1
|
Sun J, Shao Y, Pei L, Zhu Q, Yu X, Yao W. AKAP1 alleviates VSMC phenotypic modulation and neointima formation by inhibiting Drp1-dependent mitochondrial fission. Biomed Pharmacother 2024; 176:116858. [PMID: 38850669 DOI: 10.1016/j.biopha.2024.116858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
The roles and mechanisms of A-kinase anchoring protein 1 (AKAP1) in vascular smooth muscle cell (VSMC) phenotypic modulation and neointima formation are currently unknown. AKAP1 is a mitochondrial PKA-anchored protein and maintains mitochondrial homeostasis. This study aimed to investigate how AKAP1/PKA signaling plays a protective role in inhibiting VSMC phenotypic transformation and neointima formation by regulating mitochondrial fission. The results showed that both PDGF-BB treatment and balloon injury reduced the transcription, expression, and mitochondrial anchoring of AKAP1. In vitro, the overexpression of AKAP1 significantly inhibited PDGF-BB mediated VSMC proliferation and migration, whereas AKAP1 knockdown further aggravated VSMC phenotypic transformation. Additionally, in the balloon injury model in vivo, AKAP1 overexpression reduced neointima formation, the muscle fiber area ratio, and rat VSMC proliferation and migration. Furthermore, PDGF-BB and balloon injury inhibited Drp1 phosphorylation at Ser637 and promoted Drp1 activity and mitochondrial midzone fission; AKAP1 overexpression reversed these effects. AKAP1 overexpression also inhibited the distribution of mitochondria at the plasma membrane and the reduction of PKARIIβ expression induced by PDGF-BB, as evidenced by an increase in mitochondria-plasma membrane distance as well as PKARIIβ protein levels. Moreover, the PKA agonist promoted Drp1 phosphorylation (Ser637) and inhibited PDGF-BB-mediated mitochondrial fission, cell proliferation, and migration. The PKA antagonist reversed the increase in Drp1 phosphorylation (Ser637) and the decline in mitochondrial midzone fission and VSMC phenotypic transformation caused by AKAP1 overexpression. The results of this study reveal that AKAP1 protects VSMCs against phenotypic modulation by improving Drp1 phosphorylation at Ser637 through PKA and inhibiting mitochondrial fission, thereby preventing neointima formation.
Collapse
MESH Headings
- Animals
- Male
- Rats
- A Kinase Anchor Proteins/metabolism
- A Kinase Anchor Proteins/genetics
- Becaplermin/pharmacology
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Dynamins/metabolism
- Mitochondrial Dynamics/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Neointima/metabolism
- Neointima/pathology
- Phenotype
- Phosphorylation
- Rats, Sprague-Dawley
- Signal Transduction
Collapse
Affiliation(s)
- Jingwen Sun
- School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, China
| | - Yuting Shao
- School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, China
| | - Lele Pei
- School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, China
| | - Qingyu Zhu
- School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, China
| | - Xiaoqiang Yu
- Department of Vascular Surgery, The First People's Hospital of Nantong, Nantong 226001, China
| | - Wenjuan Yao
- School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, China.
| |
Collapse
|
2
|
Paredes F, Williams HC, Liu X, Holden C, Bogan B, Wang Y, Crotty KM, Yeligar SM, Elorza AA, Lin Z, Rezvan A, San Martin A. The mitochondrial protease ClpP is a druggable target that controls VSMC phenotype by a SIRT1-dependent mechanism. Redox Biol 2024; 73:103203. [PMID: 38823208 PMCID: PMC11169483 DOI: 10.1016/j.redox.2024.103203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/12/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Vascular smooth muscle cells (VSMCs), known for their remarkable lifelong phenotypic plasticity, play a pivotal role in vascular pathologies through their ability to transition between different phenotypes. Our group discovered that the deficiency of the mitochondrial protein Poldip2 induces VSMC differentiation both in vivo and in vitro. Further comprehensive biochemical investigations revealed Poldip2's specific interaction with the mitochondrial ATPase caseinolytic protease chaperone subunit X (CLPX), which is the regulatory subunit for the caseinolytic protease proteolytic subunit (ClpP) that forms part of the ClpXP complex - a proteasome-like protease evolutionarily conserved from bacteria to humans. This interaction limits the protease's activity, and reduced Poldip2 levels lead to ClpXP complex activation. This finding prompted the hypothesis that ClpXP complex activity within the mitochondria may regulate the VSMC phenotype. Employing gain-of-function and loss-of-function strategies, we demonstrated that ClpXP activity significantly influences the VSMC phenotype. Notably, both genetic and pharmacological activation of ClpXP inhibits VSMC plasticity and fosters a quiescent, differentiated, and anti-inflammatory VSMC phenotype. The pharmacological activation of ClpP using TIC10, currently in phase III clinical trials for cancer, successfully replicates this phenotype both in vitro and in vivo and markedly reduces aneurysm development in a mouse model of elastase-induced aortic aneurysms. Our mechanistic exploration indicates that ClpP activation regulates the VSMC phenotype by modifying the cellular NAD+/NADH ratio and activating Sirtuin 1. Our findings reveal the crucial role of mitochondrial proteostasis in the regulation of the VSMC phenotype and propose the ClpP protease as a novel, actionable target for manipulating the VSMC phenotype.
Collapse
Affiliation(s)
- Felipe Paredes
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Holly C Williams
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Xuesong Liu
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States; Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Claire Holden
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Bethany Bogan
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Yu Wang
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Kathryn M Crotty
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States; Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Samantha M Yeligar
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States; Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Alvaro A Elorza
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Zhiyong Lin
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Amir Rezvan
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Alejandra San Martin
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States; Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
3
|
Sun X, Wu J, Zhang X, Xie C, Wei H, Li P, Yang Y, Yuan H, Cai J, Xiao Q, Cheng J, Xu Q. Atlas of Cell Repertoire Within Neointimal Lesions Is Metabolically Altered in Hypertensive Rats. Hypertension 2024; 81:787-800. [PMID: 38240164 DOI: 10.1161/hypertensionaha.123.22057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/09/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND High blood pressure has been suggested to accelerate vascular injury-induced neointimal formation and progression. However, little is known about the intricate relationships between vascular injury and hypertension in the context of arterial remodeling. METHODS Single-cell RNA-sequencing analysis was used to depict the cell atlas of carotid arteries of Wistar Kyoto rats and spontaneously hypertensive rats with or without balloon injury. RESULTS We found that hypertension significantly aggravated balloon injury-induced arterial stenosis. A total of 36 202 cells from carotid arteries with or without balloon injury were included in single-cell RNA-sequencing analysis. Cell composition analysis showed that vascular injury and hypertension independently induced distinct aortic cell phenotypic alterations including immune cells, endothelial cells (ECs), and smooth muscle cells. Specifically, our data showed that injury and hypertension-induced specific EC phenotypic alterations, and revealed a transition from functional ECs to hypermetabolic, and eventually dysfunctional ECs in hypertensive rats upon balloon injury. Importantly, our data also showed that vascular injury and hypertension-induced different smooth muscle cell phenotypic alterations, characterized by deferential expression of synthetic signatures. Interestingly, pathway analysis showed that dysregulated metabolic pathways were a common feature in monocytes/macrophages, ECs, and smooth muscle cells in response to injury and hypertension. Functionally, we demonstrate that inhibition of mitochondrial respiration significantly ameliorated injury-induced neointimal formation in spontaneously hypertensive rats. CONCLUSIONS This study provides the cell landscape changes of the main aortic cell phenotypic alterations in response to injury and hypertension. Our findings suggest that targeting cellular mitochondrial respiration could be a novel therapeutic for patients with hypertension undergoing vascular angioplasty.
