, USA
| | - Own Khraisat
- Internal Medicine, King Hussein Medical City, Amman, JOR
| | - Amr Saleh
- Cardiovascular Medicine, Yale School of Medicine, New Haven, USA
| | - Kareem Mohamed
- Internal Medicine, University of Missouri Kansas City, Kansas City, USA
| | | | - Ibrahim Kamel
- Internal Medicine, Steward Carney Hospital, Boston, USA
| |
Collapse
|
9
|
Yang B, Qiao Y, Yan D, Meng Q. Targeting Interactions between Fibroblasts and Macrophages to Treat Cardiac Fibrosis. Cells 2024; 13:764. [PMID: 38727300 PMCID: PMC11082988 DOI: 10.3390/cells13090764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 05/13/2024] Open
Abstract
Excessive extracellular matrix (ECM) deposition is a defining feature of cardiac fibrosis. Most notably, it is characterized by a significant change in the concentration and volume fraction of collagen I, a disproportionate deposition of collagen subtypes, and a disturbed ECM network arrangement, which directly affect the systolic and diastolic functions of the heart. Immune cells that reside within or infiltrate the myocardium, including macrophages, play important roles in fibroblast activation and consequent ECM remodeling. Through both direct and indirect connections to fibroblasts, monocyte-derived macrophages and resident cardiac macrophages play complex, bidirectional, regulatory roles in cardiac fibrosis. In this review, we discuss emerging interactions between fibroblasts and macrophages in physiology and pathologic conditions, providing insights for future research aimed at targeting macrophages to combat cardiac fibrosis.
Collapse
Affiliation(s)
- Bo Yang
- Center for Organoid and Regeneration Medicine, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou 511466, China;
| | - Yan Qiao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China;
| | - Dong Yan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China;
| | - Qinghang Meng
- Center for Organoid and Regeneration Medicine, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou 511466, China;
| |
Collapse
|
10
|
Shiraishi M, Sasaki D, Hibino M, Takeda A, Harashima H, Yamada Y. Human cardiosphere-derived cells with activated mitochondria for better myocardial regenerative therapy. J Control Release 2024; 367:486-499. [PMID: 38295995 DOI: 10.1016/j.jconrel.2024.01.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/04/2024] [Accepted: 01/27/2024] [Indexed: 02/06/2024]
Abstract
Cell transplantation is a promising therapeutic strategy for myocardial regeneration therapy. To improve therapeutic effects, we developed a culture medium additive that enhances the mitochondrial function of cardiomyocytes for transplantation. A mitochondrial targeting drug delivery system (MITO-Porter system) was used to deliver mitochondrial activation molecules to mouse-derived cardiac progenitor cells. In this study, we investigated whether the mitochondrial function of human-derived myocardial precursor cells could be enhanced using MITO-Porter. Human cardiosphere-derived cells (CDCs) were isolated from myocardium which was excised during surgery for congenital heart disease. MITO-Porter was added to the cell culture medium to generate mitochondrial activated CDCs (human MITO cells). The human MITO cells were transplanted into myocardial ischemia-reperfusion model rat, and the effect was investigated. The transplanted human MITO cells improved the cardiac function and suppressed myocardial fibrosis compared to conventional cell transplantation methods. These effects were observed not only with myocardial administration but also by intravenous administration of human MITO cells. This study is the first study that assessed whether the mitochondrial delivery of functional compounds improved the outcome of human-derived myocardial cell transplantation therapy.
Collapse
Affiliation(s)
- Masahiro Shiraishi
- Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Daisuke Sasaki
- Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Mitsue Hibino
- Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-0812, Japan
| | - Atsuhito Takeda
- Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Fusion Oriented REsearch for disruptive Science and Technology (FOREST) Program, Japan Science and Technology Agency (JST) Japan, Kawaguchi Center Building, 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012, Japan.
| |
Collapse
|
11
|
Guo W, Xu Y, Liu X, Dou J, Guo Z. Therapeutic effect of adipose-derived stem cells injected into pericardial cavity in rat heart failure. ESC Heart Fail 2024; 11:492-502. [PMID: 38062920 PMCID: PMC10804146 DOI: 10.1002/ehf2.14606] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 01/24/2024] Open
Abstract
AIMS There are few studies on the treatment of heart failure by injecting stem cells into the pericardial cavity. Can the cells injected into the pericardial cavity migrate through the epicardium to the myocardial tissue? Whether there is therapeutic effect and the mechanism of therapeutic effect are still unclear. This study investigated the therapeutic efficacy and evidence of cell migration of adipose-derived stem cells (ADSCs) injected into the pericardial cavity in rat heart failure. The aim of this study is to demonstrate the effectiveness and mechanism of treating heart failure by injecting stem cells into the pericardial cavity, laying an experimental foundation for a new approach to stem cell therapy for heart disease in clinical practice. METHODS AND RESULTS The inguinal adipose tissue of male SD rats aged 4-6 weeks was taken, ADSCs were isolated and cultured, and their stem cell surface markers were identified. Forty rats aged 6-8 weeks were divided into sham operation group, heart failure group, and treatment group; there were 15 rats in the heart failure group and 15 rats in the treatment group. The heart failure model was established by intraperitoneal injection of adriamycin hydrochloride. The heart function of the three groups was detected by small animal ultrasound. The model was successful if the left ventricular ejection fraction < 50%. The identified ADSCs were injected into the pericardial cavity of rats in the treatment group. The retention of transplanted cells in pericardial cavity was detected by small animal in vivo imaging instrument, and the migration of transplanted cells into myocardial tissue was observed by tissue section and immunofluorescence. Western blotting and immunohistochemical staining were used to detect brain natriuretic peptide (BNP), α-smooth muscle actin (α-SMA), and C-reactive protein (CRP). ADSCs express CD29, CD44, and CD73. On the fourth day after injection of ADSCs into pericardial cavity, they migrated to myocardial tissue through epicardium and gradually diffused to deep myocardium. The cell density in the pericardial cavity remains at a high level for 10 days after injection and gradually decreases after 10 days. Compared with the heart failure group, the expression of BNP and α-SMA decreased (P < 0.05 and P < 0.001, respectively), and the expression of CRP in the treatment group was higher than that in the heart failure group (P < 0.0001). A small amount of BNP, α-SMA, and CRP was expressed in the myocardium of the sham operation group. After injection of ADSCs, interleukin-6 in myocardial tissue was significantly lower than that in heart failure myocardium (P < 0.01). After treatment, vascular endothelial growth factor A was significantly higher than that of heart failure (P < 0.01). CONCLUSIONS Pericardial cavity injected ADSCs can penetrate the epicardium, migrate into the myocardium, and have a therapeutic effect on heart failure. Their mechanism of action is to exert therapeutic effects through anti-inflammatory, anti-fibrosis, and increased angiogenesis.
Collapse
Affiliation(s)
- Wenjing Guo
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical University601 Jinsui RoadXinxiangHenanChina
- Henan Provincial Key Laboratory of Heart Reconstruction and TransplantationZhengzhou Cardiovascular HospitalZhengzhouHenanChina
| | - Yaping Xu
- Henan Provincial Key Laboratory of Heart Reconstruction and TransplantationZhengzhou Cardiovascular HospitalZhengzhouHenanChina
| | - Xinyi Liu
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical University601 Jinsui RoadXinxiangHenanChina
- Henan Provincial Key Laboratory of Heart Reconstruction and TransplantationZhengzhou Cardiovascular HospitalZhengzhouHenanChina
| | - Jintao Dou
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical University601 Jinsui RoadXinxiangHenanChina
- Henan Provincial Key Laboratory of Heart Reconstruction and TransplantationZhengzhou Cardiovascular HospitalZhengzhouHenanChina
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical University601 Jinsui RoadXinxiangHenanChina
- Henan Provincial Key Laboratory of Heart Reconstruction and TransplantationZhengzhou Cardiovascular HospitalZhengzhouHenanChina
| |
Collapse
|
12
|
Safdar M, Ullah M, Wahab A, Hamayun S, Ur Rehman M, Khan MA, Khan SU, Ullah A, Din FU, Awan UA, Naeem M. Genomic insights into heart health: Exploring the genetic basis of cardiovascular disease. Curr Probl Cardiol 2024; 49:102182. [PMID: 37913933 DOI: 10.1016/j.cpcardiol.2023.102182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
Cardiovascular diseases (CVDs) are considered as the leading cause of death worldwide. CVD continues to be a major cause of death and morbidity despite significant improvements in its detection and treatment. Therefore, it is strategically important to be able to precisely characterize an individual's sensitivity to certain illnesses. The discovery of genes linked to cardiovascular illnesses has benefited from linkage analysis and genome-wide association research. The last 20 years have seen significant advancements in the field of molecular genetics, particularly with the development of new tools like genome-wide association studies. In this article we explore the profound impact of genetic variations on disease development, prognosis, and therapeutic responses. And the significance of genetics in cardiovascular risk assessment and the ever-evolving realm of genetic testing, offering insights into the potential for personalized medicine in this domain. Embracing the future of cardiovascular care, the article explores the implications of pharmacogenomics for tailored treatments, the promise of emerging technologies in cardiovascular genetics and therapies, including the transformative influence of nanotechnology. Furthermore, it delves into the exciting frontiers of gene editing, such as CRISPR/Cas9, as a novel approach to combat cardiovascular diseases. And also explore the potential of stem cell therapy and regenerative medicine, providing a holistic view of the dynamic landscape of cardiovascular genomics and its transformative potential for the field of cardiovascular medicine.
