1
|
Li S, Yin W, Liu Y, Yang C, Zhai Z, Xie M, Ye Z, Song X. Anisotropic conductive scaffolds for post-infarction cardiac repair. Biomater Sci 2025; 13:542-567. [PMID: 39688676 DOI: 10.1039/d4bm01109k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Myocardial infarction (MI) remains one of the most common and lethal cardiovascular diseases (CVDs), leading to the deterioration of cardiac function due to myocardial cell necrosis and fibrous scar tissue formation. Myocardial infarction (MI) remains one of the most common and lethal cardiovascular diseases (CVDs), leading to the deterioration of cardiac function due to myocardial cell necrosis and fibrous scar tissue formation. After MI, the anisotropic structural properties of myocardial tissue are destroyed, and its mechanical and electrical microenvironment also undergoes a series of pathological changes, such as ventricular wall stiffness, abnormal contraction, conduction network disruption, and irregular electrical signal propagation, which may further induce myocardial remodeling and even lead to heart failure. Therefore, bionic reconstruction of the anisotropic structural-mechanical-electrical microenvironment of the infarct area is key to repairing damaged myocardium. This article first summarizes the pathological changes in muscle fibre structure and conductive microenvironment after cardiac injury, and focuses on the classification and preparation methods of anisotropic conductive materials. In addition, the effects of these anisotropic conductive materials on the behavior of cardiac resident cells after myocardial infarction, such as directional growth, maturation, proliferation and migration, and the differentiation fate of stem cells and the possible molecular mechanisms involved are summarized. The design strategies for anisotropic conductive scaffolds for myocardial repair in future clinical research are also discussed, with the aim of providing new insights for researchers in related fields.
Collapse
Affiliation(s)
- Shimin Li
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China.
| | - Wenming Yin
- Department of Neurology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Yali Liu
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong 528000, China
| | - Chang Yang
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China.
| | - Zitong Zhai
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China.
| | - Mingxiang Xie
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China.
| | - Ziyi Ye
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China.
| | - Xiaoping Song
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China.
- Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
2
|
Qu Z, Hanna P, Ajijola OA, Garfinkel A, Shivkumar K. Ultrastructure and cardiac impulse propagation: scaling up from microscopic to macroscopic conduction. J Physiol 2024. [PMID: 39612369 DOI: 10.1113/jp287632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/31/2024] [Indexed: 12/01/2024] Open
Abstract
The standard conception of cardiac conduction is based on the cable theory of nerve conduction, which treats cardiac tissue as a continuous syncytium described by the Hodgkin-Huxley equations. However, cardiac tissue is composed of discretized cells with microscopic and macroscopic heterogeneities and discontinuities, such as subcellular localizations of sodium channels and connexins. In addition to this, there are heterogeneities in the distribution of sympathetic and parasympathetic nerves, which powerfully regulate impulse propagation. In the continuous models, the ultrastructural details, i.e. the microscopic heterogeneities and discontinuities, are ignored by 'coarse graining' or 'smoothing'. However, these ultrastructural components may play crucial roles in cardiac conduction and arrhythmogenesis, particularly in disease states. We discuss the current progress of modelling the effects of ultrastructural components on electrical conduction, the issues and challenges faced by the cardiac modelling community, and how to scale up conduction properties at the subcellular (microscopic) scale to the tissue and whole-heart (macroscopic) scale in future modelling and experimental studies, i.e. how to link the ultrastructure at different scales to impulse conduction and arrhythmogenesis in the heart.
Collapse
Affiliation(s)
- Zhilin Qu
- UCLA Cardiac Arrhythmia Center and Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Peter Hanna
- UCLA Cardiac Arrhythmia Center and Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center and Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Alan Garfinkel
- UCLA Cardiac Arrhythmia Center and Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center and Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
3
|
de Sousa JC, Santos SACS, Kurtenbach E. Multiple approaches for the evaluation of connexin-43 expression and function in macrophages. J Immunol Methods 2024; 533:113741. [PMID: 39111361 DOI: 10.1016/j.jim.2024.113741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Connexins are essential gap junction proteins that play pivotal roles in intercellular communication in various organs of mammals. Connexin-43 (Cx43) is expressed in various components of the immune system, and there is extensive evidence of its participation in inflammation responses. The involvement of Cx43 in macrophage functionality involves the purinergic signaling pathway. Macrophages contribute to defenses against inflammatory reactions such as bacterial sepsis and peritonitis. Several assays can identify the presence and activity of Cx43 in macrophages. Real-time polymerase chain reaction (PCR) can measure the relative mRNA expression of Cx43, whereas western blotting can detect protein expression levels. Using immunofluorescence assays, it is possible to analyze the expression and observe the localization of Cx43 in cells or tissues. Moreover, connexin-mediated gap junction intercellular communication can be evaluated using functional assays such as microinjection of fluorescent dyes or scrape loading-dye transfer. The use of selective inhibitors contributes to this understanding and reinforces the role of connexins in various processes. Here, we discuss these methods to evaluate Cx43 and macrophage gap junctions.
Collapse
Affiliation(s)
- Júlia Costa de Sousa
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| | | | - Eleonora Kurtenbach
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
4
|
Zhang H, Kong L, Cao Z, Zhu Y, Jiang Y, Wang X, Jiang R, Liu Y, Zhou J, Kang Y, Zhen X, Kong N, Wu M, Yan G, Sun H. EHD1 impaired decidualization of endometrial stromal cells in recurrent implantation failure: role of SENP1 in modulating progesterone receptor signalling†. Biol Reprod 2024; 110:536-547. [PMID: 38011671 DOI: 10.1093/biolre/ioad161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 11/25/2023] [Indexed: 11/29/2023] Open
Abstract
Recurrent implantation failure (RIF) patients exhibit poor endometrial receptivity and abnormal decidualization with reduced effectiveness and exposure to progesterone, which is an intractable clinical problem. However, the associated molecular mechanisms remain elusive. We found that EH domain containing 1 (EHD1) expression was abnormally elevated in RIF and linked to aberrant endometrial decidualization. Here we show that EHD1 overexpressed in human endometrial stromal cells significantly inhibited progesterone receptor (PGR) transcriptional activity and the responsiveness to progesterone. No significant changes were observed in PGR mRNA levels, while a significant decrease in progesterone receptor B (PRB) protein level. Indeed, EHD1 binds to the PRB protein, with the K388 site crucial for this interaction. Overexpression of EHD1 promotes the SUMOylation and ubiquitination of PRB, leading to the degradation of the PRB protein. Supplementation with the de-SUMOylated protease SENP1 ameliorated EHD1-repressed PRB transcriptional activity. To establish a functional link between EHD1 and the PGR signalling pathway, sg-EHD1 were utilized to suppress EHD1 expression in HESCs from RIF patients. A significant increase in the expression of prolactin and insulin-like growth factor-binding protein 1 was detected by interfering with the EHD1. In conclusion, we demonstrated that abnormally high expression of EHD1 in endometrial stromal cells attenuated the activity of PRB associated with progesterone resistance in a subset of women with RIF.
Collapse
Affiliation(s)
- Hui Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Liping Kong
- Nanjing Vocational Health College, Nanjing, China
| | - Zhiwen Cao
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yinchun Zhu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Yue Jiang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xiaoying Wang
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Ruiwei Jiang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yang Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Jidong Zhou
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yu Kang
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xin Zhen
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Na Kong
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Min Wu
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Guijun Yan
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Haixiang Sun
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Yang F, Zhang XL, Liu HH, Qian LL, Wang RX. Post translational modifications of connexin 43 in ventricular arrhythmias after myocardial infarction. Mol Biol Rep 2024; 51:329. [PMID: 38393658 DOI: 10.1007/s11033-024-09290-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Ventricular arrhythmias are the leading cause of sudden cardiac death in patients after myocardial infarction (MI). Connexin43 (Cx43) is the most important gap junction channel-forming protein in cardiomyocytes. Dysfunction of Cx43 contributes to impaired myocardial conduction and the development of ventricular arrhythmias. Following an MI, Cx43 undergoes structural remodeling, including expression abnormalities, and redistribution. These alterations detrimentally affect intercellular communication and electrical conduction within the myocardium, thereby increasing the susceptibility to post-infarction ventricular arrhythmias. Emerging evidence suggests that post-translational modifications play essential roles in Cx43 regulation after MI. Therefore, Cx43-targeted management has the potential to be a promising protective strategy for the prevention and treatment of post infarction ventricular arrhythmias. In this article, we primarily reviewed the regulatory mechanisms of Cx43 mediated post-translational modifications on post-infarction ventricular arrhythmias. Furthermore, Cx43-targeted therapy have also been discussed, providing insights into an innovative treatment strategy for ventricular arrhythmias after MI.
Collapse
Affiliation(s)
- Fan Yang
- Department of Cardiology, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China
| | - Xiao-Lu Zhang
- Department of Cardiology, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China
| | - Huan-Huan Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ling-Ling Qian
- Department of Cardiology, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China.
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
6
|
Hao T, Ji G, Qian M, Li QX, Huang H, Deng S, Liu P, Deng W, Wei Y, He J, Wang S, Gao W, Li T, Cheng J, Tian J, Pan L, Gao F, Li Z, Zhao Q. Intracellular delivery of nitric oxide enhances the therapeutic efficacy of mesenchymal stem cells for myocardial infarction. SCIENCE ADVANCES 2023; 9:eadi9967. [PMID: 38019911 PMCID: PMC10686553 DOI: 10.1126/sciadv.adi9967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Cell therapy by autologous mesenchymal stem cells (MSCs) is a clinically acceptable strategy for treating various diseases. Unfortunately, the therapeutic efficacy is largely affected by the low quality of MSCs collected from patients. Here, we showed that the gene expression of MSCs from patients with diabetes was differentially regulated compared to that of MSCs from healthy controls. Then, MSCs were genetically engineered to catalyze an NO prodrug to release NO intracellularly. Compared to extracellular NO conversion, intracellular NO delivery effectively prolonged survival and enhanced the paracrine function of MSCs, as demonstrated by in vitro and in vivo assays. The enhanced therapeutic efficacy of engineered MSCs combined with intracellular NO delivery was further confirmed in mouse and rat models of myocardial infarction, and a clinically relevant cell administration paradigm through secondary thoracotomy has been attempted.
