1
|
Sánchez A, García-Pardo G, Martí A, Gómez-Bertomeu F, Chafino S, Massanella M, Flores-Piñas M, Cedó L, Vidal F, Peraire J, Rull A. Omics for searching plasma biomarkers associated with unfavorable COVID-19 progression in hypertensive patients. Sci Rep 2025; 15:10343. [PMID: 40133696 PMCID: PMC11937446 DOI: 10.1038/s41598-025-94725-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Hypertension is one of the most common risk factors for COVID-19 clinical progression. The identification of plasma biomarkers for anticipating worse clinical outcomes and to better understand the shared mechanisms between hypertension and COVID-19 are needed. A hypothesis-generating study was designed to compare plasma proteomics and metabolomics between 22 hypertensives (HT) and 41 non-hypertensives (nHT) patients with the most unfavorable COVID-19 progression. A total of 43 molecules were significantly differed between HT (n = 22) and nHT (n = 41). Random Forest (RF) analysis identified myo-inositol, gelsolin and phosphatidylcholine (PC) 32:1 as the top molecules for distinguishing between HT and nHT. Plasma myo-inositol and gelsolin were higher (P = 0.03 and P = 0.02, respectively) and plasma PC 32:1 was lower (P = 0.03) in HT compared to nHT. Biological processes like stress response and blood coagulation, along with KEGG pathways including ascorbate and aldarate metabolism (P = 0.021) and linoleic acid metabolism (P = 0.028), were altered in hypertensive patients with the most unfavorable COVID-19 progression. There is a clear link between hypertension and severe COVID-19. Key biological pathways to consider for improving the prognosis and quality of life of hypertensive patients who become infected with SARS-CoV-2 include oxidative stress, ascorbate and aldarate metabolism, lipid metabolism, immune system and inflammation.
Collapse
Affiliation(s)
- Alba Sánchez
- Infection and Immunity (INIM), Institut Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Graciano García-Pardo
- Infection and Immunity (INIM), Institut Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Anna Martí
- Infection and Immunity (INIM), Institut Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain
| | - Frederic Gómez-Bertomeu
- Infection and Immunity (INIM), Institut Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Silvia Chafino
- Infection and Immunity (INIM), Institut Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Massanella
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916, Badalona, Spain
| | - Marina Flores-Piñas
- Infection and Immunity (INIM), Institut Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain
| | - Lídia Cedó
- Grup de Recerca en Diabetis i Malalties Metabòliques Associades (DIAMET), Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari Joan XXIII, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Francesc Vidal
- Infection and Immunity (INIM), Institut Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Joaquim Peraire
- Infection and Immunity (INIM), Institut Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
- Universitat Rovira i Virgili (URV), Tarragona, Spain.
| | - Anna Rull
- Infection and Immunity (INIM), Institut Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII (HJ23), Tarragona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
- Universitat Rovira i Virgili (URV), Tarragona, Spain.
| |
Collapse
|
2
|
Çolak SM, İlgar T, Bahçeci İ, Özkaya E, Hüner Yiğit M, Durmuş H, Atiş F, Ertürk A, Yazıcı ZA. Clinical Significance of Neutralizing Antibodies in COVID-19: Implications for Disease Prognosis. Life (Basel) 2025; 15:429. [PMID: 40141774 PMCID: PMC11944107 DOI: 10.3390/life15030429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/23/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
The pathogenesis of COVID-19 highlights a complex relationship between disease severity and neutralizing antibodies (NAbs). We aimed to investigate the relationships among the total NAb (tNAb) levels, the presence of potential neutralization antibodies (pNAbs), and the clinical outcomes of COVID-19 patients. Patients aged ≥18 years diagnosed between October 2021 and September 2022 were grouped by symptom severity. Blood samples were taken at two time points and data on demographics, epidemiology, and vaccination were recorded. The tNAbs and pNAbs were measured by an enhanced chemiluminescence assay and a surrogate virus neutralization test, respectively. The tNAbs of 68 and the pNAbs of 52 patients were analyzed. Twenty-six (38.2%) patients had severe infection. The 28-day mortality rate was 16.2% (n = 11). The tNAb levels in the control blood samples (CBSs) were significantly higher than those of the admission blood samples (ABSs) (p < 0.001). The statistical analysis showed no relationship between disease severity and pNAbs. Vaccinated patients had significantly higher tNAbs in the ABSs and CBSs (p < 0.001 and p < 0.001, respectively). The presence of pNAbs in the ABSs was correlated with a lower 28-day mortality (p = 0.026) and a milder disease course (p = 0.041). Although these findings support a correlation between tNAbs and disease severity and mortality, their presence seems to be unrelated to favorable clinical outcomes.
