1
|
Babu MA, Jyothi S R, Kaur I, Kumar S, Sharma N, Kumar MR, Rajput P, Ali H, Gupta G, Subramaniyan V, Wong LS, Kumarasamy V. The role of GATA4 in mesenchymal stem cell senescence: A new frontier in regenerative medicine. Regen Ther 2025; 28:214-226. [PMID: 39811069 PMCID: PMC11731776 DOI: 10.1016/j.reth.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025] Open
Abstract
The Mesenchymal Stem Cell (MSC) is a multipotent progenitor cell with known differentiation potential towards various cell lineage, making it an appealing candidate for regenerative medicine. One major contributing factor to age-related MSC dysfunction is cellular senescence, which is the hallmark of relatively irreversible growth arrest and changes in functional properties. GATA4, a zinc-finger transcription factor, emerges as a critical regulator in MSC biology. Originally identified as a key regulator of heart development and specification, GATA4 has since been connected to several aspects of cellular processes, including stem cell proliferation and differentiation. Accumulating evidence suggests that the involvement of GATA4-nuclear signalizing in the process of MSC senescence-related traits may contribute to age-induced alterations in MSC behavior. GATA4 emerged as the central player in MSC senescence, interacting with several signaling pathways. Studies have shown that GATA4 expression is reduced with age in MSCs, which is associated with increased expression levels of senescence markers and impaired regenerative potential. At the mechanistic level, GATA4 regulates the expression of genes involved in cell cycle regulation, DNA repair, and oxidative stress response, thereby influencing the senescence phenotype in MSCs. The findings underscore the critical function of GATA4 in MSC homeostasis and suggest a promising new target to restore stem cell function during aging and disease. A better understanding of the molecular mechanisms that underlie GATA4 mediated modulation of MSC senescence would provide an opportunity to develop new therapies to revitalize old MSCs to increase their regenerative function for therapeutic purposes in regenerative medicine.
Collapse
Affiliation(s)
- M. Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Renuka Jyothi S
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
| | - Irwanjot Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Naveen Sharma
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, 140307, Punjab, India
| | - M. Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Pranchal Rajput
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Fang H, Tian H, Liu J, Peng T, Wang D. Ginsenoside Rg1 attenuates Aβ 1-42-induced microglial cell apoptosis and inflammation in Alzheimer's disease via the GATA4/PDE4A/PI3K/AKT axis. Neuroscience 2025; 565:377-385. [PMID: 39653247 DOI: 10.1016/j.neuroscience.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/30/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
Ginsenoside Rg1 (Rg1) has been shown to treat a variety of human diseases, including Alzheimer's disease (AD). However, its mechanism in AD needs further investigation. Microglial cells (BV2) were treated with Aβ1-42 to induce AD cell models. Cell viability and apoptosis were tested by cell counting kit 8 assay and flow cytometry. The protein levels of GATA-binding protein 4 (GATA4), phosphodiesterase 4A (PDE4A), autophagy-related markers, M1/M2 polarization-related markers and PI3K/AKT-related markers were detected by western blot. Inflammation factors were detected by ELISA. Jaspar and dual-luciferase reporter assay were used to evaluate the interaction between GATA4 and PDE4A. Our results showed that Rg1 promoted viability and autophagy, while suppressed apoptosis and inflammation in Aβ1-42-induced BV2 cells. Rg1 reduced GATA4 protein expression, and GATA4 upregulation reversed the regulation of Rg1 on Aβ1-42-induced BV2 cell injury. GATA4 interacted with PDE4A, and GATA4 facilitated Aβ1-42-induced BV2 cell injury by increasing PDE4A expression. Besides, GATA4 knockdown reduced PDE4A protein expression and inactivated PI3K/AKT axis, while these effects were abolished by PDE4A overexpression. In conclusion, our data suggested that Ginsenoside Rg1 inhibited microglial cell apoptosis and inflammation to attenuate AD progression by regulating the GATA4/PDE4A/PI3K/AKT axis.