Collapse
Affiliation(s)
- Xiaolei Sun
- Department of General Surgery (Vascular Surgery), Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou, China (X.S., H.W.)
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China (X.S., X.Z., C.X., P.L., Y.Y., J. Cheng, Q. Xu)
| | - Junru Wu
- Department of Cardiology and Center of Pharmacology, Postdoctoral Station of Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (J.W., H.Y., J. Cai)
| | - Xiaolin Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China (X.S., X.Z., C.X., P.L., Y.Y., J. Cheng, Q. Xu)
| | - Cheng Xie
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China (X.S., X.Z., C.X., P.L., Y.Y., J. Cheng, Q. Xu)
| | - Haijun Wei
- Department of General Surgery (Vascular Surgery), Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou, China (X.S., H.W.)
| | - Pengyun Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China (X.S., X.Z., C.X., P.L., Y.Y., J. Cheng, Q. Xu)
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China (X.S., X.Z., C.X., P.L., Y.Y., J. Cheng, Q. Xu)
| | - Hong Yuan
- Department of Cardiology and Center of Pharmacology, Postdoctoral Station of Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (J.W., H.Y., J. Cai)
| | - Jingjing Cai
- Department of Cardiology and Center of Pharmacology, Postdoctoral Station of Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (J.W., H.Y., J. Cai)
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, United Kingdom (Q. Xiao, Q. Xu)
| | - Jun Cheng
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China (X.S., X.Z., C.X., P.L., Y.Y., J. Cheng, Q. Xu)
| | - Qingbo Xu
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China (X.S., X.Z., C.X., P.L., Y.Y., J. Cheng, Q. Xu)
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, United Kingdom (Q. Xiao, Q. Xu)
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (Q. Xu)
| |
Collapse
|
4
|
Sarkar A, Pawar SV, Chopra K, Jain M. Gamut of glycolytic enzymes in vascular smooth muscle cell proliferation: Implications for vascular proliferative diseases. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167021. [PMID: 38216067 DOI: 10.1016/j.bbadis.2024.167021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Vascular smooth muscle cells (VSMCs) are the predominant cell type in the media of the blood vessels and are responsible for maintaining vascular tone. Emerging evidence confirms that VSMCs possess high plasticity. During vascular injury, VSMCs switch from a "contractile" phenotype to an extremely proliferative "synthetic" phenotype. The balance between both strongly affects the progression of vascular remodeling in many cardiovascular pathologies such as restenosis, atherosclerosis and aortic aneurism. Proliferating cells demand high energy requirements and to meet this necessity, alteration in cellular bioenergetics seems to be essential. Glycolysis, fatty acid metabolism, and amino acid metabolism act as a fuel for VSMC proliferation. Metabolic reprogramming of VSMCs is dynamically variable that involves multiple mechanisms and encompasses the coordination of various signaling molecules, proteins, and enzymes. Here, we systemically reviewed the metabolic changes together with the possible treatments that are still under investigation underlying VSMC plasticity which provides a promising direction for the treatment of diseases associated with VSMC proliferation. A better understanding of the interaction between metabolism with associated signaling may uncover additional targets for better therapeutic strategies in vascular disorders.
Collapse
Affiliation(s)
- Ankan Sarkar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Sandip V Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Kanwaljit Chopra
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Manish Jain
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| |
Collapse
|
5
|
Li T, Sun W, Zhu S, He C, Chang T, Zhang J, Chen Y. T-2 Toxin-Mediated β-Arrestin-1 O-GlcNAcylation Exacerbates Glomerular Podocyte Injury via Regulating Histone Acetylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307648. [PMID: 38083975 PMCID: PMC10870076 DOI: 10.1002/advs.202307648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Indexed: 02/17/2024]
Abstract
T-2 toxin causes renal dysfunction with proteinuria and glomerular podocyte damage. This work explores the role of metabolic disorder/reprogramming-mediated epigenetic modification in the progression of T-2 toxin-stimulated podocyte injury. A metabolomics experiment is performed to assess metabolic responses to T-2 toxin infection in human podocytes. Roles of protein O-linked-N-acetylglucosaminylation (O-GlcNAcylation) in regulating T-2 toxin-stimulated podocyte injury in mouse and podocyte models are assessed. O-GlcNAc target proteins are recognized by mass spectrometry and co-immunoprecipitation experiments. Moreover, histone acetylation and autophagy levels are measured. T-2 toxin infection upregulates glucose transporter type 1 (GLUT1) expression and enhances hexosamine biosynthetic pathway in glomerular podocytes, resulting in a significant increase in β-arrestin-1 O-GlcNAcylation. Decreasing β-arrestin-1 or O-GlcNAc transferase (OGT) effectively prevents T-2 toxin-induced renal dysfunction and podocyte injury. Mechanistically, O-GlcNAcylation of β-arrestin-1 stabilizes β-arrestin-1 to activate the mammalian target of rapamycin (mTOR) pathway as well as to inhibit autophagy during podocyte injury by promoting H4K16 acetylation. To sum up, OGT-mediated β-arrestin-1 O-GlcNAcylation is a vital regulator in the development of T-2 toxin-stimulated podocyte injury via activating the mTOR pathway to suppress autophagy. Targeting β-arrestin-1 or OGT can be a potential therapy for T-2 toxin infection-associated glomerular injury, especially podocyte injury.