Collapse
Affiliation(s)
- Sudem Mahmutoğlu Çolak
- Departments of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Türkiye; (S.M.Ç.); (T.İ.); (A.E.)
| | - Tuba İlgar
- Departments of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Türkiye; (S.M.Ç.); (T.İ.); (A.E.)
| | - İlkay Bahçeci
- Departments of Medical Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Türkiye; (İ.B.); (H.D.); (F.A.)
| | - Esra Özkaya
- Department of Microbiology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Türkiye;
| | - Merve Hüner Yiğit
- Departments of Medical Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Türkiye;
| | - Hilal Durmuş
- Departments of Medical Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Türkiye; (İ.B.); (H.D.); (F.A.)
| | - Feyza Atiş
- Departments of Medical Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Türkiye; (İ.B.); (H.D.); (F.A.)
| | - Ayşe Ertürk
- Departments of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Türkiye; (S.M.Ç.); (T.İ.); (A.E.)
| | - Zihni Acar Yazıcı
- Departments of Medical Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Türkiye; (İ.B.); (H.D.); (F.A.)
| |
Collapse
|
3
|
Zheng J, Hao H. Targeting renal damage: The ACE2/Ang-(1-7)/mas axis in chronic kidney disease. Cell Signal 2024; 124:111413. [PMID: 39293746 DOI: 10.1016/j.cellsig.2024.111413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
The renin-angiotensin system (RAS) is a crucial factor in chronic kidney disease (CKD) progression, affecting renal function and contributing significantly to renal tissue inflammation and fibrosis. Activation of the classical ACE/Ang II/AT1 axis exacerbates renal damage, while the ACE2/Ang-(1-7)/Mas axis has shown promise in reducing CKD progression in numerous animal models. Recently, the ACE2/Ang-(1-7)/Mas axis has emerged as a promising target for CKD interventions. This review provides a comprehensive review of the pivotal role of this axis in CKD pathogenesis and systematically examines various molecules and pharmaceutical agents targeting this pathway. This review aims to elucidate potential strategies for delaying or halting CKD progression, offering patients more effective treatment options.
Collapse
Affiliation(s)
- Jian Zheng
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, PR China
| | - Hua Hao
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, PR China.
| |
Collapse
|
4
|
Sattar SA, Zargar B, Tetro J. Methods to assess environmental surface disinfectants against viruses: the quest and recommendations for a globally harmonized approach to microbicide testing. Infect Prev Pract 2024; 6:100395. [PMID: 39346619 PMCID: PMC11437760 DOI: 10.1016/j.infpip.2024.100395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/24/2024] [Indexed: 10/01/2024] Open
Abstract
Viruses pose a wide-ranging and significant risk to human health through acute and persistent infections that may confer risks for sequelae including musculoskeletal, immunological, and oncological disease. Infection prevention and control (IPAC) remains a highly effective, generic, global, and cost-effective means to mitigate virus spread. IPAC recommends proper disinfection of high-touch environmental surfaces (HITES) to reduce the risk of direct and indirect virus spread. The United States, Canada and many other countries mandate pre-market assessments of HITES disinfectants against viruses and other types of microbial pathogens. However, there are basic disparities in the regulation of disinfectants. Such incongruity in test protocols interferes with the determination of the true breadth of the microbicidal potential of a given product in the field where target pathogens are often unknown or may be encountered as mixtures. This review examines the various methodological disparities and recommends a more cohesive and harmonized approach. While there is particular emphasis on viruses here, an overall harmonization in microbicide testing of HITES disinfectants will greatly assist the numerous stakeholders involved in IPAC.