Collapse
Affiliation(s)
- Mishal Safdar
- Department of Biological Sciences, National University of Medical Sciences (NUMS) Rawalpindi 46000, Punjab, Pakistan
| | - Muneeb Ullah
- Department of Pharmacy, Kohat University of Science, and technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science, and technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shah Hamayun
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, 04485 Punjab, Pakistan
| | - Mahboob Ur Rehman
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, 04485 Punjab, Pakistan
| | - Muhammad Amir Khan
- Department of Foreign Medical education, Fergana Medical institute of Public Health, 2A Yangi Turon street, Fergana 150100, Uzbekistan
| | - Shahid Ullah Khan
- Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad, 22080, Khyber Pakhtunkhwa, Pakistan
| | - Aziz Ullah
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Fakhar Ud Din
- Department of Pharmacy, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Uzma Azeem Awan
- Department of Biological Sciences, National University of Medical Sciences (NUMS) Rawalpindi 46000, Punjab, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences (NUMS) Rawalpindi 46000, Punjab, Pakistan.
| |
Collapse
|
13
|
Yang Y, Johnson J, Troupes CD, Feldsott EA, Kraus L, Megill E, Bian Z, Asangwe N, Kino T, Eaton DM, Wang T, Wagner M, Ma L, Bryan C, Wallner M, Kubo H, Berretta RM, Khan M, Wang H, Kishore R, Houser SR, Mohsin S. miR-182/183-Rasa1 axis induced macrophage polarization and redox regulation promotes repair after ischemic cardiac injury. Redox Biol 2023; 67:102909. [PMID: 37801856 PMCID: PMC10570148 DOI: 10.1016/j.redox.2023.102909] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023] Open
Abstract
Few therapies have produced significant improvement in cardiac structure and function after ischemic cardiac injury (ICI). Our possible explanation is activation of local inflammatory responses negatively impact the cardiac repair process following ischemic injury. Factors that can alter immune response, including significantly altered cytokine levels in plasma and polarization of macrophages and T cells towards a pro-reparative phenotype in the myocardium post-MI is a valid strategy for reducing infarct size and damage after myocardial injury. Our previous studies showed that cortical bone stem cells (CBSCs) possess reparative effects after ICI. In our current study, we have identified that the beneficial effects of CBSCs appear to be mediated by miRNA in their extracellular vesicles (CBSC-EV). Our studies showed that CBSC-EV treated animals demonstrated reduced scar size, attenuated structural remodeling, and improved cardiac function versus saline treated animals. These effects were linked to the alteration of immune response, with significantly altered cytokine levels in plasma, and polarization of macrophages and T cells towards a pro-reparative phenotype in the myocardium post-MI. Our detailed in vitro studies demonstrated that CBSC-EV are enriched in miR-182/183 that mediates the pro-reparative polarization and metabolic reprogramming in macrophages, including enhanced OXPHOS rate and reduced ROS, via Ras p21 protein activator 1 (RASA1) axis under Lipopolysaccharides (LPS) stimulation. In summary, CBSC-EV deliver unique molecular cargoes, such as enriched miR-182/183, that modulate the immune response after ICI by regulating macrophage polarization and metabolic reprogramming to enhance repair.
Collapse
Affiliation(s)
- Yijun Yang
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Jaslyn Johnson
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Constantine D Troupes
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Eric A Feldsott
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Lindsay Kraus
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Emily Megill
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Zilin Bian
- Tandon School of Engineering, New York University, NY, United States
| | - Ngefor Asangwe
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Tabito Kino
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Deborah M Eaton
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Tao Wang
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Marcus Wagner
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Lena Ma
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Christopher Bryan
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Markus Wallner
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States; Division of Cardiology, Medical University of Graz, 8036, Graz, Austria
| | - Hajime Kubo
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Remus M Berretta
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Mohsin Khan
- Center for Metabolic Disease Research (CMDR), Temple University Lewis Katz School of Medicine, PA, United States
| | - Hong Wang
- Center for Metabolic Disease Research (CMDR), Temple University Lewis Katz School of Medicine, PA, United States
| | - Raj Kishore
- Center for Translational Medicine, Temple University Lewis Katz School of Medicine, PA, United States
| | - Steven R Houser
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Sadia Mohsin
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States.
| |
Collapse
|
14
|
Hoffman JR, Park HJ, Bheri S, Platt MO, Hare JM, Kaushal S, Bettencourt JL, Lai D, Slesnick TC, Mahle WT, Davis ME. Statistical modeling of extracellular vesicle cargo to predict clinical trial outcomes for hypoplastic left heart syndrome. iScience 2023; 26:107980. [PMID: 37868626 PMCID: PMC10589850 DOI: 10.1016/j.isci.2023.107980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/24/2023] [Accepted: 09/15/2023] [Indexed: 10/24/2023] Open
Abstract
Cardiac-derived c-kit+ progenitor cells (CPCs) are under investigation in the CHILD phase I clinical trial (NCT03406884) for the treatment of hypoplastic left heart syndrome (HLHS). The therapeutic efficacy of CPCs can be attributed to the release of extracellular vesicles (EVs). To understand sources of cell therapy variability we took a machine learning approach: combining bulk CPC-derived EV (CPC-EV) RNA sequencing and cardiac-relevant in vitro experiments to build a predictive model. We isolated CPCs from cardiac biopsies of patients with congenital heart disease (n = 29) and the lead-in patients with HLHS in the CHILD trial (n = 5). We sequenced CPC-EVs, and measured EV inflammatory, fibrotic, angiogeneic, and migratory responses. Overall, CPC-EV RNAs involved in pro-reparative outcomes had a significant fit to cardiac development and signaling pathways. Using a model trained on previously collected CPC-EVs, we predicted in vitro outcomes for the CHILD clinical samples. Finally, CPC-EV angiogenic performance correlated to clinical improvements in right ventricle performance.
Collapse
Affiliation(s)
- Jessica R. Hoffman
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, GA 30322, USA
- Molecular & Systems Pharmacology Graduate Training Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Hyun-Ji Park
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Sruti Bheri
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Manu O. Platt
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Joshua M. Hare
- Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sunjay Kaushal
- Departments of Surgery and Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Judith L. Bettencourt
- Coordinating Center for Clinical Trials, Department of Biostatistics and Data Science, University of Texas Health Science Center School of Public Health, Houston, TX 77030, USA
| | - Dejian Lai
- Coordinating Center for Clinical Trials, Department of Biostatistics and Data Science, University of Texas Health Science Center School of Public Health, Houston, TX 77030, USA
| | - Timothy C. Slesnick
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Heart Research & Outcomes (HeRO) Center, Children’s Healthcare of Atlanta & Emory University, Atlanta, GA 30322, USA
| | - William T. Mahle
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Heart Research & Outcomes (HeRO) Center, Children’s Healthcare of Atlanta & Emory University, Atlanta, GA 30322, USA
| | - Michael E. Davis
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, GA 30322, USA
- Molecular & Systems Pharmacology Graduate Training Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
- Children’s Heart Research & Outcomes (HeRO) Center, Children’s Healthcare of Atlanta & Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
15
|
Tang XL, Bolli R. Repeated Intravenous Administration of Mesenchymal Stromal Cells Produces Cumulative Beneficial Effects in Chronic Ischemic Cardiomyopathy. Tex Heart Inst J 2023; 50:e238244. [PMID: 37840224 PMCID: PMC10658144 DOI: 10.14503/thij-23-8244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Affiliation(s)
- Xian-Liang Tang
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
16
|
Tang XL, Nasr M, Zheng S, Zoubul T, Stephan JK, Uchida S, Singhal R, Khan A, Gumpert A, Bolli R, Wysoczynski M. Bone Marrow and Wharton's Jelly Mesenchymal Stromal Cells are Ineffective for Myocardial Repair in an Immunodeficient Rat Model of Chronic Ischemic Cardiomyopathy. Stem Cell Rev Rep 2023; 19:2429-2446. [PMID: 37500831 PMCID: PMC10579184 DOI: 10.1007/s12015-023-10590-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Although cell therapy provides benefits for outcomes of heart failure, the most optimal cell type to be used clinically remains unknown. Most of the cell products used for therapy in humans require in vitro expansion to obtain a suitable number of cells for treatment; however, the clinical background of the donor and limited starting material may result in the impaired proliferative and reparative capacity of the cells expanded in vitro. Wharton's jelly mesenchymal cells (WJ MSCs) provide a multitude of advantages over adult tissue-derived cell products for therapy. These include large starting tissue material, superior proliferative capacity, and disease-free donors. Thus, WJ MSC if effective would be the most optimal cell source for clinical use. OBJECTIVES This study evaluated the therapeutic efficacy of Wharton's jelly (WJ) and bone marrow (BM) mesenchymal stromal cells (MSCs) in chronic ischemic cardiomyopathy in rats. METHODS Human WJ MSCs and BM MSCs were expanded in vitro, characterized, and evaluated for therapeutic efficacy in a immunodeficient rat model of ischemic cardiomyopathy. Cardiac function was evaluated with hemodynamics and echocardiography. The extent of cardiac fibrosis, hypertrophy, and inflammation was assessed with histological analysis. RESULTS In vitro analysis revealed that WJ MSCs and BM MSCs are morphologically and immunophenotypically indistinguishable. Nevertheless, the functional analysis showed that WJ MSCs have a superior proliferative capacity, less senescent phenotype, and distinct transcriptomic profile compared to BM MSC. WJ MSCs and BM MSC injected in rat hearts chronically after MI produced a small, but not significant improvement in heart structure and function. Histological analysis showed no difference in the scar size, collagen content, cardiomyocyte cross-sectional area, and immune cell count. CONCLUSIONS Human WJ and BM MSC have a small but not significant effect on cardiac structure and function when injected intramyocardially in immunodeficient rats chronically after MI.
Collapse
Affiliation(s)
- Xian-Liang Tang
- Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Marjan Nasr
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston St. - Rm 204B, Louisville, KY, 40202, USA
| | - Shirong Zheng
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston St. - Rm 204B, Louisville, KY, 40202, USA
| | - Taylor Zoubul
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston St. - Rm 204B, Louisville, KY, 40202, USA
| | - Jonah K Stephan
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston St. - Rm 204B, Louisville, KY, 40202, USA
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Richa Singhal
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston St. - Rm 204B, Louisville, KY, 40202, USA
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Anna Gumpert
- Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Marcin Wysoczynski
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston St. - Rm 204B, Louisville, KY, 40202, USA.
| |
Collapse
|
17
|
Saltzman RG, G Campbell K, J Ripps S, Golan R, Cabreja-Castillo MA, Garzon AM, Rahman F, Caceres LV, Tovar JA, Khan A, Hare JM, Ramasamy R. The impact of cell-based therapy on female sexual dysfunction: a systematic review and meta-analysis. Sex Med Rev 2023; 11:333-341. [PMID: 37279578 DOI: 10.1093/sxmrev/qead023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 06/08/2023]
Abstract
INTRODUCTION Female sexual dysfunction (FSD) is a complex issue affecting women of all ages; it involves several overlapping body systems and profoundly affects quality of life. The use of cell-based therapy, such as mesenchymal stem cells, has recently been investigated as a potential treatment for FSD. OBJECTIVES This systematic review and meta-analysis aim to assess FSD outcomes following cell-based therapy. METHODS We evaluated peer-reviewed articles from multiple online databases through November 2022 to identify studies that used cell-based therapy and reported sexual function outcomes in women. We performed a meta-analysis using data pooled from 3 clinical trials at our institution: CRATUS (NCT02065245), ACESO (NCT02886884), and CERES (NCT03059355). All 3 trials collected data from the Sexual Quality of Life-Female (SQOL-F) questionnaire as an exploratory outcome. RESULTS Existing literature on this topic is scarce. Five clinical studies and 1 animal study were included in the systematic review, and only 2 clinical studies were considered good quality: 1 reported significant SQOL-F improvement in women 6 months after cell therapy, and 1 reported posttherapy sexual satisfaction in all women. When individual patient data were pooled in a meta-analysis from 29 women across 3 trials at our institution, the SQOL-F was not significantly improved. CONCLUSION Despite growing interest in cell-based therapy for women's sexual health, this important issue is understudied in the literature. The optimal route, source, and dose of cell therapy to produce clinically meaningful change have yet to be determined, and further research is needed in larger randomized placebo-controlled clinical trials.
