1
|
Becker J, Wilting J. Molecules That Have Rarely Been Studied in Lymphatic Endothelial Cells. Int J Mol Sci 2024; 25:12226. [PMID: 39596293 PMCID: PMC11594919 DOI: 10.3390/ijms252212226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
A number of standard molecules are used for the molecular and histological characterization of lymphatic endothelial cells (LECs), including lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), Podoplanin (D2-40), VEGFR3, Prospero homeobox protein 1 (PROX1), and CD31. The number of molecules whose mutations cause lymphatic malformations or primary congenital lymphedema is considerable, but the majority of these diseases have not yet been characterized at the molecular level. Therefore, there is still considerable scope for molecular and functional studies of the lymphatic vasculature. Using RNASeq, we have previously characterized lymphatic endothelial cells (LECs) under normoxic and hypoxic conditions. We used this information to compare it with immunohistochemical data. We carried out some of the immunohistology ourselves, and systematically studied the Human Protein Atlas, a cell and tissue database based in Sweden. Here we describe molecules that are expressed at RNA and protein levels in LECs, hoping to stimulate future functional studies of these molecules.
Collapse
Affiliation(s)
| | - Jörg Wilting
- Institute of Anatomy and Cell Biology, University Medical Center Goettingen, Georg-August-University Goettingen, Kreuzbergring 36, 37075 Göttingen, Germany
| |
Collapse
|
2
|
Crossey E, Carty S, Shao F, Henao-Vasquez J, Ysasi AB, Zeng M, Hinds A, Lo M, Tilston-Lunel A, Varelas X, Jones MR, Fine A. Influenza induces lung lymphangiogenesis independent of YAP/TAZ activity in lymphatic endothelial cells. Sci Rep 2024; 14:21324. [PMID: 39266641 PMCID: PMC11393066 DOI: 10.1038/s41598-024-72115-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
The lymphatic system consists of a vessel network lined by specialized lymphatic endothelial cells (LECs) that are responsible for tissue fluid homeostasis and immune cell trafficking. The mechanisms for organ-specific LEC responses to environmental cues are not well understood. We found robust lymphangiogenesis during influenza A virus infection in the adult mouse lung. We show that the number of LECs increases twofold at 7 days post-influenza infection (dpi) and threefold at 21 dpi, and that lymphangiogenesis is preceded by lymphatic dilation. We also show that the expanded lymphatic network enhances fluid drainage to mediastinal lymph nodes. Using EdU labeling, we found that a significantly higher number of pulmonary LECs are proliferating at 7 dpi compared to LECs in homeostatic conditions. Lineage tracing during influenza indicates that new pulmonary LECs are derived from preexisting LECs rather than non-LEC progenitors. Lastly, using a conditional LEC-specific YAP/TAZ knockout model, we established that lymphangiogenesis, fluid transport and the immune response to influenza are independent of YAP/TAZ activity in LECs. These findings were unexpected, as they indicate that YAP/TAZ signaling is not crucial for these processes.
Collapse
Affiliation(s)
- Erin Crossey
- Division of Pulmonary, Allergy, Sleep and Critical Care, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, 72 East Concord St, R-304, Boston, MA, 02118, USA.
| | - Senegal Carty
- Division of Pulmonary, Allergy, Sleep and Critical Care, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, 72 East Concord St, R-304, Boston, MA, 02118, USA
| | - Fengzhi Shao
- Division of Pulmonary, Allergy, Sleep and Critical Care, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, 72 East Concord St, R-304, Boston, MA, 02118, USA
| | - Jhonatan Henao-Vasquez
- Division of Pulmonary, Allergy, Sleep and Critical Care, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, 72 East Concord St, R-304, Boston, MA, 02118, USA
| | - Alexandra B Ysasi
- Division of Pulmonary, Allergy, Sleep and Critical Care, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, 72 East Concord St, R-304, Boston, MA, 02118, USA
| | - Michelle Zeng
- Division of Pulmonary, Allergy, Sleep and Critical Care, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, 72 East Concord St, R-304, Boston, MA, 02118, USA
| | - Anne Hinds
- Division of Pulmonary, Allergy, Sleep and Critical Care, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, 72 East Concord St, R-304, Boston, MA, 02118, USA
| | - Ming Lo
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Comparative Pathology Laboratory, Boston University National Emerging and Infectious Disease Laboratories, Boston, MA, USA
| | - Andrew Tilston-Lunel
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Xaralabos Varelas
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Matthew R Jones
- Division of Pulmonary, Allergy, Sleep and Critical Care, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, 72 East Concord St, R-304, Boston, MA, 02118, USA
| | - Alan Fine
- Division of Pulmonary, Allergy, Sleep and Critical Care, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, 72 East Concord St, R-304, Boston, MA, 02118, USA
| |
Collapse
|
3
|
Ruliffson BNK, Larson SM, Xhupi EK, Herrera-Diaz DL, Whittington CF. Characterization of Photo-Crosslinked Methacrylated Type I Collagen as a Platform to Investigate the Lymphatic Endothelial Cell Response. LYMPHATICS 2024; 2:177-194. [PMID: 39664172 PMCID: PMC11632916 DOI: 10.3390/lymphatics2030015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Despite chronic fibrosis occurring in many pathological conditions, few in vitro studies examine how fibrosis impacts lymphatic endothelial cell (LEC) behavior. This study examined stiffening profiles of PhotoCol®-commercially available methacrylated type I collagen-photo-crosslinked with the photoinitiators: Lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP), Irgacure 2959 (IRG), and Ruthenium/Sodium Persulfate (Ru/SPS) prior to evaluating PhotoCol® permeability and LEC response to PhotoCol® at stiffnesses representing normal and fibrotic tissues. Ru/SPS produced the highest stiffness (~6 kilopascal (kPa)) for photo-crosslinked PhotoCol®, but stiffness did not change with burst light exposures (30 and 90 s). The collagen fibril area fraction increased, and dextran permeability (40 kilodalton (kDa)) decreased with photo-crosslinking, showing the impact of photo-crosslinking on microstructure and molecular transport. Human dermal LECs on softer, uncrosslinked PhotoCol® (~0.5 kPa) appeared smaller with less prominent vascular endothelial (VE)-cadherin (cell-cell junction) expression compared to LECs on stiffer PhotoCol® (~6 kPa), which had increased cell size, border irregularity, and VE-cadherin thickness (junction zippering) that is consistent with LEC morphology in fibrotic tissues. Our quantitative morphological analysis demonstrates our ability to produce LECs with a fibrotic phenotype, and the overall study shows that PhotoCol® with Ru/SPS provides the necessary physical properties to systematically study LEC responses related to capillary growth and function under fibrotic conditions.
Collapse
Affiliation(s)
- Brian N. K. Ruliffson
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Stephen M. Larson
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Eleni K. Xhupi
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Diana L. Herrera-Diaz
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | |
Collapse
|
4
|
Yang W, Wu Z, Cai S, Li Z, Wang W, Wu J, Luo H, Ye X. Tumor lymphangiogenesis index reveals the immune landscape and immunotherapy response in lung adenocarcinoma. Front Immunol 2024; 15:1354339. [PMID: 38638428 PMCID: PMC11024352 DOI: 10.3389/fimmu.2024.1354339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
Background Lymphangiogenesis (LYM) has an important role in tumor progression and is strongly associated with tumor metastasis. However, the clinical application of LYM has not progressed as expected. The potential value of LYM needs to be further developed in lung adenocarcinoma (LUAD) patients. Methods The Sequencing data and clinical characteristics of LUAD patients were downloaded from The Cancer Genome Atlas and GEO databases. Multiple machine learning algorithms were used to screen feature genes and develop the LYM index. Immune cell infiltration, immune checkpoint expression, Tumor Immune Dysfunction and Exclusion (TIDE) algorithm and drug sensitivity analysis were used to explore the correlation of LYM index with immune profile and anti-tumor therapy. Results We screened four lymphangiogenic feature genes (PECAM1, TIMP1, CXCL5 and PDGFB) to construct LYM index based on multiple machine learning algorithms. We divided LUAD patients into the high LYM index group and the low LYM index group based on the median LYM index. LYM index is a risk factor for the prognosis of LUAD patients. In addition, there was a significant difference in immune profile between high LYM index and low LYM index groups. LUAD patients in the low LYM index group seemed to benefit more from immunotherapy based on the results of TIDE algorithm. Conclusion Overall, we confirmed that the LYM index is a prognostic risk factor and a valuable predictor of immunotherapy response in LUAD patients, which provides new evidence for the potential application of LYM.
Collapse
Affiliation(s)
- Weichang Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang, Jiangxi, China
| | - Zhijian Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shanshan Cai
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhouhua Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Wenjun Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Juan Wu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hongdan Luo
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoqun Ye
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Thomasy SM, Leonard BC, Greiner MA, Skeie JM, Raghunathan VK. Squishy matters - Corneal mechanobiology in health and disease. Prog Retin Eye Res 2024; 99:101234. [PMID: 38176611 PMCID: PMC11193890 DOI: 10.1016/j.preteyeres.2023.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
The cornea, as a dynamic and responsive tissue, constantly interacts with mechanical forces in order to maintain its structural integrity, barrier function, transparency and refractive power. Cells within the cornea sense and respond to various mechanical forces that fundamentally regulate their morphology and fate in development, homeostasis and pathophysiology. Corneal cells also dynamically regulate their extracellular matrix (ECM) with ensuing cell-ECM crosstalk as the matrix serves as a dynamic signaling reservoir providing biophysical and biochemical cues to corneal cells. Here we provide an overview of mechanotransduction signaling pathways then delve into the recent advances in corneal mechanobiology, focusing on the interplay between mechanical forces and responses of the corneal epithelial, stromal, and endothelial cells. We also identify species-specific differences in corneal biomechanics and mechanotransduction to facilitate identification of optimal animal models to study corneal wound healing, disease, and novel therapeutic interventions. Finally, we identify key knowledge gaps and therapeutic opportunities in corneal mechanobiology that are pressing for the research community to address especially pertinent within the domains of limbal stem cell deficiency, keratoconus and Fuchs' endothelial corneal dystrophy. By furthering our understanding corneal mechanobiology, we can contextualize discoveries regarding corneal diseases as well as innovative treatments for them.
Collapse
Affiliation(s)
- Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA, United States; Department of Ophthalmology & Vision Science, School of Medicine, University of California - Davis, Davis, CA, United States; California National Primate Research Center, Davis, CA, United States.
| | - Brian C Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA, United States; Department of Ophthalmology & Vision Science, School of Medicine, University of California - Davis, Davis, CA, United States
| | - Mark A Greiner
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Iowa Lions Eye Bank, Coralville, IA, United States
| | - Jessica M Skeie
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Iowa Lions Eye Bank, Coralville, IA, United States
| | | |
Collapse
|
6
|
Crossey E, Carty S, Shao F, Henao-Vasquez J, Ysasi AB, Zeng M, Hinds A, Lo M, Tilston-Lunel A, Varelas X, Jones MR, Fine A. Influenza Induces Lung Lymphangiogenesis Independent of YAP/TAZ Activity in Lymphatic Endothelial Cells. RESEARCH SQUARE 2024:rs.3.rs-3951689. [PMID: 38463972 PMCID: PMC10925403 DOI: 10.21203/rs.3.rs-3951689/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The lymphatic system consists of a vessel network lined by specialized lymphatic endothelial cells (LECs) that are responsible for tissue fluid homeostasis and immune cell trafficking. The mechanisms for organ-specific LEC responses to environmental cues are not well understood. We found robust lymphangiogenesis during influenza A virus infection in the adult mouse lung. We show that the number of LECs increases 2-fold at 7 days post-influenza infection (dpi) and 3-fold at 21 dpi, and that lymphangiogenesis is preceded by lymphatic dilation. We also show that the expanded lymphatic network enhances fluid drainage to mediastinal lymph nodes. Using EdU labeling, we found that a significantly higher number of pulmonary LECs are proliferating at 7 dpi compared to LECs in homeostatic conditions. Lineage tracing during influenza indicates that new pulmonary LECs are derived from preexisting LECs rather than non-LEC progenitors. Lastly, using a conditional LEC-specific YAP/TAZ knockout model, we established that lymphangiogenesis, fluid transport and the immune response to influenza are independent of YAP/TAZ activity in LECs. These findings were unexpected, as they indicate that YAP/TAZ signaling is not crucial for these processes.
