1
|
Wang Z, Xu Z, Chen H, Zheng Y, Wang Z, Chen X. Mitogenome selection shaped the terrestrial adaptation of Grapsidae (Decapoda: Brachyura). Gene 2024; 924:148594. [PMID: 38782222 DOI: 10.1016/j.gene.2024.148594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/28/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
The colonization of aquatic to terrestrial habitats by brachyuran crabs requires genetic innovations as well as morphological adaptations to adapt to terrestrial environments. The genetic basis of such adaptive evolution, however, is largely unknown. This study focuses on terrestrialization in Geograpsus (Grapsidae) the only highly terrestrial genus in this family, which represents a notable example of terrestrial adaptive radiation. Here, we sequenced the mitogenomes of two Geograpsus species and used the mitogenomes of 215 representative crabs to construct phylogenetic and time frameworks that we used to infer terrestrial origins and evolution. Using mitochondrial genomic data, we demonstrated that marine crab ancestors began to settle on land during the early Eocene. Ocean acidification, the Paleocene-Eocene Thermal Maximum (PETM), and mangrove expansion at that time may have driven the diversification and ecological expansion of these terrestrial crabs. Evolutionary analyses reveal strong positive selection signals on monophyletic lineages of Grapsidae, especially the terrestrial species of Geograpsus. Positively selected sites in functionally important regions of ND5 and ND4 may imply enhanced energy metabolism in Grapsidae compared to other crabs, and may have played an important role in their terrestrial adaptation. Overall, our work provides valuable resources and opportunities to reveal the adaptation of crabs to complex terrestrial environments.
Collapse
Affiliation(s)
- Zhengfei Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China.
| | - Zhiwen Xu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China
| | - Huohuo Chen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China
| | - Yuqing Zheng
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China
| | - Zhixuan Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China
| | - Xin Chen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China
| |
Collapse
|
2
|
Yin L, Yuan L, Luo Z, Tang Y, Lin X, Wang S, Liang P, Huang L, Jiang B. COX-2 optimizes cardiac mitochondrial biogenesis and exerts a cardioprotective effect during sepsis. Cytokine 2024; 182:156733. [PMID: 39128194 DOI: 10.1016/j.cyto.2024.156733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Septic cardiomyopathy is a component of multiple organ dysfunction in sepsis. Mitochondrial dysfunction plays an important role in septic cardiomyopathy. Studies have shown that cyclooxygenase-2 (COX-2) had a protective effect on the heart, and prostaglandin E2 (PGE2), the downstream product of COX-2, was increasingly recognized to have a protective effect on mitochondrial function. OBJECTIVE This study aims to demonstrate that COX-2/PGE2 can protect against septic cardiomyopathy by regulating mitochondrial function. METHODS Cecal ligation and puncture (CLP) was used to establish a mouse model of sepsis and RAW264.7 macrophages and H9C2 cells were used to simulate sepsis in vitro. The NS-398 and celecoxib were used to inhibit the activity of COX-2. ZLN005 and SR18292 were used to activate or inhibit the PGC-1α activity. The mitochondrial biogenesis was examined through the Mitotracker Red probe, mtDNA copy number, and ATP content detection. RESULTS The experimental data suggested that COX-2 inhibition attenuated PGC-1α expression thus decreasing mitochondrial biogenesis, whereas increased PGE2 could promote mitochondrial biogenesis by activating PGC-1α. The results also showed that the effect of COX-2/PGE2 on PGC-1α was mediated by the activation of cyclic adenosine monophosphate (cAMP) response element binding protein (CREB). Finally, the effect of COX-2/PGE2 on the heart was also verified in the septic mice. CONCLUSION Collectively, these results suggested that COX-2/PGE2 pathway played a cardioprotective role in septic cardiomyopathy through improving mitochondrial biogenesis, which has changed the previous understanding that COX-2/PGE2 only acted as an inflammatory factor.
Collapse
Affiliation(s)
- Leijing Yin
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - Ludong Yuan
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Zhengyang Luo
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Yuting Tang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Xiaofang Lin
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Shuxin Wang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - Lingjin Huang
- Department of Cardiothoracic Surgery, Xiangya Hospital Central South University, Changsha, PR China.
| | - Bimei Jiang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China.
| |
Collapse
|
3
|
Vaja R, Lopes-Pires M, Shala F, Cypaite N, Vinokurova M, Ferreira P, Mitchell JA, Kirkby NS. L-arginine supplementation protects against thrombosis and renal dysfunction in mice treated with the cyclooxygenase-2 inhibitor parecoxib. J Thromb Haemost 2024; 22:1798-1801. [PMID: 38518895 DOI: 10.1016/j.jtha.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/16/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024]
Affiliation(s)
- Ricky Vaja
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Maria Lopes-Pires
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Fisnik Shala
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Neringa Cypaite
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Maria Vinokurova
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Plinio Ferreira
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Jane A Mitchell
- National Heart & Lung Institute, Imperial College London, London, United Kingdom.