Collapse
Affiliation(s)
- Russell G Saltzman
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Katherine G Campbell
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Sarah J Ripps
- College of Medicine, Florida State University, Tallahassee, FL 32304, United States
| | - Roei Golan
- College of Medicine, Florida State University, Tallahassee, FL 32304, United States
| | - Maria A Cabreja-Castillo
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Ana Maria Garzon
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Farah Rahman
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Lina V Caceres
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Jairo A Tovar
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
- Division of Cardiovascular Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, 33136. United States
| | - Ranjith Ramasamy
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| |
Collapse
|
18
|
Sundin A, Ionescu SI, Balkan W, Hare JM. Mesenchymal STRO-1/STRO-3 + precursor cells for the treatment of chronic heart failure with reduced ejection fraction. Future Cardiol 2023; 19:567-581. [PMID: 37933628 PMCID: PMC10652293 DOI: 10.2217/fca-2023-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/30/2023] [Indexed: 11/08/2023] Open
Abstract
The heart is susceptible to proinflammatory and profibrotic responses after myocardial injury, leading to further worsening of cardiac dysfunction. Important developments in the management of heart failure with reduced ejection fraction have reduced morbidity and mortality; however, these therapies focus on optimizing cardiac function through hemodynamic and neurohormonal pathways and not by repairing the underlying cardiac injury. The potential of cell-based therapy to reverse cardiac injury has received substantial attention. Herein are examined the phase II and III studies of bone marrow-derived mesenchymal STRO-1+ or STRO-1/STRO-3+ precursor cells in patients with ischemic and nonischemic heart failure with reduced ejection fraction, addressing the safety and efficacy of cell-based therapy throughout multiple clinical trials, the optimal dose and the steps toward revolutionizing the treatment of heart failure.
Collapse
Affiliation(s)
- Andrew Sundin
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Simona I Ionescu
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
19
|
Mohamad Yusoff F, Higashi Y. Mesenchymal Stem/Stromal Cells for Therapeutic Angiogenesis. Cells 2023; 12:2162. [PMID: 37681894 PMCID: PMC10486439 DOI: 10.3390/cells12172162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are known to possess medicinal properties to facilitate vascular regeneration. Recent advances in the understanding of the utilities of MSCs in physiological/pathological tissue repair and technologies in isolation, expansion, and enhancement strategies have led to the use of MSCs for vascular disease-related treatments. Various conditions, including chronic arterial occlusive disease, diabetic ulcers, and chronic wounds, cause significant morbidity in patients. Therapeutic angiogenesis by cell therapy has led to the possibilities of treatment options in promoting angiogenesis, treating chronic wounds, and improving amputation-free survival. Current perspectives on the options for the use of MSCs for therapeutic angiogenesis in vascular research and in medicine, either as a monotherapy or in combination with conventional interventions, for treating patients with peripheral artery diseases are discussed in this review.
Collapse
Affiliation(s)
- Farina Mohamad Yusoff
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Yukihito Higashi
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan;
- Division of Regeneration and Medicine, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| |
Collapse
|
20
|
Iqbal F, Johnston A, Wyse B, Rabani R, Mander P, Hoseini B, Wu J, Li RK, Gauthier-Fisher A, Szaraz P, Librach C. Combination human umbilical cord perivascular and endothelial colony forming cell therapy for ischemic cardiac injury. NPJ Regen Med 2023; 8:45. [PMID: 37626067 PMCID: PMC10457300 DOI: 10.1038/s41536-023-00321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Cell-based therapeutics are promising interventions to repair ischemic cardiac tissue. However, no single cell type has yet been found to be both specialized and versatile enough to heal the heart. The synergistic effects of two regenerative cell types including endothelial colony forming cells (ECFC) and first-trimester human umbilical cord perivascular cells (FTM HUCPVC) with endothelial cell and pericyte properties respectively, on angiogenic and regenerative properties were tested in a rat model of myocardial infarction (MI), in vitro tube formation and Matrigel plug assay. The combination of FTM HUCPVCs and ECFCs synergistically reduced fibrosis and cardiomyocyte apoptosis, while promoting favorable cardiac remodeling and contractility. These effects were in part mediated by ANGPT2, PDGF-β, and VEGF-C. PDGF-β signaling-dependent synergistic effects on angiogenesis were also observed in vitro and in vivo. FTM HUCPVCs and ECFCs represent a cell combination therapy for promoting and sustaining vascularization following ischemic cardiac injury.
Collapse
Affiliation(s)
- Farwah Iqbal
- Create Fertility Centre, Toronto, ON, Canada
- Virginia Tech Carillion School of Medicine, Roanoke, VA, USA
| | | | | | | | | | | | - Jun Wu
- Toronto General Research Institute (TGRI), University Health Network (UHN), Toronto, ON, Canada
| | - Ren-Ke Li
- Toronto General Research Institute (TGRI), University Health Network (UHN), Toronto, ON, Canada
| | | | | | - Clifford Librach
- Create Fertility Centre, Toronto, ON, Canada.
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Department of Obstetrics and Gynecology, Women's College Hospital, Toronto, ON, Canada.
| |
Collapse
|
21
|
Oh GC, Choi YJ, Park BW, Ban K, Park HJ. Are There Hopeful Therapeutic Strategies to Regenerate the Infarcted Hearts? Korean Circ J 2023; 53:367-386. [PMID: 37271744 DOI: 10.4070/kcj.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 04/26/2023] [Indexed: 06/06/2023] Open
Abstract
Ischemic heart disease remains the primary cause of morbidity and mortality worldwide. Despite significant advancements in pharmacological and revascularization techniques in the late 20th century, heart failure prevalence after myocardial infarction has gradually increased over the last 2 decades. After ischemic injury, pathological remodeling results in cardiomyocytes (CMs) loss and fibrosis, which leads to impaired heart function. Unfortunately, there are no clinical therapies to regenerate CMs to date, and the adult heart's limited turnover rate of CMs hinders its ability to self-regenerate. In this review, we present novel therapeutic strategies to regenerate injured myocardium, including (1) reconstruction of cardiac niche microenvironment, (2) recruitment of functional CMs by promoting their proliferation or differentiation, and (3) organizing 3-dimensional tissue construct beyond the CMs. Additionally, we highlight recent mechanistic insights that govern these strategies and identify current challenges in translating these approaches to human patients.
Collapse
Affiliation(s)
- Gyu-Chul Oh
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Yeon-Jik Choi
- Division of Cardiology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Bong-Woo Park
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Korea
| | - Kiwon Ban
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong.
| | - Hun-Jun Park
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
22
|
Aries A, Zanetti C, Hénon P, Drénou B, Lahlil R. Deciphering the Cardiovascular Potential of Human CD34 + Stem Cells. Int J Mol Sci 2023; 24:ijms24119551. [PMID: 37298503 DOI: 10.3390/ijms24119551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/17/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Ex vivo monitored human CD34+ stem cells (SCs) injected into myocardium scar tissue have shown real benefits for the recovery of patients with myocardial infarctions. They have been used previously in clinical trials with hopeful results and are expected to be promising for cardiac regenerative medicine following severe acute myocardial infarctions. However, some debates on their potential efficacy in cardiac regenerative therapies remain to be clarified. To elucidate the levels of CD34+ SC implication and contribution in cardiac regeneration, better identification of the main regulators, pathways, and genes involved in their potential cardiovascular differentiation and paracrine secretion needs to be determined. We first developed a protocol thought to commit human CD34+ SCs purified from cord blood toward an early cardiovascular lineage. Then, by using a microarray-based approach, we followed their gene expression during differentiation. We compared the transcriptome of undifferentiated CD34+ cells to those induced at two stages of differentiation (i.e., day three and day fourteen), with human cardiomyocyte progenitor cells (CMPCs), as well as cardiomyocytes as controls. Interestingly, in the treated cells, we observed an increase in the expressions of the main regulators usually present in cardiovascular cells. We identified cell surface markers of the cardiac mesoderm, such as kinase insert domain receptor (KDR) and the cardiogenic surface receptor Frizzled 4 (FZD4), induced in the differentiated cells in comparison to undifferentiated CD34+ cells. The Wnt and TGF-β pathways appeared to be involved in this activation. This study underlined the real capacity of effectively stimulated CD34+ SCs to express cardiac markers and, once induced, allowed the identification of markers that are known to be involved in vascular and early cardiogenesis, demonstrating their potential priming towards cardiovascular cells. These findings could complement their paracrine positive effects known in cell therapy for heart disease and may help improve the efficacy and safety of using ex vivo expanded CD34+ SCs.
Collapse
Affiliation(s)
- Anne Aries
- Institut de Recherche en Hématologie et Transplantation (IRHT), Hôpital du Hasenrain, 87 Avenue d'Altkirch, 68100 Mulhouse, France
| | - Céline Zanetti
- Institut de Recherche en Hématologie et Transplantation (IRHT), Hôpital du Hasenrain, 87 Avenue d'Altkirch, 68100 Mulhouse, France
| | | | - Bernard Drénou
- Institut de Recherche en Hématologie et Transplantation (IRHT), Hôpital du Hasenrain, 87 Avenue d'Altkirch, 68100 Mulhouse, France
- Groupe Hospitalier de la Région de Mulhouse Sud-Alsace, Hôpital E. Muller, 20 Avenue de Dr Laennec, 68100 Mulhouse, France
| | - Rachid Lahlil
- Institut de Recherche en Hématologie et Transplantation (IRHT), Hôpital du Hasenrain, 87 Avenue d'Altkirch, 68100 Mulhouse, France
| |
Collapse
|
23
|
Williams K, Khan A, Lee YS, Hare JM. Cell-based therapy to boost right ventricular function and cardiovascular performance in hypoplastic left heart syndrome: Current approaches and future directions. Semin Perinatol 2023; 47:151725. [PMID: 37031035 PMCID: PMC10193409 DOI: 10.1016/j.semperi.2023.151725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
Abstract
Congenital heart disease remains one of the most frequently diagnosed congenital diseases of the newborn, with hypoplastic left heart syndrome (HLHS) being considered one of the most severe. This univentricular defect was uniformly fatal until the introduction, 40 years ago, of a complex surgical palliation consisting of multiple staged procedures spanning the first 4 years of the child's life. While survival has improved substantially, particularly in experienced centers, ventricular failure requiring heart transplant and a number of associated morbidities remain ongoing clinical challenges for these patients. Cell-based therapies aimed at boosting ventricular performance are under clinical evaluation as a novel intervention to decrease morbidity associated with surgical palliation. In this review, we will examine the current burden of HLHS and current modalities for treatment, discuss various cells therapies as an intervention while delineating challenges and future directions for this therapy for HLHS and other congenital heart diseases.