Collapse
Affiliation(s)
- Erin Crossey
- Boston University Chobanian and Avedisian School of Medicine
| | - Senegal Carty
- Boston University Chobanian and Avedisian School of Medicine
| | - Fengzhi Shao
- Boston University Chobanian and Avedisian School of Medicine
| | | | | | - Michelle Zeng
- Boston University Chobanian and Avedisian School of Medicine
| | - Anne Hinds
- Boston University Chobanian and Avedisian School of Medicine
| | - Ming Lo
- Boston University Chobanian and Avedisian School of Medicine
| | | | | | - Matthew R Jones
- Boston University Chobanian and Avedisian School of Medicine
| | - Alan Fine
- Boston University Chobanian and Avedisian School of Medicine
| |
Collapse
|
7
|
Hu Z, Zhao X, Wu Z, Qu B, Yuan M, Xing Y, Song Y, Wang Z. Lymphatic vessel: origin, heterogeneity, biological functions, and therapeutic targets. Signal Transduct Target Ther 2024; 9:9. [PMID: 38172098 PMCID: PMC10764842 DOI: 10.1038/s41392-023-01723-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Lymphatic vessels, comprising the secondary circulatory system in human body, play a multifaceted role in maintaining homeostasis among various tissues and organs. They are tasked with a serious of responsibilities, including the regulation of lymph absorption and transport, the orchestration of immune surveillance and responses. Lymphatic vessel development undergoes a series of sophisticated regulatory signaling pathways governing heterogeneous-origin cell populations stepwise to assemble into the highly specialized lymphatic vessel networks. Lymphangiogenesis, as defined by new lymphatic vessels sprouting from preexisting lymphatic vessels/embryonic veins, is the main developmental mechanism underlying the formation and expansion of lymphatic vessel networks in an embryo. However, abnormal lymphangiogenesis could be observed in many pathological conditions and has a close relationship with the development and progression of various diseases. Mechanistic studies have revealed a set of lymphangiogenic factors and cascades that may serve as the potential targets for regulating abnormal lymphangiogenesis, to further modulate the progression of diseases. Actually, an increasing number of clinical trials have demonstrated the promising interventions and showed the feasibility of currently available treatments for future clinical translation. Targeting lymphangiogenic promoters or inhibitors not only directly regulates abnormal lymphangiogenesis, but improves the efficacy of diverse treatments. In conclusion, we present a comprehensive overview of lymphatic vessel development and physiological functions, and describe the critical involvement of abnormal lymphangiogenesis in multiple diseases. Moreover, we summarize the targeting therapeutic values of abnormal lymphangiogenesis, providing novel perspectives for treatment strategy of multiple human diseases.
Collapse
Affiliation(s)
- Zhaoliang Hu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Xushi Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Bicheng Qu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Minxian Yuan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yanan Xing
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
8
|
Kobayashi S, Cox AG, Harvey KF, Hogan BM. Vasculature is getting Hip(po): Hippo signaling in vascular development and disease. Dev Cell 2023; 58:2627-2640. [PMID: 38052179 DOI: 10.1016/j.devcel.2023.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/29/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023]
Abstract
The Hippo signaling pathway regulates developmental organ growth, regeneration, and cell fate decisions. Although the role of the Hippo pathway, and its transcriptional effectors YAP and TAZ, has been well documented in many cell types and species, only recently have the roles for this pathway come to light in vascular development and disease. Experiments in mice, zebrafish, and in vitro have uncovered roles for the Hippo pathway, YAP, and TAZ in vasculogenesis, angiogenesis, and lymphangiogenesis. In addition, the Hippo pathway has been implicated in vascular cancers and cardiovascular diseases, thus identifying it as a potential therapeutic target for the treatment of these conditions. However, despite recent advances, Hippo's role in the vasculature is still underappreciated compared with its role in epithelial tissues. In this review, we appraise our current understanding of the Hippo pathway in blood and lymphatic vessel development and highlight the current knowledge gaps and opportunities for further research.
Collapse
Affiliation(s)
- Sakurako Kobayashi
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew G Cox
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kieran F Harvey
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Benjamin M Hogan
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
9
|
Saha S, Fan F, Alderfer L, Graham F, Hall E, Hanjaya-Putra D. Synthetic hyaluronic acid coating preserves the phenotypes of lymphatic endothelial cells. Biomater Sci 2023; 11:7346-7357. [PMID: 37789798 PMCID: PMC10628678 DOI: 10.1039/d3bm00873h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/14/2023] [Indexed: 10/05/2023]
Abstract
Lymphatic endothelial cells (LECs) play a critical role in the formation and maintenance of the lymphatic vasculature, which is essential for the immune system, fluid balance, and tissue repair. However, LECs are often difficult to study in vivo and in vitro models that accurately mimic their behaviors and phenotypes are limited. In particular, LECs have been shown to lose their lymphatic markers over time while being cultured in vitro, which reflect their plasticity and heterogeneity in vivo. Since LECs uniquely express lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1), we hypothesized that surface coating with hyaluronic acid (HA) can preserve LEC phenotypes and functionalities. Dopamine conjugated hyaluronic acid (HA-DP) was synthesized with 42% degree of substitution to enable surface modification and conjugation onto standard tissue culture plates. Compared to fibronectin coating and tissue culture plate controls, surface coating with HA-DP was able to preserve lymphatic markers, such as prospero homeobox protein 1 (Prox1), podoplanin (PDPN), and LYVE-1 over several passages in vitro. LECs cultured on HA-DP expressed lower levels of focal adhesion kinase (FAK) and YAP/TAZ, which may be responsible for the maintenance of the lymphatic characteristics. Collectively, the HA-DP coating may provide a novel method for culturing human LECs in vitro toward more representative studies in basic lymphatic biology and lymphatic regeneration.
Collapse
Affiliation(s)
- Sanjoy Saha
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA.
| | - Fei Fan
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA.
| | - Laura Alderfer
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA.
| | - Francine Graham
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA
| | - Eva Hall
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA.
| | - Donny Hanjaya-Putra
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA.
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, IN 46556, USA
| |
Collapse
|
10
|
Wang L, Liu T, Zheng Y, Zhou J, Hua H, Kong L, Huang W, Peng X, Wen T. P4HA2-induced prolyl hydroxylation of YAP1 restricts vascular smooth muscle cell proliferation and neointima formation. Life Sci 2023; 330:122002. [PMID: 37549826 DOI: 10.1016/j.lfs.2023.122002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Vascular smooth muscle cell (VSMC) proliferation and neointima formation play significant roles in atherosclerosis development and restenosis following percutaneous coronary intervention. Our team previously discovered that TEA domain transcription factor 1 (TEAD1) promotes vascular smooth muscle differentiation, which is necessary for vascular development. Conversely, aberrant YAP1 activation upregulates the platelet-derived growth factor receptor beta to encourage VSMC proliferation and neointima formation. In this study, we aimed to investigate the molecular mechanisms of YAP1/TEAD signaling during neointima formation. Our research focused on the prolyl 4-hydroxylase alpha 2 (P4HA2) and its downstream target, Yes-associated protein 1 (YAP1), in regulating VSMC differentiation and neointima formation. Our results indicated that P4HA2 reduction leads to VSMC dedifferentiation and promotes neointima formation after injury. Furthermore, we found that P4HA2-induced prolyl hydroxylation of YAP1 restricts its transcriptional activity, which is essential to maintaining VSMC differentiation. These findings suggest that targeting P4HA2-mediated prolyl hydroxylation of YAP1 may be a promising therapeutic approach to prevent injury-induced neointima formation in cardiovascular disease.
Collapse
Affiliation(s)
- Liang Wang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Hypertension Research Institute of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Ting Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yaofu Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Hypertension Research Institute of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Jiamin Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Hypertension Research Institute of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Hexiang Hua
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Hypertension Research Institute of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Liming Kong
- Department of Outpatient clinic, The First Affiliated Hospital of Nanchang, University, Nanchang, Jiangxi 330006, China
| | - Weilin Huang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Hypertension Research Institute of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Xiaoping Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Hypertension Research Institute of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Tong Wen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Hypertension Research Institute of Jiangxi Province, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
11
|
Yang Y, Wang X, Wang P. Signaling mechanisms underlying lymphatic vessel dysfunction in skin aging and possible anti-aging strategies. Biogerontology 2023; 24:727-740. [PMID: 36680698 DOI: 10.1007/s10522-023-10016-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
Aging-related skin diseases are gradually increasing due to the imbalance of cutaneous homeostasis in the aging population. Skin aging-induced inflammation promotes systemic inflammation and may lead to whole-body aging. Lymphatic vessels play an important role in maintaining fluid and homeostasis balance. In intrinsically aged skin, the number of lymphatic vessels decrease and their functions decline, which is related to the reduced adhesion junctions between lymphatic endothelial cells, particularly VE-cadherin. VEGFC/VEGFR-3 signal pathway plays an important role in remodeling and expansion of lymphatic vessels; the downregulation of this pathway contributes to the dysfunction of lymphatic vessels. Meanwhile, we proposed some additional mechanisms. Decline of the pumping activity of lymphatic vessels might be related to age-related changes in extracellular matrix, ROS increase, and eNOS/iNOS disturbances. In extrinsically aged skin, the hyperpermeability of lymphatic vessels results from a decrease in endothelial-specific tight junction molecules, upregulation of VEGF-A, and downregulation of the VEGFC/VEGFR-3 signaling pathway. Furthermore, some of the Phyto therapeutics could attenuate skin aging by modulating the lymphatic vessels. This review summarized the lymphatic vessel dysfunction in skin aging and anti-aging strategies based on lymphatic vessel modulation.
Collapse
Affiliation(s)
- Yuling Yang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
12
|
Quan Y, Hu M, Jiang J, Jin P, Fan J, Li M, Fan X, Gong Y, Yang Y, Wang Y. VGLL4 promotes vascular endothelium specification via TEAD1 in the vascular organoids and human pluripotent stem cells-derived endothelium model. Cell Mol Life Sci 2023; 80:215. [PMID: 37468661 PMCID: PMC11073225 DOI: 10.1007/s00018-023-04858-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 06/12/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND We have shown that Hippo-YAP signaling pathway plays an important role in endothelial cell differentiation. Vestigial-like family member 4 (VGLL4) has been identified as a YAP inhibitor. However, the exact function of VGLL4 in vascular endothelial cell development remains unclear. In this study, we investigated the role of VGLL4, in human endothelial lineage specification both in 3D vascular organoid and 2D endothelial cell differentiation. METHODS AND RESULTS In this study, we found that VGLL4 was increased during 3D vascular organoids generation and directed differentiation of human embryonic stem cells H1 towards the endothelial lineage. Using inducible ectopic expression of VGLL4 based on the piggyBac system, we proved that overexpression of VGLL4 in H1 promoted vascular organoids generation and endothelial cells differentiation. In contrast, VGLL4 knockdown (heterozygous knockout) of H1 exhibited inhibitory effects. Using bioinformatics analysis and protein immunoprecipitation, we further found that VGLL4 binds to TEAD1 and facilitates the expression of endothelial master transcription factors, including FLI1, to promote endothelial lineage specification. Moreover, TEAD1 overexpression rescued VGLL4 knockdown-mediated negative effects. CONCLUSIONS In summary, VGLL4 promotes EC lineage specification both in 3D vascular organoid and 2D EC differentiation from pluripotent stem cell, VGLL4 interacts with TEAD1 and facilitates EC key transcription factor, including FLI1, to enhance EC lineage specification.