Collapse
Affiliation(s)
- Tushuai Li
- School of Biology and Food EngineeringChangshu Institute of TechnologySuzhou215500P.R. China
- Wuxi School of MedicineJiangnan UniversityWuxi214013P.R. China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi BranchWuxi214013P.R. China
| | - Wenxue Sun
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJining272000P.R. China
- Postdoctoral of Shandong University of Traditional Chinese MedicineJi'nan250355P.R. China
- Institute of Translational PharmacyJining Medical Research AcademyJining272000P.R. China
| | - Shenglong Zhu
- Wuxi School of MedicineJiangnan UniversityWuxi214013P.R. China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi BranchWuxi214013P.R. China
| | - Chengsheng He
- School of Biology and Food EngineeringChangshu Institute of TechnologySuzhou215500P.R. China
| | - Tong Chang
- School of Biology and Food EngineeringChangshu Institute of TechnologySuzhou215500P.R. China
| | - Jie Zhang
- School of Biology and Food EngineeringChangshu Institute of TechnologySuzhou215500P.R. China
| | - Yongquan Chen
- Wuxi School of MedicineJiangnan UniversityWuxi214013P.R. China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi BranchWuxi214013P.R. China
| |
Collapse
|
6
|
Liu H, Dong X, Jia K, Yuan B, Ren Z, Pan X, Wu J, Li J, Zhou J, Wang RX, Qu L, Sun J, Pan LL. Protein arginine methyltransferase 5-mediated arginine methylation stabilizes Kruppel-like factor 4 to accelerate neointimal formation. Cardiovasc Res 2023; 119:2142-2156. [PMID: 37201513 DOI: 10.1093/cvr/cvad080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 01/28/2023] [Accepted: 03/01/2023] [Indexed: 05/20/2023] Open
Abstract
AIMS Accumulating evidence supports the indispensable role of protein arginine methyltransferase 5 (PRMT5) in the pathological progression of several human cancers. As an important enzyme-regulating protein methylation, how PRMT5 participates in vascular remodelling remains unknown. The aim of this study was to investigate the role and underlying mechanism of PRMT5 in neointimal formation and to evaluate its potential as an effective therapeutic target for the condition. METHODS AND RESULTS Aberrant PRMT5 overexpression was positively correlated with clinical carotid arterial stenosis. Vascular smooth muscle cell (SMC)-specific PRMT5 knockout inhibited intimal hyperplasia with an enhanced expression of contractile markers in mice. Conversely, PRMT5 overexpression inhibited SMC contractile markers and promoted intimal hyperplasia. Furthermore, we showed that PRMT5 promoted SMC phenotypic switching by stabilizing Kruppel-like factor 4 (KLF4). Mechanistically, PRMT5-mediated KLF4 methylation inhibited ubiquitin-dependent proteolysis of KLF4, leading to a disruption of myocardin (MYOCD)-serum response factor (SRF) interaction and MYOCD-SRF-mediated the transcription of SMC contractile markers. CONCLUSION Our data demonstrated that PRMT5 critically mediated vascular remodelling by promoting KLF4-mediated SMC phenotypic conversion and consequently the progression of intimal hyperplasia. Therefore, PRMT5 may represent a potential therapeutic target for intimal hyperplasia-associated vascular diseases.
Collapse
Affiliation(s)
- He Liu
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Xiaoliang Dong
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Kunpeng Jia
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Baohui Yuan
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Zhengnan Ren
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Xiaohua Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Jianjin Wu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai 200003, P. R. China
| | - Jiahong Li
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi 214023, P. R. China
| | - Lefeng Qu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai 200003, P. R. China
| | - Jia Sun
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Li-Long Pan
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| |
Collapse
|
7
|
Zhang L, Li J, Chen J, Lei J, Yuan Z, Zhang J, Liu Z, Yu C, Ma L. Oscillatory shear stress-mediated aberrant O-GlcNAc SIRT3 accelerates glycocalyx inflammatory injury via LKB1/p47 phox/Hyal2 signaling. Cell Signal 2023:110790. [PMID: 37392860 DOI: 10.1016/j.cellsig.2023.110790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/07/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Glycocalyx coating on endothelial surface layer helps to sense shear forces and maintain endothelial function. However, the underlying mechanism of endothelial glycocalyx degradation upon disordered shear stress stimulation is not fully understood. SIRT3, a major NAD+-dependent protein deacetylases, is required for protein stability during vascular homeostasis and partly involved in atherosclerotic process. While few studies showed that SIRT3 is responsible for endothelial glycocalyx homeostasis under shear stress, the underlying mechanisms remain largely unknown. Here, we demonstrated that oscillatory shear stress (OSS) induces glycocalyx injury by activating LKB1/p47phox/Hyal2 axis both in vivo and in vitro. And O-GlcNAc modification served to prolong SIRT3 deacetylase activity and stabilized p47/Hyal2 complex. OSS could decrease SIRT3 O-GlcNAcylation to activate LKB1, further accelerated endothelial glycocalyx injury in inflammatory microenvironment. SIRT3Ser329 mutation or inhibition of SIRT3 O-GlcNAcylation strongly promoted glycocalyx degradation. On the contrary, overexpression of SIRT3 reverse glycocalyx damage upon OSS treatment. Together, our findings indicated that targeting O-GlcNAcylation of SIRT3 could prevent and/or treat diseases whereby glycocalyx injured.
Collapse
Affiliation(s)
- Lei Zhang
- Chongqing Key Research Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jiajia Li
- Hechuan District People's Hospital, Chongqing, China
| | - Jun Chen
- Chongqing Key Research Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jin Lei
- Chongqing Key Research Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Zhiyi Yuan
- Chongqing Key Research Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jun Zhang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Zhaohong Liu
- Chongqing Key Research Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Chao Yu
- Chongqing Key Research Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China.
| | - Limei Ma
- Chongqing Key Research Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
8
|
Wang D, Jia L, Zhao C, Wang H, Dai Z, Jing Y, Jiang B, Xin S. Mitochondrial quality control in abdominal aortic aneurysm: From molecular mechanisms to therapeutic strategies. FASEB J 2023; 37:e22969. [PMID: 37184038 DOI: 10.1096/fj.202202158rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/20/2023] [Accepted: 05/01/2023] [Indexed: 05/16/2023]
Abstract
Mitochondria are the energy supply sites of cells and are crucial for eukaryotic life. Mitochondrial dysfunction is involved in the pathogenesis of abdominal aortic aneurysm (AAA). Multiple mitochondrial quality control (MQC) mechanisms, including mitochondrial DNA repair, biogenesis, antioxidant defense, dynamics, and autophagy, play vital roles in maintaining mitochondrial homeostasis under physiological and pathological conditions. Abnormalities in these mechanisms may induce mitochondrial damage and dysfunction leading to cell death and tissue remodeling. Recently, many clues suggest that dysregulation of MQC is closely related to the pathogenesis of AAA. Therefore, specific interventions targeting MQC mechanisms to maintain and restore mitochondrial function have become promising therapeutic methods for the prevention and treatment of AAA.