Collapse
Affiliation(s)
- Houying Fang
- Department of Neurology, Hubei NO.3 People(')s Hospital of Jianghan University, Wuhan, Hubei, 430000, China
| | - Hao Tian
- Department of Neurology, Hubei NO.3 People(')s Hospital of Jianghan University, Wuhan, Hubei, 430000, China
| | - Jianlin Liu
- Department of Neurology, Hubei NO.3 People(')s Hospital of Jianghan University, Wuhan, Hubei, 430000, China
| | - Tao Peng
- Department of Neurology, Hubei NO.3 People(')s Hospital of Jianghan University, Wuhan, Hubei, 430000, China
| | - Dan Wang
- Department of Neurology, Hubei NO.3 People(')s Hospital of Jianghan University, Wuhan, Hubei, 430000, China.
| |
Collapse
|
3
|
Imran M, Altamimi ASA, Afzal M, Babu MA, Goyal K, Ballal S, Sharma P, Alanazi FJ, Alruwaili AN, Aldhafeeri NA, Ali H. Targeting senescence and GATA4 in age-related cardiovascular disease: a comprehensive approach. Biogerontology 2025; 26:45. [PMID: 39831933 DOI: 10.1007/s10522-025-10189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
The growing prevalence of age-related cardiovascular diseases (CVDs) poses significant health challenges, necessitating the formulation of novel treatment approaches. GATA4, a vital transcription factor identified for modulating cardiovascular biology and cellular senescence, is recognized for its critical involvement in CVD pathogenesis. This review collected relevant studies from PubMed, Google Scholar, and Science Direct using search terms like 'GATA4,' 'cellular senescence,' 'coronary artery diseases,' 'hypertension,' 'heart failure,' 'arrhythmias,' 'congenital heart diseases,' 'cardiomyopathy,' and 'cardiovascular disease.' Additionally, studies investigating the molecular mechanisms underlying GATA4-mediated regulation of GATA4 and senescence in CVDs were analyzed to provide comprehensive insights into this critical aspect of potential treatment targeting. Dysregulation of GATA4 is involved in a variety of CVDs, as demonstrated by both experimental and clinical research, comprising CAD, hypertension, congenital heart diseases, cardiomyopathy, arrhythmias, and cardiac insufficiency. Furthermore, cellular senescence enhances the advancement of age-related CVDs. These observations suggested that therapies targeting GATA4, senescence pathways, or both as necessary may be an effective intervention in CVD progression and prognosis. Addressing age-related CVDs by targeting GATA4 and senescence is a broad mechanism approach. It implies further investigation of the molecular nature of these processes and elaboration of an effective therapeutic strategy. This review highlights the importance of GATA4 and senescence in CVD pathogenesis, emphasizing their potential as therapeutic targets for age-related CVDs.
Collapse
Affiliation(s)
- Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia.
- Center for Health Research, Northern Border University, Arar, Saudi Arabia.
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, UP, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Pawan Sharma
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Fadiyah Jadid Alanazi
- Center for Health Research, Northern Border University, Arar, Saudi Arabia
- Public Health Nursing Department, College of Nursing, Northern Border University, Arar, Saudi Arabia
| | - Abeer Nuwayfi Alruwaili
- Department of Nursing Administration and Education, College of Nursing, Jouf University, Sakaka 72388, Saudi Arabia
| | - Nouf Afit Aldhafeeri
- College of Nursing, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Haider Ali
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| |
Collapse
|
4
|
Bei Y, Zhu Y, Zhou J, Ai S, Yao J, Yin M, Hu M, Qi W, Spanos M, Li L, Wei M, Huang Z, Gao J, Liu C, van der Kraak PH, Li G, Lei Z, Sluijter JPG, Xiao J. Inhibition of Hmbox1 Promotes Cardiomyocyte Survival and Glucose Metabolism Through Gck Activation in Ischemia/Reperfusion Injury. Circulation 2024; 150:848-866. [PMID: 38708602 DOI: 10.1161/circulationaha.123.067592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Exercise-induced physiological cardiac growth regulators may protect the heart from ischemia/reperfusion (I/R) injury. Homeobox-containing 1 (Hmbox1), a homeobox family member, has been identified as a putative transcriptional repressor and is downregulated in the exercised heart. However, its roles in exercise-induced physiological cardiac growth and its potential protective effects against cardiac I/R injury remain largely unexplored. METHODS We studied the function of Hmbox1 in exercise-induced physiological cardiac growth in mice after 4 weeks of swimming exercise. Hmbox1 expression was then evaluated in human heart samples from deceased patients with myocardial infarction and in the animal cardiac I/R injury model. Its role in cardiac I/R injury was examined in mice with adeno-associated virus 9 (AAV9) vector-mediated Hmbox1 knockdown and in those with cardiac myocyte-specific Hmbox1 ablation. We performed RNA sequencing, promoter prediction, and binding assays and identified glucokinase (Gck) as a downstream effector of Hmbox1. The effects of Hmbox1 together with Gck were examined in cardiomyocytes to evaluate their cell size, proliferation, apoptosis, mitochondrial respiration, and glycolysis. The function of upstream regulator of Hmbox1, ETS1, was investigated through ETS1 overexpression in cardiac I/R mice in vivo. RESULTS We demonstrated that Hmbox1 downregulation was required for exercise-induced physiological cardiac growth. Inhibition of Hmbox1 increased cardiomyocyte size in isolated neonatal rat cardiomyocytes and human embryonic stem cell-derived cardiomyocytes but did not affect cardiomyocyte proliferation. Under