Collapse
Affiliation(s)
- Kevin Williams
- Department of Pediatrics, University of Miami Miller School of Medicine. Miami FL, USA; Batchelor Children's Research Institute University of Miami Miller School of Medicine. Miami FL, USA
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami FL, USA
| | - Yee-Shuan Lee
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami FL, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami FL, USA; Division of Cardiology, Department of Medicine, University of Miami Miller School of Medicine. Miami FL, USA.
| |
Collapse
|
24
|
Kaushal S, Hare JM, Hoffman JR, Boyd RM, Ramdas KN, Pietris N, Kutty S, Tweddell JS, Husain SA, Menon SC, Lambert LM, Danford DA, Kligerman SJ, Hibino N, Korutla L, Vallabhajosyula P, Campbell MJ, Khan A, Naioti E, Yousefi K, Mehranfard D, McClain-Moss L, Oliva AA, Davis ME. Intramyocardial cell-based therapy with Lomecel-B during bidirectional cavopulmonary anastomosis for hypoplastic left heart syndrome: the ELPIS phase I trial. EUROPEAN HEART JOURNAL OPEN 2023; 3:oead002. [PMID: 36950450 PMCID: PMC10026620 DOI: 10.1093/ehjopen/oead002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/19/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Aims Hypoplastic left heart syndrome (HLHS) survival relies on surgical reconstruction of the right ventricle (RV) to provide systemic circulation. This substantially increases the RV load, wall stress, maladaptive remodelling, and dysfunction, which in turn increases the risk of death or transplantation. Methods and results We conducted a phase 1 open-label multicentre trial to assess the safety and feasibility of Lomecel-B as an adjunct to second-stage HLHS surgical palliation. Lomecel-B, an investigational cell therapy consisting of allogeneic medicinal signalling cells (MSCs), was delivered via intramyocardial injections. The primary endpoint was safety, and measures of RV function for potential efficacy were obtained. Ten patients were treated. None experienced major adverse cardiac events. All were alive and transplant-free at 1-year post-treatment, and experienced growth comparable to healthy historical data. Cardiac magnetic resonance imaging (CMR) suggested improved tricuspid regurgitant fraction (TR RF) via qualitative rater assessment, and via significant quantitative improvements from baseline at 6 and 12 months post-treatment (P < 0.05). Global longitudinal strain (GLS) and RV ejection fraction (EF) showed no declines. To understand potential mechanisms of action, circulating exosomes from intramyocardially transplanted MSCs were examined. Computational modelling identified 54 MSC-specific exosome ribonucleic acids (RNAs) corresponding to changes in TR RF, including miR-215-3p, miR-374b-3p, and RNAs related to cell metabolism and MAPK signalling. Conclusion Intramyocardially delivered Lomecel-B appears safe in HLHS patients and may favourably affect RV performance. Circulating exosomes of transplanted MSC-specific provide novel insight into bioactivity. Conduct of a controlled phase trial is warranted and is underway.Trial registration number NCT03525418.
Collapse
Affiliation(s)
- Sunjay Kaushal
- The Heart Center, Division of Cardiovascular-Thoracic Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Joshua M Hare
- Longeveron Inc, 1951 NW 7th Avenue, Suite 520, Miami, FL 33136, USA
- Department of Medicine and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Jessica R Hoffman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Riley M Boyd
- The Heart Center, Division of Cardiovascular-Thoracic Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Kevin N Ramdas
- Longeveron Inc, 1951 NW 7th Avenue, Suite 520, Miami, FL 33136, USA
| | - Nicholas Pietris
- Division of Pediatric Cardiology, Department of Pediatrics, University of Maryland School of Medicine, 110 S. Paca Street, Baltimore, MD 21201, USA
| | - Shelby Kutty
- Helen B. Taussig Heart Center, The Johns Hopkins Hospital and Johns Hopkins University, 1800 Orleans St., Baltimore, MD 21287, USA
| | - James S Tweddell
- Heart Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - S Adil Husain
- Division of Pediatric Cardiothoracic Surgery, University of Utah/Primary Children's Medical Center, 295 Chipeta Way, Salt Lake City, Utah 84108, USA
| | - Shaji C Menon
- Department of Radiology, University of Utah/Primary Children's Medical Center, 295 Chipeta Way, Salt Lake City, UT 84108, USA
| | - Linda M Lambert
- Division of Pediatric Cardiology, University of Utah/Primary Children's Medical Center, 295 Chipeta Way, Salt Lake City, UT 84108, USA
| | - David A Danford
- Division of Cardiology, Children's Hospital & Medical Center, Nebraska Medicine, Department of Pediatrics, University of Nebraska, 983332 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Seth J Kligerman
- Department of Radiology, University of California San Diego, 200 W. Arbor Drive, San Diego, CA 92103, USA
| | - Narutoshi Hibino
- Department of Surgery, The University of Chicago Medical Center, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | - Laxminarayana Korutla
- Department of Surgery (Cardiac), Yale School of Medicine, Yale University, 789 Howard Avenue, New Haven, CT 06510, USA
| | - Prashanth Vallabhajosyula
- Department of Surgery (Cardiac), Yale School of Medicine, Yale University, 789 Howard Avenue, New Haven, CT 06510, USA
| | - Michael J Campbell
- Department of Pediatrics, Duke University School of Medicine, 2301 Erwin Road, Durham, NC 27705, USA
| | - Aisha Khan
- Department of Medicine and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Eric Naioti
- Longeveron Inc, 1951 NW 7th Avenue, Suite 520, Miami, FL 33136, USA
| | - Keyvan Yousefi
- Longeveron Inc, 1951 NW 7th Avenue, Suite 520, Miami, FL 33136, USA
| | | | | | - Anthony A Oliva
- Longeveron Inc, 1951 NW 7th Avenue, Suite 520, Miami, FL 33136, USA
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, 313 Ferst Drive, Atlanta, GA 30332, USA
| |
Collapse
|
25
|
Saito Y, Oyama K, Tsujita K, Yasuda S, Kobayashi Y. Treatment strategies of acute myocardial infarction: updates on revascularization, pharmacological therapy, and beyond. J Cardiol 2023; 81:168-178. [PMID: 35882613 DOI: 10.1016/j.jjcc.2022.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/06/2022] [Indexed: 10/16/2022]
Abstract
Owing to recent advances in early reperfusion strategies, pharmacological therapy, standardized care, and the identification of vulnerable patient subsets, the prognosis of acute myocardial infarction has improved. However, there is still considerable room for improvement. This review article summarizes the latest evidence concerning clinical diagnosis and treatment of acute myocardial infarction.
Collapse
Affiliation(s)
- Yuichi Saito
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan.
| | - Kazuma Oyama
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
26
|
Whole-Heart Tissue Engineering and Cardiac Patches: Challenges and Promises. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010106. [PMID: 36671678 PMCID: PMC9855348 DOI: 10.3390/bioengineering10010106] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Despite all the advances in preventing, diagnosing, and treating cardiovascular disorders, they still account for a significant part of mortality and morbidity worldwide. The advent of tissue engineering and regenerative medicine has provided novel therapeutic approaches for the treatment of various diseases. Tissue engineering relies on three pillars: scaffolds, stem cells, and growth factors. Gene and cell therapy methods have been introduced as primary approaches to cardiac tissue engineering. Although the application of gene and cell therapy has resulted in improved regeneration of damaged cardiac tissue, further studies are needed to resolve their limitations, enhance their effectiveness, and translate them into the clinical setting. Scaffolds from synthetic, natural, or decellularized sources have provided desirable characteristics for the repair of cardiac tissue. Decellularized scaffolds are widely studied in heart regeneration, either as cell-free constructs or cell-seeded platforms. The application of human- or animal-derived decellularized heart patches has promoted the regeneration of heart tissue through in vivo and in vitro studies. Due to the complexity of cardiac tissue engineering, there is still a long way to go before cardiac patches or decellularized whole-heart scaffolds can be routinely used in clinical practice. This paper aims to review the decellularized whole-heart scaffolds and cardiac patches utilized in the regeneration of damaged cardiac tissue. Moreover, various decellularization methods related to these scaffolds will be discussed.
Collapse
|
27
|
Brody M, Agronin M, Herskowitz BJ, Bookheimer SY, Small GW, Hitchinson B, Ramdas K, Wishard T, McInerney KF, Vellas B, Sierra F, Jiang Z, Mcclain-Moss L, Perez C, Fuquay A, Rodriguez S, Hare JM, Oliva AA, Baumel B. Results and insights from a phase I clinical trial of Lomecel-B for Alzheimer's disease. Alzheimers Dement 2023; 19:261-273. [PMID: 35357079 PMCID: PMC10084163 DOI: 10.1002/alz.12651] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 01/18/2023]
Abstract
HYPOTHESIS We hypothesized that Lomecel-B, an allogeneic medicinal signaling cell (MSC) therapeutic candidate for Alzheimer's disease (AD), is safe and potentially disease-modifying via pleiotropic mechanisms of action. KEY PREDICTIONS We prospectively tested the predictions that Lomecel-B administration to mild AD patients is safe (primary endpoint) and would provide multiple exploratory indications of potential efficacy in clinical and biomarker domains (prespecified secondary/exploratory endpoints). STRATEGY AND KEY RESULTS Mild AD patient received a single infusion of low- or high-dose Lomecel-B, or placebo, in a double-blind, randomized, phase I trial. The primary safety endpoint was met. Fluid-based and imaging biomarkers indicated significant improvement in the Lomecel-B arms versus placebo. The low-dose Lomecel-B arm showed significant improvements versus placebo on neurocognitive and other assessments. INTERPRETATION Our results support the safety of Lomecel-B for AD, suggest clinical potential, and provide mechanistic insights. This early-stage study provides important exploratory information for larger efficacy-powered clinical trials.