Collapse
Affiliation(s)
- Ding Wang
- Department of Vascular Surgery, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Pathogenesis, Prevention and Therapeutics of aortic aneurysm, Shenyang, Liaoning Province, China
| | - Longyuan Jia
- Department of Vascular Surgery, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Pathogenesis, Prevention and Therapeutics of aortic aneurysm, Shenyang, Liaoning Province, China
| | - Chengdong Zhao
- Department of Vascular Surgery, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Pathogenesis, Prevention and Therapeutics of aortic aneurysm, Shenyang, Liaoning Province, China
| | - Huitao Wang
- Department of Vascular Surgery, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Pathogenesis, Prevention and Therapeutics of aortic aneurysm, Shenyang, Liaoning Province, China
| | - Zhengnan Dai
- Department of Vascular Surgery, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Pathogenesis, Prevention and Therapeutics of aortic aneurysm, Shenyang, Liaoning Province, China
| | - Yuchen Jing
- Department of Vascular Surgery, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Pathogenesis, Prevention and Therapeutics of aortic aneurysm, Shenyang, Liaoning Province, China
| | - Bo Jiang
- Department of Vascular Surgery, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Pathogenesis, Prevention and Therapeutics of aortic aneurysm, Shenyang, Liaoning Province, China
| | - Shijie Xin
- Department of Vascular Surgery, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Pathogenesis, Prevention and Therapeutics of aortic aneurysm, Shenyang, Liaoning Province, China
| |
Collapse
|
9
|
Yang SY, Deng WW, Zhao RZ, Long XP, Wang DM, Guo HH, Jiang LX, Chen WM, Shi B. Exosomes Derived from Endothelial Cells Inhibit Neointimal Hyperplasia Induced by Carotid Artery Injury in Rats via ROS-NLRP3 Inflammasome Pathway. Bull Exp Biol Med 2023; 174:762-767. [PMID: 37162629 DOI: 10.1007/s10517-023-05788-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 05/11/2023]
Abstract
This study attempted to investigate whether exosomes derived from rat endothelial cells (EC-Exo) attenuate intimal hyperplasia after balloon injury using hematoxylin and eosin staining, immunohistochemistry, immunofluorescence staining, Evans blue staining, and Western blotting. The results indicated that EC-Exo inhibited intimal hyperplasia in the carotid artery after balloon injury, promoted re-endothelialization, and reduced vascular inflammation and ROS-NLRP3-mediated cell pyroptosis. Thus, EC-Exo can inhibit neointimal hyperplasia after carotid artery injury in rats presumably by inhibiting the ROS-NLRP3 inflammasome and phenotypic transformation of vascular smooth muscle cells.
Collapse
Affiliation(s)
- S Y Yang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - W W Deng
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - R Z Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - X P Long
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - D M Wang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - H H Guo
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - L X Jiang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - W M Chen
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - B Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
10
|
Wu Y, Deng C, Xu J, Wang W, Chen Y, Qin X, Lv Q, Xie M. Enhanced Local Delivery of microRNA-145a-5P into Mouse Aorta via Ultrasound-Targeted Microbubble Destruction Inhibits Atherosclerotic Plaque Formation. Mol Pharm 2023; 20:1086-1095. [PMID: 36656656 DOI: 10.1021/acs.molpharmaceut.2c00799] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) play a key role in the formation and rupture of atherosclerotic plaques. Previous studies have confirmed that microRNA-145 (miR-145) is involved in the phenotypic regulation of VSMCs and reduction of atherosclerosis. At present, seeking safe and effective gene delivery remains a key problem restricting the development of gene therapy. In recent years, ultrasound-targeted microbubble destruction (UTMD) has become a safe and effective transfection method that is widely used in the basic research of gene therapy for heart and tumor diseases. Here, we synthesized cationic microbubbles to encapsulate miR-145 and targeted their release into VSMCs in vitro and in vivo using ultrasound. The feasibility of this gene therapy was verified by fluorescence microscopy and an in vivo imaging system. The results showed that treatment with miR-145 delivered via UTMD considerably improved the gene transfection efficiency and promoted the contraction phenotype of VSMCs in vitro. In vivo, this treatment reduced the atherosclerotic plaque area by 48.04% compared with treatment with free miR-145. Therefore, UTMD-mediated miRNA therapy may provide a new targeted therapeutic approach for atherosclerotic plaques.
Collapse
Affiliation(s)
- Yu Wu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Cheng Deng
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jia Xu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Wei Wang
- Department of Ultrasound, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China
| | - Yihan Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaojuan Qin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Qing Lv
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| |
Collapse
|
11
|
Sun J, Liu Y, Chen C, Quarm AK, Xi S, Sun T, Zhang D, Qian J, Ding H, Gao J. Cyclophilin D-mediated angiotensin II-induced NADPH oxidase 4 activation in endothelial mitochondrial dysfunction that can be rescued by gallic acid. Eur J Pharmacol 2023; 940:175475. [PMID: 36563952 DOI: 10.1016/j.ejphar.2022.175475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/21/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Vascular endothelial dysfunction plays a central role in the most dreadful human diseases, including stroke, tumor metastasis, and the coronavirus disease 2019 (COVID-19). Strong evidence suggests that angiotensin II (Ang II)-induced mitochondrial dysfunction is essential for endothelial dysfunction pathogenesis. However, the precise molecular mechanisms remain obscure. Here, polymerase-interacting protein 2 (Poldip 2) was found in the endothelial mitochondrial matrix and no effects on Poldip 2 and NADPH oxidase 4 (NOX 4) expression treated by Ang II. Interestingly, we first found that Ang II-induced NOX 4 binds with Poldip 2 was dependent on cyclophilin D (CypD). CypD knockdown (KD) significantly inhibited the binding of NOX 4 to Poldip 2, and mitochondrial ROS generation in human umbilical vein endothelial cells (HUVECs). Similar results were also found in cyclosporin A (CsA) treated HUVECs. Our previous study suggested a crosstalk between extracellular regulated protein kinase (ERK) phosphorylation and CypD expression, and gallic acid (GA) inhibited mitochondrial dysfunction in neurons depending on regulating the ERK-CypD axis. Here, we confirmed that GA inhibited Ang II-induced NOX 4 activation and mitochondrial dysfunction via ERK/CypD/NOX 4/Poldip 2 pathway, which provide novel mechanistic insight into CypD act as a key regulator of the NOX 4/Poldip 2 axis in Ang II-induced endothelial mitochondrial dysfunction and GA might be beneficial in the treatment of wide variety of diseases, such as COVID-19, which is worthy further research.