pathological conditions, Hmbox1 was upregulated in both human and animal postinfarct cardiac tissues. Furthermore, both cardiac myocyte-specific Hmbox1 knockout and AAV9-mediated Hmbox1 knockdown protected against cardiac I/R injury and heart failure. Therapeutic effects were observed when sh-Hmbox1 AAV9 was administered after I/R injury. Inhibition of Hmbox1 activated the Akt/mTOR/P70S6K pathway and transcriptionally upregulated Gck, leading to reduced apoptosis and improved mitochondrial respiration and glycolysis in cardiomyocytes. ETS1 functioned as an upstream negative regulator of Hmbox1 transcription, and its overexpression was protective against cardiac I/R injury. CONCLUSIONS Our studies unravel a new role for the transcriptional repressor Hmbox1 in exercise-induced physiological cardiac growth. They also highlight the therapeutic potential of targeting Hmbox1 to improve myocardial survival and glucose metabolism after I/R injury.
Collapse
Affiliation(s)
- Yihua Bei
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Yujiao Zhu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Jingwen Zhou
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Songwei Ai
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Jianhua Yao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, China (J.Y.)
| | - Mingming Yin
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Meiyu Hu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Weitong Qi
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Michail Spanos
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston (M.S., G.L.)
| | - Lin Li
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Meng Wei
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Zhenzhen Huang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Juan Gao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Chang Liu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Petra H van der Kraak
- Department of Pathology (P.H.v.d.K.), University Medical Center Utrecht, University Utrecht, The Netherlands
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston (M.S., G.L.)
| | - Zhiyong Lei
- Department of Cardiology, Laboratory of Experimental Cardiology (Z.L., J.P.G.S.), University Medical Center Utrecht, University Utrecht, The Netherlands
- Division Laboratory, Central Diagnosis Laboratory Research (Z.L.), University Medical Center Utrecht, University Utrecht, The Netherlands
| | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology (Z.L., J.P.G.S.), University Medical Center Utrecht, University Utrecht, The Netherlands
- Utrecht Regenerative Medicine Center (J.P.G.S.), University Medical Center Utrecht, University Utrecht, The Netherlands
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| |
Collapse
|
5
|
Wang Y, Liang J. Pioneer factors for DNA replication initiation in metazoans. Bioessays 2024; 46:e2400002. [PMID: 38881154 DOI: 10.1002/bies.202400002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Precise DNA replication is fundamental for genetic inheritance. In eukaryotes, replication initiates at multiple origins that are first "licensed" and subsequently "fired" to activate DNA synthesis. Despite the success in identifying origins with specific DNA motifs in Saccharomyces cerevisiae, no consensus sequence or sequences with a predictive value of replication origins have been recognized in metazoan genomes. Rather, epigenetic rules and chromatin structures are believed to play important roles in governing the selection and activation of replication origins. We propose that replication initiation is facilitated by a group of sequence-specific "replication pioneer factors," which function to increase chromatin accessibility and foster a chromatin environment that is conducive to the loading of the prereplication complex. Dysregulation of the function of these factors may lead to gene duplication, genomic instability, and ultimately the occurrence of pathological conditions such as cancer.
Collapse
Affiliation(s)
- Yue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, China
| | - Jing Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
6
|
Wang H, Bollepogu Raja KK, Yeung K, Morrison CA, Terrizzano A, Khodadadi-Jamayran A, Chen P, Jordan A, Fritsch C, Sprecher SG, Mardon G, Treisman JE. Synergistic activation by Glass and Pointed promotes neuronal identity in the Drosophila eye disc. Nat Commun 2024; 15:7091. [PMID: 39154080 PMCID: PMC11330500 DOI: 10.1038/s41467-024-51429-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Abstract
The integration of extrinsic signaling with cell-intrinsic transcription factors can direct progenitor cells to differentiate into distinct cell fates. In the developing Drosophila eye, differentiation of photoreceptors R1-R7 requires EGFR signaling mediated by the transcription factor Pointed, and our single-cell RNA-Seq analysis shows that the same photoreceptors require the eye-specific transcription factor Glass. We find that ectopic expression of Glass and activation of EGFR signaling synergistically induce neuronal gene expression in the wing disc in a Pointed-dependent manner. Targeted DamID reveals that Glass and Pointed share many binding sites in the genome of developing photoreceptors. Comparison with transcriptomic data shows that Pointed and Glass induce photoreceptor differentiation through intermediate transcription factors, including the redundant homologs Scratch and Scrape, as well as directly activating neuronal effector genes. Our data reveal synergistic activation of a multi-layered transcriptional network as the mechanism by which EGFR signaling induces neuronal identity in Glass-expressing cells.