| | - Nicholas S Kirkby
- National Heart & Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
4
|
Tang SY, Lordan R, Meng H, Auerbach BJ, Hennessy EJ, Sengupta A, Das US, Joshi R, Marcos-Contreras OA, McConnell R, Grant GR, Ricciotti E, Muzykantov VR, Grosser T, Weiljie AM, FitzGerald GA. Differential Impact In Vivo of Pf4-ΔCre-Mediated and Gp1ba-ΔCre-Mediated Depletion of Cyclooxygenase-1 in Platelets in Mice. Arterioscler Thromb Vasc Biol 2024; 44:1393-1406. [PMID: 38660804 PMCID: PMC11138953 DOI: 10.1161/atvbaha.123.320295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Low-dose aspirin is widely used for the secondary prevention of cardiovascular disease. The beneficial effects of low-dose aspirin are attributable to its inhibition of platelet Cox (cyclooxygenase)-1-derived thromboxane A2. Until recently, the use of the Pf4 (platelet factor 4) Cre has been the only genetic approach to generating megakaryocyte/platelet ablation of Cox-1 in mice. However, Pf4-ΔCre displays ectopic expression outside the megakaryocyte/platelet lineage, especially during inflammation. The use of the Gp1ba (glycoprotein 1bα) Cre promises a more specific, targeted approach. METHODS To evaluate the role of Cox-1 in platelets, we crossed Pf4-ΔCre or Gp1ba-ΔCre mice with Cox-1flox/flox mice to generate platelet Cox-1-/- mice on normolipidemic and hyperlipidemic (Ldlr-/-; low-density lipoprotein receptor) backgrounds. RESULTS Ex vivo platelet aggregation induced by arachidonic acid or adenosine diphosphate in platelet-rich plasma was inhibited to a similar extent in Pf4-ΔCre Cox-1-/-/Ldlr-/- and Gp1ba-ΔCre Cox-1-/-/Ldlr-/- mice. In a mouse model of tail injury, Pf4-ΔCre-mediated and Gp1ba-ΔCre-mediated deletions of Cox-1 were similarly efficient in suppressing platelet prostanoid biosynthesis. Experimental thrombogenesis and attendant blood loss were similar in both models. However, the impact on atherogenesis was divergent, being accelerated in the Pf4-ΔCre mice while restrained in the Gp1ba-ΔCres. In the former, accelerated atherogenesis was associated with greater suppression of PGI2 biosynthesis, a reduction in the lipopolysaccharide-evoked capacity to produce PGE2 (prostaglandin E) and PGD2 (prostanglandin D), activation of the inflammasome, elevated plasma levels of IL-1β (interleukin), reduced plasma levels of HDL-C (high-density lipoprotein receptor-cholesterol), and a reduction in the capacity for reverse cholesterol transport. By contrast, in the latter, plasma HDL-C and α-tocopherol were elevated, and MIP-1α (macrophage inflammatory protein-1α) and MCP-1 (monocyte chemoattractant protein 1) were reduced. CONCLUSIONS Both approaches to Cox-1 deletion similarly restrain thrombogenesis, but a differential impact on Cox-1-dependent prostanoid formation by the vasculature may contribute to an inflammatory phenotype and accelerated atherogenesis in Pf4-ΔCre mice.
Collapse
Affiliation(s)
- Soon Yew Tang
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania
| | - Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania
| | - Hu Meng
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania
| | - Benjamin J. Auerbach
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania
| | - Elizabeth J. Hennessy
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania
| | - Arjun Sengupta
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania
| | - Ujjalkumar S. Das
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania
| | - Robin Joshi
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania
| | | | - Ryan McConnell
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania
| | - Gregory R. Grant
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania
- Department of Genetics, University of Pennsylvania
| | - Emanuela Ricciotti
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania
| | - Vladimir R. Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania
| | - Tilo Grosser
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania
- Department of Medicine Perelman School of Medicine, University of Pennsylvania
| | - Aalim M. Weiljie
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania
| | - Garret A. FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania
- Department of Genetics, University of Pennsylvania
| |
Collapse
|
5
|
Vinokurova M, Lopes-Pires ME, Cypaite N, Shala F, Armstrong PC, Ahmetaj-Shala B, Elghazouli Y, Nüsing R, Liu B, Zhou Y, Hao CM, Herschman HR, Mitchell JA, Kirkby NS. Widening the Prostacyclin Paradigm: Tissue Fibroblasts Are a Critical Site of Production and Antithrombotic Protection. Arterioscler Thromb Vasc Biol 2024; 44:271-286. [PMID: 37823267 PMCID: PMC10749679 DOI: 10.1161/atvbaha.123.318923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Prostacyclin is a fundamental signaling pathway traditionally associated with the cardiovascular system and protection against thrombosis but which also has regulatory functions in fibrosis, proliferation, and immunity. Prevailing dogma states that prostacyclin is principally derived from vascular endothelium, although it is known that other cells can also synthesize it. However, the role of nonendothelial sources in prostacyclin production has not been systematically evaluated resulting in an underappreciation of their importance relative to better characterized endothelial sources. METHODS To address this, we have used novel endothelial cell-specific and fibroblast-specific COX (cyclo-oxygenase) and prostacyclin synthase knockout mice and cells freshly isolated from mouse and human lung tissue. We have assessed prostacyclin release by immunoassay and thrombosis in vivo using an FeCl3-induced carotid artery injury model. RESULTS We found that in arteries, endothelial cells are the main source of prostacyclin but that in the lung, and other tissues, prostacyclin production occurs largely independently of endothelial and vascular smooth muscle cells. Instead, in mouse and human lung, prostacyclin production was strongly associated with fibroblasts. By comparison, microvascular endothelial cells from the lung showed weak prostacyclin synthetic capacity compared with those isolated from large arteries. Prostacyclin derived from fibroblasts and other nonendothelial sources was seen to contribute to antithrombotic protection. CONCLUSIONS These observations define a new paradigm in prostacyclin biology in which fibroblast/nonendothelial-derived prostacyclin works in parallel with endothelium-derived prostanoids to control thrombotic risk and potentially a broad range of other biology. Although generation of prostacyclin by fibroblasts has been shown previously, the scale and systemic activity was unappreciated. As such, this represents a basic change in our understanding and may provide new insight into how diseases of the lung result in cardiovascular risk.
Collapse
Affiliation(s)
- Maria Vinokurova
- National Heart and Lung Institute, Imperial College London, United Kingdom (M.V., M.E.L.-P., N.C., F.S., B.A.-S., Y.E., J.A.M., N.S.K.)
| | - Maria Elisa Lopes-Pires
- National Heart and Lung Institute, Imperial College London, United Kingdom (M.V., M.E.L.-P., N.C., F.S., B.A.-S., Y.E., J.A.M., N.S.K.)
| | - Neringa Cypaite
- National Heart and Lung Institute, Imperial College London, United Kingdom (M.V., M.E.L.-P., N.C., F.S., B.A.-S., Y.E., J.A.M., N.S.K.)
| | - Fisnik Shala
- National Heart and Lung Institute, Imperial College London, United Kingdom (M.V., M.E.L.-P., N.C., F.S., B.A.-S., Y.E., J.A.M., N.S.K.)
| | - Paul C. Armstrong
- Blizard Institute, Queen Mary University of London, United Kingdom (P.C.A.)
| | - Blerina Ahmetaj-Shala
- National Heart and Lung Institute, Imperial College London, United Kingdom (M.V., M.E.L.-P., N.C., F.S., B.A.-S., Y.E., J.A.M., N.S.K.)
| | - Youssef Elghazouli
- National Heart and Lung Institute, Imperial College London, United Kingdom (M.V., M.E.L.-P., N.C., F.S., B.A.-S., Y.E., J.A.M., N.S.K.)