Collapse
Affiliation(s)
- Jing Sun
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China; Department of Traditional Chinese Medicine & Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Yunxi Liu
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Chen Chen
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Anthony Kwesi Quarm
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Siyu Xi
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Tingkai Sun
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Dingqi Zhang
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jinjun Qian
- Department of Neurology, The Fourth People's Hospital of Zhenjiang, Zhenjiang, 212001, PR China
| | - Hongqun Ding
- Department of Clinical Laboratory Diagnostics, School of Medicine, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jing Gao
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| |
Collapse
|
12
|
The mechanism and therapy of aortic aneurysms. Signal Transduct Target Ther 2023; 8:55. [PMID: 36737432 PMCID: PMC9898314 DOI: 10.1038/s41392-023-01325-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/15/2022] [Accepted: 01/14/2023] [Indexed: 02/05/2023] Open
Abstract
Aortic aneurysm is a chronic aortic disease affected by many factors. Although it is generally asymptomatic, it poses a significant threat to human life due to a high risk of rupture. Because of its strong concealment, it is difficult to diagnose the disease in the early stage. At present, there are no effective drugs for the treatment of aneurysms. Surgical intervention and endovascular treatment are the only therapies. Although current studies have discovered that inflammatory responses as well as the production and activation of various proteases promote aortic aneurysm, the specific mechanisms remain unclear. Researchers are further exploring the pathogenesis of aneurysms to find new targets for diagnosis and treatment. To better understand aortic aneurysm, this review elaborates on the discovery history of aortic aneurysm, main classification and clinical manifestations, related molecular mechanisms, clinical cohort studies and animal models, with the ultimate goal of providing insights into the treatment of this devastating disease. The underlying problem with aneurysm disease is weakening of the aortic wall, leading to progressive dilation. If not treated in time, the aortic aneurysm eventually ruptures. An aortic aneurysm is a local enlargement of an artery caused by a weakening of the aortic wall. The disease is usually asymptomatic but leads to high mortality due to the risk of artery rupture.
Collapse
|
13
|
Paredes F, Williams HC, Suster I, Tejos M, Fuentealba R, Bogan B, Holden CM, San Martin A. Metabolic regulation of the proteasome under hypoxia by Poldip2 controls fibrotic signaling in vascular smooth muscle cells. Free Radic Biol Med 2023; 195:283-297. [PMID: 36596387 PMCID: PMC10268434 DOI: 10.1016/j.freeradbiomed.2022.12.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/02/2023]
Abstract
The polymerase delta interacting protein 2 (Poldip2) is a nuclear-encoded mitochondrial protein required for oxidative metabolism. Under hypoxia, Poldip2 expression is repressed by an unknown mechanism. Therefore, low levels of Poldip2 are required to maintain glycolytic metabolism. The Cellular Communication Network Factor 2 (CCN2, Connective tissue growth factor, CTGF) is a profibrogenic molecule highly expressed in cancer and vascular inflammation in advanced atherosclerosis. Because CCN2 is upregulated under hypoxia and is associated with glycolytic metabolism, we hypothesize that Poldip2 downregulation is responsible for the upregulation of profibrotic signaling under hypoxia. Here, we report that Poldip2 is repressed under hypoxia by a mechanism that requires the activation of the enhancer of zeste homolog 2 repressive complex (EZH2) downstream from the Cyclin-Dependent Kinase 2 (CDK2). Importantly, we found that Poldip2 repression is required for CCN2 expression downstream of metabolic inhibition of the ubiquitin-proteasome system (UPS)-dependent stabilization of the serum response factor. Pharmacological or gene expression inhibition of CDK2 under hypoxia reverses Poldip2 downregulation, the inhibition of the UPS, and the expression of CCN2, collagen, and fibronectin. Thus, our findings connect cell cycle regulation and proteasome activity to mitochondrial function and fibrotic responses under hypoxia.
Collapse
Affiliation(s)
- Felipe Paredes
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA
| | - Holly C Williams
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA
| | - Izabela Suster
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA
| | - Macarena Tejos
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA
| | - Roberto Fuentealba
- Institute of Chemistry and Natural Resources, Universidad de Talca, Talca, 3460000, Chile
| | - Bethany Bogan
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA
| | - Claire M Holden
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA
| | - Alejandra San Martin
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
14
|
Sutton NR, Malhotra R, Hilaire C, Aikawa E, Blumenthal RS, Gackenbach G, Goyal P, Johnson A, Nigwekar SU, Shanahan CM, Towler DA, Wolford BN, Chen Y. Molecular Mechanisms of Vascular Health: Insights From Vascular Aging and Calcification. Arterioscler Thromb Vasc Biol 2023; 43:15-29. [PMID: 36412195 PMCID: PMC9793888 DOI: 10.1161/atvbaha.122.317332] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022]
Abstract
Cardiovascular disease is the most common cause of death worldwide, especially beyond the age of 65 years, with the vast majority of morbidity and mortality due to myocardial infarction and stroke. Vascular pathology stems from a combination of genetic risk, environmental factors, and the biologic changes associated with aging. The pathogenesis underlying the development of vascular aging, and vascular calcification with aging, in particular, is still not fully understood. Accumulating data suggests that genetic risk, likely compounded by epigenetic modifications, environmental factors, including diabetes and chronic kidney disease, and the plasticity of vascular smooth muscle cells to acquire an osteogenic phenotype are major determinants of age-associated vascular calcification. Understanding the molecular mechanisms underlying genetic and modifiable risk factors in regulating age-associated vascular pathology may inspire strategies to promote healthy vascular aging. This article summarizes current knowledge of concepts and mechanisms of age-associated vascular disease, with an emphasis on vascular calcification.
Collapse
Affiliation(s)
- Nadia R. Sutton
- Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Rajeev Malhotra
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Cynthia Hilaire
- Division of Cardiology, Departments of Medicine and Bioengineering, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, 1744 BSTWR, 200 Lothrop St, Pittsburgh, PA, 15260 USA
| | - Elena Aikawa
- Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Roger S. Blumenthal
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease; Baltimore, MD
| | - Grace Gackenbach
- Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Parag Goyal
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Adam Johnson
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Sagar U. Nigwekar
- Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Catherine M. Shanahan
- School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, UK
| | - Dwight A. Towler
- Department of Medicine | Endocrine Division and Pak Center for Mineral Metabolism Research, UT Southwestern Medical Center, Dallas, TX USA
| | - Brooke N. Wolford
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham and Research Department, Veterans Affairs Birmingham Medical Center, Birmingham, AL, USA
| |
Collapse
|
15
|
Bian S, Jiang Y, Dai Z, Wu X, Li B, Wang N, Bian W, Zhong W. Lin28b delays vasculature aging by reducing platelet-derived growth factor-beta resistance in senescent vascular smooth muscle cells. Atherosclerosis 2023; 364:29-38. [PMID: 36529087 DOI: 10.1016/j.atherosclerosis.2022.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/12/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Platelet-derived growth factor-β (PDGFB) is an important mediator of vascular smooth muscle cell (VSMC) proliferation, and PDGFB resistance is observed in senescent VSMCs. Lin28b is a stemness regulator in the embryo; however, its role in vasculature aging and VSMC senescence is unknown. We aimed to investigate whether Lin28b could restore the VSMC response to PDGFB and delay vasculature aging. METHODS ApoE-/- mice were fed a high-fat diet for different weeks to establish an aging model. PDGFB resistance was observed using EdU staining in vessel culture in vitro. Quantitative polymerase chain reaction and in situ hybridization were used to detect let-7 expression. Senescence was identified by Western blotting, senescence-associated beta-galactosidase activity or Sudan Black B staining, and VSMC function was determined using CCK-8, migration, and enzyme-linked immunosorbent assays. RESULTS Vessels from aged mice showed poor responses to PDGFB stimulation compared with those from young mice; similar results were found in senescent VSMCs. The expression levels of Lin28b and PDGF receptor-β were downregulated in aging vasculature and senescent VSMCs, whereas let-7 family levels increased with aging and VSMC passage growth. Transfection of VSMCs with let-7c induced PDGFB resistance and accelerated VSMC senescence, whereas blocking let-7c restored PDGFB reactions in VSMCs. Overexpression of Lin28b protein by lentivirus resulted in the restoration of PDGFB reactions and delayed VSMC senescence, which was blocked by a let-7c mimic. CONCLUSIONS This study reveals the role of Lin28b in delaying vasculature aging by decreasing senescent VSMC PDGFB resistance mediated by let-7.