Collapse
Affiliation(s)
- Yingyi Quan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211116, Jiangsu, China
| | - Minjie Hu
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jiang Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211116, Jiangsu, China
| | - Peifeng Jin
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China
| | - Junming Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ming Li
- Cardiac Regeneration Research Institute, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaofang Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yongsheng Gong
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yang Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211116, Jiangsu, China.
| | - Yongyu Wang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Cardiac Regeneration Research Institute, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
13
|
Ivanov KI, Samuilova OV, Zamyatnin AA. The emerging roles of long noncoding RNAs in lymphatic vascular development and disease. Cell Mol Life Sci 2023; 80:197. [PMID: 37407839 PMCID: PMC10322780 DOI: 10.1007/s00018-023-04842-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Recent advances in RNA sequencing technologies helped uncover what was once uncharted territory in the human genome-the complex and versatile world of long noncoding RNAs (lncRNAs). Previously thought of as merely transcriptional "noise", lncRNAs have now emerged as essential regulators of gene expression networks controlling development, homeostasis and disease progression. The regulatory functions of lncRNAs are broad and diverse, and the underlying molecular mechanisms are highly variable, acting at the transcriptional, post-transcriptional, translational, and post-translational levels. In recent years, evidence has accumulated to support the important role of lncRNAs in the development and functioning of the lymphatic vasculature and associated pathological processes such as tumor-induced lymphangiogenesis and cancer metastasis. In this review, we summarize the current knowledge on the role of lncRNAs in regulating the key genes and pathways involved in lymphatic vascular development and disease. Furthermore, we discuss the potential of lncRNAs as novel therapeutic targets and outline possible strategies for the development of lncRNA-based therapeutics to treat diseases of the lymphatic system.
Collapse
Affiliation(s)
- Konstantin I Ivanov
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sochi, Russian Federation.
- Department of Microbiology, University of Helsinki, Helsinki, Finland.
| | - Olga V Samuilova
- Department of Biochemistry, Sechenov First Moscow State Medical University, Moscow, Russian Federation
- HSE University, Moscow, Russian Federation
| | - Andrey A Zamyatnin
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sochi, Russian Federation
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
14
|
Choi S, Hong SP, Bae JH, Suh SH, Bae H, Kang KP, Lee HJ, Koh GY. Hyperactivation of YAP/TAZ Drives Alterations in Mesangial Cells through Stabilization of N-Myc in Diabetic Nephropathy. J Am Soc Nephrol 2023; 34:809-828. [PMID: 36724799 PMCID: PMC10125647 DOI: 10.1681/asn.0000000000000075] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 12/18/2022] [Indexed: 01/26/2023] Open
Abstract
SIGNIFICANCE STATEMENT Mesangial cells (MCs) in the kidney are essential to maintaining glomerular integrity, and their impairment leads to major glomerular diseases including diabetic nephropathy (DN). Although high blood glucose elicits abnormal alterations in MCs, the underlying mechanism is poorly understood. We show that YAP/TAZ are increased in MCs of patients with DN and two animal models of DN. High glucose directly induces activation of YAP/TAZ through the canonical Hippo pathway in cultured MCs. Hyperactivation of YAP/TAZ in mouse MCs recapitulates the hallmarks of DN. Activated YAP/TAZ bind and stabilize N-Myc, one of the Myc family. N-Myc stabilization leads to aberrant enhancement of its transcriptional activity and to MC impairments. Our findings shed light on how high blood glucose in diabetes mellitus leads to DN and support a rationale that lowering blood glucose in diabetes mellitus could delay DN pathogenesis. BACKGROUND Mesangial cells (MCs) in the kidney are central to maintaining glomerular integrity, and their impairment leads to major glomerular diseases, including diabetic nephropathy (DN). Although high blood glucose elicits abnormal alterations in MCs, the underlying molecular mechanism is poorly understood. METHODS Immunolocalization of YAP/TAZ and pathological features of PDGFRβ + MCs were analyzed in the glomeruli of patients with DN, in Zucker diabetic fatty rats, and in Lats1/2i ΔPβ mice. RiboTag bulk-RNA sequencing and transcriptomic analysis of gene expression profiles of the isolated MCs from control and Lats1/2iΔPβ mice were performed. Immunoprecipitation analysis and protein stability of N-Myc were performed by the standard protocols. RESULTS YAP and TAZ, the final effectors of the Hippo pathway, are highly increased in MCs of patients with DN and in Zucker diabetic fatty rats. Moreover, high glucose directly induces activation of YAP/TAZ through the canonical Hippo pathway in cultured MCs. Hyperactivation of YAP/TAZ in mouse model MCs recapitulates the hallmarks of DN, including excessive proliferation of MCs and extracellular matrix deposition, endothelial cell impairment, glomerular sclerosis, albuminuria, and reduced glomerular filtration rate. Mechanistically, activated YAP/TAZ bind and stabilize N-Myc protein, one of the Myc family of oncogenes. N-Myc stabilization leads to aberrant enhancement of its transcriptional activity and eventually to MC impairments and DN pathogenesis. CONCLUSIONS Our findings shed light on how high blood glucose in diabetes mellitus leads to DN and support a rationale that lowering blood glucose in diabetes mellitus could delay DN pathogenesis.
Collapse
Affiliation(s)
- Seunghyeok Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seon Pyo Hong
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Jung Hyun Bae
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Sang Heon Suh
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Hosung Bae
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Kyung Pyo Kang
- Department of Internal Medicine, Research Institute of Clinical Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Hyuek Jong Lee
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Gou Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| |
Collapse
|
15
|
Parab S, Setten E, Astanina E, Bussolino F, Doronzo G. The tissue-specific transcriptional landscape underlines the involvement of endothelial cells in health and disease. Pharmacol Ther 2023; 246:108418. [PMID: 37088448 DOI: 10.1016/j.pharmthera.2023.108418] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/23/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Endothelial cells (ECs) that line vascular and lymphatic vessels are being increasingly recognized as important to organ function in health and disease. ECs participate not only in the trafficking of gases, metabolites, and cells between the bloodstream and tissues but also in the angiocrine-based induction of heterogeneous parenchymal cells, which are unique to their specific tissue functions. The molecular mechanisms regulating EC heterogeneity between and within different tissues are modeled during embryogenesis and become fully established in adults. Any changes in adult tissue homeostasis induced by aging, stress conditions, and various noxae may reshape EC heterogeneity and induce specific transcriptional features that condition a functional phenotype. Heterogeneity is sustained via specific genetic programs organized through the combinatory effects of a discrete number of transcription factors (TFs) that, at the single tissue-level, constitute dynamic networks that are post-transcriptionally and epigenetically regulated. This review is focused on outlining the TF-based networks involved in EC specialization and physiological and pathological stressors thought to modify their architecture.
Collapse
Affiliation(s)
- Sushant Parab
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| | - Elisa Setten
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| | - Elena Astanina
- Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy.
| | - Gabriella Doronzo
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| |
Collapse
|
16
|
Zhang X, Cao D, Xu L, Xu Y, Gao Z, Pan Y, Jiang M, Wei Y, Wang L, Liao Y, Wang Q, Yang L, Xu X, Gao Y, Gao S, Wang J, Yue R. Harnessing matrix stiffness to engineer a bone marrow niche for hematopoietic stem cell rejuvenation. Cell Stem Cell 2023; 30:378-395.e8. [PMID: 37028404 DOI: 10.1016/j.stem.2023.03.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 11/23/2022] [Accepted: 03/08/2023] [Indexed: 04/09/2023]
Abstract
Hematopoietic stem cell (HSC) self-renewal and aging are tightly regulated by paracrine factors from the bone marrow niche. However, whether HSC rejuvenation could be achieved by engineering a bone marrow niche ex vivo remains unknown. Here, we show that matrix stiffness fine-tunes HSC niche factor expression by bone marrow stromal cells (BMSCs). Increased stiffness activates Yap/Taz signaling to promote BMSC expansion upon 2D culture, which is largely reversed by 3D culture in soft gelatin methacrylate hydrogels. Notably, 3D co-culture with BMSCs promotes HSC maintenance and lymphopoiesis, reverses aging hallmarks of HSCs, and restores their long-term multilineage reconstitution capacity. In situ atomic force microscopy analysis reveals that mouse bone marrow stiffens with age, which correlates with a compromised HSC niche. Taken together, this study highlights the biomechanical regulation of the HSC niche by BMSCs, which could be harnessed to engineer a soft bone marrow niche for HSC rejuvenation.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Dandan Cao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Liting Xu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanhua Xu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zehua Gao
- The State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanzhong Pan
- The State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Ming Jiang
- The State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Yuhui Wei
- The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Lihua Wang
- The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yue Liao
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qigang Wang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lei Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaocui Xu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yawei Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jing Wang
- The State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China.
| |
Collapse
|
17
|
Song J, Dang X, Shen X, Liu Y, Gu J, Peng X, Huang Z, Hong W, Cui L, Liu CY. The YAP/TEAD4 complex promotes tumor lymphangiogenesis by transcriptionally upregulating CCBE1 in colorectal cancer. J Biol Chem 2023; 299:103012. [PMID: 36781122 PMCID: PMC10124907 DOI: 10.1016/j.jbc.2023.103012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/13/2023] Open
Abstract
The secreted protein Collagen and calcium-binding EGF Domain 1 (CCBE1) is critical for embryonic lymphatic development through its role in the proteolytic activation of mature vascular endothelial growth factor C (VEGFC). We previously reported that CCBE1 is overexpressed in colorectal cancer (CRC) and that its transcription is negatively regulated by the TGFβ-SMAD pathway, but the transcriptional activation mechanism of CCBE1 in CRC remains unknown. Recent studies have revealed the vital role of the hippo effectors YAP/TAZ in lymphatic development; however, the role of YAP/TAZ in tumor lymphangiogenesis has not been clarified. In this study, we found that high nuclear expression of transcription factor TEAD4 is associated with lymph node metastasis and high lymphatic vessel density in CRC patients. YAP/TAZ/TEAD4 complexes transcriptionally upregulated the expression of CCBE1 by directly binding to the enhancer region of CCBE1 in both CRC cells and cancer-associated fibroblasts (CAFs), which resulted in enhanced VEGFC proteolysis and induced tube formation and migration of human lymphatic endothelial cells (HLECs) in vitro and lymphangiogenesis in a CRC cell-derived xenograft (CDX) model in vivo. In addition, the bromodomain and extra-terminal domain (BET) inhibitor JQ1 significantly inhibited the transcription of CCBE1, suppressed VEGFC proteolysis and inhibited tumor lymphangiogenesis in vitro and in vivo. Collectively, our study reveals a new positive transcriptional regulatory mechanism of CCBE1 via YAP/TAZ/TEAD4/BRD4 complexes in CRC, which exposes the protumor lymphangiogenic role of YAP/TAZ and the potential inhibitory effect of BET inhibitors on tumor lymphangiogenesis.
Collapse
Affiliation(s)
- Jinglue Song
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Xuening Dang
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Xia Shen
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Yun Liu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Jiani Gu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Peng
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Zhenyu Huang
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Proteos, Singapore.
| | - Long Cui
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Colorectal Cancer Research Center, Shanghai, China.
| | - Chen-Ying Liu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Colorectal Cancer Research Center, Shanghai, China.
| |
Collapse
|
18
|
Biswas L, Chen J, De Angelis J, Singh A, Owen-Woods C, Ding Z, Pujol JM, Kumar N, Zeng F, Ramasamy SK, Kusumbe AP. Lymphatic vessels in bone support regeneration after injury. Cell 2023; 186:382-397.e24. [PMID: 36669473 DOI: 10.1016/j.cell.2022.12.031] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/05/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023]
Abstract
Blood and lymphatic vessels form a versatile transport network and provide inductive signals to regulate tissue-specific functions. Blood vessels in bone regulate osteogenesis and hematopoiesis, but current dogma suggests that bone lacks lymphatic vessels. Here, by combining high-resolution light-sheet imaging and cell-specific mouse genetics, we demonstrate presence of lymphatic vessels in mouse and human bones. We find that lymphatic vessels in bone expand during genotoxic stress. VEGF-C/VEGFR-3 signaling and genotoxic stress-induced IL6 drive lymphangiogenesis in bones. During lymphangiogenesis, secretion of CXCL12 from proliferating lymphatic endothelial cells is critical for hematopoietic and bone regeneration. Moreover, lymphangiocrine CXCL12 triggers expansion of mature Myh11+ CXCR4+ pericytes, which differentiate into bone cells and contribute to bone and hematopoietic regeneration. In aged animals, such expansion of lymphatic vessels and Myh11-positive cells in response to genotoxic stress is impaired. These data suggest lymphangiogenesis as a therapeutic avenue to stimulate hematopoietic and bone regeneration.