Collapse
Affiliation(s)
- Tian Hao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guangbo Ji
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Meng Qian
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qiu Xuan Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Haoyan Huang
- Nankai University School of Medicine, Tianjin 300071, China
| | - Shiyu Deng
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin 300071, China
| | - Pei Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weiliang Deng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongzhen Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ju He
- Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Shusen Wang
- Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Wenqing Gao
- Department of Heart Center, The Third Central Hospital of Tianjin, Nankai University, Tianjin, China
| | - Tong Li
- Department of Heart Center, The Third Central Hospital of Tianjin, Nankai University, Tianjin, China
| | - Jiansong Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Leiting Pan
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin 300071, China
| | - Fei Gao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin 300071, China
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Sykora M, Kratky V, Cervenka L, Kopkan L, Tribulova N, Szeiffova Bacova B. The treatment with trandolapril and losartan attenuates pressure and volume overload alternations of cardiac connexin-43 and extracellular matrix in Ren-2 transgenic rats. Sci Rep 2023; 13:20923. [PMID: 38017033 PMCID: PMC10684879 DOI: 10.1038/s41598-023-48259-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023] Open
Abstract
Heart failure (HF) is life-threatening disease due to electro-mechanical dysfunction associated with hemodynamic overload, while alterations of extracellular matrix (ECM) along with perturbed connexin-43 (Cx43) might be key factors involved. We aimed to explore a dual impact of pressure, and volume overload due to aorto-caval fistula (ACF) on Cx43 and ECM as well as effect of renin-angiotensin blockade. Hypertensive Ren-2 transgenic rats (TGR) and normotensive Hannover Sprague-Dawley rats (HSD) that underwent ACF were treated for 15-weeks with trandolapril or losartan. Blood serum and heart tissue samples of the right (RV) and left ventricles (LV) were used for analyses. ACF-HF increased RV, LV and lung mass in HSD and to lesser extent in TGR, while treatment attenuated it and normalized serum ANP, BNP-45 and TBARS. Cx43 protein and its ser368 variant along with PKCε were lower in TGR vs HSD and suppressed in both rat strains due to ACF but prevented more by trandolapril. Pro-hypertrophic PKCδ, collagen I and hydroxyproline were elevated in TGR and increased due to ACF in both rat strains. While SMAD2/3 and MMP2 levels were lower in TGR vs HSD and reduced due to ACF in both strains. Findings point out the strain-related differences in response to volume overload. Disorders of Cx43 and ECM signalling may contribute not only to HF but also to the formation of arrhythmogenic substrate. There is benefit of treatment with trandolapril and losartan indicating their pleiotropic anti-arrhythmic potential. It may provide novel input to therapy.
Collapse
Affiliation(s)
- Matus Sykora
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04, Bratislava, Slovakia
| | - Vojtech Kratky
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21, Prague, Czech Republic
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08, Prague, Czech Republic
| | - Ludek Cervenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21, Prague, Czech Republic
- Department of Internal Medicine I, Cardiology, University Hospital Olomouc and Palacky University, Olomouc, Czech Republic
| | - Libor Kopkan
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21, Prague, Czech Republic
| | - Narcis Tribulova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04, Bratislava, Slovakia
| | - Barbara Szeiffova Bacova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04, Bratislava, Slovakia.
| |
Collapse
|
8
|
Martins-Marques T, Witschas K, Ribeiro I, Zuzarte M, Catarino S, Ribeiro-Rodrigues T, Caramelo F, Aasen T, Carreira IM, Goncalves L, Leybaert L, Girao H. Cx43 can form functional channels at the nuclear envelope and modulate gene expression in cardiac cells. Open Biol 2023; 13:230258. [PMID: 37907090 PMCID: PMC10645070 DOI: 10.1098/rsob.230258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/12/2023] [Indexed: 11/02/2023] Open
Abstract
Classically associated with gap junction-mediated intercellular communication, connexin43 (Cx43) is increasingly recognized to possess non-canonical biological functions, including gene expression regulation. However, the mechanisms governing the localization and role played by Cx43 in the nucleus, namely in transcription modulation, remain unknown. Using comprehensive and complementary approaches encompassing biochemical assays, super-resolution and immunogold transmission electron microscopy, we demonstrate that Cx43 localizes to the nuclear envelope of different cell types and in cardiac tissue. We show that translocation of Cx43 to the nucleus relies on Importin-β, and that Cx43 significantly impacts the cellular transcriptome, likely by interacting with transcriptional regulators. In vitro patch-clamp recordings from HEK293 and adult primary cardiomyocytes demonstrate that Cx43 forms active channels at the nuclear envelope, providing evidence that Cx43 can participate in nucleocytoplasmic shuttling of small molecules. The accumulation of nuclear Cx43 during myogenic differentiation of cardiomyoblasts is suggested to modulate expression of genes implicated in this process. Altogether, our study provides new evidence for further defining the biological roles of nuclear Cx43, namely in cardiac pathophysiology.
Collapse
Affiliation(s)
- Tania Martins-Marques
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Katja Witschas
- Department of Basic Medical Sciences – Physiology group, Ghent University, 9000 Ghent, Belgium
| | - Ilda Ribeiro
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Univ Coimbra, Cytogenetics and Genomics Laboratory (CIMAGO), Faculty of Medicine, 3004-531 Coimbra, Portugal
| | - Mónica Zuzarte
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Steve Catarino
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Teresa Ribeiro-Rodrigues
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Francisco Caramelo
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Univ Coimbra, Laboratory of Biostatistics and Medical Informatics, Faculty of Medicine, 3004-531 Coimbra, Portugal
| | - Trond Aasen
- Patologia Molecular Translacional, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
- CIBER de Cáncer (CIBERONC), Instituto de Salud Carlos III, Avenida de Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Isabel Marques Carreira
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Univ Coimbra, Cytogenetics and Genomics Laboratory (CIMAGO), Faculty of Medicine, 3004-531 Coimbra, Portugal
| | - Lino Goncalves
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Luc Leybaert
- Department of Basic Medical Sciences – Physiology group, Ghent University, 9000 Ghent, Belgium
| | - Henrique Girao
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| |
Collapse
|
9
|
Totland MZ, Omori Y, Sørensen V, Kryeziu K, Aasen T, Brech A, Leithe E. Endocytic trafficking of connexins in cancer pathogenesis. Biochim Biophys Acta Mol Basis Dis 2023:166812. [PMID: 37454772 DOI: 10.1016/j.bbadis.2023.166812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Gap junctions are specialized regions of the plasma membrane containing clusters of channels that provide for the diffusion of ions and small molecules between adjacent cells. A fundamental role of gap junctions is to coordinate the functions of cells in tissues. Cancer pathogenesis is usually associated with loss of intercellular communication mediated by gap junctions, which may affect tumor growth and the response to radio- and chemotherapy. Gap junction channels consist of integral membrane proteins termed connexins. In addition to their canonical roles in cell-cell communication, connexins modulate a range of signal transduction pathways via interactions with proteins such as β-catenin, c-Src, and PTEN. Consequently, connexins can regulate cellular processes such as cell growth, migration, and differentiation through both channel-dependent and independent mechanisms. Gap junctions are dynamic plasma membrane entities, and by modulating the rate at which connexins undergo endocytosis and sorting to lysosomes for degradation, cells rapidly adjust the level of gap junctions in response to alterations in the intracellular or extracellular milieu. Current experimental evidence indicates that aberrant trafficking of connexins in the endocytic system is intrinsically involved in mediating the loss of gap junctions during carcinogenesis. This review highlights the role played by the endocytic system in controlling connexin degradation, and consequently gap junction levels, and discusses how dysregulation of these processes contributes to the loss of gap junctions during cancer development. We also discuss the therapeutic implications of aberrant endocytic trafficking of connexins in cancer cells.
Collapse
Affiliation(s)
| | - Yasufumi Omori
- Department of Molecular and Tumour Pathology, Akita University Graduate School of Medicine, Akita, Japan
| | | | | | - Trond Aasen
- Patologia Molecular Translacional, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron, Barcelona, Spain
| | - Andreas Brech
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway; Section for Physiology and Cell Biology, Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | | |
Collapse
|
10
|
Nielsen MS, van Opbergen CJM, van Veen TAB, Delmar M. The intercalated disc: a unique organelle for electromechanical synchrony in cardiomyocytes. Physiol Rev 2023; 103:2271-2319. [PMID: 36731030 PMCID: PMC10191137 DOI: 10.1152/physrev.00021.2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The intercalated disc (ID) is a highly specialized structure that connects cardiomyocytes via mechanical and electrical junctions. Although described in some detail by light microscopy in the 19th century, it was in 1966 that electron microscopy images showed that the ID represented apposing cell borders and provided detailed insight into the complex ID nanostructure. Since then, much has been learned about the ID and its molecular composition, and it has become evident that a large number of proteins, not all of them involved in direct cell-to-cell coupling via mechanical or gap junctions, reside at the ID. Furthermore, an increasing number of functional interactions between ID components are emerging, leading to the concept that the ID is not the sum of isolated molecular silos but an interacting molecular complex, an "organelle" where components work in concert to bring about electrical and mechanical synchrony. The aim of the present review is to give a short historical account of the ID's discovery and an updated overview of its composition and organization, followed by a discussion of the physiological implications of the ID architecture and the local intermolecular interactions. The latter will focus on both the importance of normal conduction of cardiac action potentials as well as the impact on the pathophysiology of arrhythmias.
Collapse
Affiliation(s)
- Morten S Nielsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chantal J M van Opbergen
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine, New York, New York, United States
| | - Toon A B van Veen
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mario Delmar
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine, New York, New York, United States
| |
Collapse
|
11
|
An L, Gao H, Zhong Y, Liu Y, Cao Y, Yi J, Huang X, Wen C, Tong R, Pan Z, Yan X, Liu M, Wang S, Bai X, Wu H, Hu T. Molecular chaperones HSP40, HSP70, STIP1, and HSP90 are involved in stabilization of Cx43. Cytotechnology 2023; 75:207-217. [PMID: 37187948 PMCID: PMC10167082 DOI: 10.1007/s10616-023-00570-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
To investigate the involvement of stress induced phosphoprotein 1 (STIP1), heat shock protein (HSP) 70, and HSP90 in ubiquitination of connexin 43 (Cx43) in rat H9c2 cardiomyocytes. Co-immunoprecipitation was used to detect protein-protein interactions and Cx43 ubiquitination. Immunofluorescence was used for protein co-localization. The protein binding, Cx43 protein expression, and Cx43 ubiquitination were reanalyzed in H9c2 cells with modified STIP1 and/or HSP90 expression. STIP1 bound to HSP70 and HSP90, and Cx43 bound to HSP40, HSP70, and HSP90 in normal H9c2 cardiomyocytes. Overexpression of STIP1 promoted the transition of Cx43-HSP70 to Cx43-HSP90 and inhibited Cx43 ubiquitination; knockdown of STIP1 resulted in the opposite effects. Inhibition of HSP90 counteracted the inhibitory effect of STIP1 overexpression on Cx43 ubiquitination. STIP1 suppresses Cx43 ubiquitination in H9c2 cardiomyocytes by promoting the transition of Cx43-HSP70 to Cx43-HSP90.