Collapse
Affiliation(s)
- Shihui Bian
- Department of Geriatrics, Affiliated Renmin Hospital of Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Yu Jiang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Zhiyin Dai
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Xi Wu
- Department of Geriatrics, Affiliated Renmin Hospital of Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Bo Li
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Nan Wang
- Department of Geriatrics, Affiliated Renmin Hospital of Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Wenyan Bian
- Department of Geriatrics, Affiliated Renmin Hospital of Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Wei Zhong
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, PR China.
| |
Collapse
|
16
|
Guo Y, Ren C, Huang W, Yang W, Bao Y. Oncogenic ACSM1 in prostate cancer is through metabolic and extracellular matrix-receptor interaction signaling pathways. Am J Cancer Res 2022; 12:1824-1842. [PMID: 35530294 PMCID: PMC9077067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023] Open
Abstract
Acyl-coenzyme A synthetase medium chain family member 1 (ACSM1) is a medium chain Acyl-CoA Synthetase family member and plays an important role in fatty acid metabolism. The oncogenic roles of ACSM1 are largely unknown. Using comprehensive approaches, we analyzed gene expression profiles and genomic datasets and identified that the expression of ACSM1 was specifically increased in prostate cancer in comparison to the adjacent non-tumor tissues. The increased expression of ACSM1 was associated with increased risks of poor prognosis and shorter survival time. Moreover, genomic copy number alterations of ACSM1, including deletion, amplification, and amino acid changes were frequently observed in prostate cancers, although these mutations did not correlate with gene expression levels. However, ACSM1 gene amplifications were significantly corrected with increased risks of prostate cancer metastasis, and ACSM1 genetic alterations were significantly associated with worse disease-free. And progress-free survival. Gene function stratification and gene set enrichment analysis revealed that the oncogenic roles of ACSM1 in prostate cancer were mainly through metabolic pathways and extracellular matrix (ECM)-receptor interaction signaling pathways, but not associated with microenvironmental immunological signaling pathways, and that ACSM1 expression was not associated with immune cell infiltration in the cancer microenvironment or prostate cancer immune subtypes. In conclusion, the present work has demonstrated that ACSM1 can be specifically and significantly elevated in prostate cancer. ACSM1 gene expression and genomic amplification exhibit important clinical significance through metabolic and ECM-receptor interaction signaling pathways. Thus, ACSM1 may be a novel oncogene and serve as a biomarker for prostate cancer screening and prognosis prediction, and/or a therapeutic target.
Collapse
Affiliation(s)
- Yongchen Guo
- Department of Immunology, Mudanjiang Medical UniversityMudanjiang 157011, China
| | - Chunna Ren
- The Second Affiliated Hospital of Mudanjiang Medical UniversityMudanjiang 157011, China
| | - Wentao Huang
- Hongqi Hospital Affiliated to Mudanjiang Medical UniversityMudanjiang 157011, China
| | - Wancai Yang
- Department of Pathology, University of Illinois at ChicagoIL 60612, USA
| | - Yonghua Bao
- Department of Pathology, Mudanjiang Medical UniversityMudanjiang 157011, China
| |
Collapse
|
17
|
Pan L, Bai P, Weng X, Liu J, Chen Y, Chen S, Ma X, Hu K, Sun A, Ge J. Legumain Is an Endogenous Modulator of Integrin αvβ3 Triggering Vascular Degeneration, Dissection, and Rupture. Circulation 2022; 145:659-674. [PMID: 35100526 DOI: 10.1161/circulationaha.121.056640] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND The development of thoracic aortic dissection (TAD) is closely related to extracellular matrix degradation and vascular smooth muscle cell (VSMC) transformation from contractile to synthetic type. LGMN (legumain) degrades extracellular matrix components directly or by activating downstream signals. The role of LGMN in VSMC differentiation and the occurrence of TAD remains elusive. METHODS Microarray datasets concerning vascular dissection or aneurysm were downloaded from the Gene Expression Omnibus database to screen differentially expressed genes. Four-week-old male Lgmn knockout mice (Lgmn-/-), macrophage-specific Lgmn knockout mice (LgmnF/F;LysMCre), and RR-11a-treated C57BL/6 mice were given BAPN (β-aminopropionitrile monofumarate; 1 g/kg/d) in drinking water for 4 weeks for TAD modeling. RNA sequencing analysis was performed to recapitulate transcriptome profile changes. Cell interaction was examined in macrophage and VSMC coculture system. The reciprocity of macrophage-derived LGMN with integrin αvβ3 in VSMCs was tested by coimmunoprecipitation assay and colocalization analyses. RESULTS Microarray datasets from the Gene Expression Omnibus database indicated upregulated LGMN in aorta from patients with TAD and mice with angiotensin II-induced AAA. Elevated LGMN was evidenced in aorta and sera from patients with TAD and mice with BAPN-induced TAD. BAPN-induced TAD progression was significantly ameliorated in Lgmn-deficient or inhibited mice. Macrophage-specific deletion of Lgmn alleviated BAPN-induced extracellular matrix degradation. Unbiased profiler polymerase chain reaction array and Gene Ontology analysis displayed that LGMN regulated VSMC phenotype transformation. Macrophage-specific deletion of Lgmn ameliorated VSMC phenotypic switch in BAPN-treated mice. Macrophage-derived LGMN inhibited VSMC differentiation in vitro as assessed by macrophages and the VSMC coculture system. Macrophage-derived LGMN bound to integrin αvβ3 in VSMCs and blocked integrin αvβ3, thereby attenuating Rho GTPase activation, downregulating VSMC differentiation markers and eventually exacerbating TAD development. ROCK (Rho kinase) inhibitor Y-27632 reversed the protective role of LGMN depletion in vascular dissection. CONCLUSIONS LGMN signaling may be a novel target for the prevention and treatment of TAD.