Collapse
Affiliation(s)
- Lincoln Biswas
- Tissue and Tumor Microenvironments Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Medical Sciences Division, University of Oxford, Oxford OX3 9DS, UK
| | - Junyu Chen
- Tissue and Tumor Microenvironments Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Medical Sciences Division, University of Oxford, Oxford OX3 9DS, UK; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jessica De Angelis
- Tissue and Tumor Microenvironments Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Medical Sciences Division, University of Oxford, Oxford OX3 9DS, UK
| | - Amit Singh
- Tissue and Tumor Microenvironments Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Medical Sciences Division, University of Oxford, Oxford OX3 9DS, UK; Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, Heidelberg D-69120, Germany
| | - Charlotte Owen-Woods
- Tissue and Tumor Microenvironments Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Medical Sciences Division, University of Oxford, Oxford OX3 9DS, UK
| | - Zhangfan Ding
- Tissue and Tumor Microenvironments Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Medical Sciences Division, University of Oxford, Oxford OX3 9DS, UK; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Joan Mane Pujol
- Tissue and Tumor Microenvironments Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Medical Sciences Division, University of Oxford, Oxford OX3 9DS, UK
| | - Naveen Kumar
- Tissue and Tumor Microenvironments Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Medical Sciences Division, University of Oxford, Oxford OX3 9DS, UK
| | - Fanxin Zeng
- Department of Clinic Medical Center, Dazhou Central Hospital, Dazhou, China
| | - Saravana K Ramasamy
- MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironments Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Medical Sciences Division, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
19
|
González-Hernández S, Mukouyama YS. Lymphatic vasculature in the central nervous system. Front Cell Dev Biol 2023; 11:1150775. [PMID: 37091974 PMCID: PMC10119411 DOI: 10.3389/fcell.2023.1150775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
The central nervous system (CNS) is considered as an immune privilege organ, based on experiments in the mid 20th century showing that the brain fails to mount an efficient immune response against an allogeneic graft. This suggests that in addition to the presence of the blood-brain barrier (BBB), the apparent absence of classical lymphatic vasculature in the CNS parenchyma limits the capacity for an immune response. Although this view is partially overturned by the recent discovery of the lymphatic-like hybrid vessels in the Schlemm's canal in the eye and the lymphatic vasculature in the outmost layer of the meninges, the existence of lymphatic vessels in the CNS parenchyma has not been reported. Two potential mechanisms by which lymphatic vasculature may arise in the organs are: 1) sprouting and invasion of lymphatic vessels from the surrounding tissues into the parenchyma and 2) differentiation of blood endothelial cells into lymphatic endothelial cells in the parenchyma. Considering these mechanisms, we here discuss what causes the dearth of lymphatic vessels specifically in the CNS parenchyma.
Collapse
|
20
|
Shiiya T, Hirashima M. From lymphatic endothelial cell migration to formation of tubular lymphatic vascular network. Front Physiol 2023; 14:1124696. [PMID: 36895637 PMCID: PMC9989012 DOI: 10.3389/fphys.2023.1124696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
During development, lymphatic endothelial cell (LEC) progenitors differentiate from venous endothelial cells only in limited regions of the body. Thus, LEC migration and subsequent tube formation are essential processes for the development of tubular lymphatic vascular network throughout the body. In this review, we discuss chemotactic factors, LEC-extracellular matrix interactions and planar cell polarity regulating LEC migration and formation of tubular lymphatic vessels. Insights into molecular mechanisms underlying these processes will help in understanding not only physiological lymphatic vascular development but lymphangiogenesis associated with pathological conditions such as tumors and inflammation.
Collapse
Affiliation(s)
- Tomohiro Shiiya
- Division of Pharmacology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masanori Hirashima
- Division of Pharmacology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
21
|
Evaluation of Longitudinal Lymphatic Function Changes upon Injury in the Mouse Tail with Photodynamic Therapy. Cardiovasc Eng Technol 2022; 14:204-216. [PMID: 36403192 DOI: 10.1007/s13239-022-00645-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE The lymphatic system is an essential but often understudied component of the circulatory system in comparison with its cardiovascular counterpart. Such disparity could often be explained by the difficulty in imaging lymphatics and the specialized microsurgical skills that are often required for lymphatic injury models. Recently, it has been shown that verteporfin, a photosensitive drug used for photodynamic therapy (PDT) to ablate the blood vessels, provides a similar effect on lymphatic vessels. Here, we seek to administer verteporfin and perform a modified form of PDT on collecting lymphatics in the mouse tail, a commonly used location for the study of lymphatic disorders, and examine lymphatic remodeling, contractility, and transport in response to the procedure. METHODS Mice collecting lymphatics in the tail were injured by PDT through an intradermal injection of verteporfin in the distal tip of the tail followed by light activation on the proximal portion of the tail downstream of the injection site. Lymphatic function was evaluated using a near-infrared (NIR) imaging system weekly for up to 28 days after injury. RESULTS PDT resulted in a loss in lymphatic function contractile frequency that persisted for up to 7 days after injury. Packet transport and packet amplitude, measurements reflective of the strength of contraction, were significantly reduced 14 days after injury. The lymphatics showed a delayed increase in lymphatic leakage at 7 days that persisted until the study endpoint on day 28. CONCLUSION This technique provides an easy-to-use method for injuring lymphatics to understand their remodeling response to injury by PDT as well as potentially for screening therapeutics that seek to normalize lymphatic permeability or contractile function after injury.
Collapse
|
22
|
Ujiie N, Kume T. Mechanical forces in lymphatic vessel development: Focus on transcriptional regulation. Front Physiol 2022; 13:1066460. [PMID: 36439271 PMCID: PMC9685408 DOI: 10.3389/fphys.2022.1066460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
The lymphatic system is crucial for the maintenance of interstitial fluid and protein homeostasis. It has important roles in collecting excess plasma and interstitial fluid leaked from blood vessels, lipid absorption and transportation in the digestive system, and immune surveillance and response. The development of lymphatic vessels begins during fetal life as lymphatic endothelial progenitor cells first differentiate into lymphatic endothelial cells (LECs) by expressing the master lymphatic vascular regulator, prospero-related homeobox 1 (PROX1). The lymphatic vasculature forms a hierarchical network that consists of blind-ended and unidirectional vessels. Although much progress has been made in the elucidation of the cellular and molecular mechanisms underlying the formation of the lymphatic vascular system, the causes of lymphatic vessel abnormalities and disease are poorly understood and complicated; specifically, the mechanistic basis for transcriptional dysregulation in lymphatic vessel development remains largely unclear. In this review, we discuss the recent advances in our understanding of the molecular and cellular mechanisms of lymphatic vascular development, including LEC differentiation, lymphangiogenesis, and valve formation, and the significance of mechanical forces in lymphatic vessels, with a focus on transcriptional regulation. We also summarize the current knowledge on epigenetic mechanisms of lymphatic gene expression.
Collapse
|
23
|
Kovach AR, Oristian KM, Kirsch DG, Bentley RC, Cheng C, Chen X, Chen P, Chi JA, Linardic CM. Identification and targeting of a
HES1‐YAP1‐CDKN1C
functional interaction in fusion‐negative rhabdomyosarcoma. Mol Oncol 2022; 16:3587-3605. [PMID: 36037042 PMCID: PMC9580881 DOI: 10.1002/1878-0261.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/22/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
Rhabdomyosarcoma (RMS), a cancer characterized by features of skeletal muscle, is the most common soft‐tissue sarcoma of childhood. With 5‐year survival rates among high‐risk groups at < 30%, new therapeutics are desperately needed. Previously, using a myoblast‐based model of fusion‐negative RMS (FN‐RMS), we found that expression of the Hippo pathway effector transcriptional coactivator YAP1 (YAP1) permitted senescence bypass and subsequent transformation to malignant cells, mimicking FN‐RMS. We also found that YAP1 engages in a positive feedback loop with Notch signaling to promote FN‐RMS tumorigenesis. However, we could not identify an immediate downstream impact of this Hippo‐Notch relationship. Here, we identify a HES1‐YAP1‐CDKN1C functional interaction, and show that knockdown of the Notch effector HES1 (Hes family BHLH transcription factor 1) impairs growth of multiple FN‐RMS cell lines, with knockdown resulting in decreased YAP1 and increased CDKN1C expression. In silico mining of published proteomic and transcriptomic profiles of human RMS patient‐derived xenografts revealed the same pattern of HES1‐YAP1‐CDKN1C expression. Treatment of FN‐RMS cells in vitro with the recently described HES1 small‐molecule inhibitor, JI130, limited FN‐RMS cell growth. Inhibition of HES1 in vivo via conditional expression of a HES1‐directed shRNA or JI130 dosing impaired FN‐RMS tumor xenograft growth. Lastly, targeted transcriptomic profiling of FN‐RMS xenografts in the context of HES1 suppression identified associations between HES1 and RAS‐MAPK signaling. In summary, these in vitro and in vivo preclinical studies support the further investigation of HES1 as a therapeutic target in FN‐RMS.
Collapse
Affiliation(s)
- Alexander R Kovach
- Department of Pediatrics Duke University School of Medicine Durham NC USA
| | - Kristianne M Oristian
- Department of Pharmacology & Cancer Biology Duke University School of Medicine Durham NC USA
- Department of Radiation Oncology Duke University School of Medicine Durham NC USA
| | - David G Kirsch
- Department of Pharmacology & Cancer Biology Duke University School of Medicine Durham NC USA
- Department of Radiation Oncology Duke University School of Medicine Durham NC USA
| | - Rex C Bentley
- Department of Pathology Duke University Durham NC USA
| | - Changde Cheng
- Department of Computational Biology, St. Jude Children's Research Hospital Memphis TN USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital Memphis TN USA
| | - Po‐Han Chen
- Department of Molecular Genetics & Microbiology Duke University School of Medicine Durham NC USA
| | - Jen‐Tsan Ashley Chi
- Department of Molecular Genetics & Microbiology Duke University School of Medicine Durham NC USA
| | - Corinne M Linardic
- Department of Pediatrics Duke University School of Medicine Durham NC USA
- Department of Pharmacology & Cancer Biology Duke University School of Medicine Durham NC USA
| |
Collapse
|
24
|
Azzarito G, Visentin M, Leeners B, Dubey RK. Transcriptomic and Functional Evidence for Differential Effects of MCF-7 Breast Cancer Cell-Secretome on Vascular and Lymphatic Endothelial Cell Growth. Int J Mol Sci 2022; 23:ijms23137192. [PMID: 35806196 PMCID: PMC9266834 DOI: 10.3390/ijms23137192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 01/14/2023] Open
Abstract
Vascular and lymphatic vessels drive breast cancer (BC) growth and metastasis. We assessed the cell growth (proliferation, migration, and capillary formation), gene-, and protein-expression profiles of Vascular Endothelial Cells (VECs) and Lymphatic Endothelial Cells (LECs) exposed to a conditioned medium (CM) from estrogen receptor-positive BC cells (MCF-7) in the presence or absence of Estradiol. We demonstrated that MCF-7-CM stimulated growth and capillary formation in VECs but inhibited LEC growth. Consistently, MCF-7-CM induced ERK1/2 and Akt phosphorylation in VECs and inhibited them in LECs. Gene expression analysis revealed that the LECs were overall (≈10-fold) more sensitive to MCF-7-CM exposure than VECs. Growth/angiogenesis and cell cycle pathways were upregulated in VECs but downregulated in LECs. An angiogenesis proteome array confirmed the upregulation of 23 pro-angiogenesis proteins in VECs. In LECs, the expression of genes related to ATP synthesis and the ATP content were reduced by MCF-7-CM, whereas MTHFD2 gene, involved in folate metabolism and immune evasion, was upregulated. The contrasting effect of MCF-7-CM on the growth of VECs and LECs was reversed by inhibiting the TGF-β signaling pathway. The effect of MCF-7-CM on VEC growth was also reversed by inhibiting the VEGF signaling pathway. In conclusion, BC secretome may facilitate cancer cell survival and tumor growth by simultaneously promoting vascular angiogenesis and inhibiting lymphatic growth. The differential effects of BC secretome on LECs and VECs may be of pathophysiological relevance in BC.
Collapse
Affiliation(s)
- Giovanna Azzarito
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland; (G.A.); (B.L.)
| | - Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Brigitte Leeners
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland; (G.A.); (B.L.)
| | - Raghvendra K. Dubey
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland; (G.A.); (B.L.)