Collapse
Affiliation(s)
- Mark Brody
- Brain Matters Research, Delray Beach, Florida, USA
| | | | | | - Susan Y Bookheimer
- Dept. of Psychiatry and Biobehavioral Sciences, and Semel Institute For Neuroscience and Human Behavior, UCLA David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Gary W Small
- Psychiatry, Hackensack Meridian Health, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | | | | | - Tyler Wishard
- Interdepartmental Program in Neuroscience, UCLA, and Semel Institute For Neuroscience and Human Behavior, UCLA David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | | | - Bruno Vellas
- Gérontopôle, Department of Geriatric Internal Medicine, University of Toulouse, Toulouse, France
| | - Felipe Sierra
- National Institute of Aging, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - Carmen Perez
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ana Fuquay
- Brain Matters Research, Delray Beach, Florida, USA
| | | | - Joshua M Hare
- Longeveron Inc., Miami, Florida, USA.,Department of Medicine and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | - Bernard Baumel
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
28
|
Maeda S, Kawamura T, Chida D, Shimamura K, Toda K, Harada A, Sawa Y, Miyagawa S. Notch Signaling-Modified Mesenchymal Stem Cell Patch Improves Left Ventricular Function via Arteriogenesis Induction in a Rat Myocardial Infarction Model. Cell Transplant 2023; 32:9636897231154580. [PMID: 36946544 PMCID: PMC10037722 DOI: 10.1177/09636897231154580] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
For ischemic cardiomyopathy (ICM) with limited therapeutic options, the induction of arteriogenesis has the potential to improve cardiac function through major restoration of blood flow. We hypothesized that transplantation of a Notch signaling-modified mesenchymal stem cell (SB623 cell) patch would induce angiogenesis and arteriogenesis in ischemic lesions, leading to improvement of left ventricular (LV) function in a rat ICM model. Two weeks after the induction of ischemia, SB623 cell patch transplantation into ICM rats (SB group, n = 10) or a sham operation (no-treatment group, n = 10) was performed. The LV ejection fraction was significantly improved at 6 weeks after SB623 cell patch transplantation (P < 0.001). Histological findings revealed that the number of von Willebrand factor (vWF)-positive capillary vessels (P < 0.01) and alpha smooth muscle actin (αSMA)- and vWF-positive arterioles with a diameter greater than 20 µm (P = 0.002) was significantly increased in the SB group, suggesting the induction of angiogenesis and arteriogenesis. Moreover, rat cardiomyocytes treated with SB623 cell patch transplantation showed upregulation of ephrin-B2 (P = 0.03) and EphB4 (P = 0.01) gene expression, indicating arteriogenesis induction. In conclusion, SB623 cell patch transplantation improved LV function by inducing angiogenesis and arteriogenesis in a rat ICM model.
Collapse
Affiliation(s)
- Shusaku Maeda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | | | - Kazuo Shimamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Koichi Toda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akima Harada
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
29
|
Csöbönyeiová M, Beerová N, Klein M, Debreová-Čeháková M, Danišovič Ľ. Cell-Based and Selected Cell-Free Therapies for Myocardial Infarction: How Do They Compare to the Current Treatment Options? Int J Mol Sci 2022; 23:10314. [PMID: 36142245 PMCID: PMC9499607 DOI: 10.3390/ijms231810314] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Because of cardiomyocyte death or dysfunction frequently caused by myocardial infarction (MI), heart failure is a leading cause of morbidity and mortality in modern society. Paradoxically, only limited and non-curative therapies for heart failure or MI are currently available. As a result, over the past two decades research has focused on developing cell-based approaches promoting the regeneration of infarcted tissue. Cell-based therapies for myocardial regeneration include powerful candidates, such as multipotent stem cells (mesenchymal stem cells (MSCs), bone-marrow-derived stem cells, endothelial progenitor cells, and hematopoietic stem cells) and induced pluripotent stem cells (iPSCs). These possess unique properties, such as potency to differentiate into desired cell types, proliferation capacity, and patient specificity. Preclinical and clinical studies have demonstrated modest improvement in the myocardial regeneration and reduced infarcted areas upon transplantation of pluripotent or multipotent stem cells. Another cell population that need to be considered as a potential source for cardiac regeneration are telocytes found in different organs, including the heart. Their therapeutic effect has been studied in various heart pathologies, such as MI, arrhythmias, or atrial amyloidosis. The most recent cell-free therapeutic tool relies on the cardioprotective effect of complex cargo carried by small membrane-bound vesicles-exosomes-released from stem cells via exocytosis. The MSC/iPSC-derived exosomes could be considered a novel exosome-based therapy for cardiovascular diseases thanks to their unique content. There are also other cell-free approaches, e.g., gene therapy, or acellular cardiac patches. Therefore, our review provides the most recent insights into the novel strategies for myocardial repair based on the regenerative potential of different cell types and cell-free approaches.
Collapse
Affiliation(s)
- Mária Csöbönyeiová
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešťany, Slovakia
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Nikoleta Beerová
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Martin Klein
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešťany, Slovakia
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Michaela Debreová-Čeháková
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešťany, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Ľuboš Danišovič
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešťany, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| |
Collapse
|
30
|
Bashor CJ, Hilton IB, Bandukwala H, Smith DM, Veiseh O. Engineering the next generation of cell-based therapeutics. Nat Rev Drug Discov 2022; 21:655-675. [PMID: 35637318 PMCID: PMC9149674 DOI: 10.1038/s41573-022-00476-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 12/19/2022]
Abstract
Cell-based therapeutics are an emerging modality with the potential to treat many currently intractable diseases through uniquely powerful modes of action. Despite notable recent clinical and commercial successes, cell-based therapies continue to face numerous challenges that limit their widespread translation and commercialization, including identification of the appropriate cell source, generation of a sufficiently viable, potent and safe product that meets patient- and disease-specific needs, and the development of scalable manufacturing processes. These hurdles are being addressed through the use of cutting-edge basic research driven by next-generation engineering approaches, including genome and epigenome editing, synthetic biology and the use of biomaterials.
Collapse
Affiliation(s)
- Caleb J Bashor
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Biosciences, Rice University, Houston, TX, USA.
| | - Isaac B Hilton
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Biosciences, Rice University, Houston, TX, USA.
| | - Hozefa Bandukwala
- Sigilon Therapeutics, Cambridge, MA, USA
- Flagship Pioneering, Cambridge, MA, USA
| | - Devyn M Smith
- Sigilon Therapeutics, Cambridge, MA, USA
- Arbor Biotechnologies, Cambridge, MA, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
31
|
Mehta C, Shah R, Yanamala N, Sengupta PP. Cardiovascular Imaging Databases: Building Machine Learning Algorithms for Regenerative Medicine. CURRENT STEM CELL REPORTS 2022. [DOI: 10.1007/s40778-022-00216-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Hsiao LC, Lin YN, Shyu WC, Ho M, Lu CR, Chang SS, Wang YC, Chen JY, Lu SY, Wu MY, Li KY, Lin YK, Tseng WYI, Su MY, Hsu CT, Tsai CK, Chiu LT, Chen CL, Lin CL, Hu KC, Cho DY, Tsai CH, Chang KC, Jeng LB. First-in-human pilot trial of combined intracoronary and intravenous mesenchymal stem cell therapy in acute myocardial infarction. Front Cardiovasc Med 2022; 9:961920. [PMID: 36017096 PMCID: PMC9395611 DOI: 10.3389/fcvm.2022.961920] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/13/2022] [Indexed: 12/17/2022] Open
Abstract
BackgroundAcute ST-elevation myocardial infarction (STEMI) elicits a robust cardiomyocyte death and inflammatory responses despite timely revascularization.ObjectivesThis phase 1, open-label, single-arm, first-in-human study aimed to assess the safety and efficacy of combined intracoronary (IC) and intravenous (IV) transplantation of umbilical cord-derived mesenchymal stem cells (UMSC01) for heart repair in STEMI patients with impaired left ventricular ejection fraction (LVEF 30-49%) following successful reperfusion by percutaneous coronary intervention.MethodsConsenting patients received the first dose of UMSC01 through IC injection 4-5 days after STEMI followed by the second dose of UMSC01 via IV infusion 2 days later. The primary endpoint was occurrence of any treatment-related adverse events and the secondary endpoint was changes of serum biomarkers and heart function by cardiac magnetic resonance imaging during a 12-month follow-up period.ResultsEight patients gave informed consents, of whom six completed the study. None of the subjects experienced treatment-related serious adverse events or major adverse cardiovascular events during IC or IV infusion of UMSC01 and during the follow-up period. The NT-proBNP level decreased (1362 ± 1801 vs. 109 ± 115 pg/mL, p = 0.0313), the LVEF increased (52.67 ± 12.75% vs. 62.47 ± 17.35%, p = 0.0246), and the wall motion score decreased (26.33 ± 5.57 vs. 22.33 ± 5.85, p = 0.0180) at the 12-month follow-up compared to the baseline values. The serial changes of LVEF were 0.67 ± 3.98, 8.09 ± 6.18, 9.04 ± 10.91, and 9.80 ± 7.56 at 1, 3, 6, and 12 months, respectively as compared to the baseline.ConclusionThis pilot study shows that combined IC and IV transplantation of UMSC01 in STEMI patients with impaired LVEF appears to be safe, feasible, and potentially beneficial in improving heart function. Further phase 2 studies are required to explore the effectiveness of dual-route transplantation of UMSC01 in STEMI patients.
Collapse
Affiliation(s)
- Lien-Cheng Hsiao
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Yen-Nien Lin
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Woei-Cherng Shyu
- Department of Neurology and Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
- Ever Supreme Bio Technology Co., Ltd, Taichung, Taiwan
| | - Ming Ho
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Chiung-Ray Lu
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Sheng Chang
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Chen Wang
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Jan-Yow Chen
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Shang-Yeh Lu
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Mei-Yao Wu
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Keng-Yuan Li
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Kai Lin
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Yih I. Tseng
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Mao-Yuan Su
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Chin-Ting Hsu
- Ever Supreme Bio Technology Co., Ltd, Taichung, Taiwan
| | | | - Lu-Ting Chiu
- Ever Supreme Bio Technology Co., Ltd, Taichung, Taiwan
| | | | - Cheng-Li Lin
- School of Medicine, China Medical University, Taichung, Taiwan
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Kai-Chieh Hu
- School of Medicine, China Medical University, Taichung, Taiwan
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Der-Yang Cho
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Chang-Hai Tsai
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Kuan-Cheng Chang
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- *Correspondence: Kuan-Cheng Chang,
| | - Long-Bin Jeng
- School of Medicine, China Medical University, Taichung, Taiwan
- Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan
- Long-Bin Jeng,
| |
Collapse
|
33
|
Yaping XU, Guotian Y, Dandan J, Jintao D, Xinyi L, Zhikun G. Fibroblast-derived exosomal miRNA-133 promotes cardiomyocyte-like differentiation. Acta Histochem 2022; 124:151931. [PMID: 35930994 DOI: 10.1016/j.acthis.2022.151931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/01/2022]
Abstract
OBJECTIVE To investigate the role of exosomal miRNA-133 secreted by cardiac fibroblasts (CFs) in promoting cardiomyocyte differentiation. METHODS Neonatal rat CFs were cultured in vitro, and the cultured CFs were divided into three groups as follows: induction, miRNA-133 high expression, and miRNA-133 inhibition. miRNA-133 was transfected into CFs with lentivirus as a vector. CFs were transfected with the miRNA-133 inhibitor, and the markers of cardiomyocyte were detected through immunofluorescence staining, Western blotting, and real-time quantitative polymerase chain reaction (qRT-PCR) at 3, 8, and 14 days, respectively. The expression levels of cardiac troponin T (cTnT) and cardiac actin (α-actin) were determined, and qRT-PCR was used to detect the expression of miRNA-133 in the fibroblast exosomes. RESULTS CFs subjected to immunofluorescence staining expressed vimentin and discoid domain receptor 2. The exosomes secreted by CFs were observed as small vesicles of 30-100 nm via transmission electron microscopy, and Western blotting was used to detect exosome-specific protein CD63 and CD9 expression. The expression levels of cTnT, α-actin, and exosomal miRNA-133 secreted into the supernatant of the miRNA-133 high-expression group increased gradually at different time points and reached the highest level at 14 days. The expression levels of cTnT, α-actin, and exosome miRNA-133 in the miRNA-133 inhibition group were the lowest. CONCLUSION The exosomal miRNA-133, which is derived from CFs, can promote the differentiation of fibroblasts into cardiomyocyte-like cells.