Collapse
Affiliation(s)
- Lihong Pan
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China (L.P., S.C., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.)
| | - Peiyuan Bai
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (P.B., X.W., J.L., X.M., K.H., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.)
| | - Xinyu Weng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (P.B., X.W., J.L., X.M., K.H., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.)
| | - Jin Liu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (P.B., X.W., J.L., X.M., K.H., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.)
| | - Yingjie Chen
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (Y.C.)
| | - Siqin Chen
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China (L.P., S.C., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.)
| | - Xiurui Ma
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (P.B., X.W., J.L., X.M., K.H., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.)
| | - Kai Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (P.B., X.W., J.L., X.M., K.H., A.S., J.G.)
| | - Aijun Sun
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China (L.P., S.C., A.S., J.G.).,Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (P.B., X.W., J.L., X.M., K.H., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.)
| | - Junbo Ge
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China (L.P., S.C., A.S., J.G.).,Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (P.B., X.W., J.L., X.M., K.H., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.)
| |
Collapse
|
18
|
Si K, Lu D, Tian J. Integrated analysis and the identification of a circRNA-miRNA-mRNA network in the progression of abdominal aortic aneurysm. PeerJ 2022; 9:e12682. [PMID: 35036156 PMCID: PMC8711282 DOI: 10.7717/peerj.12682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is a disease commonly seen in the elderly. The aneurysm diameter increases yearly, and the larger the AAA the higher the risk of rupture, increasing the risk of death. However, there are no current effective interventions in the early stages of AAA. Methods Four gene expression profiling datasets, including 23 normal artery (NOR) tissue samples and 97 AAA tissue samples, were integrated in order to explore potential molecular biological targets for early intervention. After preprocessing, differentially expressed genes (DEGs) between AAA and NOR were identified using LIMMA package. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis were conducted using the DAVID database. The protein-protein interaction network was constructed and hub genes were identified using the STRING database and plugins in Cytoscape. A circular RNA (circRNA) profile of four NOR tissues versus four AAA tissues was then reanalyzed. A circRNA-miRNA-mRNA interaction network was constructed after predictions were made using the Targetscan and Circinteractome databases. Results A total of 440 DEGs (263 up-regulated and 177 down-regulated) were identified in the AAA group, compared with the NOR group. The majority were associated with the extracellular matrix, tumor necrosis factor-α, and transforming growth factor-β. Ten hub gene-encoded proteins (namely IL6, RPS27A, JUN, UBC, UBA52, FOS, IL1B, MMP9, SPP1 and CCL2) coupled with a higher degree of connectivity hub were identified after protein‐protein interaction network analysis. Our results, in combination with the results of previous studies revealed that miR-635, miR-527, miR-520h, miR-938 and miR-518a-5p may be affected by circ_0005073 and impact the expression of hub genes such as CCL2, SPP1 and UBA52. The miR-1206 may also be affected by circ_0090069 and impact RPS27A expression. Conclusions This circRNA-miRNA-mRNA network may perform critical roles in AAA and may be a novel target for early intervention.
Collapse
Affiliation(s)
- Ke Si
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Da Lu
- Department of Vascular Surgery, Shanghai General Hospital, Shanghai, People's Republic of China
| | - Jianbo Tian
- Institute of Information Engineering, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
19
|
Lassègue B, Kumar S, Mandavilli R, Wang K, Tsai M, Kang DW, Demos C, Hernandes MS, San Martín A, Taylor WR, Jo H, Griendling KK. Characterization of Poldip2 knockout mice: Avoiding incorrect gene targeting. PLoS One 2021; 16:e0247261. [PMID: 34928942 PMCID: PMC8687530 DOI: 10.1371/journal.pone.0247261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 11/17/2021] [Indexed: 01/11/2023] Open
Abstract
POLDIP2 is a multifunctional protein whose roles are only partially understood. Our laboratory previously reported physiological studies performed using a mouse gene trap model, which suffered from three limitations: perinatal lethality in homozygotes, constitutive Poldip2 inactivation and inadvertent downregulation of the adjacent Tmem199 gene. To overcome these limitations, we developed a new conditional floxed Poldip2 model. The first part of the present study shows that our initial floxed mice were affected by an unexpected mutation, which was not readily detected by Southern blotting and traditional PCR. It consisted of a 305 kb duplication around Poldip2 with retention of the wild type allele and could be traced back to the original targeted ES cell clone. We offer simple suggestions to rapidly detect similar accidents, which may affect genome editing using both traditional and CRISPR-based methods. In the second part of the present study, correctly targeted floxed Poldip2 mice were generated and used to produce a new constitutive knockout line by crossing with a Cre deleter. In contrast to the gene trap model, many homozygous knockout mice were viable, in spite of having no POLDIP2 expression. To further characterize the effects of Poldip2 ablation in the vasculature, RNA-seq and RT-qPCR experiments were performed in constitutive knockout arteries. Results show that POLDIP2 inactivation affects multiple cellular processes and provide new opportunities for future in-depth study of its functions.
Collapse
Affiliation(s)
- Bernard Lassègue
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America
| | - Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Rohan Mandavilli
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America
| | - Keke Wang
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America
| | - Michelle Tsai
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America
| | - Dong-Won Kang
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Catherine Demos
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Marina S. Hernandes
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America
| | - Alejandra San Martín
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America
| | - W. Robert Taylor
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
- Division of Cardiology, Atlanta VA Medical Center, Decatur, GA, United States of America
| | - Hanjoong Jo
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Kathy K. Griendling
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
20
|
Aberrant Mitochondrial Dynamics: An Emerging Pathogenic Driver of Abdominal Aortic Aneurysm. Cardiovasc Ther 2021; 2021:6615400. [PMID: 34221126 PMCID: PMC8221877 DOI: 10.1155/2021/6615400] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 05/13/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is defined as a progressive segmental dilation of the abdominal aorta and is associated with high mortality. The characterized features of AAA indicate several underlying mechanisms of AAA formation and progression, including reactive oxygen species production, inflammation, and atherosclerosis. Mitochondrial functions are critical for determining cell fate, and mitochondrial dynamics, especially selective mitochondrial autophagy, which is termed as mitophagy, has emerged as an important player in the pathogenesis of several cardiovascular diseases. The PARKIN/PARIS/PGC1α pathway is associated with AAA formation and has been proposed to play a role in mitochondrial dynamics mediated by the PINK/PARKIN pathway in the pathogenesis underlying AAA. This review is aimed at deepening our understanding of AAA formation and progression, which is vital for the development of potential medical therapies for AAA.