Collapse
Affiliation(s)
- Hongsu Wang
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Kelvin Yeung
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Carolyn A Morrison
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, USA
- 10x Genomics, Pleasanton, CA, 94588, USA
| | - Antonia Terrizzano
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, USA
- Biology of Centrosomes and Genetic Instability Team, Curie Institute, PSL Research University, CNRS, UMR144, 12 rue Lhomond, Paris, 75005, France
| | | | - Phoenix Chen
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Biology, Boston University, Boston, MA, USA
| | - Ashley Jordan
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, USA
| | - Cornelia Fritsch
- Department of Biology, Université de Fribourg, Fribourg, Switzerland
| | - Simon G Sprecher
- Department of Biology, Université de Fribourg, Fribourg, Switzerland
| | - Graeme Mardon
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jessica E Treisman
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Bo D, Feng Y, Bai Y, Li J, Wang Y, You Z, Shen J, Bai Y. Whole-Genome Resequencing Reveals Genetic Diversity and Growth Trait-Related Genes in Pinan Cattle. Animals (Basel) 2024; 14:2163. [PMID: 39123689 PMCID: PMC11310955 DOI: 10.3390/ani14152163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
The breeding of high-quality beef cattle breeds is crucial for the development of animal husbandry, and whole-genome resequencing is widely applicated in the field of molecular breeding. Advantages in growth and reproductive traits exist in Pinan cattle compared with other cattle breeds, but there is limited research on its genomic mechanism. Using whole-genome resequencing, the genetic structure and genomic selection signatures in Pinan cattle were investigated in this study. Phylogenetic, cluster, and admixture analysis results indicated that Pinan cattle have a closer genetic relationship with Kholmogory cattle and China north cattle breeds. Through a selective sweep strategy, 207 and 54 candidate genes related to growth and reproduction and immunity, respectively, were identified in the Pinan cattle population. Given the crucial role of the glutamate-cysteine ligase catalytic (GCLC) gene in muscle antioxidative defense, the high frequency of allele T of the GCLC c.429 C>T locus in the Pinan cattle population might partially contribute to the advantages of Pinan cattle in growth performance. This study laid the foundation for the genetic improvement in Chinese local beef cattle and provide background for the studies on the growth and development of Pinan cattle.
Collapse
Affiliation(s)
- Dongdong Bo
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (D.B.); (Y.F.); (Y.B.); (J.L.); (Y.W.); (Z.Y.); (J.S.)
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Yuqing Feng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (D.B.); (Y.F.); (Y.B.); (J.L.); (Y.W.); (Z.Y.); (J.S.)
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Yilin Bai
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (D.B.); (Y.F.); (Y.B.); (J.L.); (Y.W.); (Z.Y.); (J.S.)
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Jing Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (D.B.); (Y.F.); (Y.B.); (J.L.); (Y.W.); (Z.Y.); (J.S.)
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Yuanyuan Wang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (D.B.); (Y.F.); (Y.B.); (J.L.); (Y.W.); (Z.Y.); (J.S.)
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Zerui You
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (D.B.); (Y.F.); (Y.B.); (J.L.); (Y.W.); (Z.Y.); (J.S.)
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Jiameng Shen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (D.B.); (Y.F.); (Y.B.); (J.L.); (Y.W.); (Z.Y.); (J.S.)
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Yueyu Bai
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (D.B.); (Y.F.); (Y.B.); (J.L.); (Y.W.); (Z.Y.); (J.S.)