Collapse
Affiliation(s)
- Li An
- Guizhou Medical University, Guiyang, 550004 Guizhou People’s Republic of China
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi St, Yunyan District, Guiyang, 550004 Guizhou People’s Republic of China
- Translational Medicine Research Center of Guizhou Medical University, Guiyang, 550004 Guizhou People’s Republic of China
| | - Hong Gao
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi St, Yunyan District, Guiyang, 550004 Guizhou People’s Republic of China
| | - Yi Zhong
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi St, Yunyan District, Guiyang, 550004 Guizhou People’s Republic of China
| | - Yanqiu Liu
- Department of Anesthesiology, Guiyang Fourth People’s Hospital, Guiyang, 550002 Guizhou People’s Republic of China
| | - Ying Cao
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou People’s Republic of China
- Guiyang Second People’s Hospital, Guiyang, 550001 Guizhou People’s Republic of China
| | - Jing Yi
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi St, Yunyan District, Guiyang, 550004 Guizhou People’s Republic of China
| | - Xiang Huang
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou People’s Republic of China
| | - Chunlei Wen
- Children’s Hospital of Guiyang Maternal and Child Health Hospital, Guiyang, 550001 Guizhou People’s Republic of China
| | - Rui Tong
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou People’s Republic of China
| | - Zhijun Pan
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou People’s Republic of China
| | - Xu Yan
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou People’s Republic of China
| | - Meiyan Liu
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou People’s Republic of China
| | - Shengzhao Wang
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou People’s Republic of China
| | - Xue Bai
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou People’s Republic of China
| | - Hao Wu
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou People’s Republic of China
| | - Tingju Hu
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou People’s Republic of China
| |
Collapse
|
12
|
Li Y, Zhang Y, Dong Y, Akakuru OU, Yao X, Yi J, Li X, Wang L, Lou X, Zhu B, Fan K, Qin Z. Ablation of Gap Junction Protein Improves the Efficiency of Nanozyme-Mediated Catalytic/Starvation/Mild-Temperature Photothermal Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210464. [PMID: 36964940 DOI: 10.1002/adma.202210464] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/22/2023] [Indexed: 06/02/2023]
Abstract
Reactive oxygen species (ROS)-mediated tumor catalytic therapy is typically hindered by gap junction proteins that form cell-to-cell channels to remove cytotoxic ROS, thereby protecting tumor cells from oxidative damage. In this work, a multifunctional nanozyme, FePGOGA, is designed and prepared by Fe(III)-mediated oxidative polymerization (FeP), followed by glucose oxidase (GOx) and GAP19 peptides co-loading through electrostatic and π-π interactions. The FePGOGA nanozyme exhibits excellent cascade peroxidase- and glutathione-oxidase-like activities that efficiently catalyze hydrogen peroxide conversion to hydroxyl radicals and convert reduced glutathione to oxidized glutathione disulfide. The loaded GOx starves the tumors and aggravates tumor oxidative stress through glucose decomposition, while GAP19 peptides block the hemichannels by inducing degradation of Cx43, thus increasing the accumulation of intracellular ROS, and decreasing the transport of intracellular glucose. Furthermore, the ROS reacts with primary amines of heat shock proteins to destroy their structure and function, enabling tumor photothermal therapy at the widely sought-after mild temperature (mildPTT, ≤45 °C). In vivo experiments demonstrate the significant antitumor effectof FePGOGA on cal27 xenograft tumors under near-infrared light irradiation. This study demonstrates the successful ablation of gap junction proteins to overcome resistance to ROS-mediated therapy, providing a regulator to suppress tumor self-preservation during tumor starvation, catalytic therapy, and mildPTT.
Collapse
Affiliation(s)
- Yongjuan Li
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yu Zhang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Ya Dong
- Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Ozioma Udochukwu Akakuru
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Xiaohan Yao
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jinmeng Yi
- Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xinyan Li
- Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Linlin Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiaohan Lou
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Baoyu Zhu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Kelong Fan
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
13
|
Sheikh Beig Goharrizi MA, Ghodsi S, Mokhtari M, Moravveji SS. Non-invasive STEMI-related biomarkers based on meta-analysis and gene prioritization. Comput Biol Med 2023; 161:106997. [PMID: 37216774 DOI: 10.1016/j.compbiomed.2023.106997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/01/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS Acute ST-Segment Myocardial infarction (STEMI) is a common cardiovascular issue with a considerable burden of the disease. The underlying genetic basis and non-invasive markers were not well-established. METHODS Here, we implemented a systematic literature review and meta-analyses integration methods on 217 STEMI patients and 72 normal individuals to prioritize and detect the STEMI-related non-invasive markers. Five high-scored genes were experimentally assessed on 10 STEMI patients and 9 healthy controls. Finally, the presence of co-expressed nodes of top-score genes was explored. RESULTS The differential expression of ARGL, CLEC4E, and EIF3D were significant for Iranian patients. The ROC curve for gene CLEC4E revealed an AUC (95% CI) of 0.786 (0.686-0.886) in the prediction of STEMI. The Cox-PH model was fitted to stratify high/low risk heart failure progression (CI-index = 0.83, Likelihood-Ratio-Test = 3e-10). The SI00AI2 was a common biomarker between STEMI and NSTEMI patients. CONCLUSIONS In conclusion, the high-scored genes and prognostic model could be applicable for Iranian patients.
Collapse
Affiliation(s)
| | - Saeed Ghodsi
- Department of Cardiology, Sina Hospital, Tehran University of Medical Sciences Tehran, Iran
| | - Majid Mokhtari
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran; Laboratory of Personalized Precision Medicine, Bioinformatics Research Institute, Tehran, Iran
| | - Sayyed Sajjad Moravveji
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| |
Collapse
|
14
|
Wang Q, Ma Y, Li Y, He Z, Feng B. Lead-induced cardiomyocytes apoptosis by inhibiting gap junction intercellular communication via modulating the PKCα/Cx43 signaling pathway. Chem Biol Interact 2023; 376:110451. [PMID: 36925031 DOI: 10.1016/j.cbi.2023.110451] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/28/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the regulatory mechanism of Pb regulates gap junction intercellular communication to induced apoptosis in H9c2 cells. METHODS H9c2 cell line is used as the research object in this study, and treated with different concentrations of Pb acetate. Subsequently, Cell viability was measured by the Cell Counting Kit-8 (CCK-8) assay. The levels of lactate dehydrogenase (LDH), aspartate transaminase (AST) and creatine kinase-MB (CK-MB) in the supernatants were measured using respective commercial enzyme-linked immune sorbent assay (ELISA) kits. Western blot was used to detect the expression of apoptosis-related protein in H9c2 cells in each group. Quantitative RT-PCR Analysis Total RNA was extracted from frozen H9c2 cells using Trizol reagent, the PKCα and Cx43 in the supernatant of H9c2 cells was determined by the BCA protein detection kit. RESULTS H9c2 cells increased release of cardiac enzymes (LDH, AST, and CK-MB) and decreased cell survival rate, and the Cx43, p-Cx43, PKCα and p-PKCα protein levels showed a dose-dependent decrease after Pb treatment. PKCα was activated with PMA, the relative expression level of Cx43 protein increased significantly, the expression of Bcl-2 increased and Bax and Cyt-c decreased compared with Pb exposure group, and the myocardial enzymes (LDH, AST, and CK-MB) in cell culture supernatant decreased compared with Pb exposure group, indicating that the degree of cell damage was alleviated. Results showed that Pb inhibited PKCα activity, decreased the expression of total Cx43 and P-Cx43 protein, and aggravated myocardial injury. CONCLUSIONS Pb decrease gap junction intercellular communication, which induce apoptosis in H9c2 cells by inhibiting the PKCα/Cx43 signaling pathway.
Collapse
Affiliation(s)
- Qiong Wang
- Jinan Center for Disease Control and Prevention, Ji'nan, 250021, Shandong, China
| | - Yinghua Ma
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250062, Shandong, China
| | - Yi Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250062, Shandong, China
| | - Zhen He
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250062, Shandong, China; Shandong Province Hospital of Occupational Diseases, Ji'nan, 250002, Shandong, China.
| | - Bin Feng
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250062, Shandong, China.
| |
Collapse
|
15
|
Xie W, Gao S, Yang Y, Li H, Zhou J, Chen M, Yang S, Zhang Y, Zhang L, Meng X, Xie S, Liu M, Li D, Chen Y, Zhou J. CYLD deubiquitinates plakoglobin to promote Cx43 membrane targeting and gap junction assembly in the heart. Cell Rep 2022; 41:111864. [PMID: 36577382 DOI: 10.1016/j.celrep.2022.111864] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 10/06/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022] Open
Abstract
During heart maturation, gap junctions assemble into hemichannels and polarize to the intercalated disc at cell borders to mediate electrical impulse conduction. However, the molecular mechanism underpinning cardiac gap junction assembly remains elusive. Herein, we demonstrate an important role for the deubiquitinating enzyme cylindromatosis (CYLD) in this process. Depletion of CYLD in mice impairs the formation of cardiac gap junctions, accelerates cardiac fibrosis, and increases heart failure. Mechanistically, CYLD interacts with plakoglobin and removes lysine 63-linked polyubiquitin chains from plakoglobin. The deubiquitination of plakoglobin enhances its interaction with the desmoplakin/end-binding protein 1 complex localized at the microtubule plus end, thereby promoting microtubule-dependent transport of connexin 43 (Cx43), a key component of gap junctions, to the cell membrane. These findings establish CYLD as a critical player in regulating gap junction assembly and have important implications in heart development and diseases.