Collapse
Affiliation(s)
- X U Yaping
- Henan Medical Key Laboratory of Arrhythmia, Zhengzhou No. 7 People's Hospital, Zhengzhou, Henan, 450016, PR China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang City, Henan 453003, PR China
| | - Yin Guotian
- Department of Cardiology, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang City, Henan 453003, PR China
| | - Jia Dandan
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang City, Henan 453003, PR China
| | - Dou Jintao
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang City, Henan 453003, PR China
| | - Liu Xinyi
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang City, Henan 453003, PR China
| | - Guo Zhikun
- Henan Medical Key Laboratory of Arrhythmia, Zhengzhou No. 7 People's Hospital, Zhengzhou, Henan, 450016, PR China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang City, Henan 453003, PR China.
| |
Collapse
|
34
|
Mishra R, Saha P, Datla SR, Mellacheruvu P, Gunasekaran M, Guru SA, Fu X, Chen L, Bolli R, Sharma S, Kaushal S. Transplanted allogeneic cardiac progenitor cells secrete GDF-15 and stimulate an active immune remodeling process in the ischemic myocardium. J Transl Med 2022; 20:323. [PMID: 35864544 PMCID: PMC9306063 DOI: 10.1186/s12967-022-03534-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/13/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Despite promising results in clinical studies, the mechanism for the beneficial effects of allogenic cell-based therapies remains unclear. Macrophages are not only critical mediators of inflammation but also critical players in cardiac remodeling. We hypothesized that transplanted allogenic rat cardiac progenitor cells (rCPCs) augment T-regulatory cells which ultimately promote proliferation of M2 like macrophages by an as-yet undefined mechanism. METHODS AND RESULTS To test this hypothesis, we used crossover rat strains for exploring the mechanism of myocardial repair by allogenic CPCs. Human CPCs (hCPCs) were isolated from adult patients undergoing coronary artery bypass grafting, and rat CPCs (rCPCs) were isolated from male Wistar-Kyoto (WKY) rat hearts. Allogenic rCPCs suppressed the proliferation of T-cells observed in mixed lymphocyte reactions in vitro. Transplanted syngeneic or allogeneic rCPCs significantly increased cardiac function in a rat myocardial infarct (MI) model, whereas xenogeneic CPCs did not. Allogeneic rCPCs stimulated immunomodulatory responses by specifically increasing T-regulatory cells and M2 polarization, while maintaining their cardiac recovery potential and safety profile. Mechanistically, we confirmed the inactivation of NF-kB in Treg cells and increased M2 macrophages in the myocardium after MI by transplanted CPCs derived GDF15 and it's uptake by CD48 receptor on immune cells. CONCLUSION Collectively, these findings strongly support the active immunomodulatory properties and robust therapeutic potential of allogenic CPCs in post-MI cardiac dysfunction.
Collapse
Affiliation(s)
- Rachana Mishra
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA ,grid.413808.60000 0004 0388 2248Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL USA
| | - Progyaparamita Saha
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA ,grid.413808.60000 0004 0388 2248Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL USA
| | - Srinivasa Raju Datla
- grid.411024.20000 0001 2175 4264Department of Surgery, University of Maryland School of Medicine, Baltimore, MD USA
| | - Pranav Mellacheruvu
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Muthukumar Gunasekaran
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA ,grid.413808.60000 0004 0388 2248Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL USA
| | - Sameer Ahmad Guru
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA ,grid.413808.60000 0004 0388 2248Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL USA
| | - Xubin Fu
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA ,grid.413808.60000 0004 0388 2248Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL USA
| | - Ling Chen
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA ,grid.413808.60000 0004 0388 2248Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL USA
| | - Roberto Bolli
- grid.266623.50000 0001 2113 1622Division of Cardiovascular Medicine and Institute of Molecular Cardiology, University of Louisville, Louisville, USA
| | - Sudhish Sharma
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA.
| | - Sunjay Kaushal
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA.
| |
Collapse
|
35
|
Yedavilli S, Singh AD, Singh D, Samal R. Nano-Messengers of the Heart: Promising Theranostic Candidates for Cardiovascular Maladies. Front Physiol 2022; 13:895322. [PMID: 35899033 PMCID: PMC9313536 DOI: 10.3389/fphys.2022.895322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Till date, cardiovascular diseases remain a leading cause of morbidity and mortality across the globe. Several commonly used treatment methods are unable to offer safety from future complications and longevity to the patients. Therefore, better and more effective treatment measures are needed. A potential cutting-edge technology comprises stem cell-derived exosomes. These nanobodies secreted by cells are intended to transfer molecular cargo to other cells for the establishment of intercellular communication and homeostasis. They carry DNA, RNA, lipids, and proteins; many of these molecules are of diagnostic and therapeutic potential. Several stem cell exosomal derivatives have been found to mimic the cardioprotective attributes of their parent stem cells, thus holding the potential to act analogous to stem cell therapies. Their translational value remains high as they have minimal immunogenicity, toxicity, and teratogenicity. The current review highlights the potential of various stem cell exosomes in cardiac repair, emphasizing the recent advancements made in the development of cell-free therapeutics, particularly as biomarkers and as carriers of therapeutic molecules. With the use of genetic engineering and biomimetics, the field of exosome research for heart treatment is expected to solve various theranostic requirements in the field paving its way to the clinics.
Collapse
Affiliation(s)
- Sneha Yedavilli
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | | | - Damini Singh
- Environmental Pollution Analysis Lab, Bhiwadi, India
| | - Rasmita Samal
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
- *Correspondence: Rasmita Samal,
| |
Collapse
|
36
|
Safabakhsh S, Sar F, Martelotto L, Haegert A, Singhera G, Hanson P, Parker J, Collins C, Rohani L, Laksman Z. Isolating Nuclei From Frozen Human Heart Tissue for Single-Nucleus RNA Sequencing. Curr Protoc 2022; 2:e480. [PMID: 35816165 DOI: 10.1002/cpz1.480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Heart disease is the leading cause of global morbidity and mortality. This is in part because, despite an abundance of animal and in vitro models, it has been a challenge to date to study human heart tissue with sufficient depth and resolution to develop disease-modifying therapies for common cardiac conditions. Single-nucleus RNA sequencing (snRNA-seq) has emerged as a powerful tool capable of analyzing cellular function and signaling in health and disease, and has already contributed to significant advances in areas such as oncology and hematology. Employing snRNA-seq technology on flash-frozen human tissue has the potential to unlock novel disease mechanisms and pathways in any organ. Studying the human heart using snRNA-seq is a key priority for the field of cardiovascular sciences; however, progress to date has been slowed by numerous barriers. One key challenge is the fact that the human heart is very resistant to shearing and stress, making tissue dissociation and nuclear isolation difficult. Here, we describe a tissue dissociation method allowing the efficient and cost-effective isolation of high-quality nuclei from flash-frozen human heart tissue collected in surgical operating rooms. Our protocol addresses the challenge of nuclear isolation from human hearts, enables snRNA-seq of the human heart, and paves the way for an improved understanding of the human heart in health and disease. Ultimately, this will be key to uncovering signaling pathways and networks amenable to therapeutic intervention and the development of novel biomarkers and disease-modifying therapies. © 2022 Wiley Periodicals LLC. Basic Protocol: Human heart tissue dissociation and nuclear isolation for snRNA-seq.
Collapse
Affiliation(s)
- Sina Safabakhsh
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Funda Sar
- Vancouver Prostate Centre, UBC, Vancouver, British Columbia, Canada
| | | | - Anne Haegert
- Vancouver Prostate Centre, UBC, Vancouver, British Columbia, Canada
| | | | | | - Jeremy Parker
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin Collins
- Vancouver Prostate Centre, UBC, Vancouver, British Columbia, Canada
| | - Leili Rohani
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Zachary Laksman
- University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
37
|
Mining the Mesenchymal Stromal Cell Secretome in Patients with Chronic Left Ventricular Dysfunction. Cells 2022; 11:cells11132092. [PMID: 35805175 PMCID: PMC9266164 DOI: 10.3390/cells11132092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
Close examination of the initial results of cardiovascular cell therapy clinical trials indicates the importance of patient-specific differences on outcomes and the need to optimize or customize cell therapies. The fields of regenerative medicine and cell therapy have transitioned from using heterogeneous bone marrow mononuclear cells (BMMNCs) to mesenchymal stromal cells (MSCs), which are believed to elicit benefits through paracrine activity. Here, we examined MSCs from the BMMNCs of heart failure patients enrolled in the FOCUS-CCTRN trial. We sought to identify differences in MSCs between patients who improved and those who declined in heart function, regardless of treatment received. Although we did not observe differences in the cell profile of MSCs between groups, we did find significant differences in the MSC secretome profile between patients who improved or declined. We conclude that “mining” the MSC secretome may provide clues to better understand the impact of patient characteristics on outcomes after cell therapy and this knowledge can inform future cell therapy trials.