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Correspondence:
| |
Collapse
|
25
|
Role of Transcriptional and Epigenetic Regulation in Lymphatic Endothelial Cell Development. Cells 2022; 11:cells11101692. [PMID: 35626729 PMCID: PMC9139870 DOI: 10.3390/cells11101692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022] Open
Abstract
The lymphatic system is critical for maintaining the homeostasis of lipids and interstitial fluid and regulating the immune cell development and functions. Developmental anomaly-induced lymphatic dysfunction is associated with various pathological conditions, including lymphedema, inflammation, and cancer. Most lymphatic endothelial cells (LECs) are derived from a subset of endothelial cells in the cardinal vein. However, recent studies have reported that the developmental origin of LECs is heterogeneous. Multiple regulatory mechanisms, including those mediated by signaling pathways, transcription factors, and epigenetic pathways, are involved in lymphatic development and functions. Recent studies have demonstrated that the epigenetic regulation of transcription is critical for embryonic LEC development and functions. In addition to the chromatin structures, epigenetic modifications may modulate transcriptional signatures during the development or differentiation of LECs. Therefore, the understanding of the epigenetic mechanisms involved in the development and function of the lymphatic system can aid in the management of various congenital or acquired lymphatic disorders. Future studies must determine the role of other epigenetic factors and changes in mammalian lymphatic development and function. Here, the recent findings on key factors involved in the development of the lymphatic system and their epigenetic regulation, LEC origins from different organs, and lymphatic diseases are reviewed.
Collapse
|
26
|
Wang M, Yu W, Cao X, Gu H, Huang J, Wu C, Wang L, Sha X, Shen B, Wang T, Yao Y, Zhu W, Huang F. Exosomal CD44 Transmits Lymph Node Metastatic Capacity Between Gastric Cancer Cells via YAP-CPT1A-Mediated FAO Reprogramming. Front Oncol 2022; 12:860175. [PMID: 35359362 PMCID: PMC8960311 DOI: 10.3389/fonc.2022.860175] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/21/2022] [Indexed: 12/11/2022] Open
Abstract
Background Lymph node metastasis (LNM) commonly occurs in gastric cancer (GC) and is tightly associated with poor prognosis. Exosome-mediated lymphangiogenesis has been considered an important driver of LNM. Whether exosomes directly transmit the LNM phenotype between GC cells and its mechanisms remain elusive. Methods A highly lymphatic metastatic GC cell line (HGC-27-L) was established by serial passage of parental HGC-27 cells in BALB/c nude mice. The capacities of migration, invasion and LNM; fatty acid oxidation (FAO) levels; and the role of exosome-transferred LNM phenotype were compared among HGC-27-L, HGC-27 and primary GC cell line AGS. Exosomes derived from GC cells and sera were separately isolated using ultracentrifugation and ExoQuick exosome precipitation solution, and were characterized by transmission electron microscopy, Nanosight and western blotting. Transwell assay and LNM models were conducted to evaluate the capacities of migration, invasion and LNM of GC cells in vitro and in vivo. β-oxidation rate and CPT1 activity were measured to assess FAO. CPT1A inhibitor etomoxir was used to determine the role of FAO. Label-free LC-MS/MS proteome analysis screened the differential protein profiling between HGC-27-exosomes and AGS-exosomes. Small interference RNAs and YAP inhibitor verteporfin were used to elucidate the role and mechanism of exosomal CD44. TCGA data analysis, immunochemistry staining and ELISA were performed to analyze the expression correlation and clinical significance of CD44/YAP/CPT1A. Results FAO was increased in lymphatic metastatic GC cells and indispensable for sustaining LNM capacity. Lymphatic metastatic GC cell-exosomes conferred LNM capacity on primary GC cells in an FAO-dependent way. Mechanistically, CD44 was identified to be enriched in HGC-27-exosomes and was a critical cargo protein regulating exosome-mediated transmission, possibly by modulating the RhoA/YAP/Prox1/CPT1A signaling axis. Abnormal expression of CD44/YAP/CPT1A in GC tissues was correlated with each other and associated with LNM status, stages, invasion and poor survival. Serum exosomal CD44 concentration was positively correlated with tumor burden in lymph nodes. Conclusions We uncovered a novel mechanism: exosomal CD44 transmits LNM capacity between GC cells via YAP-CPT1A-mediated FAO reprogramming from the perspective of exosomes-transferred LNM phenotype. This provides potential therapeutic targets and a non-invasive biomarker for GC patients with LNM.
Collapse
Affiliation(s)
- Mei Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wanjun Yu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiaoli Cao
- Department of Laboratory Medicine, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Hongbing Gu
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
| | - Jiaying Huang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Chen Wu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Lin Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xin Sha
- Department of Surgery, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Bo Shen
- Department of Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Ting Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yongliang Yao
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, China
| | - Wei Zhu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Feng Huang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, China
- Department of Clinical Laboratory, Maternal and Child Health Care Hospital of Kunshan, Suzhou, China
| |
Collapse
|
27
|
Zhai Y, Sang W, Su L, Shen Y, Hu Y, Zhang W. Analysis of the expression and prognostic value of MT1-MMP, β1-integrin and YAP1 in glioma. Open Med (Wars) 2022; 17:492-507. [PMID: 35350840 PMCID: PMC8919829 DOI: 10.1515/med-2022-0449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/23/2022] [Accepted: 02/07/2022] [Indexed: 11/19/2022] Open
Abstract
Increased expression of membrane type 1-matrix metalloproteinase (MT1-MMP/MMP14) is associated with the development of many cancers. MT1-MMP may promote the entry of yes-associated protein1 (YAP1) into the nucleus by regulating the regulation of β1-integrin. The purpose of this study was to investigate the effects of MT1-MMP, β1-integrin and YAP1 on the prognosis of gliomas. The expression of proteins was detected by bioinformatics and immunohistochemistry. The relationship between three proteins and clinicopathological parameters was analyzed by the χ2 test. Survival analysis was used to investigate the effects of three proteins on prognosis. The results showed that high expressions of MT1-MMP, β1-integrin and YAP1 were found in glioblastoma (GBM) compared with lower-grade glioma (LGG). There was a significantly positive correlation between MT1-MMP and β1-integrin (r = 0.387), MT1-MMP and YAP1 (r = 0.443), β1-integrin and YAP1 (r = 0.348). Survival analysis showed that patients with overexpression of MT1-MMP, β1-integrin and YAP1 had a worse prognosis. YAP1 expression was the independent prognostic factor for progression-free survival (PFS). There was a statistical correlation between the expression of MT1-MMP and YAP1 and isocitrate dehydrogenase 1 (IDHl) mutation. Thus, this study suggested that MT1-MMP, β1-integrin and YAP1, as tumor suppressors, are expected to be promising prognostic biomarkers and therapeutic targets for glioma patients.
Collapse
Affiliation(s)
- Yangyang Zhai
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University , Urumqi , Xinjiang, 830054 , P. R. China
- State Key Laboratory of Etiology and Prevention of High Incidence in Central Asia , Xinjiang Medical University, 830000 , P. R. China
| | - Wei Sang
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University , Urumqi , Xinjiang, 830054 , P. R. China
| | - Liping Su
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University , Urumqi , Xinjiang, 830054 , P. R. China
| | - Yusheng Shen
- Department of Neurosurgery, First Affiliated Hospital, Xinjiang Medical University , Urumqi , Xinjiang 830054 , P. R. China
| | - Yanran Hu
- Xinjiang Medical University, Urumqi, The Xinjiang Uygur Autonomous Region of China , 830011 , P. R. China
| | - Wei Zhang
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University , Urumqi , Xinjiang, 830054 , P. R. China
| |
Collapse
|
28
|
Jun JH, Lee EJ, Park M, Ko JY, Park JH. Reduced expression of TAZ inhibits primary cilium formation in renal glomeruli. Exp Mol Med 2022; 54:169-179. [PMID: 35177808 PMCID: PMC8894487 DOI: 10.1038/s12276-022-00730-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Renal primary cilia are antenna-like organelles that maintain cellular homeostasis via multiple receptors clustered along their membranes. Recent studies have revealed that YAP/TAZ, key paralogous effectors of the Hippo pathway, are involved in ciliogenesis; however, their independent roles need to be further investigated. Here, we analyzed the renal phenotypes of kidney-specific TAZ knockout mice and observed ciliary defects only in glomeruli where mild cysts were formed. This finding prompted us to verify the role of TAZ specifically in renal tubule ciliary regulation. Therefore, we investigated the effects of TAZ silencing and compared them to those of YAP knockdown using three different types of renal tubular cells. We found that the absence of TAZ prevented proper cilia formation in glomerular cells, whereas it had a negligible effect in collecting duct and proximal tubule cells. IFT and NPHP protein levels were altered because of TAZ deficiency, accompanied by ciliary defects in glomerular cells, and ciliary recovery was identified by regulating some NPHP proteins. Although our study focused on TAZ, ciliogenesis, and other ciliary genes, the results suggest the very distinct roles of YAP and TAZ in kidneys, specifically in terms of ciliary regulation. The roles of two regulatory proteins in the kidneys have been further clarified and provide insights into cilia defects and cyst formation. Cilia are organelles that act as ‘antennae’ for cell signaling in many tissues. Recent studies have highlighted two proteins involved in kidney cilia formation, YAP and TAZ, but little is known about their roles. Jong Hoon Park and co-workers at Sookmyung Women’s University in Seoul, South Korea, examined the role of TAZ in the regulation of kidney tubule cilia in mice. They explored the effects of silencing TAZ or YAP expression in different types of kidney tubule cells. TAZ deficiency but not YAP deficiency prevented correct cilia formation in the glomeruli, blood vessels that filter waste in the kidneys, and the resulting defects led to mild cyst generation.
Collapse
Affiliation(s)
- Jae Hee Jun
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Eun Ji Lee
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Minah Park
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Je Yeong Ko
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jong Hoon Park
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
29
|
Liu C, Niu K, Xiao Q. Updated perspectives on vascular cell specification and pluripotent stem cell-derived vascular organoids for studying vasculopathies. Cardiovasc Res 2022; 118:97-114. [PMID: 33135070 PMCID: PMC8752356 DOI: 10.1093/cvr/cvaa313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/15/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Vasculopathy is a pathological process occurring in the blood vessel wall, which could affect the haemostasis and physiological functions of all the vital tissues/organs and is one of the main underlying causes for a variety of human diseases including cardiovascular diseases. Current pharmacological interventions aiming to either delay or stop progression of vasculopathies are suboptimal, thus searching novel, targeted, risk-reducing therapeutic agents, or vascular grafts with full regenerative potential for patients with vascular abnormalities are urgently needed. Since first reported, pluripotent stem cells (PSCs), particularly human-induced PSCs, have open new avenue in all research disciplines including cardiovascular regenerative medicine and disease remodelling. Assisting with recent technological breakthroughs in tissue engineering, in vitro construction of tissue organoid made a tremendous stride in the past decade. In this review, we provide an update of the main signal pathways involved in vascular cell differentiation from human PSCs and an extensive overview of PSC-derived tissue organoids, highlighting the most recent discoveries in the field of blood vessel organoids as well as vascularization of other complex tissue organoids, with the aim of discussing the key cellular and molecular players in generating vascular organoids.