| | - Rolf Nüsing
- Clinical Pharmacology and Pharmacotherapy Department, Goethe University, Frankfurt, Germany (R.N.)
| | - Bin Liu
- Cardiovascular Research Centre, Shantou University Medical College, China (B.L., Y.Z.)
| | - Yingbi Zhou
- Cardiovascular Research Centre, Shantou University Medical College, China (B.L., Y.Z.)
| | - Chuan-ming Hao
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China (C.-m.H.)
| | - Harvey R. Herschman
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (H.R.H.)
| | - Jane A. Mitchell
- National Heart and Lung Institute, Imperial College London, United Kingdom (M.V., M.E.L.-P., N.C., F.S., B.A.-S., Y.E., J.A.M., N.S.K.)
| | - Nicholas S. Kirkby
- National Heart and Lung Institute, Imperial College London, United Kingdom (M.V., M.E.L.-P., N.C., F.S., B.A.-S., Y.E., J.A.M., N.S.K.)
| |
Collapse
|
6
|
Wang S, Li M, Jiang Y, Sun C, Wu G, Yang C, Liu W, Pan Y. Transcriptome analysis reveals immune regulation in the spleen of koi carp (Cyprinus carpio Koi) during Aeromonas hydrophila infection. Mol Immunol 2023; 162:11-20. [PMID: 37633251 DOI: 10.1016/j.molimm.2023.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/24/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
A. hydrophila (Aeromonas hydrophila) is one of the most hazardous pathogenic microorganisms threatening the aquaculture industry and exhibits zoonotic-like characteristics. This study was designed to investigate the differential gene expression and pathway enrichment in the spleen of koi carp (Cyprinus carpio koi) upon A. hydrophila infection. The Illumina NovaSeq 6000 sequencing platform was used to identify 252 DEGs (differentially expressed genes), including 112 upregulated genes and 140 downregulated genes, in the spleens of koi carp challenged with A. hydrophila compared to those in the spleens of koi carp treated with PBS (phosphate-buffered saline). DEGs were shown to be involved in 133 pathways by KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis. Numerous immunological disease-related pathways, such as the immune defense network for IgA production, Staphylococcus aureus infection, and antigen processing and presentation, were enriched in the DEGs. In addition, the expression levels of 10 randomly screened DEGs, including the inflammatory factor nlrp3 (NOD-like receptor family pyrin domain containing 3), cytokine il-8 (interleukin-8), c2 (complement c2), c3 (complement c3), and the lipid mediator cox1 (cyclooxygenase-1), were compared by qPCR. The results showed that six genes, including il-8, cox1, and nlrp3, were upregulated according to both RNA-seq and qPCR validation, while four, including c2 and c3, showed downregulated expression. This result verified a strong correlation between the RNA-seq and qPCR datasets at the expression level. Moreover, this study provided splenic transcriptome data for koi carp during A. hydrophila infection and provided theoretical support for future drug development.
Collapse
Affiliation(s)
- Shuang Wang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China; University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan, Guangdong 528402, China; Guangdong Ascendas Genomics Technology Co., Ltd., Zhongshan, Guangdong 528437, China
| | - Mei Li
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China; University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan, Guangdong 528402, China; Guangdong Ascendas Genomics Technology Co., Ltd., Zhongshan, Guangdong 528437, China.
| | - Yu Jiang
- University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan, Guangdong 528402, China
| | - Chang Sun
- University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan, Guangdong 528402, China
| | - Gongqing Wu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Chengyong Yang
- Guangdong Ascendas Genomics Technology Co., Ltd., Zhongshan, Guangdong 528437, China
| | - Wenli Liu
- University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan, Guangdong 528402, China
| | - Yufang Pan
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
7
|
Ferreira P, Vaja R, Lopes-Pires M, Crescente M, Yu H, Nüsing R, Liu B, Zhou Y, Yaqoob M, Zhang A, Rickman M, Longhurst H, White WE, Knowles RB, Chan MV, Warner TD, Want E, Kirkby NS, Mitchell JA. Renal Function Underpins the Cyclooxygenase-2: Asymmetric Dimethylarginine Axis in Mouse and Man. Kidney Int Rep 2023; 8:1231-1238. [PMID: 37284684 PMCID: PMC10239776 DOI: 10.1016/j.ekir.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Through the production of prostacyclin, cyclooxygenase (COX)-2 protects the cardiorenal system. Asymmetric dimethylarginine (ADMA), is a biomarker of cardiovascular and renal disease. Here we determined the relationship between COX-2/prostacyclin, ADMA, and renal function in mouse and human models. Methods We used plasma from COX-2 or prostacyclin synthase knockout mice and from a unique individual lacking COX-derived prostaglandins (PGs) because of a loss of function mutation in cytosolic phospholipase A2 (cPLA2), before and after receiving a cPLA2-replete transplanted donor kidney. ADMA, arginine, and citrulline were measured using ultra-high performance liquid-chromatography tandem mass spectrometry. ADMA and arginine were also measured by enzyme-linked immunosorbent assay (ELISA). Renal function was assessed by measuring cystatin C by ELISA. ADMA and prostacyclin release from organotypic kidney slices were also measured by ELISA. Results Loss of COX-2 or prostacyclin synthase in mice increased plasma levels of ADMA, citrulline, arginine, and cystatin C. ADMA, citrulline, and arginine positively correlated with cystatin C. Plasma ADMA, citrulline, and cystatin C, but not arginine, were elevated in samples from the patient lacking COX/prostacyclin capacity compared to levels in healthy volunteers. Renal function, ADMA, and citrulline were returned toward normal range when the patient received a genetically normal kidney, capable of COX/prostacyclin activity; and cystatin C positively correlated with ADMA and citrulline. Levels of ADMA and prostacyclin in conditioned media of kidney slices were not altered in tissue from COX-2 knockout mice compared to wildtype controls. Conclusion In human and mouse models, where renal function is compromised because of loss of COX-2/PGI2 signaling, ADMA levels are increased.