Collapse
|
38
|
Ciucci G, Colliva A, Vuerich R, Pompilio G, Zacchigna S. Biologics and cardiac disease: challenges and opportunities. Trends Pharmacol Sci 2022; 43:894-905. [PMID: 35779965 DOI: 10.1016/j.tips.2022.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/06/2022] [Accepted: 06/02/2022] [Indexed: 10/31/2022]
Abstract
Biologics are revolutionizing the treatment of chronic diseases, such as cancer and monogenic disorders, by overcoming the limits of classic therapeutic approaches using small molecules. However, the clinical use of biologics is limited for cardiovascular diseases (CVDs) , which are the primary cause of morbidity and mortality worldwide. Here, we review the state-of-the-art use of biologics for cardiac disorders and provide a framework for understanding why they still struggle to enter the field. Some limitations are common and intrinsic to all biological drugs, whereas others depend on the complexity of cardiac disease. In our opinion, delineating these struggles will be valuable in developing and accelerating the approval of a new generation of biologics for CVDs.
Collapse
Affiliation(s)
- Giulio Ciucci
- Cardiovascular Biology Laboratory, ICGEB Trieste, Trieste, Italy
| | - Andrea Colliva
- Cardiovascular Biology Laboratory, ICGEB Trieste, Trieste, Italy; University of Trieste, Department of Medicine, Surgery and Health Sciences, Trieste, Italy
| | - Roman Vuerich
- Cardiovascular Biology Laboratory, ICGEB Trieste, Trieste, Italy; University of Trieste, Department of Life Sciences, Trieste, Italy
| | - Giulio Pompilio
- Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milano, Milano, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, ICGEB Trieste, Trieste, Italy; University of Trieste, Department of Medicine, Surgery and Health Sciences, Trieste, Italy.
| |
Collapse
|
39
|
Excessive branched-chain amino acid accumulation restricts mesenchymal stem cell-based therapy efficacy in myocardial infarction. Signal Transduct Target Ther 2022; 7:171. [PMID: 35654769 PMCID: PMC9163108 DOI: 10.1038/s41392-022-00971-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/07/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
Mesenchymal stem cells (MSCs) delivered into the post-ischemic heart milieu have a low survival and retention rate, thus restricting the cardioreparative efficacy of MSC-based therapy. Chronic ischemia results in metabolic reprogramming in the heart, but little is known about how these metabolic changes influence implanted MSCs. Here, we found that excessive branched-chain amino acid (BCAA) accumulation, a metabolic signature seen in the post-ischemic heart, was disadvantageous to the retention and cardioprotection of intramyocardially injected MSCs. Discovery-driven experiments revealed that BCAA at pathological levels sensitized MSCs to stress-induced cell death and premature senescence via accelerating the loss of histone 3 lysine 9 trimethylation (H3K9me3). A novel mTORC1/DUX4/KDM4E axis was identified as the cause of BCAA-induced H3K9me3 loss and adverse phenotype acquisition. Enhancing BCAA catabolic capability in MSCs via genetic/pharmacological approaches greatly improved their adaptation to the high BCAA milieu and strengthened their cardioprotective efficacy. We conclude that aberrant BCAA accumulation is detrimental to implanted MSCs via a previously unknown metabolite-signaling-epigenetic mechanism, emphasizing that the metabolic changes of the post-ischemic heart crucially influence the fate of implanted MSCs and their therapeutic benefits.
Collapse
|
40
|
Graber M, Nägele F, Hirsch J, Pölzl L, Schweiger V, Lechner S, Grimm M, Cooke JP, Gollmann-Tepeköylü C, Holfeld J. Cardiac Shockwave Therapy – A Novel Therapy for Ischemic Cardiomyopathy? Front Cardiovasc Med 2022; 9:875965. [PMID: 35647069 PMCID: PMC9133452 DOI: 10.3389/fcvm.2022.875965] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/12/2022] [Indexed: 11/14/2022] Open
Abstract
Over the past decades, shockwave therapy (SWT) has gained increasing interest as a therapeutic approach for regenerative medicine applications, such as healing of bone fractures and wounds. More recently, pre-clinical studies have elucidated potential mechanisms for the regenerative effects of SWT in myocardial ischemia. The mechanical stimulus of SWT may induce regenerative effects in ischemic tissue via growth factor release, modulation of inflammatory response, and angiogenesis. Activation of the innate immune system and stimulation of purinergic receptors by SWT appears to enhance vascularization and regeneration of injured tissue with functional improvement. Intriguingly, small single center studies suggest that SWT may improve angina, exercise tolerance, and hemodynamics in patients with ischemic heart disease. Thus, SWT may represent a promising technology to induce cardiac protection or repair in patients with ischemic heart disease.
Collapse
Affiliation(s)
- Michael Graber
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Felix Nägele
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob Hirsch
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Leo Pölzl
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
- Division of Clinical and Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Victor Schweiger
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Sophia Lechner
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Grimm
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - John P. Cooke
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States
| | | | - Johannes Holfeld
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
- *Correspondence: Johannes Holfeld,
| |
Collapse
|
41
|
Abstract
The successful transplantation of stem cells has the potential to transform regenerative medicine approaches and open promising avenues to repair, replace, and regenerate diseased, damaged, or aged tissues. However, pre-/post-transplantation issues of poor cell survival, retention, cell fate regulation, and insufficient integration with host tissues constitute significant challenges. The success of stem cell transplantation depends upon the coordinated sequence of stem cell renewal, specific lineage differentiation, assembly, and maintenance of long-term function. Advances in biomaterials can improve pre-/post-transplantation outcomes by integrating biophysiochemical cues and emulating tissue microenvironments. This review highlights leading biomaterials-based approaches for enhancing stem cell transplantation.
Collapse
Affiliation(s)
- Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Priya Mohindra
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94158, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94158, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; School of Engineering, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
42
|
Hare JM, Yang P. Regenerating Endothelium and Restoring Microvascular Endothelial Function. JACC Cardiovasc Imaging 2022; 15:825-827. [PMID: 35512955 DOI: 10.1016/j.jcmg.2022.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Joshua M Hare
- The University of Miami Miller School of Medicine, Miami, Florida, USA.
| | - Phillip Yang
- Stanford University Medical School, Stanford, California, USA
| |
Collapse
|
43
|
Lionetti V, Sareen N, Dhingra S. Editorial: The Analysis of Nanovesicles, Biomaterials and Chemical Compounds: Assisting the Promotion of Angiogenesis and Enhancing Tissue Engineering Strategies. Front Cardiovasc Med 2022; 9:904738. [PMID: 35557531 PMCID: PMC9089304 DOI: 10.3389/fcvm.2022.904738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vincenzo Lionetti
- Unit of Translational Critical Care Medicine, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Vincenzo Lionetti
| | - Niketa Sareen
- Unit of Translational Critical Care Medicine, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Sanjiv Dhingra
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Sanjiv Dhingra
| |
Collapse
|
44
|
Chimenti I, Picchio V, Pagano F, Schirone L, Schiavon S, D'Ambrosio L, Valenti V, Forte M, di Nonno F, Rubattu S, Peruzzi M, Versaci F, Greco E, Calogero A, De Falco E, Frati G, Sciarretta S. The impact of autophagy modulation on phenotype and survival of cardiac stromal cells under metabolic stress. Cell Death Discov 2022; 8:149. [PMID: 35365624 PMCID: PMC8975847 DOI: 10.1038/s41420-022-00924-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/31/2022] [Accepted: 02/17/2022] [Indexed: 01/18/2023] Open
Abstract
Cardiac stromal cells (CSCs) embrace multiple phenotypes and are a contributory factor in tissue homeostasis and repair. They can be exploited as therapeutic mediators against cardiac fibrosis and remodeling, but their survival and cardioprotective properties can be decreased by microenvironmental cues. We evaluated the impact of autophagy modulation by different pharmacological/genetic approaches on the viability and phenotype of murine CSCs, which had been subjected to nutrient deprivation or hyperglycemia, in order to mimic relevant stress conditions and risk factors of cardiovascular diseases. Our results show that autophagy is activated in CSCs by nutrient deprivation, and that autophagy induction by trehalose or autophagy-related protein 7 (ATG7)-overexpression can significantly preserve CSC viability. Furthermore, autophagy induction is associated with a higher proportion of primitive, non-activated stem cell antigen 1 (Sca1)-positive cells, and with a reduced fibrotic fraction (positive for the discoidin domain-containing receptor 2, DDR2) in the CSC pool after nutrient deprivation. Hyperglycemia, on the other hand, is associated with reduced autophagic flux in CSCs, and with a significant reduction in primitive Sca1+ cells. Autophagy induction by adenoviral-mediated ATG7-overexpression maintains a cardioprotective, anti-inflammatory and pro-angiogenic paracrine profile of CSCs exposed to hyperglycemia for 1 week. Finally, autophagy induction by ATG7-overexpression during hyperglycemia can significantly preserve cell viability in CSCs, which were subsequently exposed to nutrient deprivation, reducing hyperglycemia-induced impairment of cell resistance to stress. In conclusion, our results show that autophagy stimulation preserves CSC viability and function in response to metabolic stressors, suggesting that it may boost the beneficial functions of CSCs in cardiac repair mechanisms.
Collapse
Affiliation(s)
- Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.
- Mediterranea Cardiocentro, Napoli, Italy.
| | - Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Francesca Pagano
- Biochemistry and Cellular Biology Istitute, CNR, Monterotondo, Italy
| | - Leonardo Schirone
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Department of Clinical, Internal Medicine, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Sonia Schiavon
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Luca D'Ambrosio
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Valentina Valenti
- Haemodynamic and Cardiology Unit, "Santa Maria Goretti" Hospital, Latina, Italy
| | | | | | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, Italy
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Mariangela Peruzzi
- Mediterranea Cardiocentro, Napoli, Italy
- Department of Clinical, Internal Medicine, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Versaci
- Haemodynamic and Cardiology Unit, "Santa Maria Goretti" Hospital, Latina, Italy
- Department of System Medicine, "Tor Vergata" University, Rome, Italy
| | - Ernesto Greco
- Department of Clinical, Internal Medicine, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonella Calogero
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Mediterranea Cardiocentro, Napoli, Italy
| | - Giacomo Frati
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Sebastiano Sciarretta
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
45
|
Wang H, Pong T, Obafemi OO, Lucian HJ, Aparicio-Valenzuela J, Tran NA, Mullis DM, Elde S, Tada Y, Baker SW, Wang CY, Cyr KJ, Paulsen MJ, Zhu Y, Lee AM, Woo YJ. Electrophysiologic Conservation of Epicardial Conduction Dynamics After Myocardial Infarction and Natural Heart Regeneration in Newborn Piglets. Front Cardiovasc Med 2022; 9:829546. [PMID: 35355973 PMCID: PMC8959497 DOI: 10.3389/fcvm.2022.829546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Newborn mammals, including piglets, exhibit natural heart regeneration after myocardial infarction (MI) on postnatal day 1 (P1), but this ability is lost by postnatal day 7 (P7). The electrophysiologic properties of this naturally regenerated myocardium have not been examined. We hypothesized that epicardial conduction is preserved after P1 MI in piglets. Yorkshire-Landrace piglets underwent left anterior descending coronary artery ligation at age P1 (n = 6) or P7 (n = 7), After 7 weeks, cardiac magnetic resonance imaging was performed with late gadolinium enhancement for analysis of fibrosis. Epicardial conduction mapping was performed using custom 3D-printed high-resolution mapping arrays. Age- and weight-matched healthy pigs served as controls (n = 6). At the study endpoint, left ventricular (LV) ejection fraction was similar for controls and P1 pigs (46.4 ± 3.0% vs. 40.3 ± 4.9%, p = 0.132), but significantly depressed for P7 pigs (30.2 ± 6.6%, p < 0.001 vs. control). The percentage of LV myocardial volume consisting of fibrotic scar was 1.0 ± 0.4% in controls, 9.9 ± 4.4% in P1 pigs (p = 0.002 vs. control), and 17.3 ± 4.6% in P7 pigs (p < 0.001 vs. control, p = 0.007 vs. P1). Isochrone activation maps and apex activation time were similar between controls and P1 pigs (9.4 ± 1.6 vs. 7.8 ± 0.9 ms, p = 0.649), but significantly prolonged in P7 pigs (21.3 ± 5.1 ms, p < 0.001 vs. control, p < 0.001 vs. P1). Conduction velocity was similar between controls and P1 pigs (1.0 ± 0.2 vs. 1.1 ± 0.4 mm/ms, p = 0.852), but slower in P7 pigs (0.7 ± 0.2 mm/ms, p = 0.129 vs. control, p = 0.052 vs. P1). Overall, our data suggest that epicardial conduction dynamics are conserved in the setting of natural heart regeneration in piglets after P1 MI.