Collapse
Affiliation(s)
- Wei Xie
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Siqi Gao
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yunfan Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Hongjie Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Junyan Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Mingzhen Chen
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Song Yang
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yijun Zhang
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Liang Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xiaoqian Meng
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Songbo Xie
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Min Liu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Dengwen Li
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yan Chen
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China; Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
16
|
Wang GG, Wang Y, Wang SL, Zhu LC. Down-regulation of CX43 expression by miR-1 inhibits the proliferation and invasion of glioma cells. Transl Cancer Res 2022; 11:4126-4136. [PMID: 36523292 PMCID: PMC9745374 DOI: 10.21037/tcr-22-2318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/17/2022] [Indexed: 02/07/2025]
Abstract
BACKGROUND Connexin (CX) 43 makes glioblastoma resistant to temozolomide, the first-line chemotherapy drug. However, targeting CX43 is very difficult because the mechanisms underlying CX43-mediated resistance remain unclear. CX43 is highly expressed in glioblastoma, which is closely associated with poor prognosis and chemotherapy resistance. The present study was to analyze the mechanism of microRNA (miR)-1 in regulating the proliferation and invasion of glioma cells. METHODS The effects of knockdown of miR-1 on the growth of glioma cell lines were observed by establishing blank, miR-1 inhibitor, and miR-1 mimic groups. Cell proliferation was detected using a Cell Counting Kit-8 (CCK-8) assay, cell apoptosis was detected by flow cytometry, and protein expression was detected by western blot. We used the Student's t-test to assess continuous data between the two groups and the Kruskal-Wallis test was adopted for multiple group comparisons. RESULTS Compared with the mimics normal control (NC) group, the apoptosis rate of the miR-1-3p mimics group was decreased, while that of the miR-1-3p inhibitor group was increased compared to the inhibitor NC group. In addition, the miR-1-3p mimics model of U251 cells exerted an inhibitory effect on the invasion ability of cells, whereas the miR-1-3p inhibitor model of U251 cells showed an invasion-promoting effect. The dual-luciferase assay showed that miR-1-3p had a targeted relationship with the CX43 gene. CONCLUSIONS Down-regulation of CX43 expression by miR-1 inhibited the infiltration and growth of glioma cells and further promoted the apoptosis of glioma cells by regulating CX43 expression.
Collapse
Affiliation(s)
- Gang-Gang Wang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Yang Wang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Shi-Long Wang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Li-Cang Zhu
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| |
Collapse
|
17
|
Zhao Y, Chen MS, Wang JX, Cui JG, Zhang H, Li XN, Li JL. Connexin-43 is a promising target for lycopene preventing phthalate-induced spermatogenic disorders. J Adv Res 2022:S2090-1232(22)00203-X. [PMID: 36087924 DOI: 10.1016/j.jare.2022.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Male infertility is a multifactorial pathological condition and may be a harbinger of future health. Phthalates are ubiquitous environmental contaminants that have been implicated in the global decline in male fertility. Among them, di-(2-ethylhexyl) phthalate (DEHP) is the most prevalently used. Lycopene (LYC) is a possible preventive and therapeutic agent for male infertility owing to its antioxidant properties. The blood-testis barrier (BTB) is formed between Sertoli cells where it creates a unique microenvironment for spermatogenesis. OBJECTIVES We hypothesize that phthalate caused male infertility and LYC plays an important role in phthalate-induced male fertility disorders. METHODS Hematoxylin-eosin (H&E) staining, ultrastructure observation, and fluorescence microscopy were used to examine the morphological changes. RNA-Seq, and western blotting were conducted to detect gene and protein levels. Routine testing for sperm morphology and sperm-egg binding assay were conducted to examine the morphological structure and function of sperm. Cell scratch assay and transepithelial electrical resistance (TER) were used to detect cell migration capacity and barrier integrity. RESULTS In vivo experiments, we showed that LYC prevented DEHP-induced impairment of BTB integrity, which provided a guarantee for the smooth progress of spermatogenesis. LYC improved DEHP-induced change in sperm parameters and fertilization ability. Subsequent in vitro experiments, LYC alleviated MEHP-induced disruption of intercellular junctions in mouse Spermatogonia cells (GC-1 cells) and mouse Sertoli cells (TM4 cells). In MEHP-induced BTB impairment models of Sertoli cells, treatment with LYC or overexpressing connexin-43 (Cx43) promoted cell migration capacity and normalized BTB integrity. Cx43 knockdown inhibited cell migration capacity and perturbed BTB reassembly in LYC preventing DEHP-induced BTB impairment. CONCLUSION Our study provides evidence for the role of LYC in phthalates-induced spermatogenic disorders and points to Cx43 as a potential target for male fertility.
Collapse
Affiliation(s)
- Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Ming-Shan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jia-Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jia-Gen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Hao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China.
| |
Collapse
|
18
|
Fu ZP, Wu LL, Xue JY, Zhang LE, Li C, You HJ, Luo DL. Connexin 43 hyper-phosphorylation at serine 282 triggers apoptosis in rat cardiomyocytes via activation of mitochondrial apoptotic pathway. Acta Pharmacol Sin 2022; 43:1970-1978. [PMID: 34931018 PMCID: PMC9343349 DOI: 10.1038/s41401-021-00824-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cx43 is the major connexin in ventricular gap junctions, and plays a pivotal role in control of electrical and metabolic communication among adjacent cardiomyocytes. We previously found that Cx43 dephosphorylation at serine 282 (pS282) caused cardiomyocyte apoptosis, which is involved in cardiac ischemia/reperfusion injury. In this study we investigated whether Cx43-S282 hyper-phosphorylation could protect cardiomyocytes against apoptosis. Adenovirus carrying rat full length Cx43 gene (Cx43-wt) or a mutant gene at S282 substituted with aspartic acid (S282D) were transfected into neonatal rat ventricular myocytes (NRVMs) or injected into rat ventricular wall. Rat abdominal aorta constriction model (AAC) was used to assess Cx43-S282 phosphorylation status. We showed that Cx43 phosphorylation at S282 was increased over 2-times compared to Cx43-wt cells at 24 h after transfection, while pS262 and pS368 were unaltered. S282D-transfected cells displayed enhanced gap junctional communication, and increased basal intracellular Ca2+ concentration and spontaneous Ca2+ transients compared to Cx43-wt cells. However, spontaneous apoptosis appeared in NRVMs transfected with S282D for 34 h. Rat ventricular myocardium transfected with S282D in vivo also exhibited apoptotic responses, including increased Bax/Bcl-xL ratio, cytochrome c release as well as caspase-3 and caspase-9 activities, while factor-associated suicide (Fas)/Fas-associated death domain expression and caspase-8 activity remained unaltered. In addition, AAC-induced hypertrophic ventricles had apoptotic injury with Cx43-S282 hyper-phosphorylation compared with Sham ventricles. In conclusion, Cx43 hyper-phosphorylation at S282, as dephosphorylation, also triggers cardiomyocyte apoptosis, but through activation of mitochondrial apoptosis pathway, providing a fine-tuned Cx43-S282 phosphorylation range required for the maintenance of cardiomyocyte function and survival.
Collapse
Affiliation(s)
- Zhi-ping Fu
- grid.24696.3f0000 0004 0369 153XDepartment of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing, 100069 China
| | - Lu-lin Wu
- grid.24696.3f0000 0004 0369 153XDepartment of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing, 100069 China
| | - Jing-yi Xue
- grid.24696.3f0000 0004 0369 153XDepartment of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing, 100069 China
| | - Lan-e Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing, 100069 China
| | - Chen Li
- grid.24696.3f0000 0004 0369 153XDepartment of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing, 100069 China
| | - Hong-jie You
- grid.24696.3f0000 0004 0369 153XDepartment of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing, 100069 China
| | - Da-li Luo
- grid.24696.3f0000 0004 0369 153XDepartment of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing, 100069 China
| |
Collapse
|
19
|
Li G, Yang J, Zhang D, Wang X, Han J, Guo X. Research Progress of Myocardial Fibrosis and Atrial Fibrillation. Front Cardiovasc Med 2022; 9:889706. [PMID: 35958428 PMCID: PMC9357935 DOI: 10.3389/fcvm.2022.889706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
With the aging population and the increasing incidence of basic illnesses such as hypertension and diabetes (DM), the incidence of atrial fibrillation (AF) has increased significantly. AF is the most common arrhythmia in clinical practice, which can cause heart failure (HF) and ischemic stroke (IS), increasing disability and mortality. Current studies point out that myocardial fibrosis (MF) is one of the most critical substrates for the occurrence and maintenance of AF. Although myocardial biopsy is the gold standard for evaluating MF, it is rarely used in clinical practice because it is an invasive procedure. In addition, serological indicators and imaging methods have also been used to evaluate MF. Nevertheless, the accuracy of serological markers in evaluating MF is controversial. This review focuses on the pathogenesis of MF, serological evaluation, imaging evaluation, and anti-fibrosis treatment to discuss the existing problems and provide new ideas for MF and AF evaluation and treatment.
Collapse
Affiliation(s)
- Guangling Li
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jing Yang
- Department of Pathology, Gansu Provincial Hospital, Lanzhou, China
| | - Demei Zhang
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xiaomei Wang
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jingjing Han
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xueya Guo
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- *Correspondence: Xueya Guo,
| |
Collapse
|
20
|
Martins‐Marques T, Costa MC, Catarino S, Simoes I, Aasen T, Enguita FJ, Girao H. Cx43-mediated sorting of miRNAs into extracellular vesicles. EMBO Rep 2022; 23:e54312. [PMID: 35593040 PMCID: PMC9253745 DOI: 10.15252/embr.202154312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/12/2022] [Accepted: 04/26/2022] [Indexed: 09/23/2023] Open
Abstract
Through the exchange of lipids, proteins, and nucleic acids, extracellular vesicles (EV) allow for cell-cell communication across distant cells and tissues to regulate a wide range of physiological and pathological processes. Although some molecular mediators have been discovered, the mechanisms underlying the selective sorting of miRNAs into EV remain elusive. Previous studies demonstrated that connexin43 (Cx43) forms functional channels at the EV surface, mediating the communication with recipient cells. Here, we show that Cx43 participates in the selective sorting of miRNAs into EV through a process that can also involve RNA-binding proteins. We provide evidence that Cx43 can directly bind to specific miRNAs, namely those containing stable secondary structure elements, including miR-133b. Furthermore, Cx43 facilitates the delivery of EV-miRNAs into recipient cells. Phenotypically, we show that Cx43-mediated EV-miRNAs sorting modulates autophagy. Overall, our study ascribes another biological role to Cx43, that is, the selective incorporation of miRNAs into EV, which potentially modulates multiple biological processes in target cells and may have implications for human health and disease.