Collapse
Affiliation(s)
- Plinio Ferreira
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Ricky Vaja
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Maria Lopes-Pires
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Marilena Crescente
- Blizard Institute, Barts, and The London School of Medicine and Dentistry, London, United Kingdom
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - He Yu
- Deparment of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Rolf Nüsing
- Clinical Pharmacology and Pharmacotherapy Department, Goethe University, Frankfurt, Germany
| | - Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Magdi Yaqoob
- Blizard Institute, Barts, and The London School of Medicine and Dentistry, London, United Kingdom
| | - Anran Zhang
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Matthew Rickman
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Hilary Longhurst
- Department of Medicine, University of Auckland, and Department of Immunology, Auckland City Hospital, Auckland, New Zealand
| | - William E. White
- Blizard Institute, Barts, and The London School of Medicine and Dentistry, London, United Kingdom
| | - Rebecca B. Knowles
- Blizard Institute, Barts, and The London School of Medicine and Dentistry, London, United Kingdom
| | - Melissa V. Chan
- Blizard Institute, Barts, and The London School of Medicine and Dentistry, London, United Kingdom
| | - Timothy D. Warner
- Blizard Institute, Barts, and The London School of Medicine and Dentistry, London, United Kingdom
| | - Elizabeth Want
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Nicholas S. Kirkby
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Jane A. Mitchell
- National Heart and Lung Institute, Imperial College London, United Kingdom
| |
Collapse
|
8
|
Imig JD. Bioactive lipids in hypertension. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 97:1-35. [PMID: 37236756 PMCID: PMC10918458 DOI: 10.1016/bs.apha.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Hypertension is a major healthcare issue that afflicts one in every three adults worldwide and contributes to cardiovascular diseases, morbidity and mortality. Bioactive lipids contribute importantly to blood pressure regulation via actions on the vasculature, kidney, and inflammation. Vascular actions of bioactive lipids include blood pressure lowering vasodilation and blood pressure elevating vasoconstriction. Increased renin release by bioactive lipids in the kidney is pro-hypertensive whereas anti-hypertensive bioactive lipid actions result in increased sodium excretion. Bioactive lipids have pro-inflammatory and anti-inflammatory actions that increase or decrease reactive oxygen species and impact vascular and kidney function in hypertension. Human studies provide evidence that fatty acid metabolism and bioactive lipids contribute to sodium and blood pressure regulation in hypertension. Genetic changes identified in humans that impact arachidonic acid metabolism have been associated with hypertension. Arachidonic acid cyclooxygenase, lipoxygenase and cytochrome P450 metabolites have pro-hypertensive and anti-hypertensive actions. Omega-3 fish oil fatty acids eicosapentaenoic acid and docosahexaenoic acid are known to be anti-hypertensive and cardiovascular protective. Lastly, emerging fatty acid research areas include blood pressure regulation by isolevuglandins, nitrated fatty acids, and short chain fatty acids. Taken together, bioactive lipids are key contributors to blood pressure regulation and hypertension and their manipulation could decrease cardiovascular disease and associated morbidity and mortality.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
9
|
Beccacece L, Abondio P, Bini C, Pelotti S, Luiselli D. The Link between Prostanoids and Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24044193. [PMID: 36835616 PMCID: PMC9962914 DOI: 10.3390/ijms24044193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Cardiovascular diseases are the leading cause of global deaths, and many risk factors contribute to their pathogenesis. In this context, prostanoids, which derive from arachidonic acid, have attracted attention for their involvement in cardiovascular homeostasis and inflammatory processes. Prostanoids are the target of several drugs, but it has been shown that some of them increase the risk of thrombosis. Overall, many studies have shown that prostanoids are tightly associated with cardiovascular diseases and that several polymorphisms in genes involved in their synthesis and function increase the risk of developing these pathologies. In this review, we focus on molecular mechanisms linking prostanoids to cardiovascular diseases and we provide an overview of genetic polymorphisms that increase the risk for cardiovascular disease.
Collapse
Affiliation(s)
- Livia Beccacece
- Computational Genomics Lab, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Correspondence: (L.B.); (P.A.)
| | - Paolo Abondio
- aDNA Lab, Department of Cultural Heritage, University of Bologna, Ravenna Campus, 48121 Ravenna, Italy
- Correspondence: (L.B.); (P.A.)
| | - Carla Bini
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Susi Pelotti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Donata Luiselli
- aDNA Lab, Department of Cultural Heritage, University of Bologna, Ravenna Campus, 48121 Ravenna, Italy
| |
Collapse
|
10
|
Significance of Pulmonary Endothelial Injury and the Role of Cyclooxygenase-2 and Prostanoid Signaling. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010117. [PMID: 36671689 PMCID: PMC9855370 DOI: 10.3390/bioengineering10010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
The endothelium plays a key role in the dynamic balance of hemodynamic, humoral and inflammatory processes in the human body. Its central importance and the resulting therapeutic concepts are the subject of ongoing research efforts and form the basis for the treatment of numerous diseases. The pulmonary endothelium is an essential component for the gas exchange in humans. Pulmonary endothelial dysfunction has serious consequences for the oxygenation and the gas exchange in humans with the potential of consecutive multiple organ failure. Therefore, in this review, the dysfunction of the pulmonary endothel due to viral, bacterial, and fungal infections, ventilator-related injury, and aspiration is presented in a medical context. Selected aspects of the interaction of endothelial cells with primarily alveolar macrophages are reviewed in more detail. Elucidation of underlying causes and mechanisms of damage and repair may lead to new therapeutic approaches. Specific emphasis is placed on the processes leading to the induction of cyclooxygenase-2 and downstream prostanoid-based signaling pathways associated with this enzyme.