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
- Henan Animal Health Supervision, Zhengzhou 450046, China
| |
Collapse
|
8
|
Zubrzycki M, Schramm R, Costard-Jäckle A, Grohmann J, Gummert JF, Zubrzycka M. Cardiac Development and Factors Influencing the Development of Congenital Heart Defects (CHDs): Part I. Int J Mol Sci 2024; 25:7117. [PMID: 39000221 PMCID: PMC11241401 DOI: 10.3390/ijms25137117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
The traditional description of cardiac development involves progression from a cardiac crescent to a linear heart tube, which in the phase of transformation into a mature heart forms a cardiac loop and is divided with the septa into individual cavities. Cardiac morphogenesis involves numerous types of cells originating outside the initial cardiac crescent, including neural crest cells, cells of the second heart field origin, and epicardial progenitor cells. The development of the fetal heart and circulatory system is subject to regulatation by both genetic and environmental processes. The etiology for cases with congenital heart defects (CHDs) is largely unknown, but several genetic anomalies, some maternal illnesses, and prenatal exposures to specific therapeutic and non-therapeutic drugs are generally accepted as risk factors. New techniques for studying heart development have revealed many aspects of cardiac morphogenesis that are important in the development of CHDs, in particular transposition of the great arteries.
Collapse
Affiliation(s)
- Marek Zubrzycki
- Department of Surgery for Congenital Heart Defects, Heart and Diabetes Center NRW, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany;
| | - Rene Schramm
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (R.S.); (A.C.-J.); (J.F.G.)
| | - Angelika Costard-Jäckle
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (R.S.); (A.C.-J.); (J.F.G.)
| | - Jochen Grohmann
- Department of Congenital Heart Disease/Pediatric Cardiology, Heart and Diabetes Center NRW, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany;
| | - Jan F. Gummert
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (R.S.); (A.C.-J.); (J.F.G.)
| | - Maria Zubrzycka
- Department of Clinical Physiology, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| |
Collapse
|
9
|
Chen D, Fan X, Wang K, Gong L, Melero-Martin JM, Pu WT. Pioneer factor ETV2 safeguards endothelial cell specification by recruiting the repressor REST to restrict alternative lineage commitment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.595971. [PMID: 38853821 PMCID: PMC11160620 DOI: 10.1101/2024.05.28.595971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Mechanisms of cell fate specification remain a central question for developmental biology and regenerative medicine. The pioneer factor ETV2 is a master regulator for the endothelial cell (EC) lineage specification. Here, we studied mechanisms of ETV2-driven fate specification using a highly efficient system in which ETV2 directs human induced pluripotent stem cell-derived mesodermal progenitors to form ECs over two days. By applying CUT&RUN, single-cell RNA-sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) analyses, we characterized the transcriptomic profiles, chromatin landscapes, dynamic cis-regulatory elements (CREs), and molecular features of EC cell differentiation mediated by ETV2. This defined the scope of ETV2 pioneering activity and identified its direct downstream target genes. Induced ETV2 expression both directed specification of endothelial progenitors and suppressed acquisition of alternative fates. Functional screening and candidate validation revealed cofactors essential for efficient EC specification, including the transcriptional activator GABPA. Surprisingly, the transcriptional repressor REST was also necessary for efficient EC specification. ETV2 recruited REST to occupy and repress non-EC lineage genes. Collectively, our study provides an unparalleled molecular analysis of EC specification at single-cell resolution and identifies the important role of pioneer factors to recruit repressors that suppress commitment to alternative lineages.
Collapse
|
10
|
Huang D, Su Y, Li M, Xie C, Hu W, Wang S, Zheng N, Chen J, Lin Y, Cai W, Xiao J, Chen B, Hu N, Zhou F. (-)-Epicatechin gallate ameliorates cyprodinil-induced cardiac developmental defects through inhibiting aryl hydrocarbon receptor in zebrafish. Birth Defects Res 2024; 116:e2350. [PMID: 38761027 DOI: 10.1002/bdr2.2350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/31/2024] [Accepted: 04/30/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Cyprodinil is a widely used fungicide with broad-spectrum activity, but it has been associated with cardiac abnormalities. (-)-Epicatechin gallate (ECG), a natural polyphenolic compound, has been shown to possess protective properties in cardiac development. METHODS In this study, we investigated whether ECG could mitigate cyprodinil-induced heart defects using zebrafish embryos as a model. Zebrafish embryos were exposed to cyprodinil with or without ECG. RESULTS Our results demonstrated that ECG significantly improved the survival rate, embryo movement, and hatching delay induced by cyprodinil. Furthermore, ECG effectively ameliorated cyprodinil-induced cardiac developmental toxicity, including pericardial anomaly and impairment of cardiac function. Mechanistically, ECG attenuated the cyprodinil-induced alterations in mRNA expression related to cardiac development, such as amhc, vmhc, tbx5, and gata4, as well as calcium ion channels, such as ncx1h, atp2a2a, and cdh2. Additionally, ECG was found to inhibit the activity of the aryl hydrocarbon receptor (AhR) signaling pathways induced by cyprodinil. CONCLUSIONS In conclusion, our findings provide evidence for the protective effects of ECG against cyprodinil-induced cardiac developmental toxicity, mediated through the inhibition of AhR activity. These findings contribute to a better understanding of the regulatory mechanisms and safe utilization of pesticide, such as cyprodinil.