Collapse
Affiliation(s)
- Syed A Sattar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- CREM Co Labs, Mississauga, ON, Canada
| | | | - Jason Tetro
- Infection Prevention and Control Consultant, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Shkembi A, Zelner J, Park SK, Neitzel R. Workplace Exposures Vary Across Neighborhoods in the US: Implications on Social Vulnerability and Racial/Ethnic Health Disparities. J Racial Ethn Health Disparities 2024:10.1007/s40615-024-02143-5. [PMID: 39212906 DOI: 10.1007/s40615-024-02143-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Ignoring workplace exposures that occur beyond the local residential context in place-based risk indices like the CDC's Social Vulnerability Index (SVI) likely misclassifies community exposure by under-counting risks and obscuring true drivers of racial/ethnic health disparities. To investigate this hypothesis, we developed several place-based indicators of occupational exposure and examined their relationships with race/ethnicity, SVI, and health inequities. We used publicly available job exposure matrices and employment estimates from the United States (US) Census to create and map six indicators of occupational hazards for every census tract in the US. We characterized census tracts with high workplace-low SVI scores. We used natural cubic splines to examine tract level associations between the percentage of racial/ethnic minorities (individuals who are not non-Hispanic White) and the occupational indicators. Lastly, we stratified each census tract into high/low occupational noise, chemical pollutant, and disease/infection exposure to examine racial/ethnic health disparities to diabetes, asthma, and high blood pressure, respectively, as a consequence of occupational exposure inequities. Our results show that racial/ethnic minority communities, particularly those that are also low-income, experience a disproportionate burden of workplace exposures that may be contributing to racial/ethnic health disparities. When composite risk measures, such as SVI, are calculated using only information from the local residential neighborhood, they may systematically under-count occupational risks experienced by the most vulnerable communities. There is a need to consider the role of occupational justice on nationwide, racial/ethnic health disparities.
Collapse
Affiliation(s)
- Abas Shkembi
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA.
| | - Jon Zelner
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Social Epidemiology and Population Health, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Sung Kyun Park
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Richard Neitzel
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| |
Collapse
|
6
|
Kim TS, Hong CY, Oh SJ, Choe YH, Hwang TS, Kim J, Lee SL, Yoon H, Bok EY, Cho AR, Do YJ, Kim E. RNA sequencing provides novel insights into the pathogenesis of naturally occurring myxomatous mitral valve disease stage B1 in beagle dogs. PLoS One 2024; 19:e0300813. [PMID: 38753730 PMCID: PMC11098313 DOI: 10.1371/journal.pone.0300813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/05/2024] [Indexed: 05/18/2024] Open
Abstract
Myxomatous mitral valve disease (MMVD) is the most common cardiovascular disorder in dogs with a high prevalence, accounting for approximately 75% of all canine heart disease cases. MMVD is a complex disease and shows variable progression from mild valve leakage to severe regurgitation, potentially leading to heart failure. However, the molecular mechanisms and age-related changes that govern disease progression, especially at the early stage (B1) before the development of discernable clinical signs, remain poorly understood. In this prospective study, we aimed to compare gene expression differences between blood samples of aged beagle dogs with stage B1 MMVD and those of healthy controls using RNA sequencing. Clinical evaluation was also conducted, which revealed minimal differences in radiographic and echocardiographic measurements despite distinct biomarker variations between the two groups. Comparative transcriptomics revealed differentially expressed genes associated with extracellular matrix remodeling, prostaglandin metabolism, immune modulation, and interferon-related pathways, which bear functional relevance for MMVD. In particular, the top 10 over- and under-expressed genes represent promising candidates for influencing pathogenic changes in MMVD stage B1. Our research findings, which include identified variations in clinical markers and gene expression, enhance our understanding of MMVD. Furthermore, they underscore the need for further research into early diagnosis and treatment strategies, as, to the best of our knowledge, no prior studies have explored the precise molecular mechanisms of stage B1 in MMVD through total RNA sequencing.