Collapse
MESH Headings
- Blood Vessels/metabolism
- Blood Vessels/pathology
- Blood Vessels/physiopathology
- Cell Culture Techniques
- Cell Differentiation
- Cell Lineage
- Cells, Cultured
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Humans
- Induced Pluripotent Stem Cells/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neovascularization, Pathologic
- Neovascularization, Physiologic
- Organoids
- Phenotype
- Signal Transduction
- Vascular Diseases/metabolism
- Vascular Diseases/pathology
- Vascular Diseases/physiopathology
Collapse
Affiliation(s)
- Chenxin Liu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Kaiyuan Niu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London EC1M 6BQ, UK
- Key Laboratory of Cardiovascular Diseases at The Second Affiliated Hospital
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, Guangdong 511436, China
| |
Collapse
|
30
|
Xia Q, Dong H, Guo Y, Fang K, Hu M, Xu L, Lu F, Gong J. The role of lacteal integrity and junction transformation in obesity: A promising therapeutic target? Front Endocrinol (Lausanne) 2022; 13:1007856. [PMID: 36506056 PMCID: PMC9729342 DOI: 10.3389/fendo.2022.1007856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/08/2022] [Indexed: 11/26/2022] Open
Abstract
Lacteals are the central lymphatic vessels in the villi of the small intestine and perform nutrient absorption, especially dietary lipids, and the transportation of antigen and antigen-presenting cells. Remodeling, proliferation, and cell-cell junctions of lymphatic endothelial cells (LECs) in lacteals are the basis of the maintenance of lacteal integrity and dietary lipid absorption. Normal lipid absorption in the diet depends on sound lacteal development and proliferation, especially integrity maintenance, namely, maintaining the appropriate proportion of button-like and zipper-like junctions. Maintaining the integrity and transforming button-to-zipper junctions in lacteals are strongly connected with obesity, which could be regulated by intestinal flora and molecular signalings, such as vascular endothelial growth factor C-vascular endothelial growth receptor 3 (VEGFC-VEGFR3) signaling, Hippo signaling, Notch signaling, angiopoietin-TIE signaling, VEGF-A/VEGFR2 signaling, and PROX1. This manuscript reviews the molecular mechanism of development, integrity maintenance, and junction transformation in lacteal related to obesity.
Collapse
Affiliation(s)
- Qingsong Xia
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yujin Guo
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ke Fang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meilin Hu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lijun Xu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuer Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Jing Gong, ; Fuer Lu,
| | - Jing Gong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Jing Gong, ; Fuer Lu,
| |
Collapse
|
31
|
Makris S, de Winde CM, Horsnell HL, Cantoral-Rebordinos JA, Finlay RE, Acton SE. Immune function and dysfunction are determined by lymphoid tissue efficacy. Dis Model Mech 2022; 15:dmm049256. [PMID: 35072206 PMCID: PMC8807573 DOI: 10.1242/dmm.049256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lymphoid tissue returns to a steady state once each immune response is resolved, and although this occurs multiple times throughout life, its structural integrity and functionality remain unaffected. Stromal cells orchestrate cellular interactions within lymphoid tissue, and any changes to the microenvironment can have detrimental outcomes and drive disease. A breakdown in lymphoid tissue homeostasis can lead to a loss of tissue structure and function that can cause aberrant immune responses. This Review highlights recent advances in our understanding of lymphoid tissue function and remodelling in adaptive immunity and in disease states. We discuss the functional role of lymphoid tissue in disease progression and explore the changes to lymphoid tissue structure and function driven by infection, chronic inflammatory conditions and cancer. Understanding the role of lymphoid tissues in immune responses to a wide range of pathologies allows us to take a fuller systemic view of disease progression.
Collapse
Affiliation(s)
- Spyridon Makris
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Charlotte M. de Winde
- Department for Molecular Cell Biology and Immunology, Amsterdam UMC, location VUmc, De Boelelaan 1108, 1081 HZ Amsterdam, Netherlands
| | - Harry L. Horsnell
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jesús A. Cantoral-Rebordinos
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Rachel E. Finlay
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester M13 9PL, UK
| | - Sophie E. Acton
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
32
|
Tabrizi ZB, Ahmed NS, Horder JL, Storr SJ, Benest AV. Transcription Factor Control of Lymphatic Quiescence and Maturation of Lymphatic Neovessels in Development and Physiology. Front Physiol 2021; 12:672987. [PMID: 34795596 PMCID: PMC8593113 DOI: 10.3389/fphys.2021.672987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/30/2021] [Indexed: 11/25/2022] Open
Abstract
The lymphatic system is a vascular system comprising modified lymphatic endothelial cells, lymph nodes and other lymphoid organs. The system has diverse, but critical functions in both physiology and pathology, and forms an interface between the blood vascular and immune system. It is increasingly evident that remodelling of the lymphatic system occurs alongside remodelling of the blood microvascular system, which is now considered a hallmark of most pathological conditions as well as being critical for normal development. Much attention has focussed on how the blood endothelium undergoes phenotypic switching in development and disease, resulting in over two decades of research to probe the mechanisms underlying the resulting heterogeneity. The lymphatic system has received less attention, and consequently there are fewer descriptions of functional and molecular heterogeneity, but differential transcription factor activity is likely an important control mechanism. Here we introduce and discuss significant transcription factors of relevance to coordinating cellular responses during lymphatic remodelling as the lymphatic endothelium dynamically changes from quiescence to actively remodelling.
Collapse
Affiliation(s)
- Zarah B Tabrizi
- Endothelial Quiescence Group, University of Nottingham, Nottingham, United Kingdom
| | - Nada S Ahmed
- Endothelial Quiescence Group, University of Nottingham, Nottingham, United Kingdom
| | - Joseph L Horder
- Endothelial Quiescence Group, University of Nottingham, Nottingham, United Kingdom
| | - Sarah J Storr
- Nottingham Breast Cancer Research Centre, Centre for Cancer Sciences School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Andrew V Benest
- Endothelial Quiescence Group, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
33
|
Koltowska K, Okuda KS, Gloger M, Rondon-Galeano M, Mason E, Xuan J, Dudczig S, Chen H, Arnold H, Skoczylas R, Bower NI, Paterson S, Lagendijk AK, Baillie GJ, Leshchiner I, Simons C, Smith KA, Goessling W, Heath JK, Pearson RB, Sanij E, Schulte-Merker S, Hogan BM. The RNA helicase Ddx21 controls Vegfc-driven developmental lymphangiogenesis by balancing endothelial cell ribosome biogenesis and p53 function. Nat Cell Biol 2021; 23:1136-1147. [PMID: 34750583 DOI: 10.1038/s41556-021-00784-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
The development of a functional vasculature requires the coordinated control of cell fate, lineage differentiation and network growth. Cellular proliferation is spatiotemporally regulated in developing vessels, but how this is orchestrated in different lineages is unknown. Here, using a zebrafish genetic screen for lymphatic-deficient mutants, we uncover a mutant for the RNA helicase Ddx21. Ddx21 cell-autonomously regulates lymphatic vessel development. An established regulator of ribosomal RNA synthesis and ribosome biogenesis, Ddx21 is enriched in sprouting venous endothelial cells in response to Vegfc-Flt4 signalling. Ddx21 function is essential for Vegfc-Flt4-driven endothelial cell proliferation. In the absence of Ddx21, endothelial cells show reduced ribosome biogenesis, p53 and p21 upregulation and cell cycle arrest that blocks lymphangiogenesis. Thus, Ddx21 coordinates the lymphatic endothelial cell response to Vegfc-Flt4 signalling by balancing ribosome biogenesis and p53 function. This mechanism may be targetable in diseases of excessive lymphangiogenesis such as cancer metastasis or lymphatic malformation.
Collapse
Affiliation(s)
- Katarzyna Koltowska
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia. .,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Kazuhide S Okuda
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Marleen Gloger
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Maria Rondon-Galeano
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Elizabeth Mason
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jiachen Xuan
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Stefanie Dudczig
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Huijun Chen
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Hannah Arnold
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Renae Skoczylas
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Neil I Bower
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Scott Paterson
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Anne Karine Lagendijk
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Gregory J Baillie
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Ignaty Leshchiner
- Massachusetts General Hospital, Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cas Simons
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Kelly A Smith
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Wolfram Goessling
- Massachusetts General Hospital, Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Joan K Heath
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Richard B Pearson
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Elaine Sanij
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Clinical Pathology, University of Melbourne, Parkville, Victoria, Australia.,St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration, Medical Faculty, WWU Münster, Münster, Germany.,Hubrecht Institute-KNAW and University Medical Centre, Utrecht, The Netherlands
| | - Benjamin M Hogan
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia. .,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia. .,Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia. .,Hubrecht Institute-KNAW and University Medical Centre, Utrecht, The Netherlands.
| |
Collapse
|
34
|
Lee HK, Lee SM, Lee DI. Corneal Lymphangiogenesis: Current Pathophysiological Understandings and Its Functional Role in Ocular Surface Disease. Int J Mol Sci 2021; 22:ijms222111628. [PMID: 34769057 PMCID: PMC8583961 DOI: 10.3390/ijms222111628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 12/23/2022] Open
Abstract
The cornea is a transparent and avascular tissue that plays a central role in light refraction and provides a physical barrier to the external environment. Corneal avascularity is a unique histological feature that distinguishes it from the other parts of the body. Functionally, corneal immune privilege critically relies on corneal avascularity. Corneal lymphangiogenesis is now recognized as a general pathological feature in many pathologies, including dry eye disease (DED), corneal allograft rejection, ocular allergy, bacterial and viral keratitis, and transient corneal edema. Currently, sizable data from clinical and basic research have accumulated on the pathogenesis and functional role of ocular lymphangiogenesis. However, because of the invisibility of lymphatic vessels, ocular lymphangiogenesis has not been studied as much as hemangiogenesis. We reviewed the basic mechanisms of lymphangiogenesis and summarized recent advances in the pathogenesis of ocular lymphangiogenesis, focusing on corneal allograft rejection and DED. In addition, we discuss future directions for lymphangiogenesis research.
Collapse
Affiliation(s)
- Hyung-Keun Lee
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul 06273, Korea
- Correspondence: ; Tel.: +82-2-2019-3444
| | - Sang-Mok Lee
- Department of Ophthalmology, HanGil Eye Hospital, Catholic Kwandong University College of Medicine, Incheon 21388, Korea;
| | - Dong-Ihll Lee
- Medical School, Capital Medical University, Beijing 100069, China;
| |
Collapse
|
35
|
Quan Y, Shan X, Hu M, Jin P, Ma J, Fan J, Yang J, Zhang H, Fan X, Gong Y, Li M, Wang Y. YAP inhibition promotes endothelial cell differentiation from pluripotent stem cell through EC master transcription factor FLI1. J Mol Cell Cardiol 2021; 163:81-96. [PMID: 34666000 DOI: 10.1016/j.yjmcc.2021.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/14/2021] [Accepted: 10/09/2021] [Indexed: 12/18/2022]
Abstract
Endothelial cells (ECs) derived from pluripotent stem cells (PSCs) provide great resource for vascular disease modeling and cell-based regeneration therapy. However, the molecular mechanisms of EC differentiation are not completely understood. In this study, we checked transcriptional profile by microarray and found Hippo pathway is changed and the activity of YAP decreased during mesoderm-mediated EC differentiation from human embryonic stem cells (hESCs). Knockdown of YAP in hESCs promoted both mesoderm and EC differentiation indicating by mesodermal- or EC-specific marker gene expression increased both in mRNA and protein level. In contrast, overexpression of YAP inhibited mesoderm and EC differentiation. Microarray data showed that several key transcription factors of EC differentiation, such as FLI1, ERG, SOX17 are upregulated. Interestingly, knockdown YAP enhanced the expression of these master transcription factors. Bioinformation analysis revealed that TEAD, a YAP binds transcription factors, might regulate the expression of EC master TFs, including FLI1. Luciferase assay confirmed that YAP binds to TEAD1, which would inhibit FLI1 expression. Finally, FLI1 overexpression rescued the effects of YAP overexpression-mediated inhibition of EC differentiation. In conclusion, we revealed the inhibitory effects of YAP on EC differentiation from PSCs, and YAP inhibition might promote expression of master TFs FLI1 for EC commitment through interacting with TEAD1, which might provide an idea for EC differentiation and vascular regeneration via manipulating YAP signaling.
Collapse
Affiliation(s)
- Yingyi Quan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Xiaoqiong Shan
- The Third People's Hospital of Hangzhou. Hangzhou 310009, Zhejiang, China
| | - Minjie Hu
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Peifeng Jin
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Jianshe Ma
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Junming Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Jiwen Yang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Huan Zhang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Xiaofang Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Yongsheng Gong
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Ming Li
- Cardiac Regeneration Research Institute, School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China.
| | - Yongyu Wang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China.
| |
Collapse
|
36
|
Li J, Fang Y, Wu D. Mechanical forces and metabolic changes cooperate to drive cellular memory and endothelial phenotypes. CURRENT TOPICS IN MEMBRANES 2021; 87:199-253. [PMID: 34696886 PMCID: PMC8639155 DOI: 10.1016/bs.ctm.2021.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Endothelial cells line the innermost layer of arterial, venous, and lymphatic vascular tree and accordingly are subject to hemodynamic, stretch, and stiffness mechanical forces. Normally quiescent, endothelial cells have a hemodynamic set point and become "activated" in response to disturbed hemodynamics, which may signal impending nutrient or gas depletion. Endothelial cells in the majority of tissue beds are normally inactivated and maintain vessel barrier functions, are anti-inflammatory, anti-coagulant, and anti-thrombotic. However, under aberrant mechanical forces, endothelial signaling transforms in response, resulting cellular changes that herald pathological diseases. Endothelial cell metabolism is now recognized as the primary intermediate pathway that undergirds cellular transformation. In this review, we discuss the various mechanical forces endothelial cells sense in the large vessels, microvasculature, and lymphatics, and how changes in environmental mechanical forces result in changes in metabolism, which ultimately influence cell physiology, cellular memory, and ultimately disease initiation and progression.