Collapse
Affiliation(s)
- Dongqin Huang
- Neonatology, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Yuchao Su
- Neonatology, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Mingmei Li
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Chengwei Xie
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Weibin Hu
- Neonatology, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Shuxiang Wang
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Nanmei Zheng
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Jianhui Chen
- Neonatology, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Yueyun Lin
- Neonatology, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Weize Cai
- Neonatology, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Jianjia Xiao
- Neonatology, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Baojia Chen
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Nanping Hu
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Fushan Zhou
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China
| |
Collapse
|
11
|
Zhao Y, Deng W, Wang Z, Wang Y, Zheng H, Zhou K, Xu Q, Bai L, Liu H, Ren Z, Jiang Z. Genetics of congenital heart disease. Clin Chim Acta 2024; 552:117683. [PMID: 38030030 DOI: 10.1016/j.cca.2023.117683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
During embryonic development, the cardiovascular system and the central nervous system exhibit a coordinated developmental process through intricate interactions. Congenital heart disease (CHD) refers to structural or functional abnormalities that occur during embryonic or prenatal heart development and is the most common congenital disorder. One of the most common complications in CHD patients is neurodevelopmental disorders (NDD). However, the specific mechanisms, connections, and precise ways in which CHD co-occurs with NDD remain unclear. According to relevant research, both genetic and non-genetic factors are significant contributors to the co-occurrence of sporadic CHD and NDD. Genetic variations, such as chromosomal abnormalities and gene mutations, play a role in the susceptibility to both CHD and NDD. Further research should aim to identify common molecular mechanisms that underlie the co-occurrence of CHD and NDD, possibly originating from shared genetic mutations or shared gene regulation. Therefore, this review article summarizes the current advances in the genetics of CHD co-occurring with NDD, elucidating the application of relevant gene detection techniques. This is done with the aim of exploring the genetic regulatory mechanisms of CHD co-occurring with NDD at the gene level and promoting research and treatment of developmental disorders related to the cardiovascular and central nervous systems.
Collapse
Affiliation(s)
- Yuanqin Zhao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang 421001, China.
| | - Wei Deng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang 421001, China.
| | - Zhaoyue Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang 421001, China.
| | - Yanxia Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang 421001, China.
| | - Hongyu Zheng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang 421001, China.
| | - Kun Zhou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang 421001, China.
| | - Qian Xu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang 421001, China.
| | - Le Bai
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang 421001, China.
| | - Huiting Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang 421001, China.
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang 421001, China.
| | - Zhisheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang 421001, China.
| |
Collapse
|
12
|
Luna-Zurita L, Flores-Garza BG, Grivas D, Siguero-Álvarez M, de la Pompa JL. Cooperative Response to Endocardial Notch Reveals Interaction With Hippo Pathway. Circ Res 2023; 133:1022-1039. [PMID: 37961886 PMCID: PMC10699509 DOI: 10.1161/circresaha.123.323474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND The endocardium is a crucial signaling center for cardiac valve development and maturation. Genetic analysis has identified several human endocardial genes whose inactivation leads to bicuspid aortic valve formation and calcific aortic valve disease, but knowledge is very limited about the role played in valve development and disease by noncoding endocardial regulatory regions and upstream factors. METHODS We manipulated Notch signaling in mouse embryonic endocardial cells by short-term and long-term coculture with OP9 stromal cells expressing Notch ligands and inhibition of Notch activity. We examined the transcriptional profile and chromatin accessibility landscape for each condition, integrated transcriptomic, transcription factor occupancy, chromatin accessibility, and proteomic datasets. We generated in vitro and in vivo models with CRISPR-Cas9-edited deletions of various noncoding regulatory elements and validated their regulatory potential. RESULTS We identified primary and secondary transcriptional responses to Notch ligands in the mouse embryonic endocardium, and a NOTCH-dependent transcriptional signature in valve development and disease. By defining the changes in the chromatin accessibility landscape and integrating with the landscape in developing mouse endocardium and adult human valves, we identify potential noncoding regulatory elements, validated selected candidates, propose interacting cofactors, and define the timeframe of their regulatory activity. Additionally, we found cooperative transcriptional repression with Hippo pathway by inhibiting nuclear Yap (Yes-associated protein) activity in the endocardium during cardiac valve development. CONCLUSIONS Sequential Notch-dependent transcriptional regulation in the embryonic endocardium involves multiple factors. Notch activates certain noncoding elements through these factors and simultaneously suppresses elements that could hinder cardiac valve development and homeostasis. Biorxviv: https://www.biorxiv.org/content/10.1101/2023.03.23.533882v1.full.