Collapse
Affiliation(s)
- Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Terrence Pong
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | | | - Haley J. Lucian
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | | | - Nicholas A. Tran
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | - Danielle M. Mullis
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | - Stefan Elde
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | - Yuko Tada
- Department of Cardiovascular Medicine, Stanford University, Stanford, CA, United States
| | - Sam W. Baker
- Department of Comparative Medicine, Stanford University, Stanford, CA, United States
| | - Caroline Y. Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | - Kevin J. Cyr
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | - Michael J. Paulsen
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Anson M. Lee
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Y. Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
46
|
Johnston PV, Raval AN, Henry TD, Traverse JH, Pepine CJ. Dare to dream? Cell-based therapies for heart failure after DREAM-HF: Review and roadmap for future clinical study. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2022; 13:100118. [PMID: 38560073 PMCID: PMC10978179 DOI: 10.1016/j.ahjo.2022.100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/28/2022] [Indexed: 04/04/2024]
Abstract
Clinical trials of cell-based therapies for heart failure have resulted in significant strides forward in our understanding of the potential the failing heart has for regeneration and repair. Yet, two decades on, the need for novel cell-based therapies for heart failure has never been greater. The DREAM-HF trial, which was presented as a late-breaking trial at the American Heart Association Scientific Sessions 2021 did not meet the primary heart failure outcome, but did show a large, clinically significant reduction in major adverse cardiovascular events (MACE) in patients receiving cells, an effect that was most pronounced in patients with evidence of maladaptive inflammation. These results represent an important step forward in our understanding of how cell-based therapies can exert beneficial effects in patients with heart failure and should serve as a guide for future clinical efforts. In light of the results of DREAM-HF, this review serves to provide an understanding of the current state of cell-based therapies for heart failure, as well as to highlight major knowledge gaps and suggest guiding principles for clinical trials of cell therapy going forward. Using the knowledge gained from DREAM-HF along with the trials that preceded it, the potential for breakthrough cell-based therapies for heart failure in the coming decade is immense.
Collapse
Affiliation(s)
- Peter V. Johnston
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Amish N. Raval
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Timothy D. Henry
- Carl and Edyth Lindner Center for Research at the Christ Hospital, Cincinnati, OH, United States of America
| | - Jay H. Traverse
- Minneapolis Heart Institute Foundation at Abbot Northwestern Hospital, Minneapolis, MN, United States of America
| | - Carl J. Pepine
- Department of Medicine, Division of Cardiovascular Medicine, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
47
|
Ma S, Yan J, Chen L, Zhu Y, Chen K, Zheng C, Shen M, Liao Y. A Bibliometric and Visualized Analysis of Cardiac Regeneration Over a 20-Year Period. Front Cardiovasc Med 2021; 8:789503. [PMID: 34966800 PMCID: PMC8710530 DOI: 10.3389/fcvm.2021.789503] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Recent research has suggested that cardiac regeneration may have the widely applicable potential of treating heart failure (HF). A comprehensive understanding of the development status of this field is conducive to its development. However, no bibliometric analysis has summarized this field properly. We aimed to analyze cardiac regeneration-related literature over 20 years and provide valuable insights. Methods: Publications were collected from the Web of Science Core Collection (WoSCC). Microsoft Excel, VOSviewer, CiteSpace, and alluvial generator were used to analyze and present the data. Results: The collected 11,700 publications showed an annually increasing trend. The United States and Harvard University were the leading force among all the countries and institutions. The majority of articles were published in Circulation Research, and Circulation was the most co-cited journal. According to co-citation analysis, burst detection and alluvial flow map, cardiomyocyte proliferation, stem cells, such as first-and second-generation, extracellular vesicles especially exosomes, direct cardiac reprogramming, macrophages, microRNAs, and inflammation have become more and more popular recently. Conclusions: Cardiac regeneration remains a research hotspot and develops rapidly. How to modify cardiac regeneration endogenously and exogenously may still be the hotspot in the future and should be discussed more deeply.
Collapse
Affiliation(s)
- Siyuan Ma
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Cardiology, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junyu Yan
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Cardiology, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lu Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Cardiology, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yingqi Zhu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Cardiology, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaitong Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Cardiology, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cankun Zheng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Cardiology, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengjia Shen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Cardiology, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yulin Liao
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Cardiology, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
48
|
Zhang J, Bolli R, Garry DJ, Marbán E, Menasché P, Zimmermann WH, Kamp TJ, Wu JC, Dzau VJ. Basic and Translational Research in Cardiac Repair and Regeneration: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 78:2092-2105. [PMID: 34794691 PMCID: PMC9116459 DOI: 10.1016/j.jacc.2021.09.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022]
Abstract
This paper aims to provide an important update on the recent preclinical and clinical trials using cell therapy strategies and engineered heart tissues for the treatment of postinfarction left ventricular remodeling and heart failure. In addition to the authors’ own works and opinions on the roadblocks of the field, they discuss novel approaches for cardiac remuscularization via the activation of proliferative mechanisms in resident cardiomyocytes or direct reprogramming of somatic cells into cardiomyocytes. This paper’s main mindset is to present current and future strategies in light of their implications for the design of future patient trials with the ultimate objective of facilitating the translation of discoveries in regenerative myocardial therapies to the clinic.
Collapse
Affiliation(s)
- Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine, School of Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA
| | - Daniel J Garry
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles California, USA
| | - Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, University of Paris, PARCC, INSERM, F-75015, Paris, France
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, and DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Timothy J Kamp
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Victor J Dzau
- Mandel Center for Hypertension Research, Duke Cardiovascular Center, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW This review describes the latest advances in cell therapy, biomaterials and 3D bioprinting for the treatment of cardiovascular disease. RECENT FINDINGS Cell therapies offer the greatest benefit for patients suffering from chronic ischemic and nonischemic cardiomyopathy. Rather than replacing lost cardiomyocytes, the effects of most cell therapies are mediated by paracrine signalling, mainly through the induction of angiogenesis and immunomodulation. Cell preconditioning, or genetic modifications are being studied to improve the outcomes. Biomaterials offer stand-alone benefits such as bioactive cues for cell survival, proliferation and differentiation, induction of vascularization or prevention of further cardiomyocyte death. They also provide mechanical support or electroconductivity, and can be used to deliver cells, growth factors or drugs to the injured site. Apart from classical biomaterial manufacturing techniques, 3D bioprinting offers greater spatial control over biomaterial deposition and higher resolution of the details, including hollow vessel-like structures. SUMMARY Cell therapy induces mainly angiogenesis and immunomodulation. The ability to induce direct cardiomyocyte regeneration to replace the lost cardiomyocytes is, however, still missing until embryonic or induced pluripotent stem cell use becomes available. Cell therapy would benefit from combinatorial use with biomaterials, as these can prolong cell retention and survival, offer additional mechanical support and provide inherent bioactive cues. Biomaterials can also be used to deliver growth factors, drugs, and other molecules. 3D bioprinting is a high-resolution technique that has great potential in cardiac therapy.
Collapse
|
50
|
Yamada S, Bartunek J, Behfar A, Terzic A. Mass Customized Outlook for Regenerative Heart Failure Care. Int J Mol Sci 2021; 22:11394. [PMID: 34768825 PMCID: PMC8583673 DOI: 10.3390/ijms222111394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Heart failure pathobiology is permissive to reparative intent. Regenerative therapies exemplify an emerging disruptive innovation aimed at achieving structural and functional organ restitution. However, mixed outcomes, complexity in use, and unsustainable cost have curtailed broader adoption, mandating the development of novel cardio-regenerative approaches. Lineage guidance offers a standardized path to customize stem cell fitness for therapy. A case in point is the molecular induction of the cardiopoiesis program in adult stem cells to yield cardiopoietic cell derivatives designed for heart failure treatment. Tested in early and advanced clinical trials in patients with ischemic heart failure, clinical grade cardiopoietic cells were safe and revealed therapeutic improvement within a window of treatment intensity and pre-treatment disease severity. With the prospect of mass customization, cardiopoietic guidance has been streamlined from the demanding, recombinant protein cocktail-based to a protein-free, messenger RNA-based single gene protocol to engineer affordable cardiac repair competent cells. Clinical trial biobanked stem cells enabled a systems biology deconvolution of the cardiopoietic cell secretome linked to therapeutic benefit, exposing a paracrine mode of action. Collectively, this new knowledge informs next generation regenerative therapeutics manufactured as engineered cellular or secretome mimicking cell-free platforms. Launching biotherapeutics tailored for optimal outcome and offered at mass production cost would contribute to advancing equitable regenerative care that addresses population health needs.
Collapse
Affiliation(s)
- Satsuki Yamada
- Center for Regenerative Medicine, Marriott Family Comprehensive Cardiac Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (S.Y.); (A.B.)
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jozef Bartunek
- Cardiovascular Center, OLV Hospital, 9300 Aalst, Belgium
| | - Atta Behfar
- Center for Regenerative Medicine, Marriott Family Comprehensive Cardiac Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (S.Y.); (A.B.)
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Andre Terzic
- Center for Regenerative Medicine, Marriott Family Comprehensive Cardiac Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (S.Y.); (A.B.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|