Collapse
Affiliation(s)
- Tania Martins‐Marques
- Faculty of MedicineCoimbra Institute for Clinical and Biomedical Research (iCBR)University of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Clinical Academic Centre of Coimbra (CACC)CoimbraPortugal
| | - Marina C Costa
- Faculdade de MedicinaInstituto de Medicina Molecular João Lobo AntunesUniversidade de LisboaLisboaPortugal
| | - Steve Catarino
- Faculty of MedicineCoimbra Institute for Clinical and Biomedical Research (iCBR)University of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Clinical Academic Centre of Coimbra (CACC)CoimbraPortugal
| | - Isaura Simoes
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- CNC‐Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- IIIUC‐Institute of Interdisciplinary ResearchUniversity of CoimbraCoimbraPortugal
| | - Trond Aasen
- Patologia Molecular Translacional, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital UniversitariVall d'Hebron Barcelona Hospital Campus, Passeig Vall d'HebronBarcelonaSpain
- CIBER de Cáncer (CIBERONC)Instituto de Salud Carlos IIIMadridSpain
| | - Francisco J Enguita
- Faculdade de MedicinaInstituto de Medicina Molecular João Lobo AntunesUniversidade de LisboaLisboaPortugal
| | - Henrique Girao
- Faculty of MedicineCoimbra Institute for Clinical and Biomedical Research (iCBR)University of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Clinical Academic Centre of Coimbra (CACC)CoimbraPortugal
| |
Collapse
|
21
|
Vasconcelos-Cardoso M, Batista-Almeida D, Rios-Barros LV, Castro-Gomes T, Girao H. Cellular and molecular mechanisms underlying plasma membrane functionality and integrity. J Cell Sci 2022; 135:275922. [PMID: 35801807 DOI: 10.1242/jcs.259806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The plasma membrane not only protects the cell from the extracellular environment, acting as a selective barrier, but also regulates cellular events that originate at the cell surface, playing a key role in various biological processes that are essential for the preservation of cell homeostasis. Therefore, elucidation of the mechanisms involved in the maintenance of plasma membrane integrity and functionality is of utmost importance. Cells have developed mechanisms to ensure the quality of proteins that inhabit the cell surface, as well as strategies to cope with injuries inflicted to the plasma membrane. Defects in these mechanisms can lead to the development or onset of several diseases. Despite the importance of these processes, a comprehensive and holistic perspective of plasma membrane quality control is still lacking. To tackle this gap, in this Review, we provide a thorough overview of the mechanisms underlying the identification and targeting of membrane proteins that are to be removed from the cell surface, as well as the membrane repair mechanisms triggered in both physiological and pathological conditions. A better understanding of the mechanisms underlying protein quality control at the plasma membrane can reveal promising and unanticipated targets for the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Maria Vasconcelos-Cardoso
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal.,Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Daniela Batista-Almeida
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal.,Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Laura Valeria Rios-Barros
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| | - Thiago Castro-Gomes
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| | - Henrique Girao
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal.,Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| |
Collapse
|
22
|
Guo YH, Yang YQ. Atrial Fibrillation: Focus on Myocardial Connexins and Gap Junctions. BIOLOGY 2022; 11:489. [PMID: 35453689 PMCID: PMC9029470 DOI: 10.3390/biology11040489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Atrial fibrillation (AF) represents the most common type of clinical cardiac arrhythmia worldwide and contributes to substantial morbidity, mortality and socioeconomic burden. Aggregating evidence highlights the strong genetic basis of AF. In addition to chromosomal abnormalities, pathogenic mutations in over 50 genes have been causally linked to AF, of which the majority encode ion channels, cardiac structural proteins, transcription factors and gap junction channels. In the heart, gap junctions comprised of connexins (Cxs) form intercellular pathways responsible for electrical coupling and rapid coordinated action potential propagation between adjacent cardiomyocytes. Among the 21 isoforms of connexins already identified in the mammal genomes, 5 isoforms (Cx37, Cx40, Cx43, Cx45 and Cx46) are expressed in human heart. Abnormal electrical coupling between cardiomyocytes caused by structural remodeling of gap junction channels (alterations in connexin distribution and protein levels) has been associated with enhanced susceptibility to AF and recent studies have revealed multiple causative mutations or polymorphisms in 4 isoforms of connexins predisposing to AF. In this review, an overview of the genetics of AF is made, with a focus on the roles of mutant myocardial connexins and gap junctions in the pathogenesis of AF, to underscore the hypothesis that cardiac connexins are a major molecular target in the management of AF.
Collapse
Affiliation(s)
- Yu-Han Guo
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China;
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China;
- Cardiovascular Research Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Center Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| |
Collapse
|
23
|
Alves-Silva JM, Zuzarte M, Marques C, Viana S, Preguiça I, Baptista R, Ferreira C, Cavaleiro C, Domingues N, Sardão VA, Oliveira PJ, Reis F, Salgueiro L, Girão H. 1,8-cineole Ameliorates Right Ventricle Dysfunction Associated With Pulmonary Arterial Hypertension by Restoring Connexin 43 and Mitochondrial Homeostasis. Pharmacol Res 2022; 180:106151. [PMID: 35247601 DOI: 10.1016/j.phrs.2022.106151] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/07/2022] [Accepted: 02/26/2022] [Indexed: 10/19/2022]
Abstract
For the first time, the present study unravels a cardiospecific therapeutic approach for Pulmonary Arterial Hypertension (PAH), a disease with a very poor prognosis and high mortality rates due to right ventricle dysfunction. We first established a new in vitro model of high-pressure-induced hypertrophy that closely resembles heart defects associated with PAH and validated our in vitro findings on a preclinical in vivo model of monocrotaline (MCT)-induced PAH. Our results showed the in vitro antihypertrophic effect of 1,8-cineole, a monoterpene widely found in several essential oils. Also, a decrease in RV hypertrophy and fibrosis, and an improvement in heart function in vivo was observed, when 1,8-cineole was applied topically. Furthermore, 1,8-cineole restored gap junction protein connexin43 distribution at the intercalated discs and mitochondrial functionality, suggesting it may act by preserving cardiac cell-to-cell communication and bioenergetics. Overall, our results point out a promising therapeutic compound that can be easily applied topically, thus paving the way for the development of effective cardiac-specific therapies to greatly improve PAH outcomes.
Collapse
Affiliation(s)
- Jorge M Alves-Silva
- Univ Coimbra, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Mónica Zuzarte
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal.
| | - Carla Marques
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Sofia Viana
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal; Univ Coimbra, Institute of Pharmacology & Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal; Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| | - Inês Preguiça
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal; Univ Coimbra, Institute of Pharmacology & Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal
| | - Rui Baptista
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal; Cardiology Department, Hospital Centre of Entre Douro and Vouga, Santa Maria da Feira, Portugal
| | - Cátia Ferreira
- Cardiology Department, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Carlos Cavaleiro
- Univ Coimbra, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, Faculty of Sciences and Technology, Coimbra, Portugal
| | - Neuza Domingues
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Vilma A Sardão
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Univ Coimbra, Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal; Univ Coimbra, Faculty of Sport Science and Physical Education, Coimbra, Portugal
| | - Paulo J Oliveira
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Univ Coimbra, Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal
| | - Flávio Reis
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal; Univ Coimbra, Institute of Pharmacology & Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal
| | - Lígia Salgueiro
- Univ Coimbra, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, Faculty of Sciences and Technology, Coimbra, Portugal
| | - Henrique Girão
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| |
Collapse
|
24
|
Munjal NS, Sapra D, Parthasarathi KTS, Goyal A, Pandey A, Banerjee M, Sharma J. Deciphering the Interactions of SARS-CoV-2 Proteins with Human Ion Channels Using Machine-Learning-Based Methods. Pathogens 2022; 11:pathogens11020259. [PMID: 35215201 PMCID: PMC8874499 DOI: 10.3390/pathogens11020259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 01/04/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is accountable for the protracted COVID-19 pandemic. Its high transmission rate and pathogenicity led to health emergencies and economic crisis. Recent studies pertaining to the understanding of the molecular pathogenesis of SARS-CoV-2 infection exhibited the indispensable role of ion channels in viral infection inside the host. Moreover, machine learning (ML)-based algorithms are providing a higher accuracy for host-SARS-CoV-2 protein–protein interactions (PPIs). In this study, PPIs of SARS-CoV-2 proteins with human ion channels (HICs) were trained on the PPI-MetaGO algorithm. PPI networks (PPINs) and a signaling pathway map of HICs with SARS-CoV-2 proteins were generated. Additionally, various U.S. food and drug administration (FDA)-approved drugs interacting with the potential HICs were identified. The PPIs were predicted with 82.71% accuracy, 84.09% precision, 84.09% sensitivity, 0.89 AUC-ROC, 65.17% Matthews correlation coefficient score (MCC) and 84.09% F1 score. Several host pathways were found to be altered, including calcium signaling and taste transduction pathway. Potential HICs could serve as an initial set to the experimentalists for further validation. The study also reinforces the drug repurposing approach for the development of host directed antiviral drugs that may provide a better therapeutic management strategy for infection caused by SARS-CoV-2.
Collapse
Affiliation(s)
- Nupur S. Munjal
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; (N.S.M.); (D.S.); (K.T.S.P.); (A.G.)
| | - Dikscha Sapra
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; (N.S.M.); (D.S.); (K.T.S.P.); (A.G.)
| | - K. T. Shreya Parthasarathi
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; (N.S.M.); (D.S.); (K.T.S.P.); (A.G.)
| | - Abhishek Goyal
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; (N.S.M.); (D.S.); (K.T.S.P.); (A.G.)
| | - Akhilesh Pandey
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, India;
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India;
| | - Jyoti Sharma
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; (N.S.M.); (D.S.); (K.T.S.P.); (A.G.)