Collapse
Affiliation(s)
- Tae-Seok Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Chae-Yeon Hong
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Seong-Ju Oh
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Yong-Ho Choe
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Tae-Sung Hwang
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Jaemin Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Sung-Lim Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
- Research Institute of Life Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Hakyoung Yoon
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, Republic of Korea
| | - Eun-Yeong Bok
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do, Republic of Korea
| | - A-ra Cho
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do, Republic of Korea
| | - Yoon Jung Do
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do, Republic of Korea
| | - Eunju Kim
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do, Republic of Korea
| |
Collapse
|
7
|
Khurshid H, Rafaqat S, Rafaqat S. Overview of microbes in hypertension. World J Hypertens 2023; 11:12-19. [DOI: 10.5494/wjh.v11.i2.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/06/2023] [Accepted: 09/26/2023] [Indexed: 10/16/2023] Open
Abstract
High blood pressure (BP), known as hypertension, is a major contributing factor to the development of cardiovascular disease. The development and pathogenesis of hypertension involve a wide array of factors including genetics, environment, hormones, hemodynamics, and inflammation. There is a significantly positive association between higher levels of colonization by Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola (etiologic bacterial burden) below the gum line, and the presence of hypertension. The use of antibiotics during pregnancy, which is likely indicative of bacterial infections severe enough to require antibiotic treatment, is associated with a slight increase in average arterial BP. Cytomegalovirus infection is a risk factor for heightened arterial BP and acts as a co-factor in the development of aortic atherosclerosis. The relationship between hypertension and coronavirus disease 2019 involves endothelial dysfunction and dysregulation of the renin-angiotensin system. The effects of gut microbiota on BP, whether beneficial or harmful, are influenced by multiple factors including genetics, epigenetics, lifestyle choices, and antibiotic usage. These variables collectively contribute to overall BP levels and the control of hypertension. Several reports have examined the BP levels of patients infected with the Zika virus. In regions with a high incidence of nasopharyngeal carcinoma, hypertension has been linked to a higher risk of Epstein-Barr virus reactivation. Also, a potential causal link has been found between malaria and elevated BP. Also, the elevated prevalence of hypertension among dengue patients during their initial visit suggests that relying solely on BP measurements to predict severe infection may not be clinically reliable.
Collapse
Affiliation(s)
- Huma Khurshid
- Department of Zoology (Molecular and Microbiology), Lahore College for Women University, Lahore 54000, Pakistan
| | - Saira Rafaqat
- Department of Zoology (Molecular Physiology), Lahore College for Women University, Lahore 54000, Pakistan
| | - Sana Rafaqat
- Department of Biotechnology (Human Genetics), Lahore College for Women University, Lahore 54000, Pakistan
| |
Collapse
|
8
|
Zhou X, Wang N, Liu W, Chen R, Yang G, Yu H. Identification of the potential association between SARS-CoV-2 infection and acute kidney injury based on the shared gene signatures and regulatory network. BMC Infect Dis 2023; 23:655. [PMID: 37789254 PMCID: PMC10548629 DOI: 10.1186/s12879-023-08638-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is identified as the cause of coronavirus disease 2019 (COVID-19) pandemic. Acute kidney injury (AKI), one of serious complications of COVID-19 infection, is the leading contributor to renal failure, associating with high mortality of the patients. This study aimed to identify the shared gene signatures and construct the gene regulatory network between COVID-19 and AKI, contributing to exploring the potential pathogenesis. METHODS Utilizing the machine learning approach, the candidate gene signatures were derived from the common differentially expressed genes (DEGs) obtained from COVID-19 and AKI. Subsequently, receiver operating characteristic (ROC), consensus clustering and functional enrichment analyses were performed. Finally, protein-protein interaction (PPI) network, transcription factor (TF)-gene interaction, gene-miRNA interaction, and TF-miRNA coregulatory network were systematically undertaken. RESULTS We successfully identified the shared 6 candidate gene signatures (RRM2, EGF, TMEM252, RARRES1, COL6A3, CUBN) between COVID-19 and AKI. ROC analysis showed that the model constructed by 6 gene signatures had a high predictive efficacy in COVID-19 (AUC = 0.965) and AKI (AUC = 0.962) cohorts, which had the potential to be the shared diagnostic biomarkers for COVID-19 and AKI. Additionally, the comprehensive gene regulatory networks, including PPI, TF-gene interaction, gene-miRNA interaction, and TF-miRNA coregulatory networks were displayed utilizing NetworkAnalyst platform. CONCLUSIONS This study successfully identified the shared gene signatures and constructed the comprehensive gene regulatory network between COVID-19 and AKI, which contributed to predicting patients' prognosis and providing new ideas for developing therapeutic targets for COVID-19 and AKI.