Collapse
Affiliation(s)
- Luis Luna-Zurita
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.L.-Z., B.G.F.-G., D.G., M.S.-A., J.L.d.l.P.)
- Ciber CV, Madrid, Spain (L.L.-Z., B.G.F.-G., D.G., M.S.-A., J.L.d.l.P.)
| | - Brenda Giselle Flores-Garza
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.L.-Z., B.G.F.-G., D.G., M.S.-A., J.L.d.l.P.)
- Ciber CV, Madrid, Spain (L.L.-Z., B.G.F.-G., D.G., M.S.-A., J.L.d.l.P.)
| | - Dimitrios Grivas
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.L.-Z., B.G.F.-G., D.G., M.S.-A., J.L.d.l.P.)
- Ciber CV, Madrid, Spain (L.L.-Z., B.G.F.-G., D.G., M.S.-A., J.L.d.l.P.)
- Developmental Biology, Centre for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Greece (D.G.)
| | - Marcos Siguero-Álvarez
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.L.-Z., B.G.F.-G., D.G., M.S.-A., J.L.d.l.P.)
- Ciber CV, Madrid, Spain (L.L.-Z., B.G.F.-G., D.G., M.S.-A., J.L.d.l.P.)
| | - José Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.L.-Z., B.G.F.-G., D.G., M.S.-A., J.L.d.l.P.)
- Ciber CV, Madrid, Spain (L.L.-Z., B.G.F.-G., D.G., M.S.-A., J.L.d.l.P.)
| |
Collapse
|
13
|
Cao C, Li L, Zhang Q, Li H, Wang Z, Wang A, Liu J. Nkx2.5: a crucial regulator of cardiac development, regeneration and diseases. Front Cardiovasc Med 2023; 10:1270951. [PMID: 38124890 PMCID: PMC10732152 DOI: 10.3389/fcvm.2023.1270951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Cardiomyocytes fail to regenerate after birth and respond to mitotic signals through cellular hypertrophy rather than cellular proliferation. Necrotic cardiomyocytes in the infarcted ventricular tissue are eventually replaced by fibroblasts, generating scar tissue. Cardiomyocyte loss causes localized systolic dysfunction. Therefore, achieving the regeneration of cardiomyocytes is of great significance for cardiac function and development. Heart development is a complex biological process. An integral cardiac developmental network plays a decisive role in the regeneration of cardiomyocytes. During this process, genetic epigenetic factors, transcription factors, signaling pathways and small RNAs are involved in regulating the developmental process of the heart. Cardiomyocyte-specific genes largely promote myocardial regeneration, among which the Nkx2.5 transcription factor is one of the earliest markers of cardiac progenitor cells, and the loss or overexpression of Nkx2.5 affects cardiac development and is a promising candidate factor. Nkx2.5 affects the development and function of the heart through its multiple functional domains. However, until now, the specific mechanism of Nkx2.5 in cardiac development and regeneration is not been fully understood. Therefore, this article will review the molecular structure, function and interaction regulation of Nkx2.5 to provide a new direction for cardiac development and the treatment of heart regeneration.