- Manipal Academy of Higher Education (MAHE), Udupi 576104, India
- Correspondence:
| |
Collapse
|
25
|
Guan L, Yang Y, Liang JJ, Miao Y, Shang AY, Wang B, Wang YC, Ding M. ERGIC2 and ERGIC3 regulate the ER-to-Golgi transport of gap junction proteins in metazoans. Traffic 2022; 23:140-157. [PMID: 34994051 DOI: 10.1111/tra.12830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/16/2021] [Accepted: 01/04/2022] [Indexed: 11/26/2022]
Abstract
The extremely dynamic life cycle of gap junction connections requires highly efficient intracellular trafficking system especially designed for gap junction proteins, but the underlying mechanisms are largely unknown. Here, we identified that the COPII-associated proteins ERGIC2 (ER-Golgi intermediate compartment) and ERGIC3 are specifically required for the efficient intracellular transport of gap junction proteins in both C. elegans and mice. In the absence of Ergic2 or Ergic3, gap junction proteins accumulate in the ER and Golgi apparatus and the size of endogenous gap junction plaques is reduced. Knocking out the Ergic2 or Ergic3 in mice results in heart enlargement and cardiac malfunction accompanied by reduced number and size of connexin 43 (Cx43) gap junctions. Invertebrates' gap junction protein innexins share no sequence similarity with vertebrates' connexins. However, ERGIC2 and ERGIC3 could bind to gap junction proteins in both worms and mice. Characterization of the highly specialized roles of ERGIC2 and ERGIC3 in metazoans reveals how the early secretory pathway could be adapted to facilitate the efficient transport for gap junction proteins in vivo. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Liying Guan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yongzhi Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing Jing Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yue Miao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ang Yang Shang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Baolei Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ying Chun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mei Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Aligned human induced pluripotent stem cell-derived cardiac tissue improves contractile properties through promoting unidirectional and synchronous cardiomyocyte contraction. Biomaterials 2021; 281:121351. [PMID: 34979417 DOI: 10.1016/j.biomaterials.2021.121351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 11/23/2022]
Abstract
Alignment, as seen in the native myocardium, is crucial for the fabrication of functional cardiac tissue. However, it remains unclear whether the control of cardiomyocyte alignment influences cardiac function and the underlying mechanisms. We fabricated aligned human cardiac tissue using a micro-processed fibrin gel with inverted V-shaped ridges (MFG) and elucidated the effect of alignment control on contractile properties. When human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were seeded on MFG, hiPSC-CMs were aligned more uniformly than the control, and we succeeded in fabricating the aligned cardiac tissue. Assessing the contractile properties with the direct contractile measurement system, the contractile force, maximum contractile velocity, and relaxation velocity were significantly increased in aligned cardiac tissue compared with non-aligned cardiac tissue. However, gene expression profiles were not different between the two groups, suggesting that functional improvement of cardiac tissue through alignment control might not be dependent on cardiomyocyte maturation. Motion capture analysis revealed that the cardiomyocytes in the aligned cardiac tissues showed more unidirectional and synchronous contraction than the non-aligned cardiac tissues, indicating that cardiac tissue maturation involves electrical integration of cardiomyocytes. Herein, cardiomyocyte alignment control might improve the contractile properties of cardiac tissue through promoting unidirectional and synchronous cardiomyocyte contraction.
Collapse
|
27
|
Yu Y, Wang L, Zhu X, Liu YF, Ma HY. Sodium ozagrel and atorvastatin for type 2 diabetes patients with lacunar cerebral infarction. World J Diabetes 2021; 12:2096-2106. [PMID: 35047123 PMCID: PMC8696649 DOI: 10.4239/wjd.v12.i12.2096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/15/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The main pathological factor of cerebral infarction is atherosclerosis, which is the pathological process of chronic inflammatory diseases such as vascular smooth muscle hyperplasia, inflammatory cell infiltration, extracellular matrix increase, and thrombosis. At present, the focus of clinical treatment is anti-platelet aggregation and improving blood status, and current research is limited to improving symptoms only.
AIM To observe the effect of sodium ozagrel and atorvastatin on type 2 diabetes patients with lacunar cerebral infarction.
METHODS Eighty-two patients with type 2 diabetes and lacunar cerebral infarction admitted to our hospital from January 2018 to February 2020 were equally categorized into two groups according to their treatment method. The control group was administered atorvastatin, and the observation group was administered sodium ozagrel combined with atorvastatin. The National Institutes of Health stroke scale (NIHSS) score, activities of daily living (ADL) score, blood glucose, lipid levels, inflammatory factors, high-mobility group box 1 (HMGB1) levels, paraoxonase-1 (PON-1) levels, erythrocyte sedimentation rate (ESR), and macrophage migration inhibitory factor (MIF) levels were recorded before and after treatment. The total effective rate and adverse reaction rate of the two groups were analyzed.
RESULTS The total effective rate of the observation group (94.00%) was significantly higher than that of the control group (80.00%) (χ2 = 3.998; P = 0.046). The blood glucose indexes, total cholesterol levels, triglyceride levels, low-density lipoprotein cholesterol levels, high-sensitivity C-reactive protein levels, interleukin-1β levels, tumor necrosis factor-α levels, HMGB1 Levels, ESR, MIF levels, platelet aggregation rates, and plasma viscosity of the two groups decreased after treatment; however, high-density lipoprotein cholesterol and PON-1 Levels increased after treatment. After treatment, the blood glucose indexes; blood lipid indexes; inflammatory factors; HMGB1, PON-1, and MIF levels; ESR; platelet aggregation rate; and plasma viscosity of the observation group were better than those of the control group (P < 0.05). After treatment, all patients in the observation group had higher ADL scores and lower NIHSS scores than those in the control group (P < 0.05).
CONCLUSION Sodium ozagrel with atorvastatin can reduce inflammatory reactions; regulate ESR and HMGB1, PON-1, and MIF levels; control blood glucose and lipid indexes; and alleviate nerve injury without increasing adverse effects of atorvastatin alone.
Collapse
Affiliation(s)
- You Yu
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning Province, China
| | - Lin Wang
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning Province, China
| | - Xu Zhu
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning Province, China
| | - Ya-Fei Liu
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning Province, China
| | - Hai-Ying Ma
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning Province, China
| |
Collapse
|
28
|
Zhou M, Li D, Xie K, Xu L, Kong B, Wang X, Tang Y, Liu Y, Huang H. The short-chain fatty acid propionate improved ventricular electrical remodeling in a rat model with myocardial infarction. Food Funct 2021; 12:12580-12593. [PMID: 34813637 DOI: 10.1039/d1fo02040d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The short-chain fatty acid (SCFA) propionate (C3), a microorganism metabolite produced by gut microbial fermentation, has parasympathetic-activation effects. The cardiac autonomic rebalancing strategy is considered as an important therapeutic approach to myocardial infarction (MI)-produced ventricular arrhythmias (VAs). Thus, our research was designed to clarify the potential functions of the SCFA propionate in VAs and cardiac electrophysiology in MI rats. A hundred adult Sprague-Dawley rats were allocated to four groups: the sham group (200 mM sodium chloride), the sham + C3 group (200 mM propionate), the MI group (200 mM sodium chloride) and the MI + C3 group (200 mM propionate). In comparison with the sham group, propionate significantly increased the parasympathetic components heart rate variability (HRV) and acetylcholine levels, prolonged cardiac repolarization, induced STAT3 phosphorylation and up-regulated the c-fos expression in nodose ganglia and solitary nucleus. Propionate intake reduced the susceptibility to VAs. MI induced by coronary ligation caused a significant increase in the sympathetic components HRV, abnormal repolarization, global repolarization dispersion, norepinephrine and inflammatory cytokines, reduction and redistribution of Connexin 43 in the infarcted border zone, and activation of NFκB, which were attenuated in the MI + C3 group. Oral propionate supplementation, as a nutritional intervention, protected the heart against MI-induced VAs and cardiac electrophysiology instability partly by parasympathetic activation based on the gut-brain axis.
Collapse
Affiliation(s)
- Mingmin Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China. .,Cardiovascular Research Institute of Wuhan University, Wuhan, China. .,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Diwen Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China. .,Cardiovascular Research Institute of Wuhan University, Wuhan, China. .,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ke Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China. .,Cardiovascular Research Institute of Wuhan University, Wuhan, China. .,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Liao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China. .,Cardiovascular Research Institute of Wuhan University, Wuhan, China. .,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China. .,Cardiovascular Research Institute of Wuhan University, Wuhan, China. .,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China. .,Cardiovascular Research Institute of Wuhan University, Wuhan, China. .,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China. .,Cardiovascular Research Institute of Wuhan University, Wuhan, China. .,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China. .,Cardiovascular Research Institute of Wuhan University, Wuhan, China. .,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China. .,Cardiovascular Research Institute of Wuhan University, Wuhan, China. .,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
29
|
Advances of Traditional Chinese Medicine Regulating Connexin43 in the Prevention and Treatment of Myocardial Infarction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8583285. [PMID: 34819986 PMCID: PMC8608513 DOI: 10.1155/2021/8583285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/12/2021] [Accepted: 10/25/2021] [Indexed: 11/18/2022]
Abstract
Gap junctions are the main form of interaction between cardiomyocytes, through which the electrochemical activities between cardiomyocytes can be synchronized to maintain the normal function of the heart. Connexins are the basis of gap junctions. Changes in the expression, structural changes (e.g., phosphorylation and dephosphorylation), and distribution of connexins can affect the normal electrophysiological activities of the heart. Myocardial infarction (MI) and concurrent arrhythmia, shock, or heart failure can endanger life. The structural and functional damage of connexin (Cx) 43 in cardiomyocytes is a central part of the pathological progression of MI and is one of the main pathological mechanisms of arrhythmia after MI. Therefore, increasing Cx43 expression has become one of the main measures to prevent MI. Also, intervention in Cx43 expression can improve the structural and electrical remodeling of the myocardium to improve MI prognosis. Here, research progress of Cx43 in MI and its prevention and treatment using Traditional Chinese Medicine formulations is reviewed.