Collapse
Affiliation(s)
- Xue Zhou
- Department of Nephrology, Haihe Hospital, Tianjin University, 890 Jingu Road, Jinnan District, Tianjin, 300350, China.
- Department of Nephrology, Tianjin Haihe Hospital, Tianjin, 300350, China.
- Haihe Clinical School, Tianjin Medical University, Tianjin, 300350, China.
- Tianjin Institute of Respiratory Diseases, Tianjin, 300350, China.
| | - Ning Wang
- The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China
| | - Wenjing Liu
- Department of Nephrology, Tianjin Haihe Hospital, Tianjin, 300350, China
| | - Ruixue Chen
- Tianjin Haihe Hospital, Tianjin, 300350, China
| | - Guoyue Yang
- The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China.
| | - Hongzhi Yu
- Tianjin Institute of Respiratory Diseases, Tianjin, 300350, China.
- Department of Respiratory Medicine, Tianjin Haihe Hospital, 890 Jingu Road, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
9
|
Dai Y, Shen Z, Khachatryan LG, Vadiyan DE, Karampoor S, Mirzaei R. Unraveling mechanistic insights into the role of microbiome in neurogenic hypertension: A comprehensive review. Pathol Res Pract 2023; 249:154740. [PMID: 37567034 DOI: 10.1016/j.prp.2023.154740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Neurogenic hypertension, a complex and multifactorial cardiovascular disorder, is known to be influenced by various genetic, environmental, and lifestyle factors. In recent years, there has been growing interest in the role of the gut microbiome in hypertension pathogenesis. The bidirectional communication between the gut microbiota and the central nervous system, known as the microbiota-gut-brain axis, has emerged as a crucial mechanism through which the gut microbiota exerts its influence on neuroinflammation, immune responses, and blood pressure regulation. Recent studies have shown how the microbiome has a substantial impact on a variety of physiological functions, such as cardiovascular health. The increased sympathetic activity to the gut may cause microbial dysbiosis, increased permeability of the gut, and increased inflammatory reactions by altering a number of intestinal bacteria producing short-chain fatty acids (SCFAs) and the concentrations of lipopolysaccharide (LPS) in the plasma. Collectively, these microbial metabolic and structural compounds stimulate sympathetic stimulation, which may be an important stage in the onset of hypertension. The result is an upsurge in peripheral and central inflammatory response. In addition, it has recently been shown that a link between the immune system and the gut microbiota might play a significant role in hypertension. The therapeutic implications of the gut microbiome including probiotic usage, prebiotics, dietary modifications, and fecal microbiota transplantation in neurogenic hypertension have also been found. A large body of research suggests that probiotic supplementation might help reduce chronic inflammation and hypertension that have an association with dysbiosis in the gut microbiota. Overall, this review sheds light on the intricate interplay between the gut microbiome and neurogenic hypertension, providing valuable insights for both researchers and clinicians. As our knowledge of the microbiome's role in hypertension expands, novel therapeutic strategies and diagnostic biomarkers may pave the way for more effective management and prevention of this prevalent cardiovascular disorder. Exploring the potential of the microbiome in hypertension offers an exciting avenue for future research and offers opportunities for precision medicine and improved patient care.