Collapse
Affiliation(s)
- Ce Cao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
- Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lei Li
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
| | - Qian Zhang
- Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haoran Li
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
- Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ziyan Wang
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
| | - Aoao Wang
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
| | - Jianxun Liu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
- Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
14
|
Suthon S, Lin J, Perkins RS, Miranda-Carboni GA, Krum SA. Regulation and Function of FOXC1 in Osteoblasts. J Dev Biol 2023; 11:38. [PMID: 37754840 PMCID: PMC10531946 DOI: 10.3390/jdb11030038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Estrogens, which bind to estrogen receptor alpha (ERα), are important for proper bone mineral density. When women go through menopause, estrogen levels decrease, and there is a decrease in bone quality, along with an increased risk for fractures. We previously identified an enhancer near FOXC1 as the most significantly enriched binding site for estrogen receptor alpha (ERα) in osteoblasts. FOXC1 is a transcription factor belonging to a large group of proteins known as forkhead box genes and is an important regulator of bone formation. Here, we demonstrate that 17β-estradiol (E2) increases the mRNA and protein levels of FOXC1 in primary mouse and human osteoblasts. GATA4 is a pioneer factor for ERα and it is also recruited to enhancers near Foxc1. Knockdown of Gata4 in mouse osteoblasts in vitro decreases Foxc1 expression as does knockout of Gata4 in vivo. Functionally, GATA4 and FOXC1 interact and regulate osteoblast proteins such as RUNX2, as demonstrated by ChIP-reChIP and luciferase assays. The most enriched motif in GATA4 binding sites from ChIP-seq is for FOXC1, supporting the notion that GATA4 and FOXC1 cooperate in regulating osteoblast differentiation. Together, these data demonstrate the interactions of the transcription factors ERα, GATA4, and FOXC1 to regulate each other's expression and other osteoblast differentiation genes.
Collapse
Affiliation(s)
- Sarocha Suthon
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jianjian Lin
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rachel S. Perkins
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Gustavo A. Miranda-Carboni
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Susan A. Krum
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
15
|
黄 卓, 曾 振, 李 佳, 蔡 蕊, 贺 文, 胡 淑. [High expression of Circ-PALLD in heart failure is transcriptionally regulated by the transcription factor GATA4]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1371-1378. [PMID: 37712274 PMCID: PMC10505580 DOI: 10.12122/j.issn.1673-4254.2023.08.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Indexed: 09/16/2023]
Abstract
OBJECTIVE To determine the changes in the expression of circular RNA Circ-PALLD in heart failure and explore the biogenesis of Circ-PALLD. METHODS We analyzed second-generation sequencing results of human and murine heart failure samples to identify the candidate CircRNAs. Sanger generation sequencing was performed after PCR amplification, and the sequencing results were compared to determine the reverse splicing pattern of the corresponding CircRNAs. We further examined the expressions of CircRNAs and linear RNAs in 8 patients with heart failure admitted in our hospital, and RT-qPCR was performed to detect the expression levels of Circ-PALLD and PALLD in the failing myocardium. Bioinformatic analysis was performed to predict the transcription factors that may regulate PALLD. Small interfering RNAs (siRNAs) against GATA4 were used to determine the regulatory effect of the transcription factor GATA4 on PALLD. RESULTS Sanger sequencing and sequence alignment verified the reverse splicing of Circ-VWA8, Circ-VMP1, Circ-PRDM5, Circ-PLCL2, Circ-PALLD, Circ-NFATC3, Circ-MLIP, Circ-FAM208A, Circ-ANKIB1, and Circ-AGTPBP1, demonstrated their loop-forming nature and determined the exon arrangement of reverse splicing. Semi-quantitative PCR results showed that the expression levels of CircPALLD, Circ-NFATC3 and Circ-AGTPBP1 were significantly increased while the expression level of linear PALLD was significantly decreased in the myocardial tissues of heart failure patients. Bioinformatic analysis suggested that the transcription of PALLD was regulated possibly by the transcription factor GATA4. RT-qPCR showed that the expression level of Circ-PALLD was significantly increased, while PALLD expression was significantly decreased in the failing myocardium, which was consistent with the results of semi-quantitative PCR. In primary mammary rat cardiomyocytes, GATA4 knockdown resulted in lowered expressions of both Circ-PALLD and PALLD. CONCLUSION Circ-PALLD is highly expressed in heart failure and can be used as a novel molecular marker for chronic heart failure, and GATA4 may play important role in regulating its transcription. Circ-PALLD points a new direction for investigating the molecular mechanism of heart failure and may also serve as a potential therapeutic target for heart failure.
Collapse
Affiliation(s)
- 卓 黄
- 宁夏医科大学基础医学院,宁夏 银川 750004School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
- 海军军医大学附属长海医院心内科,上海 200433Department of Heart Medicine, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - 振宇 曾
- 海军军医大学附属长海医院心内科,上海 200433Department of Heart Medicine, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - 佳 李
- 海军军医大学附属长海医院心内科,上海 200433Department of Heart Medicine, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - 蕊 蔡
- 宁夏医科大学基础医学院,宁夏 银川 750004School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
- 海军军医大学附属长海医院心内科,上海 200433Department of Heart Medicine, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - 文霞 贺
- 海军军医大学附属长海医院心内科,上海 200433Department of Heart Medicine, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - 淑婷 胡
- 宁夏医科大学基础医学院,宁夏 银川 750004School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|