Collapse
|
30
|
Proteomic Analysis of Exosomes during Cardiogenic Differentiation of Human Pluripotent Stem Cells. Cells 2021; 10:cells10102622. [PMID: 34685602 PMCID: PMC8533815 DOI: 10.3390/cells10102622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/26/2022] Open
Abstract
Efforts to direct the specification of human pluripotent stem cells (hPSCs) to therapeutically important somatic cell types have focused on identifying proper combinations of soluble cues. Yet, whether exosomes, which mediate intercellular communication, play a role in the differentiation remains unexplored. We took a first step toward addressing this question by subjecting hPSCs to stage-wise specification toward cardiomyocytes (CMs) in scalable stirred-suspension cultures and collecting exosomes. Samples underwent liquid chromatography (LC)/mass spectrometry (MS) and subsequent proteomic analysis revealed over 300 unique proteins from four differentiation stages including proteins such as PPP2CA, AFM, MYH9, MYH10, TRA2B, CTNNA1, EHD1, ACTC1, LDHB, and GPC4, which are linked to cardiogenic commitment. There was a significant correlation of the protein composition of exosomes with the hPSC line and stage of commitment. Differentiating hPSCs treated with exosomes from hPSC-derived CMs displayed improved efficiency of CM formation compared to cells without exogenously added vesicles. Collectively, these results demonstrate that exosomes from hPSCs induced along the CM lineage contain proteins linked to the specification process with modulating effects and open avenues for enhancing the biomanufacturing of stem cell products for cardiac diseases.
Collapse
|
31
|
Martins-Marques T. Connecting different heart diseases through intercellular communication. Biol Open 2021; 10:bio058777. [PMID: 34494646 PMCID: PMC8443862 DOI: 10.1242/bio.058777] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022] Open
Abstract
Well-orchestrated intercellular communication networks are pivotal to maintaining cardiac homeostasis and to ensuring adaptative responses and repair after injury. Intracardiac communication is sustained by cell-cell crosstalk, directly via gap junctions (GJ) and tunneling nanotubes (TNT), indirectly through the exchange of soluble factors and extracellular vesicles (EV), and by cell-extracellular matrix (ECM) interactions. GJ-mediated communication between cardiomyocytes and with other cardiac cell types enables electrical impulse propagation, required to sustain synchronized heart beating. In addition, TNT-mediated organelle transfer has been associated with cardioprotection, whilst communication via EV plays diverse pathophysiological roles, being implicated in angiogenesis, inflammation and fibrosis. Connecting various cell populations, the ECM plays important functions not only in maintaining the heart structure, but also acting as a signal transducer for intercellular crosstalk. Although with distinct etiologies and clinical manifestations, intercellular communication derailment has been implicated in several cardiac disorders, including myocardial infarction and hypertrophy, highlighting the importance of a comprehensive and integrated view of complex cell communication networks. In this review, I intend to provide a critical perspective about the main mechanisms contributing to regulate cellular crosstalk in the heart, which may be considered in the development of future therapeutic strategies, using cell-based therapies as a paradigmatic example. This Review has an associated Future Leader to Watch interview with the author.
Collapse
Affiliation(s)
- Tania Martins-Marques
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| |
Collapse
|
32
|
Remodeling of Cardiac Gap Junctional Cell-Cell Coupling. Cells 2021; 10:cells10092422. [PMID: 34572071 PMCID: PMC8465208 DOI: 10.3390/cells10092422] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022] Open
Abstract
The heart works as a functional syncytium, which is realized via cell-cell coupling maintained by gap junction channels. These channels connect two adjacent cells, so that action potentials can be transferred. Each cell contributes a hexameric hemichannel (=connexon), formed by protein subuntis named connexins. These hemichannels dock to each other and form the gap junction channel. This channel works as a low ohmic resistor also allowing the passage of small molecules up to 1000 Dalton. Connexins are a protein family comprising of 21 isoforms in humans. In the heart, the main isoforms are Cx43 (the 43 kDa connexin; ubiquitous), Cx40 (mostly in atrium and specific conduction system), and Cx45 (in early developmental states, in the conduction system, and between fibroblasts and cardiomyocytes). These gap junction channels are mainly located at the polar region of the cardiomyocytes and thus contribute to the anisotropic pattern of cardiac electrical conductivity. While in the beginning the cell–cell coupling was considered to be static, similar to an anatomically defined structure, we have learned in the past decades that gap junctions are also subject to cardiac remodeling processes in cardiac disease such as atrial fibrillation, myocardial infarction, or cardiomyopathy. The underlying remodeling processes include the modulation of connexin expression by e.g., angiotensin, endothelin, or catecholamines, as well as the modulation of the localization of the gap junctions e.g., by the direction and strength of local mechanical forces. A reduction in connexin expression can result in a reduced conduction velocity. The alteration of gap junction localization has been shown to result in altered pathways of conduction and altered anisotropy. In particular, it can produce or contribute to non-uniformity of anisotropy, and thereby can pre-form an arrhythmogenic substrate. Interestingly, these remodeling processes seem to be susceptible to certain pharmacological treatment.
Collapse
|
33
|
Zhu J, Yi X, Ding H, Zhong L, Fang L. Integrated Transcriptomics and Reverse Pharmacophore Mapping-based Network Pharmacology to Explore the Mechanisms of Natural Compounds against Doxorubicin-induced Cardiotoxicity. Comb Chem High Throughput Screen 2021; 25:1707-1721. [PMID: 34397328 DOI: 10.2174/1386207324666210816122629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/08/2021] [Accepted: 06/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Doxorubicin-induced cardiotoxicity (DIC) has greatly limited the clinical benefits of this frontline drug in oncotherapy. Drug combination with natural compounds (NCs) that possess potency against DIC is considered as a promising intervention strategy. However, the mechanisms of action (MoAs) underlying such drug interactions remain poorly understood. The aim of this study was to systematically pursuit of the molecular mechanisms of NCs against DIC. METHODS First, the gene expression signatures of DIC were characterized from transcriptomics datasets with doxorubicin-treated and untreated cardiomyocytes using differentially expressed gene identification, functional enrichment analysis, and protein-protein interaction network analysis. Secondly, reverse pharmacophore mapping-based network pharmacology was employed to illustrate the MoAs of 82 publicly reported NCs with anti-DIC potency. Cluster analysis based on their enriched pathways was performed to gain systematic insights into the anti-DIC mechanisms of the NCs. Finally, the typical compounds were validated using gene set enrichment analysis (GSEA) of the relevant gene expression profiles from a public gene expression database. RESULTS Based on their anti-DIC MoAs, the 82 NCs could be divided into four groups, which corresponded to ten MoA clusters. GSEA and literature evidence on these compounds were provided to validate the MoAs identified through this bioinformatics analysis. The results suggested that NCs exerted potency against DIC through both common and different MoAs. CONCLUSION This strategy integrating different types of bioinformatics approaches is expected to create new insights for elucidating the MoAs of NCs against DIC.
Collapse
Affiliation(s)
- Junfeng Zhu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Xiaojiao Yi
- Department of Pharmacy, Xixi Hospital of Hangzhou, Hangzhou 310023, China
| | - Haiying Ding
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Like Zhong
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Luo Fang
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
34
|
Martins-Marques T, Rodriguez-Sinovas A, Girao H. Cellular crosstalk in cardioprotection: Where and when do reactive oxygen species play a role? Free Radic Biol Med 2021; 169:397-409. [PMID: 33892116 DOI: 10.1016/j.freeradbiomed.2021.03.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/14/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022]
Abstract
A well-balanced intercellular communication between the different cells within the heart is vital for the maintenance of cardiac homeostasis and function. Despite remarkable advances on disease management and treatment, acute myocardial infarction remains the major cause of morbidity and mortality worldwide. Gold standard reperfusion strategies, namely primary percutaneous coronary intervention, are crucial to preserve heart function. However, reestablishment of blood flow and oxygen levels to the infarcted area are also associated with an accumulation of reactive oxygen species (ROS), leading to oxidative damage and cardiomyocyte death, a phenomenon termed myocardial reperfusion injury. In addition, ROS signaling has been demonstrated to regulate multiple biological pathways, including cell differentiation and intercellular communication. Given the importance of cell-cell crosstalk in the coordinated response after cell injury, in this review, we will discuss the impact of ROS in the different forms of inter- and intracellular communication, as well as the role of gap junctions, tunneling nanotubes and extracellular vesicles in the propagation of oxidative damage in cardiac diseases, particularly in the context of ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Tania Martins-Marques
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Antonio Rodriguez-Sinovas
- Cardiovascular Diseases Research Group, Department of Cardiology, Vall D'Hebron Institut de Recerca (VHIR), Vall D'Hebron Hospital Universitari, Vall D'Hebron Barcelona Hospital Campus, Passeig Vall D'Hebron, 119-129, 08035, Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Henrique Girao
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
35
|
Girão H, Martins-Marques T. A novel cardioprotective strategy targeting mitochondrial reactive oxygen species production independent of antioxidant activity. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2021. [DOI: 10.1016/j.repce.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
36
|
Zhang B, Xu Y, Cui X, Jiang H, Luo W, Weng X, Wang Y, Zhao Y, Sun A, Ge J. Alteration of m6A RNA Methylation in Heart Failure With Preserved Ejection Fraction. Front Cardiovasc Med 2021; 8:647806. [PMID: 33748197 PMCID: PMC7973040 DOI: 10.3389/fcvm.2021.647806] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous disease, in which its pathogenesis is very complex and far from defined. Here, we explored the N6-methyladenosine (m6A) RNA methylation alteration in patients with HFpEF and mouse model of HFpEF. Methods: In this case–control study, peripheral blood mononuclear cells (PBMCs) were separated from peripheral blood samples obtained from 16 HFpEF patients and 24 healthy controls. The change of m6A regulators was detected by quantitative real-time PCR (RT-PCR). A “two-hit” mouse model of HFpEF was induced by a high-fat diet and drinking water with 0.5 g/L of Nω-nitro-l-arginine methyl ester (L-NAME). MeRIP-seq was used to map transcriptome-wide m6A in control mice and HFpEF mice, and the gene expression was high-throughput detected by RNA-seq. Results: The expression of m6A writers METTL3, METTL4, and KIAA1429; m6A eraser FTO; and reader YTHDF2 was up-regulated in HFpEF patients, compared with health controls. Furthermore, the expression of FTO was also elevated in HFpEF mice. A total of 661 m6A peaks were significantly changed by MeRIP-seq. Gene Ontology (GO) analysis revealed that protein folding, ubiquitin-dependent ERAD pathway, and positive regulation of RNA polymerase II were the three most significantly altered biological processes in HFpEF. The pathways including proteasome, protein processing in the endoplasmic reticulum, and PI3K-Akt signaling pathway were significantly changed in HFpEF by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Conclusions: The expression pattern of m6A regulators and m6A landscape is changed in HFpEF. This uncovers a new transcription-independent mechanism of translation regulation. Therefore, our data suggest that the modulation of epitranscriptomic processes, such as m6A methylation, might be an interesting target for therapeutic interventions.