Collapse
|
11
|
Memory-like response in platelet attenuates platelet hyperactivation in arterial thrombosis. Biochem Biophys Res Commun 2022; 612:154-161. [DOI: 10.1016/j.bbrc.2022.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 11/18/2022]
|
12
|
Tian D, Gao Q, Chang Z, Lin J, Ma D, Han Z. Network pharmacology and in vitro studies reveal the pharmacological effects and molecular mechanisms of Shenzhi Jiannao prescription against vascular dementia. BMC Complement Med Ther 2022; 22:33. [PMID: 35109845 PMCID: PMC8812053 DOI: 10.1186/s12906-021-03465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/17/2021] [Indexed: 11/12/2022] Open
Abstract
Background Shenzhi Jiannao (SZJN) prescription is a type of herbal formula adopted in the management of cognitive impairment and related disorders. However, its effects and related regulatory mechanisms on vascular dementia (VD) are elusive. Herein, network pharmacology prediction was employed to explore the pharmacological effects and molecular mechanisms of SZJN prescription on VD using network pharmacology prediction, and validated the results through in vitro experiments. Methods Through a search in the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database, chemical composition and targets for SZJN prescription were retrieved. The potential targets for VD were then obtained from the GeneCards and DisGeNET databases. The network was constructed that depicted the interactions between putative SZJN prescription and known therapeutic targets for VD using Cytoscape 3.7.1. Analysis of protein-protein interaction was achieved via STRING 11.0 software, followed by Gene Ontology (GO) functional enrichment and Kyoto Gene and Genome Encyclopedia (KEGG) pathway analyses. To validate the computer-predicted results, in vitro experiments based on an excitotoxic injury model were designed using glutamate-exposed PC12 cells, and treated with varying concentrations (low, 0.05; medium, 0.1 and high, 0.2 mg/mL) of SZJN prescription. Cell viability and cell death were detected using the IncuCyte imaging system. Moreover, the expression profiles of Caspase-3 were analyzed through qRT-PCR. Results Twenty-eight potentially active ingredients for SZJN prescription, including stigmasterol, beta-sitosterol, and kaempferol, plus 21 therapeutic targets for VD, including PTGS2, PTGS1, and PGR were revealed. The protein-protein interaction network was employed for the analysis of 20 target proteins, including CASP3, JUN, and AChE. The enrichment analysis demonstrated candidate targets of SZJN prescription were more frequently involved in neuroactive ligand-receptor interaction, calcium, apoptosis, and cholinergic synaptic signaling pathways. In vitro experiments revealed that SZJN prescription could significantly reverse glutamate-induced cell viability loss and cell death, and lower the levels of Caspase-3 mRNA in glutamate-induced PC12 cells. Conclusions Collectively, this study demonstrated that SZJN prescription exerted the effect of treating VD by regulating multi-targets and multi-channels with multi-components through the method of network pharmacology. Furthermore, in vitro results confirmed that SZJN prescription attenuated glutamate-induced neurotoxicity.
Collapse
Affiliation(s)
- Danfeng Tian
- Beijing University of Chinese Medicine, No.11 East road, North 3rd Ring Road, Beijing, 100029, China
| | - Qiang Gao
- Beijing University of Chinese Medicine, No.11 East road, North 3rd Ring Road, Beijing, 100029, China
| | - Ze Chang
- Beijing University of Chinese Medicine, No.11 East road, North 3rd Ring Road, Beijing, 100029, China
| | - Jingfeng Lin
- Beijing University of Chinese Medicine, No.11 East road, North 3rd Ring Road, Beijing, 100029, China
| | - Dayong Ma
- Neurology Department of Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Dongcheng District, Beijing, 100700, China
| | - Zhenyun Han
- Shenzhen Hospital, Beijing University of Chinese Medicine (Longgang), No.1 Dayun road, Sports New City Road, Shenzhen, 518172, China.
| |
Collapse
|
13
|
Liu B, Zhou Y. Endothelium-dependent contraction: The non-classical action of endothelial prostacyclin, its underlying mechanisms, and implications. FASEB J 2021; 35:e21877. [PMID: 34449098 DOI: 10.1096/fj.202101077r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 02/05/2023]
Abstract
Although commonly thought to produce prostacyclin (prostaglandin I2 ; PGI2 ) that evokes vasodilatation and protects vessels from the development of diseases, the endothelial cyclooxygenase (COX)-mediated metabolism has also been found to release substance(s) called endothelium-derived contracting factor(s) (EDCF) that causes endothelium-dependent contraction and implicates in endothelial dysfunction of disease conditions. Various mechanisms have been proposed for the process; however, the major endothelial COX metabolite PGI2 , which has been classically considered to activate the I prostanoid receptor (IP) that mediates vasodilatation and opposes the effects of thromboxane (Tx) A2 produced by COX in platelets, emerges as a major EDCF in health and disease conditions. Our recent studies from genetically altered mice further suggest that vasomotor reactions to PGI2 are collectively modulated by IP, the vasoconstrictor Tx-prostanoid receptor (TP; the prototype receptor of TxA2 ) and E prostanoid receptor-3 (EP3; a vasoconstrictor receptor of PGE2 ) although with differences in potency and efficacy; a contraction to PGI2 reflects activities of TP and/or EP3 outweighing that of the concurrently activated IP. Here, we discuss the history of endothelium-dependent contraction, evidences that support the above hypothesis, proposed mechanisms for the varied reactions to endothelial PGI2 synthesis as well as the relation of its dilator activity to the effect of another NO-independent vasodilator mechanism, the endothelium-derived hyperpolarizing factor. Also, we address the possible pathological and therapeutic implications as well as questions remaining to be resolved or limitations of our above findings obtained from genetically altered mouse models.
Collapse
Affiliation(s)
- Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| |
Collapse
|
14
|
Dvorakova M, Langhansova L, Temml V, Pavicic A, Vanek T, Landa P. Synthesis, Inhibitory Activity, and In Silico Modeling of Selective COX-1 Inhibitors with a Quinazoline Core. ACS Med Chem Lett 2021; 12:610-616. [PMID: 33854702 PMCID: PMC8040043 DOI: 10.1021/acsmedchemlett.1c00004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/05/2021] [Indexed: 12/17/2022] Open
Abstract
Selective cyclooxygenase-1 (COX-1) inhibition has got into the spotlight with the discovery of COX-1 upregulation in various cancers and the cardioprotective role of COX-1 in control of thrombocyte aggregation. Yet, COX-1-selective inhibitors are poorly explored. Thus, three series of quinazoline derivatives were prepared and tested for their potential inhibitory activity toward COX-1 and COX-2. Of the prepared compounds, 11 exhibited interesting COX-1 selectivity, with 8 compounds being totally COX-1-selective. The IC50 value of the best quinazoline inhibitor was 64 nM. The structural features ensuring COX-1 selectivity were elucidated using in silico modeling.