Collapse
Affiliation(s)
- Jin Li
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Yun Fang
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - David Wu
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
37
|
Mustapha R, Ng K, Monypenny J, Ng T. Insights Into Unveiling a Potential Role of Tertiary Lymphoid Structures in Metastasis. Front Mol Biosci 2021; 8:661516. [PMID: 34568423 PMCID: PMC8455920 DOI: 10.3389/fmolb.2021.661516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Tertiary lymphoid structures (TLSs) develop in non-lymphatic tissue in chronic inflammation and cancer. TLS can mature to lymph node (LN) like structures with germinal centers and associated vasculature. TLS neogenesis in cancer is highly varied and tissue dependent. The role of TLS in adaptive antitumor immunity is of great interest. However, data also show that TLS can play a role in cancer metastasis. The importance of lymphatics in cancer distant metastasis is clear yet the precise detail of how various immunosurveillance mechanisms interplay within TLS and/or draining LN is still under investigation. As part of the tumor lymphatics, TLS vasculature can provide alternative routes for the establishment of the pre-metastatic niche and cancer dissemination. The nature of the cytokine and chemokine signature at the heart of TLS induction can be key in determining the success of antitumor immunity or in promoting cancer invasiveness. Understanding the biochemical and biomechanical factors underlying TLS formation and the resulting impact on the primary tumor will be key in deciphering cancer metastasis and in the development of the next generation of cancer immunotherapeutics.
Collapse
Affiliation(s)
- Rami Mustapha
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Medical School Campus, London, United Kingdom
- Cancer Research UK King’s Health Partners Centre, London, United Kingdom
| | - Kenrick Ng
- UCL Cancer Institute, University College London, London, United Kingdom
- Department of Medical Oncology, University College Hospitals NHS Foundation Trust, London, United Kingdom
| | - James Monypenny
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Medical School Campus, London, United Kingdom
| | - Tony Ng
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Medical School Campus, London, United Kingdom
- Cancer Research UK King’s Health Partners Centre, London, United Kingdom
- UCL Cancer Institute, University College London, London, United Kingdom
- Cancer Research UK City of London Centre, London, United Kingdom
| |
Collapse
|
38
|
Ducoli L, Detmar M. Beyond PROX1: transcriptional, epigenetic, and noncoding RNA regulation of lymphatic identity and function. Dev Cell 2021; 56:406-426. [PMID: 33621491 DOI: 10.1016/j.devcel.2021.01.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/08/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
The lymphatic vascular system acts as the major transportation highway of tissue fluids, and its activation or impairment is associated with a wide range of diseases. There has been increasing interest in understanding the mechanisms that control lymphatic vessel formation (lymphangiogenesis) and function in development and disease. Here, we discuss recent insights into new players whose identification has contributed to deciphering the lymphatic regulatory code. We reveal how lymphatic endothelial cells, the building blocks of lymphatic vessels, utilize their transcriptional, post-transcriptional, and epigenetic portfolio to commit to and maintain their vascular lineage identity and function, with a particular focus on development.
Collapse
Affiliation(s)
- Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland; Molecular Life Sciences PhD Program, Swiss Federal Institute of Technology and University of Zürich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
39
|
Geng X, Ho YC, Srinivasan RS. Biochemical and mechanical signals in the lymphatic vasculature. Cell Mol Life Sci 2021; 78:5903-5923. [PMID: 34240226 PMCID: PMC11072415 DOI: 10.1007/s00018-021-03886-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022]
Abstract
Lymphatic vasculature is an integral part of the cardiovascular system where it maintains interstitial fluid balance. Additionally, lymphatic vasculature regulates lipid assimilation and inflammatory response. Lymphatic vasculature is composed of lymphatic capillaries, collecting lymphatic vessels and valves that function in synergy to absorb and transport fluid against gravitational and pressure gradients. Defects in lymphatic vessels or valves leads to fluid accumulation in tissues (lymphedema), chylous ascites, chylothorax, metabolic disorders and inflammation. The past three decades of research has identified numerous molecules that are necessary for the stepwise development of lymphatic vasculature. However, approaches to treat lymphatic disorders are still limited to massages and compression bandages. Hence, better understanding of the mechanisms that regulate lymphatic vascular development and function is urgently needed to develop efficient therapies. Recent research has linked mechanical signals such as shear stress and matrix stiffness with biochemical pathways that regulate lymphatic vessel growth, patterning and maturation and valve formation. The goal of this review article is to highlight these innovative developments and speculate on unanswered questions.
Collapse
Affiliation(s)
- Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73013, USA
| | - Yen-Chun Ho
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73013, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73013, USA.
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
40
|
Alderfer L, Russo E, Archilla A, Coe B, Hanjaya-Putra D. Matrix stiffness primes lymphatic tube formation directed by vascular endothelial growth factor-C. FASEB J 2021; 35:e21498. [PMID: 33774872 DOI: 10.1096/fj.202002426rr] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022]
Abstract
Dysfunction of the lymphatic system is associated with a wide range of disease phenotypes. The restoration of dysfunctional lymphatic vessels has been hypothesized as an innovative method to rescue healthy phenotypes in diseased states including neurological conditions, metabolic syndromes, and cardiovascular disease. Compared to the vascular system, little is known about the molecular regulation that controls lymphatic tube morphogenesis. Using synthetic hyaluronic acid (HA) hydrogels as a chemically and mechanically tunable system to preserve lymphatic endothelial cell (LECs) phenotypes, we demonstrate that low matrix elasticity primes lymphatic cord-like structure (CLS) formation directed by a high concentration of vascular endothelial growth factor-C (VEGF-C). Decreasing the substrate stiffness results in the upregulation of key lymphatic markers, including PROX-1, lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), and VEGFR-3. Consequently, higher levels of VEGFR-3 enable stimulation of LECs with VEGF-C which is required to both activate matrix metalloproteinases (MMPs) and facilitate LEC migration. Both of these steps are critical in establishing CLS formation in vitro. With decreases in substrate elasticity, we observe increased MMP expression and increased cellular elongation, as well as formation of intracellular vacuoles, which can further merge into coalescent vacuoles. RNAi studies demonstrate that MMP-14 is required to enable CLS formation and that LECs sense matrix stiffness through YAP/TAZ mechanosensors leading to the activation of their downstream target genes. Collectively, we show that by tuning both the matrix stiffness and VEGF-C concentration, the signaling pathways of CLS formation can be regulated in a synthetic matrix, resulting in lymphatic networks which will be useful for the study of lymphatic biology and future approaches in tissue regeneration.
Collapse
Affiliation(s)
- Laura Alderfer
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Notre Dame, IN, USA
| | - Elizabeth Russo
- Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Notre Dame, IN, USA
| | - Adriana Archilla
- Notre Dame Nanoscience and Technology (NDnano), University of Notre Dame, Notre Dame, Notre Dame, IN, USA
| | - Brian Coe
- Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Notre Dame, IN, USA
| | - Donny Hanjaya-Putra
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Notre Dame, IN, USA.,Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Notre Dame, IN, USA.,Notre Dame Nanoscience and Technology (NDnano), University of Notre Dame, Notre Dame, Notre Dame, IN, USA.,Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
41
|
Abstract
The lymphatic vasculature plays important role in regulating fluid homeostasis, intestinal lipid absorption, and immune surveillance in humans. Malfunction of lymphatic vasculature leads to several human diseases. Understanding the fundamental mechanism in lymphatic vascular development not only expand our knowledge, but also provide a new therapeutic insight. Recently, Hippo-YAP/TAZ signaling pathway, a key mechanism of organ size and tissue homeostasis, has emerged as a critical player that regulate lymphatic specification, sprouting, and maturation. In this review, we discuss the mechanistic regulation and pathophysiological significant of Hippo pathway in lymphatic vascular development.
Collapse
Affiliation(s)
- Boksik Cha
- Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Sungjin Moon
- Department of Biological Science, Kangwon National University, Chuncheon 24341, Korea
| | - Wantae Kim
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
42
|
Francois M, Oszmiana A, Harvey NL. When form meets function: the cells and signals that shape the lymphatic vasculature during development. Development 2021; 148:268989. [PMID: 34080610 DOI: 10.1242/dev.167098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The lymphatic vasculature is an integral component of the cardiovascular system. It is essential to maintain tissue fluid homeostasis, direct immune cell trafficking and absorb dietary lipids from the digestive tract. Major advances in our understanding of the genetic and cellular events important for constructing the lymphatic vasculature during development have recently been made. These include the identification of novel sources of lymphatic endothelial progenitor cells, the recognition of lymphatic endothelial cell specialisation and heterogeneity, and discovery of novel genes and signalling pathways underpinning developmental lymphangiogenesis. Here, we review these advances and discuss how they inform our understanding of lymphatic network formation, function and dysfunction.
Collapse
Affiliation(s)
- Mathias Francois
- The David Richmond Laboratory for Cardiovascular Development: Gene Regulation and Editing Program, The Centenary Institute, The University of Sydney, SOLES, 2006 Camperdown, Australia
| | - Anna Oszmiana
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide 5001, Australia
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide 5001, Australia
| |
Collapse
|
43
|
Mechanosensation and Mechanotransduction by Lymphatic Endothelial Cells Act as Important Regulators of Lymphatic Development and Function. Int J Mol Sci 2021; 22:ijms22083955. [PMID: 33921229 PMCID: PMC8070425 DOI: 10.3390/ijms22083955] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Our understanding of the function and development of the lymphatic system is expanding rapidly due to the identification of specific molecular markers and the availability of novel genetic approaches. In connection, it has been demonstrated that mechanical forces contribute to the endothelial cell fate commitment and play a critical role in influencing lymphatic endothelial cell shape and alignment by promoting sprouting, development, maturation of the lymphatic network, and coordinating lymphatic valve morphogenesis and the stabilization of lymphatic valves. However, the mechanosignaling and mechanotransduction pathways involved in these processes are poorly understood. Here, we provide an overview of the impact of mechanical forces on lymphatics and summarize the current understanding of the molecular mechanisms involved in the mechanosensation and mechanotransduction by lymphatic endothelial cells. We also discuss how these mechanosensitive pathways affect endothelial cell fate and regulate lymphatic development and function. A better understanding of these mechanisms may provide a deeper insight into the pathophysiology of various diseases associated with impaired lymphatic function, such as lymphedema and may eventually lead to the discovery of novel therapeutic targets for these conditions.
Collapse
|
44
|
Oxidatively Modified LDL Suppresses Lymphangiogenesis via CD36 Signaling. Antioxidants (Basel) 2021; 10:antiox10020331. [PMID: 33672291 PMCID: PMC7926875 DOI: 10.3390/antiox10020331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Arterial accumulation of plasma-derived LDL and its subsequent oxidation contributes to atherosclerosis. Lymphatic vessel (LV)-mediated removal of arterial cholesterol has been shown to reduce atherosclerotic lesion formation. However, the precise mechanisms that regulate LV density and function in atherosclerotic vessels remain to be identified. The aim of this study was to investigate the role of native LDL (nLDL) and oxidized LDL (oxLDL) in modulating lymphangiogenesis and underlying molecular mechanisms. Western blotting and immunostaining experiments demonstrated increased oxLDL expression in human atherosclerotic arteries. Furthermore, elevated oxLDL levels were detected in the adventitial layer, where LV are primarily present. Treatment of human lymphatic endothelial cells (LEC) with oxLDL inhibited in vitro tube formation, while nLDL stimulated it. Similar results were observed with Matrigel plug assay in vivo. CD36 deletion in mice and its siRNA-mediated knockdown in LEC prevented oxLDL-induced inhibition of lymphangiogenesis. In addition, oxLDL via CD36 receptor suppressed cell cycle, downregulated AKT and eNOS expression, and increased levels of p27 in LEC. Collectively, these results indicate that oxLDL inhibits lymphangiogenesis via CD36-mediated regulation of AKT/eNOS pathway and cell cycle. These findings suggest that therapeutic blockade of LEC CD36 may promote arterial lymphangiogenesis, leading to increased cholesterol removal from the arterial wall and reduced atherosclerosis.