Collapse
Affiliation(s)
- Beijian Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yamei Xu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Xiaotong Cui
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Hao Jiang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Wei Luo
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xinyu Weng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yun Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China.,Tianshan Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Yuhong Zhao
- Tianshan Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Martins-Marques T, Hausenloy DJ, Sluijter JPG, Leybaert L, Girao H. Intercellular Communication in the Heart: Therapeutic Opportunities for Cardiac Ischemia. Trends Mol Med 2021; 27:248-262. [PMID: 33139169 DOI: 10.1016/j.molmed.2020.10.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022]
Abstract
The maintenance of tissue, organ, and organism homeostasis relies on an intricate network of players and mechanisms that assist in the different forms of cell-cell communication. Myocardial infarction, following heart ischemia and reperfusion, is associated with profound changes in key processes of intercellular communication, involving gap junctions, extracellular vesicles, and tunneling nanotubes, some of which have been implicated in communication defects associated with cardiac injury, namely arrhythmogenesis and progression into heart failure. Therefore, intercellular communication players have emerged as attractive powerful therapeutic targets aimed at preserving a fine-tuned crosstalk between the different cardiac cells in order to prevent or repair some of harmful consequences of heart ischemia and reperfusion, re-establishing myocardial function.
Collapse
Affiliation(s)
- Tania Martins-Marques
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre, Singapore; Yong Loo Lin School of Medicine, National University Singapore, Singapore; The Hatter Cardiovascular Institute, University College London, London, UK; Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan
| | - Joost P G Sluijter
- Laboratory of Experimental Cardiology, UMC Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Luc Leybaert
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Henrique Girao
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
38
|
Girão H, Martins-Marques T. A novel cardioprotective strategy targeting mitochondrial reactive oxygen species production independent of antioxidant activity. Rev Port Cardiol 2021; 40:283-284. [PMID: 33648809 DOI: 10.1016/j.repc.2021.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Henrique Girão
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal.
| | - Tania Martins-Marques
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| |
Collapse
|
39
|
Boengler K, Rohrbach S, Weissmann N, Schulz R. Importance of Cx43 for Right Ventricular Function. Int J Mol Sci 2021; 22:ijms22030987. [PMID: 33498172 PMCID: PMC7863922 DOI: 10.3390/ijms22030987] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 11/16/2022] Open
Abstract
In the heart, connexins form gap junctions, hemichannels, and are also present within mitochondria, with connexin 43 (Cx43) being the most prominent connexin in the ventricles. Whereas the role of Cx43 is well established for the healthy and diseased left ventricle, less is known about the importance of Cx43 for the development of right ventricular (RV) dysfunction. The present article focusses on the importance of Cx43 for the developing heart. Furthermore, we discuss the expression and localization of Cx43 in the diseased RV, i.e., in the tetralogy of Fallot and in pulmonary hypertension, in which the RV is affected, and RV hypertrophy and failure occur. We will also introduce other Cx molecules that are expressed in RV and surrounding tissues and have been reported to be involved in RV pathophysiology. Finally, we highlight therapeutic strategies aiming to improve RV function in pulmonary hypertension that are associated with alterations of Cx43 expression and function.
Collapse
|
40
|
Andelova K, Egan Benova T, Szeiffova Bacova B, Sykora M, Prado NJ, Diez ER, Hlivak P, Tribulova N. Cardiac Connexin-43 Hemichannels and Pannexin1 Channels: Provocative Antiarrhythmic Targets. Int J Mol Sci 2020; 22:ijms22010260. [PMID: 33383853 PMCID: PMC7795512 DOI: 10.3390/ijms22010260] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiac connexin-43 (Cx43) creates gap junction channels (GJCs) at intercellular contacts and hemi-channels (HCs) at the peri-junctional plasma membrane and sarcolemmal caveolae/rafts compartments. GJCs are fundamental for the direct cardiac cell-to-cell transmission of electrical and molecular signals which ensures synchronous myocardial contraction. The HCs and structurally similar pannexin1 (Panx1) channels are active in stressful conditions. These channels are essential for paracrine and autocrine communication through the release of ions and signaling molecules to the extracellular environment, or for uptake from it. The HCs and Panx1 channel-opening profoundly affects intracellular ionic homeostasis and redox status and facilitates via purinergic signaling pro-inflammatory and pro-fibrotic processes. These conditions promote cardiac arrhythmogenesis due to the impairment of the GJCs and selective ion channel function. Crosstalk between GJCs and HCs/Panx1 channels could be crucial in the development of arrhythmogenic substrates, including fibrosis. Despite the knowledge gap in the regulation of these channels, current evidence indicates that HCs and Panx1 channel activation can enhance the risk of cardiac arrhythmias. It is extremely challenging to target HCs and Panx1 channels by inhibitory agents to hamper development of cardiac rhythm disorders. Progress in this field may contribute to novel therapeutic approaches for patients prone to develop atrial or ventricular fibrillation.
Collapse
Affiliation(s)
- Katarina Andelova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Tamara Egan Benova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Barbara Szeiffova Bacova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Matus Sykora
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Natalia Jorgelina Prado
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, M5500 Mendoza, Argentina; (N.J.P.); (E.R.D.)
| | - Emiliano Raul Diez
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, M5500 Mendoza, Argentina; (N.J.P.); (E.R.D.)
| | - Peter Hlivak
- Department of Arrhythmias and Pacing, National Institute of Cardiovascular Diseases, Pod Krásnou Hôrkou 1, 83348 Bratislava, Slovakia;
| | - Narcis Tribulova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
- Correspondence: ; Tel.: +421-2-32295-423
| |
Collapse
|
41
|
Martins-Marques T, Ribeiro-Rodrigues T, de Jager SC, Zuzarte M, Ferreira C, Cruz P, Reis L, Baptista R, Gonçalves L, Sluijter JP, Girao H. Myocardial infarction affects Cx43 content of extracellular vesicles secreted by cardiomyocytes. Life Sci Alliance 2020; 3:e202000821. [PMID: 33097557 PMCID: PMC7652393 DOI: 10.26508/lsa.202000821] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Ischemic heart disease has been associated with an impairment on intercellular communication mediated by both gap junctions and extracellular vesicles. We have previously shown that connexin 43 (Cx43), the main ventricular gap junction protein, assembles into channels at the extracellular vesicle surface, mediating the release of vesicle content into target cells. Here, using a comprehensive strategy that included cell-based approaches, animal models and human patients, we demonstrate that myocardial ischemia impairs the secretion of Cx43 into circulating, intracardiac and cardiomyocyte-derived vesicles. In addition, we show that ubiquitin signals Cx43 release in basal conditions but appears to be dispensable during ischemia, suggesting an interplay between ischemia-induced Cx43 degradation and secretion. Overall, this study constitutes a step forward for the characterization of the signals and molecular players underlying vesicle protein sorting, with strong implications on long-range intercellular communication, paving the way towards the development of innovative diagnostic and therapeutic strategies for cardiovascular disorders.
Collapse
Affiliation(s)
- Tania Martins-Marques
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Teresa Ribeiro-Rodrigues
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Saskia C de Jager
- Laboratory of Experimental Cardiology, University Medical Center Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Monica Zuzarte
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Cátia Ferreira
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Pedro Cruz
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Liliana Reis
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Rui Baptista
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Cardiology Department, Centro Hospitalar Entre Douro e Vouga, Santa Maria da Feira, Portugal
| | - Lino Gonçalves
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Joost Pg Sluijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Henrique Girao
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| |
Collapse
|
42
|
Rusiecka OM, Montgomery J, Morel S, Batista-Almeida D, Van Campenhout R, Vinken M, Girao H, Kwak BR. Canonical and Non-Canonical Roles of Connexin43 in Cardioprotection. Biomolecules 2020; 10:biom10091225. [PMID: 32842488 PMCID: PMC7563275 DOI: 10.3390/biom10091225] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022] Open
Abstract
Since the mid-20th century, ischemic heart disease has been the world’s leading cause of death. Developing effective clinical cardioprotection strategies would make a significant impact in improving both quality of life and longevity in the worldwide population. Both ex vivo and in vivo animal models of cardiac ischemia/reperfusion (I/R) injury are robustly used in research. Connexin43 (Cx43), the predominant gap junction channel-forming protein in cardiomyocytes, has emerged as a cardioprotective target. Cx43 posttranslational modifications as well as cellular distribution are altered during cardiac reperfusion injury, inducing phosphorylation states and localization detrimental to maintaining intercellular communication and cardiac conduction. Pre- (before ischemia) and post- (after ischemia but before reperfusion) conditioning can abrogate this injury process, preserving Cx43 and reducing cell death. Pre-/post-conditioning has been shown to largely rely on the presence of Cx43, including mitochondrial Cx43, which is implicated to play a major role in pre-conditioning. Posttranslational modifications of Cx43 after injury alter the protein interactome, inducing negative protein cascades and altering protein trafficking, which then causes further damage post-I/R injury. Recently, several peptides based on the Cx43 sequence have been found to successfully diminish cardiac injury in pre-clinical studies.
Collapse
Affiliation(s)
- Olga M. Rusiecka
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland; (O.M.R.); (J.M.); (S.M.)
| | - Jade Montgomery
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland; (O.M.R.); (J.M.); (S.M.)
| | - Sandrine Morel
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland; (O.M.R.); (J.M.); (S.M.)
| | - Daniela Batista-Almeida
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal; (D.B.-A.); (H.G.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Raf Van Campenhout
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (R.V.C.); (M.V.)
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (R.V.C.); (M.V.)
| | - Henrique Girao
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal; (D.B.-A.); (H.G.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Brenda R. Kwak
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland; (O.M.R.); (J.M.); (S.M.)
- Correspondence:
| |
Collapse
|
43
|
Batista-Almeida D, Ribeiro-Rodrigues T, Martins-Marques T, Cortes L, Antunes MJ, Antunes PE, Gonçalves L, Brou C, Aasen T, Zurzolo C, Girão H. Ischaemia impacts TNT-mediated communication between cardiac cells. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.crcbio.2020.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|