Collapse
Affiliation(s)
- Marcela Dvorakova
- Laboratory
of Plant Biotechnologies, Czech Academy
of Sciences, Institute of Experimental Botany, Rozvojova 263, 165 02 Prague 6 - Lysolaje, Czech
Republic
| | - Lenka Langhansova
- Laboratory
of Plant Biotechnologies, Czech Academy
of Sciences, Institute of Experimental Botany, Rozvojova 263, 165 02 Prague 6 - Lysolaje, Czech
Republic
| | - Veronika Temml
- Department
of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University of Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| | - Antonio Pavicic
- Laboratory
of Plant Biotechnologies, Czech Academy
of Sciences, Institute of Experimental Botany, Rozvojova 263, 165 02 Prague 6 - Lysolaje, Czech
Republic
| | - Tomas Vanek
- Laboratory
of Plant Biotechnologies, Czech Academy
of Sciences, Institute of Experimental Botany, Rozvojova 263, 165 02 Prague 6 - Lysolaje, Czech
Republic
| | - Premysl Landa
- Laboratory
of Plant Biotechnologies, Czech Academy
of Sciences, Institute of Experimental Botany, Rozvojova 263, 165 02 Prague 6 - Lysolaje, Czech
Republic
| |
Collapse
|
15
|
Mitchell JA, Shala F, Pires MEL, Loy RY, Ravendren A, Benson J, Urquhart P, Nicolaou A, Herschman HR, Kirkby NS. Endothelial cyclooxygenase-1 paradoxically drives local vasoconstriction and atherogenesis despite underpinning prostacyclin generation. SCIENCE ADVANCES 2021; 7:7/12/eabf6054. [PMID: 33741600 PMCID: PMC7978428 DOI: 10.1126/sciadv.abf6054] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/02/2021] [Indexed: 05/03/2023]
Abstract
Endothelial cyclooxygenase-1-derived prostanoids, including prostacyclin, have clear cardioprotective roles associated with their anti-thrombotic potential but have also been suggested to have paradoxical pathological activities within arteries. To date it has not been possible to test the importance of this because no models have been available that separate vascular cyclooxygenase-1 products from those generated elsewhere. Here, we have used unique endothelial-specific cyclooxygenase-1 knockout mice to show that endothelial cyclooxygenase-1 produces both protective and pathological products. Functionally, however, the overall effect of these was to drive pathological responses in the context of both vasoconstriction in vitro and the development of atherosclerosis and vascular inflammation in vivo. These data provide the first demonstration of a pathological role for the vascular cyclooxygenase-1 pathway, highlighting its potential as a therapeutic target. They also emphasize that, across biology, the role of prostanoids is not always predictable due to unique balances of context, products, and receptors.
Collapse
Affiliation(s)
- Jane A Mitchell
- Cardio-Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Fisnik Shala
- Cardio-Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Maria Elisa Lopes Pires
- Cardio-Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Rachel Y Loy
- Cardio-Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Andrew Ravendren
- Cardio-Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Joshua Benson
- Cardio-Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Paula Urquhart
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Harvey R Herschman
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | - Nicholas S Kirkby
- Cardio-Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
16
|
Badimon L, Vilahur G, Rocca B, Patrono C. The key contribution of platelet and vascular arachidonic acid metabolism to the pathophysiology of atherothrombosis. Cardiovasc Res 2021; 117:2001-2015. [PMID: 33484117 DOI: 10.1093/cvr/cvab003] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/17/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Arachidonic acid is one of the most abundant and ubiquitous ω-6 polyunsaturated fatty acid, present in esterified form in the membrane phospholipids of all mammalian cells and released from phospholipids by several phospholipases in response to various activating or inhibitory stimuli. Arachidonic acid is the precursor of a large number of enzymatically and non-enzymatically derived, biologically active autacoids, including prostaglandins (PGs), thromboxane (TX) A2, leukotrienes, and epoxyeicosatetraenoic acids (collectively called eicosanoids), endocannabinoids and isoprostanes, respectively. Eicosanoids are local modulators of the physiological functions and pathophysiological roles of blood vessels and platelets. For example, the importance of cyclooxygenase (COX)-1-derived TXA2 from activated platelets in contributing to primary haemostasis and atherothrombosis is demonstrated in animal and human models by the bleeding complications and cardioprotective effects associated with low-dose aspirin, a selective inhibitor of platelet COX-1. The relevance of vascular COX-2-derived prostacyclin (PGI2) in endothelial thromboresistance and atheroprotection is clearly shown by animal and human models and by the adverse cardiovascular effects exerted by COX-2 inhibitors in humans. A vast array of arachidonic acid-transforming enzymes, downstream synthases and isomerases, transmembrane receptors, and specificity in their tissue expression make arachidonic acid metabolism a fine-tuning system of vascular health and disease. Its pharmacological regulation is central in human cardiovascular diseases, as demonstrated by biochemical measurements and intervention trials.
Collapse
Affiliation(s)
- Lina Badimon
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain; CIBERCV, Instituto Salud Carlos III, Madrid, Spain.,Cardiovascular Research Chair Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Gemma Vilahur
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain; CIBERCV, Instituto Salud Carlos III, Madrid, Spain
| | - Bianca Rocca
- Department of Bioethics and Safety, Section of Pharmacology, Catholic University School of Medicine, Rome, Italy.,Gemelli' Foundation, IRCCS, Rome, Italy
| | - Carlo Patrono
- Department of Bioethics and Safety, Section of Pharmacology, Catholic University School of Medicine, Rome, Italy.,Gemelli' Foundation, IRCCS, Rome, Italy
| |
Collapse
|
17
|
Mitchell JA, Kirkby NS, Ahmetaj-Shala B, Armstrong PC, Crescente M, Ferreira P, Lopes Pires ME, Vaja R, Warner TD. Cyclooxygenases and the cardiovascular system. Pharmacol Ther 2021; 217:107624. [DOI: 10.1016/j.pharmthera.2020.107624] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
|
18
|
Bray MA, Sartain SE, Gollamudi J, Rumbaut RE. Microvascular thrombosis: experimental and clinical implications. Transl Res 2020; 225:105-130. [PMID: 32454092 PMCID: PMC7245314 DOI: 10.1016/j.trsl.2020.05.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/12/2020] [Accepted: 05/17/2020] [Indexed: 02/07/2023]
Abstract
A significant amount of clinical and research interest in thrombosis is focused on large vessels (eg, stroke, myocardial infarction, deep venous thrombosis, etc.); however, thrombosis is often present in the microcirculation in a variety of significant human diseases, such as disseminated intravascular coagulation, thrombotic microangiopathy, sickle cell disease, and others. Further, microvascular thrombosis has recently been demonstrated in patients with COVID-19, and has been proposed to mediate the pathogenesis of organ injury in this disease. In many of these conditions, microvascular thrombosis is accompanied by inflammation, an association referred to as thromboinflammation. In this review, we discuss endogenous regulatory mechanisms that prevent thrombosis in the microcirculation, experimental approaches to induce microvascular thrombi, and clinical conditions associated with microvascular thrombosis. A greater understanding of the links between inflammation and thrombosis in the microcirculation is anticipated to provide optimal therapeutic targets for patients with diseases accompanied by microvascular thrombosis.