Collapse
|
21
|
Disease-Relevant Single Cell Photonic Signatures Identify S100β Stem Cells and their Myogenic Progeny in Vascular Lesions. Stem Cell Rev Rep 2021; 17:1713-1740. [PMID: 33730327 PMCID: PMC8446106 DOI: 10.1007/s12015-021-10125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 10/31/2022]
Abstract
A hallmark of subclinical atherosclerosis is the accumulation of vascular smooth muscle cell (SMC)-like cells leading to intimal thickening and lesion formation. While medial SMCs contribute to vascular lesions, the involvement of resident vascular stem cells (vSCs) remains unclear. We evaluated single cell photonics as a discriminator of cell phenotype in vitro before the presence of vSC within vascular lesions was assessed ex vivo using supervised machine learning and further validated using lineage tracing analysis. Using a novel lab-on-a-Disk(Load) platform, label-free single cell photonic emissions from normal and injured vessels ex vivo were interrogated and compared to freshly isolated aortic SMCs, cultured Movas SMCs, macrophages, B-cells, S100β+ mVSc, bone marrow derived mesenchymal stem cells (MSC) and their respective myogenic progeny across five broadband light wavelengths (λ465 - λ670 ± 20 nm). We found that profiles were of sufficient coverage, specificity, and quality to clearly distinguish medial SMCs from different vascular beds (carotid vs aorta), discriminate normal carotid medial SMCs from lesional SMC-like cells ex vivo following flow restriction, and identify SMC differentiation of a series of multipotent stem cells following treatment with transforming growth factor beta 1 (TGF- β1), the Notch ligand Jagged1, and Sonic Hedgehog using multivariate analysis, in part, due to photonic emissions from enhanced collagen III and elastin expression. Supervised machine learning supported genetic lineage tracing analysis of S100β+ vSCs and identified the presence of S100β+vSC-derived myogenic progeny within vascular lesions. We conclude disease-relevant photonic signatures may have predictive value for vascular disease.
Collapse
|
22
|
Chen Y, Zhao X, Wu H. Transcriptional Programming in Arteriosclerotic Disease: A Multifaceted Function of the Runx2 (Runt-Related Transcription Factor 2). Arterioscler Thromb Vasc Biol 2021; 41:20-34. [PMID: 33115268 PMCID: PMC7770073 DOI: 10.1161/atvbaha.120.313791] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite successful therapeutic strategies in the prevention and treatment of arteriosclerosis, the cardiovascular complications remain a major clinical and societal issue worldwide. Increased vascular calcification promotes arterial stiffness and accelerates cardiovascular morbidity and mortality. Upregulation of the Runx2 (Runt-related transcription factor 2), an essential osteogenic transcription factor for bone formation, in the cardiovascular system has emerged as an important regulator for adverse cellular events that drive cardiovascular pathology. This review discusses the regulatory mechanisms that are critical for Runx2 expression and function and highlights the dynamic and complex cross talks of a wide variety of posttranslational modifications, including phosphorylation, acetylation, ubiquitination, and O-linked β-N-acetylglucosamine modification, in regulating Runx2 stability, cellular localization, and osteogenic transcriptional activity. How the activation of an array of signaling cascades by circulating and local microenvironmental factors upregulates Runx2 in vascular cells and promotes Runx2-mediated osteogenic transdifferentiation of vascular smooth muscle cells and expression of inflammatory cytokines that accelerate macrophage infiltration and vascular osteoclast formation is summarized. Furthermore, the increasing appreciation of a new role of Runx2 upregulation in promoting vascular smooth muscle cell phenotypic switch, and Runx2 modulated by O-linked β-N-acetylglucosamine modification and Runx2-dependent repression of smooth muscle cell-specific gene expression are discussed. Further exploring the regulation of this key osteogenic transcription factor and its new perspectives in the vasculature will provide novel insights into the transcriptional regulation of vascular smooth muscle cell phenotype switch, reprograming, and vascular inflammation that promote the pathogenesis of arteriosclerosis.
Collapse
Affiliation(s)
- Yabing Chen
- Department of Pathology, University of Alabama at Birmingham
- Research Department, Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35294
| | - Xinyang Zhao
- Department of Biochemistry, University of Alabama at Birmingham
| | - Hui Wu
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, Oregon 97239
| |
Collapse
|
23
|
Cross-Talk between NADPH Oxidase and Mitochondria: Role in ROS Signaling and Angiogenesis. Cells 2020; 9:cells9081849. [PMID: 32781794 PMCID: PMC7466096 DOI: 10.3390/cells9081849] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis, a new vessel formation from the pre-existing ones, is essential for embryonic development, wound repair and treatment of ischemic heart and limb diseases. However, dysregulated angiogenesis contributes to various pathologies such as diabetic retinopathy, atherosclerosis and cancer. Reactive oxygen species (ROS) derived from NADPH oxidase (NOX) as well as mitochondria play an important role in promoting the angiogenic switch from quiescent endothelial cells (ECs). However, how highly diffusible ROS produced from different sources and location can communicate with each other to regulate angiogenesis remains unclear. To detect a localized ROS signal in distinct subcellular compartments in real time in situ, compartment-specific genetically encoded redox-sensitive fluorescence biosensors have been developed. Recently, the intercellular communication, “cross-talk”, between ROS derived from NOX and mitochondria, termed “ROS-induced ROS release”, has been proposed as a mechanism for ROS amplification at distinct subcellular compartments, which are essential for activation of redox signaling. This “ROS-induced ROS release” may represent a feed-forward mechanism of localized ROS production to maintain sustained signaling, which can be targeted under pathological conditions with oxidative stress or enhanced to promote therapeutic angiogenesis. In this review, we summarize the recent knowledge regarding the role of the cross-talk between NOX and mitochondria organizing the sustained ROS signaling involved in VEGF signaling, neovascularization and tissue repair.
Collapse
|
24
|
Zhang YY, Shi YN, Zhu N, Wang W, Deng CF, Xie XJ, Liao DF, Qin L. Autophagy: a killer or guardian of vascular smooth muscle cells. J Drug Target 2020; 28:449-455. [DOI: 10.1080/1061186x.2019.1705312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yin-Yu Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, China
| | - Ya-Ning Shi
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, China
| | - Neng Zhu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Wei Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, China
| | - Chang-Feng Deng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, China
| | - Xue-Jiao Xie
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Duan-Fang Liao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, China
| | - Li Qin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
25
|
Affiliation(s)
- Mark W Majesky
- From the Department of Pediatrics and Department of Pathology, Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, University of Washington, Seattle
| |
Collapse
|