Collapse
Affiliation(s)
- Yusang Dai
- Physical Examination Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Zheng Shen
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Lusine G Khachatryan
- Department of Pediatric Diseases, N.F. Filatov Clinical Institute of Children's Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia
| | - Diana E Vadiyan
- Institute of Dentistry, Department of Pediatric, Preventive Dentistry and Orthodontics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
10
|
Bele A, Wagh V, Munjewar PK. A Comprehensive Review on Cardiovascular Complications of COVID-19: Unraveling the Link to Bacterial Endocarditis. Cureus 2023; 15:e44019. [PMID: 37746510 PMCID: PMC10517725 DOI: 10.7759/cureus.44019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has ushered in a new era of understanding the multifaceted nature of infectious diseases. Beyond its well-documented respiratory impact, COVID-19 has unveiled intricate interactions with the cardiovascular system, with potential implications that extend to bacterial endocarditis. This review explores the complex interplay between COVID-19 and bacterial endocarditis, elucidating shared risk factors, theoretical mechanisms, and clinical implications. We examine the diverse cardiovascular manifestations of COVID-19, ranging from myocarditis and thromboembolic events to arrhythmias, and delve into the pathogenesis, clinical features, and diagnostic challenges of bacterial endocarditis. By analyzing potential connections, such as viral-induced endothelial disruption and immune modulation, we shed light on the plausible relationship between COVID-19 and bacterial endocarditis. Our synthesis highlights the significance of accurate diagnosis, optimal management, and interdisciplinary collaboration in addressing the challenges posed by these intricate interactions. In addition, we underscore the importance of future research, emphasizing prospective studies on bacterial endocarditis incidence and investigations into the long-term cardiovascular effects of COVID-19. As the boundaries of infectious diseases and cardiovascular complications converge, this review calls for continued research, vigilance, and coordinated efforts to enhance patient care and public health strategies in a rapidly evolving landscape.
Collapse
Affiliation(s)
- Anurag Bele
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Vasant Wagh
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Pratiksha K Munjewar
- Medical Surgical Nursing, Smt. Radhikabai Meghe Memorial College of Nursing, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
11
|
Medina E, Rueda C, Batlle D. FSGS and COVID-19 in Non-African American Patients. KIDNEY360 2023; 4:687-699. [PMID: 37229730 PMCID: PMC10371264 DOI: 10.34067/kid.0000000000000104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/10/2023] [Indexed: 05/27/2023]
Abstract
Collapsing Focal Segmental Glomerulosclerosis (FSGS) has been reported relatively frequently in African American (AA) patients with coronavirus disease 2019 (COVID-19), and it is associated almost always with Apolipoprotein L gen 1 (APOL1) high-risk variants. We reviewed the published literature from April 2020 to November 2022 searching for non-African American (non-AA) patients with FSGS associated with COVID-19 (eight White patients, six Hispanic patients, three Asian patients, one Indian patient, and one Asian Indian patient). The following histologic patterns were found: collapsing (n=11), not otherwise specified (n=5), tip (n=2), and perihilar (n=1). Fifteen of the 19 patients had AKI. The APOL1 genotype was reported in only six of the 19 non-AA patients. Three of them (two Hispanic patients and one White patient) with collapsing FSGS had high-risk APOL1 variants. The other three patients (two White patients and one Hispanic patient with the collapsing variant, tip variant, and not otherwise specified) had low-risk APOL1 variants. Among 53 African American patients with collapsing FSGS associated with COVID-19, 48 had high-risk APOL1 variants and five had low-risk APOL1 variants. We conclude that in non-AA patients, FSGS is a rare complication of COVID-19. FSGS associated with COVID-19 can occur rarely with low-risk APOL1 variants in non-AA and AA patients. Non-AA patients reported to be associated with high-risk APOL1 variants possibly reflect inaccuracy of self-reported race with AA admixture because of unknown ancestry. Given the importance of APOL1 in the pathogenesis of FSGS associated with viral infection and to avoid racial bias, it seems appropriate that APOL1 testing be considered in patients with FSGS associated with COVID-19, regardless of self-reported race.