Collapse
Key Words
- adamts13, a disintegrin-like and metalloproteinase with thrombospondin type 1 motif 13
- ap, alternate pathway
- apc, activated protein c
- aps, antiphospholipid syndrome
- caps, catastrophic aps
- asfa, american society for apheresis
- atp, adenosine triphosphate
- cfh, complement factor h
- con a, concavalin a
- cox, cyclooxygenase
- damp, damage-associated molecular pattern
- dic, disseminated intravascular coagulation
- gbm, glomerular basement membrane
- hellp, hemolysis, elevated liver enzymes, low platelets
- hitt, heparin-induced thrombocytopenia and thrombosis
- hlh, hemophagocytic lymphohistiocytosis
- hus, hemolytic-uremic syndrome
- isth, international society for thrombosis and haemostasis
- ivig, intravenous immunoglobulin
- ldh, lactate nos, nitric oxide synthase
- net, neutrophil extracellular trap
- pai-1, plasminogen activator inhibitor 1
- pf4, platelet factor 4
- prr, pattern recognition receptor
- rbc, red blood cell
- scd, sickle cell disease
- sle, systemic lupus erythematosus
- tlr, toll-like receptor
- tf, tissue factor
- tfpi, tissue factor pathway inhibitor
- tma, thrombotic microangiopathy
- tnf-α, tumor necrosis factor-α
- tpe, therapeutic plasma exchange
- ulc, ultra large heparin-pf4 complexes
- ulvwf, ultra-large von willebrand factor
- vwf, von willebrand factor
Collapse
Affiliation(s)
- Monica A Bray
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas; Baylor College of Medicine, Houston, Texas
| | - Sarah E Sartain
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas; Baylor College of Medicine, Houston, Texas
| | - Jahnavi Gollamudi
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas; Baylor College of Medicine, Houston, Texas
| | - Rolando E Rumbaut
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas; Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
19
|
Fang C, Schmaier AH. Novel anti-thrombotic mechanisms mediated by Mas receptor as result of balanced activities between the kallikrein/kinin and the renin-angiotensin systems. Pharmacol Res 2020; 160:105096. [PMID: 32712319 PMCID: PMC7378497 DOI: 10.1016/j.phrs.2020.105096] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 12/17/2022]
Abstract
The risk of thrombosis, a globally growing challenge and a major cause of death, is influenced by various factors in the intravascular coagulation, vessel wall, and cellular systems. Among the contributors to thrombosis, the contact activation system and the kallikrein/kinin system, two overlapping plasma proteolytic systems that are often considered as synonymous, regulate thrombosis from different aspects. On one hand, components of the contact activation system such as factor XII initiates activation of the coagulation proteins promoting thrombus formation on artificial surfaces through factor XI- and possibly prekallikrein-mediated intrinsic coagulation. On the other hand, physiological activation of plasma prekallikrein in the kallikrein/kinin system on endothelial cells liberates bradykinin from associated high-molecular-weight kininogen to stimulate the constitutive bradykinin B2 receptor to generate nitric oxide and prostacyclin to induce vasodilation and counterbalance angiotensin II signaling from the renin-angiotensin system which stimulates vasoconstriction. In addition to vascular tone regulation, this interaction between the kallikrein/kinin and renin-angiotensin systems has a thrombo-regulatory role independent of the contact pathway. At the level of the G-protein coupled receptors of these systems, defective bradykinin signaling due to attenuated bradykinin formation and/or decreased B2 receptor expression, as seen in murine prekallikrein and B2 receptor null mice, respectively, leads to compensatory overexpressed Mas, the receptor for angiotensin-(1-7) of the renin-angiotensin system. Mas stimulation and/or its increased expression contributes to maintaining a healthy vascular homeostasis by generating graded elevation of plasma prostacyclin which reduces thrombosis through two independent pathways: (1) increasing the vasoprotective transcription factor Sirtuin 1 to suppress tissue factor expression, and (2) inhibiting platelet activation. This review will summarize the recent advances in this field that support these understandings. Appreciating these subtle mechanisms help to develop novel anti-thrombotic strategies by targeting the vascular receptors in the renin-angiotensin and the kallikrein/kinin systems to maintain healthy vascular homeostasis.
Collapse
Affiliation(s)
- Chao Fang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and the Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, 430030, China.