Collapse
|
45
|
Zhong W, Jiang H, Zou Y, Ren J, Li Z, He K, Zhao J, Zhou X, Mou D, Cai Y. The YAP signaling pathway promotes the progression of lymphatic malformations through the activation of lymphatic endothelial cells. Pediatr Res 2021; 89:110-117. [PMID: 32279070 DOI: 10.1038/s41390-020-0863-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/11/2020] [Accepted: 02/19/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND To investigate whether the YAP/TAZ (Yes-associated protein/transcriptional coactivator with PDZ binding motif) pathway contributes to the pathogenesis of lymphatic malformations (LMs). METHODS YAP, TAZ, CTGF (connective tissue growth factor), and Ki-67 were detected in LMs by immunohistochemistry. The colocalization of YAP and Ki-67 was analyzed by double immunofluorescence. Pearson's correlation and cluster analyses were performed to analyze the relationships between these proteins. Human dermal lymphatic endothelial cells (HDLECs) were used for mechanistic investigation. Rat models of LMs were established to investigate the role of the YAP pathway in LM development. RESULTS Compared with those in normal skin, the expression levels of YAP, TAZ, CTGF, and Ki-67 were significantly upregulated in lymphatic endothelial cells (LECs) of LMs. Interestingly, YAP and CTGF presented much higher expression levels in infected LMs. In experiments in vitro, lipopolysaccharide (LPS) enhanced the expression of YAP in a concentration- and time-dependent manner via the increased phosphorylation of Erk1/2 (extracellular signal-regulated kinase 1/2). Moreover, the proliferation, invasion, and tubule formation of HDLECs increased significantly in accordance with the activation of the YAP signaling pathway. Furthermore, LM rat models validated that LPS facilitated the development of LMs, which was dependent on the activation of YAP. CONCLUSIONS The data reveal that activation of the YAP signaling pathway in LECs may play a crucial role in the progression of LMs. IMPACT Compared with that in normal skin, the YAP signaling pathway was activated in LECs of LMs. Inhibiting the YAP signaling pathway attenuated the proliferation, invasion, and tubule formation of HDLECs. Additionally, the activation of the YAP signaling pathway could promote LM development in a rat model. Activation of the YAP signaling pathway in LECs may play a crucial role in the progression of LMs. The YAP signaling pathway was activated in LMs. Inhibition of the YAP signaling pathway could promote regression of the lesions.
Collapse
Affiliation(s)
- Wenqun Zhong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,The Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hao Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,The Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yanping Zou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,The Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jiangang Ren
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,The Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhizheng Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,The Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Kefei He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,The Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jihong Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,The Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | | | | | - Yu Cai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China. .,The Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
46
|
Cha B, Ho YC, Geng X, Mahamud MR, Chen L, Kim Y, Choi D, Kim TH, Randolph GJ, Cao X, Chen H, Srinivasan RS. YAP and TAZ maintain PROX1 expression in the developing lymphatic and lymphovenous valves in response to VEGF-C signaling. Development 2020; 147:dev195453. [PMID: 33060128 PMCID: PMC7758626 DOI: 10.1242/dev.195453] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/22/2020] [Indexed: 01/07/2023]
Abstract
Lymphatic vasculature is an integral part of digestive, immune and circulatory systems. The homeobox transcription factor PROX1 is necessary for the development of lymphatic vessels, lymphatic valves (LVs) and lymphovenous valves (LVVs). We and others previously reported a feedback loop between PROX1 and vascular endothelial growth factor-C (VEGF-C) signaling. PROX1 promotes the expression of the VEGF-C receptor VEGFR3 in lymphatic endothelial cells (LECs). In turn, VEGF-C signaling maintains PROX1 expression in LECs. However, the mechanisms of PROX1/VEGF-C feedback loop remain poorly understood. Whether VEGF-C signaling is necessary for LV and LVV development is also unknown. Here, we report for the first time that VEGF-C signaling is necessary for valve morphogenesis. We have also discovered that the transcriptional co-activators YAP and TAZ are required to maintain PROX1 expression in LVs and LVVs in response to VEGF-C signaling. Deletion of Yap and Taz in the lymphatic vasculature of mouse embryos did not affect the formation of LVs or LVVs, but resulted in the degeneration of these structures. Our results have identified VEGF-C, YAP and TAZ as a crucial molecular pathway in valve development.
Collapse
Affiliation(s)
- Boksik Cha
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Yen-Chun Ho
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Md Riaj Mahamud
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Lijuan Chen
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Yeunhee Kim
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Dongwon Choi
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tae Hoon Kim
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Xinwei Cao
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| |
Collapse
|
47
|
Abstract
The lymphatic vasculature is a vital component of the vertebrate vascular system that mediates tissue fluid homeostasis, lipid uptake and immune surveillance. The development of the lymphatic vasculature starts in the early vertebrate embryo, when a subset of blood vascular endothelial cells of the cardinal veins acquires lymphatic endothelial cell fate. These cells sprout from the veins, migrate, proliferate and organize to give rise to a highly structured and unique vascular network. Cellular cross-talk, cell-cell communication and the interpretation of signals from surrounding tissues are all essential for coordinating these processes. In this chapter, we highlight new findings and review research progress with a particular focus on LEC migration and guidance, expansion of the LEC lineage, network remodeling and morphogenesis of the lymphatic vasculature.
Collapse
|
48
|
Vanyai HK, Prin F, Guillermin O, Marzook B, Boeing S, Howson A, Saunders RE, Snoeks T, Howell M, Mohun TJ, Thompson B. Control of skeletal morphogenesis by the Hippo-YAP/TAZ pathway. Development 2020; 147:dev187187. [PMID: 32994166 PMCID: PMC7673359 DOI: 10.1242/dev.187187] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
The Hippo-YAP/TAZ pathway is an important regulator of tissue growth, but can also control cell fate or tissue morphogenesis. Here, we investigate the function of the Hippo pathway during the development of cartilage, which forms the majority of the skeleton. Previously, YAP was proposed to inhibit skeletal size by repressing chondrocyte proliferation and differentiation. We find that, in vitro, Yap/Taz double knockout impairs murine chondrocyte proliferation, whereas constitutively nuclear nls-YAP5SA accelerates proliferation, in line with the canonical role of this pathway in most tissues. However, in vivo, cartilage-specific knockout of Yap/Taz does not prevent chondrocyte proliferation, differentiation or skeletal growth, but rather results in various skeletal deformities including cleft palate. Cartilage-specific expression of nls-YAP5SA or knockout of Lats1/2 do not increase cartilage growth, but instead lead to catastrophic malformations resembling chondrodysplasia or achondrogenesis. Physiological YAP target genes in cartilage include Ctgf, Cyr61 and several matrix remodelling enzymes. Thus, YAP/TAZ activity controls chondrocyte proliferation in vitro, possibly reflecting a regenerative response, but is dispensable for chondrocyte proliferation in vivo, and instead functions to control cartilage morphogenesis via regulation of the extracellular matrix.
Collapse
Affiliation(s)
- Hannah K Vanyai
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Fabrice Prin
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Oriane Guillermin
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Bishara Marzook
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Stefan Boeing
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Alexander Howson
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Rebecca E Saunders
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Thomas Snoeks
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Michael Howell
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Timothy J Mohun
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Barry Thompson
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
- EMBL Australia, Department of Cancer Biology & Therapeutics, The John Curtin School of Medical Research, The Australian National University, 131 Garran Rd, Acton, 2601, Canberra, Australia
| |
Collapse
|
49
|
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is the most common genetic renal disease, primarily caused by germline mutation of PKD1 or PKD2, leading to end-stage renal disease. There are few cures for ADPKD, although many researchers are trying to find a cure. The Hippo signaling pathway regulates organ growth and cell proliferation. Transcriptional coactivator with PDZ-binding motif (TAZ) is a Hippo signaling effector. In this study, we demonstrated that the PKD1–TAZ–Wnt–β-catenin–c-MYC signaling axis plays a critical role in cystogenesis. Endo IWR1 treatment, which inhibited β-catenin activity via AXIN stabilization, reduced cyst growth in an ADPKD model. Our findings provide a potential therapeutic target against ADPKD and would be important for clinical translation. Autosomal-dominant polycystic kidney disease (ADPKD) is the most common genetic renal disease, primarily caused by germline mutation of PKD1 or PKD2, leading to end-stage renal disease. The Hippo signaling pathway regulates organ growth and cell proliferation. Herein, we demonstrate the regulatory mechanism of cystogenesis in ADPKD by transcriptional coactivator with PDZ-binding motif (TAZ), a Hippo signaling effector. TAZ was highly expressed around the renal cyst-lining epithelial cells of Pkd1-deficient mice. Loss of Taz in Pkd1-deficient mice reduced cyst formation. In wild type, TAZ interacted with PKD1, which inactivated β-catenin. In contrast, in PKD1-deficient cells, TAZ interacted with AXIN1, thus increasing β-catenin activity. Interaction of TAZ with AXIN1 in PKD1-deficient cells resulted in nuclear accumulation of TAZ together with β-catenin, which up-regulated c-MYC expression. Our findings suggest that the PKD1–TAZ–Wnt–β-catenin–c-MYC signaling axis plays a critical role in cystogenesis and might be a potential therapeutic target against ADPKD.
Collapse
|
50
|
Fan M, Yang K, Wang X, Wang Y, Tu F, Ha T, Liu L, Williams DL, Li C. Endothelial cell HSPA12B and yes-associated protein cooperatively regulate angiogenesis following myocardial infarction. JCI Insight 2020; 5:139640. [PMID: 32790647 PMCID: PMC7526558 DOI: 10.1172/jci.insight.139640] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis is essential for cardiac functional recovery after myocardial infarction (MI). HSPA12B is predominately expressed in endothelial cells and required for angiogenesis. Yes-associated protein (YAP) plays an important role in tumor angiogenesis. This study investigated the cooperative role of HSPA12B and YAP in angiogenesis after MI. Silencing of either HSPA12B or YAP impaired hypoxia-promoted endothelial cell proliferation and angiogenesis. Deficiency of HSPA12B suppressed YAP expression and nuclear translocation after hypoxia. Knockdown of YAP attenuated hypoxia-stimulated HSPA12B nuclear translocation and abrogated HSPA12B-promoted endothelial cell angiogenesis. Mechanistically, hypoxia induced an interaction between endothelial HSPA12B and YAP. ChIP assay showed that HSPA12B is a target gene of YAP/transcriptional enhanced associated domain 4 (TEAD4) and a coactivator in YAP-associated angiogenesis. In vivo studies using the MI model showed that endothelial cell-specific deficiency of HSPA12B (eHspa12b-/-) or YAP (eYap-/-) impaired angiogenesis and exacerbated cardiac dysfunction compared with WT mice. MI increased YAP expression and nuclear translocation in WT hearts but not eHspa12b-/- hearts. HSPA12B expression and nuclear translocation were upregulated in WT MI hearts but not eYap-/- MI myocardium. Our data demonstrate that endothelial HSPA12B is a target and coactivator for YAP/TEAD4 and cooperates with YAP to regulate endothelial angiogenesis after MI.
Collapse
Affiliation(s)
- Min Fan
- Department of Surgery and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, Tennessee, USA
| | - Kun Yang
- Department of Surgery and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, Tennessee, USA
| | - Xiaohui Wang
- Department of Surgery and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, Tennessee, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | | | - Fei Tu
- Department of Surgery and
| | - Tuanzhu Ha
- Department of Surgery and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, Tennessee, USA
| | - Li Liu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - David L. Williams
- Department of Surgery and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, Tennessee, USA
| | - Chuanfu Li
- Department of Surgery and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, Tennessee, USA
| |
Collapse
|