Collapse
Affiliation(s)
- Elba Medina
- Division of Nephrology, General Hospital of México, Eduardo Liceaga, México City, México
- Master's and PhD Program in Dental and Health Medical Sciences, Universidad Nacional Autónoma de México, México City, México
| | - Carlos Rueda
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Daniel Batlle
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
12
|
Zhao H, Huang J, Huang L, Yang Y, Xiao Z, Chen Q, Huang Q, Ai K. Surface control approach for growth of cerium oxide on flower-like molybdenum disulfide nanosheets enables superior removal of uremic toxins. J Colloid Interface Sci 2022; 630:855-865. [DOI: 10.1016/j.jcis.2022.10.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
13
|
Kalejaiye TD, Barreto AD, Musah S. Translating Organoids into Artificial Kidneys. CURRENT TRANSPLANTATION REPORTS 2022; 9:276-286. [PMID: 36311696 PMCID: PMC9592871 DOI: 10.1007/s40472-022-00383-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 11/21/2022]
Abstract
Purpose of Review
Kidney disease affects more than 13% of the world population, and current treatment options are limited to dialysis and organ transplantation. The generation of kidney organoids from human-induced pluripotent stem (hiPS) cells could be harnessed to engineer artificial organs and help overcome the challenges associated with the limited supply of transplantable kidneys. The purpose of this article is to review the progress in kidney organoid generation and transplantation and highlight some existing challenges in the field. We also examined possible improvements that could help realize the potential of organoids as artificial organs or alternatives for kidney transplantation therapy. Recent Findings Organoids are useful for understanding the mechanisms of kidney development, and they provide robust platforms for drug screening, disease modeling, and generation of tissues for organ replacement therapies. Efforts to design organoids rely on the ability of cells to self-assemble and pattern themselves into recognizable tissues. While existing protocols for generating organoids result in multicellular structures reminiscent of the developing kidney, many do not yet fully recapitulate the complex cellular composition, structure, and functions of the intact kidney. Recent advances toward achieving these goals include identifying cell culture conditions that produce organoids with improved vasculature and cell maturation and functional states. Still, additional improvements are needed to enhance tissue patterning, specialization, and function, and avoid tumorigenicity after transplantation. Summary This report focuses on kidney organoid studies, advancements and limitations, and future directions for improvements towards transplantation.
Collapse
Affiliation(s)
- Titilola D. Kalejaiye
- grid.26009.3d0000 0004 1936 7961Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC USA
| | - Amanda D. Barreto
- grid.26009.3d0000 0004 1936 7961Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC USA
| | - Samira Musah
- grid.26009.3d0000 0004 1936 7961Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC USA ,grid.26009.3d0000 0004 1936 7961Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC USA ,grid.26009.3d0000 0004 1936 7961Department of Cell Biology, Duke University, Durham, NC USA ,Affiliate Faculty of the Developmental and Stem Cell Biology Program, Duke Regeneration Center, and Duke MEDx Initiative, Durham, NC USA
| |
Collapse
|
14
|
Norambuena-Soto I, Lopez-Crisosto C, Martinez-Bilbao J, Hernandez-Fuentes C, Parra V, Lavandero S, Chiong M. Angiotensin-(1-9) in hypertension. Biochem Pharmacol 2022; 203:115183. [PMID: 35870482 DOI: 10.1016/j.bcp.2022.115183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/02/2022]
Abstract
Angiotensin-(1-9) [Ang-(1-9)] is a peptide of the non-canonical renin-angiotensin system (RAS) synthesized from angiotensin I by the monopeptidase angiotensin-converting enzyme type 2 (ACE2). Using osmotic minipumps, infusion of Ang-(1-9) consistently reduces blood pressure in several rat hypertension models. In these animals, hypertension-induced end-organ damage is also decreased. Several pieces of evidence suggest that Ang-(1-9) is the endogenous ligand that binds and activates the type-2 angiotensin II receptor (AT2R). Activation of AT2R triggers different tissue-specific signaling pathways. This phenomenon could be explained by the ability of AT2R to form different heterodimers with other G protein-coupled receptors. Because of the antihypertensive and protective effects of AT2R activation by Ang-(1-9), associated with a short half-life of RAS peptides, several synthetic AT2R agonists have been synthesized and assayed. Some of them, particularly CGP42112, C21 and novokinin, have demonstrated antihypertensive properties. Only two synthetic AT2R agonists, C21 and LP2-3, have been tested in clinical trials, but none of them like an antihypertensive. Therefore, Ang-(1-9) is a promising antihypertensive drug that reduces hypertension-induced end-organ damage. However, further research is required to translate this finding successfully to the clinic.
Collapse
Affiliation(s)
- Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Camila Lopez-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Javiera Martinez-Bilbao
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Carolina Hernandez-Fuentes
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile; Network for the Study of High-lethality Cardiopulmonary Diseases (REECPAL), Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile; Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|