| | - Alvin H. Schmaier
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
20
|
Anderson G, Carbone A, Mazzoccoli G. Aryl Hydrocarbon Receptor Role in Co-Ordinating SARS-CoV-2 Entry and Symptomatology: Linking Cytotoxicity Changes in COVID-19 and Cancers; Modulation by Racial Discrimination Stress. BIOLOGY 2020; 9:E249. [PMID: 32867244 PMCID: PMC7564943 DOI: 10.3390/biology9090249] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
There is an under-recognized role of the aryl hydrocarbon receptor (AhR) in co-ordinating the entry and pathophysiology of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) that underpins the COVID-19 pandemic. The rise in pro-inflammatory cytokines during the 'cytokine storm' induce indoleamine 2,3-dioxygenase (IDO), leading to an increase in kynurenine that activates the AhR, thereby heightening the initial pro-inflammatory cytokine phase and suppressing the endogenous anti-viral response. Such AhR-driven changes underpin the heightened severity and fatality associated with pre-existent high-risk medical conditions, such as type II diabetes, as well as to how racial discrimination stress contributes to the raised severity/fatality in people from the Black Asian and Minority Ethnic (BAME) communities. The AhR is pivotal in modulating mitochondrial metabolism and co-ordinating specialized, pro-resolving mediators (SPMs), the melatonergic pathways, acetyl-coenzyme A, and the cyclooxygenase (COX) 2-prostaglandin (PG) E2 pathway that underpin 'exhaustion' in the endogenous anti-viral cells, paralleling similar metabolic suppression in cytolytic immune cells that is evident across all cancers. The pro-inflammatory cytokine induced gut permeability/dysbiosis and suppression of pineal melatonin are aspects of the wider pathophysiological underpinnings regulated by the AhR. This has a number of prophylactic and treatment implications for SARS-CoV-2 infection and cancers and future research directions that better investigate the biological underpinnings of social processes and how these may drive health disparities.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London SW1V 1PB, UK;
| | - Annalucia Carbone
- Division of Internal Medicine and Chronobiology Laboratory, Department of Medical Sciences, Fondazione IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, 71013 Foggia, Italy;
| | - Gianluigi Mazzoccoli
- Division of Internal Medicine and Chronobiology Laboratory, Department of Medical Sciences, Fondazione IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, 71013 Foggia, Italy;
| |
Collapse
|
21
|
Crescente M, Armstrong PC, Kirkby NS, Edin ML, Chan MV, Lih FB, Jiao J, Maffucci T, Allan HE, Mein CA, Gaston-Massuet C, Cottrell GS, Mitchell JA, Zeldin DC, Herschman HR, Warner TD. Profiling the eicosanoid networks that underlie the anti- and pro-thrombotic effects of aspirin. FASEB J 2020; 34:10027-10040. [PMID: 32592197 PMCID: PMC9359103 DOI: 10.1096/fj.202000312r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/25/2022]
Abstract
Aspirin prevents thrombosis by inhibiting platelet cyclooxygenase (COX)-1 activity and the production of thromboxane (Tx)A2, a pro-thrombotic eicosanoid. However, the non-platelet actions of aspirin limit its antithrombotic effects. Here, we used platelet-COX-1-ko mice to define the platelet and non-platelet eicosanoids affected by aspirin. Mass-spectrometry analysis demonstrated blood from platelet-COX-1-ko and global-COX-1-ko mice produced similar eicosanoid profiles in vitro: for example, formation of TxA2, prostaglandin (PG) F2α, 11-hydroxyeicosatraenoic acid (HETE), and 15-HETE was absent in both platelet- and global-COX-1-ko mice. Conversely, in vivo, platelet-COX-1-ko mice had a distinctly different profile from global-COX-1-ko or aspirin-treated control mice, notably significantly higher levels of PGI2 metabolite. Ingenuity Pathway Analysis (IPA) predicted that platelet-COX-1-ko mice would be protected from thrombosis, forming less pro-thrombotic TxA2 and PGE2. Conversely, aspirin or lack of systemic COX-1 activity decreased the synthesis of anti-aggregatory PGI2 and PGD2 at non-platelet sites leading to predicted thrombosis increase. In vitro and in vivo thrombosis studies proved these predictions. Overall, we have established the eicosanoid profiles linked to inhibition of COX-1 in platelets and in the remainder of the cardiovascular system and linked them to anti- and pro-thrombotic effects of aspirin. These results explain why increasing aspirin dosage or aspirin addition to other drugs may lessen antithrombotic protection.
Collapse
Affiliation(s)
- Marilena Crescente
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Paul C Armstrong
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Nicholas S Kirkby
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Matthew L Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Melissa V Chan
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Fred B Lih
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jing Jiao
- Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Tania Maffucci
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Harriet E Allan
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Charles A Mein
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Graeme S Cottrell
- Reading School of Pharmacy and ICMR, University of Reading, Reading, UK
| | - Jane A Mitchell
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Harvey R Herschman
- Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Timothy D Warner
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
22
|
Palma-Barqueros V, Bohdan N, Revilla N, Vicente V, Bastida JM, Rivera J. PTGS1 gene variations associated with bleeding and platelet dysfunction. Platelets 2020; 32:710-716. [PMID: 32584621 DOI: 10.1080/09537104.2020.1782370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Natalia Bohdan
- Universidad de Murcia, IMIB-Arrixaca, CIBERER-U765, Murcia, Spain
| | - Nuria Revilla
- Universidad de Murcia, IMIB-Arrixaca, CIBERER-U765, Murcia, Spain
| | - Vicente Vicente
- Universidad de Murcia, IMIB-Arrixaca, CIBERER-U765, Murcia, Spain
| | - José M Bastida
- Department of Hematology, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,On Behalf of the "Inherited Platelet Disorders Project", Hemorrhagic Diathesis Working Group, SETH
| | - José Rivera
- Universidad de Murcia, IMIB-Arrixaca, CIBERER-U765, Murcia, Spain.,On Behalf of the "Inherited Platelet Disorders Project", Hemorrhagic Diathesis Working Group, SETH
| |
Collapse
|
23
|
Zhu L, Zhang Y, Guo Z, Wang M. Cardiovascular Biology of Prostanoids and Drug Discovery. Arterioscler Thromb Vasc Biol 2020; 40:1454-1463. [PMID: 32295420 DOI: 10.1161/atvbaha.119.313234] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Prostanoids are a group of bioactive lipids that are synthesized de novo from membrane phospholipid-released arachidonic acid and have diverse functions in normal physiology and disease. NSAIDs (non-steroidal anti-inflammatory drugs), which are among the most commonly used medications, ameliorate pain, fever, and inflammation by inhibiting COX (cyclooxygenase), which is the rate-limiting enzyme in the biosynthetic cascade of prostanoids. The use of NSAIDs selective for COX-2 inhibition increases the risk of a thrombotic event (eg, myocardial infarction and stroke). All NSAIDs are associated with an increased risk of heart failure. Substantial variation in clinical responses to aspirin exists and is associated with cardiovascular risk. Limited clinical studies suggest the involvement of prostanoids in vascular restenosis in patients who received angioplasty intervention. mPGES (microsomal PG [prostaglandin] E synthase)-1, an alternative target downstream of COX, has the potential to be therapeutically targeted for inflammatory disease, with diminished thrombotic risk relative to selective COX-2 inhibitors. mPGES-1-derived PGE2 critically regulates microcirculation via its receptor EP (receptor for prostanoid E) 4. This review summarizes the actions and associated mechanisms for modulating the biosynthesis of prostanoids in thrombosis, vascular remodeling, and ischemic heart disease as well as their therapeutic relevance.
Collapse
Affiliation(s)
- Liyuan Zhu
- From the State Key Laboratory of Cardiovascular Disease (L.Z., Y.Z., Z.G., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Yuze Zhang
- From the State Key Laboratory of Cardiovascular Disease (L.Z., Y.Z., Z.G., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Ziyi Guo
- From the State Key Laboratory of Cardiovascular Disease (L.Z., Y.Z., Z.G., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Miao Wang
- From the State Key Laboratory of Cardiovascular Disease (L.Z., Y.Z., Z.G., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing.,Clinical Pharmacology Center (M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| |
Collapse
|