1
|
Chen X, Lin W, Tortorella MD. Towards advanced regenerative therapeutics to tackle cardio-cerebrovascular diseases. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2025; 53:100520. [PMID: 40230658 PMCID: PMC11995107 DOI: 10.1016/j.ahjo.2025.100520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/16/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025]
Abstract
The development of vascularized organoids as novel modelling tools of the human cardio-cerebrovascular system for preclinical research has become an essential platform for studying human vascularized tissues/organs for development of personalized therapeutics during recent decades. Organ-on-chip technology is promising for investigating physiological in vitro responses in drug screening development and advanced disease models. Vascularized tissue/organ-on-a-chip benefits every step of drug discovery pipeline as a screening tool with close human genome relevance to investigate human systems biology. Simultaneously, cardio-cerebrovascular-on-chip-integrated microfluidic system serves as an alternative to preclinical animal research for studying (patho-)physiological processes of human blood vessels during embryonic development and cardio-cerebrovascular disease. Integrated with next-generation techniques, such as three-dimensional bioprinting of both cells and matrix, may enable vascularized organoid-on-chip-based novel drug development as personalized therapeutics.
Collapse
Affiliation(s)
- Xi Chen
- Cardiovascular Research Institute & Department of Physiology, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Weiping Lin
- Barts and The London School of Medicine and Dentistry, Queen Mary University, London, UK
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, CAS, Hong Kong SAR China
| | - Micky Daniel Tortorella
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, CAS, Hong Kong SAR China
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
2
|
Garcia MI, Dame K, Charwat V, Siemons BA, Finsberg H, Bhardwaj B, Yokosawa R, Goswami I, Bruckner D, Wall ST, Ford KA, Healy KE, Ribeiro AJS. Human induced pluripotent stem cell-derived cardiomyocytes and their use in a cardiac organ-on-a-chip to assay electrophysiology, calcium and contractility. Nat Protoc 2025:10.1038/s41596-025-01166-4. [PMID: 40195549 DOI: 10.1038/s41596-025-01166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 02/26/2025] [Indexed: 04/09/2025]
Abstract
Cardiac organs-on-a-chip (OoCs) or microphysiological systems have the potential to predict cardiac effects of new drug candidates, including unanticipated cardiac outcomes, which are among the main causes for drug attrition. This protocol describes how to prepare and use a cardiac OoC containing cardiomyocytes differentiated from human induced pluripotent stem cells (hiPS cells). The use of cells derived from hiPS cells as reliable sources of human cells from diverse genetic backgrounds also holds great potential, especially when cultured in OoCs that are physiologically relevant culture platforms. To promote the broad adoption of hiPS cell-derived cardiac OoCs in the drug development field, there is a need to first ensure reproducibility in their preparation and use. This protocol aims to provide key information on how to reduce sources of variability during hiPS cell maintenance, differentiation, loading and maturation in OoCs. Variability in these procedures can lead to inconsistent purity after differentiation and variable function between batches of microtissues formed in OoCs. This protocol also focuses on describing the handling and functional assessment of cardiac microtissues using live-cell microscopy approaches to quantify parameters of cellular electrophysiology, calcium transients and contractility. The protocol consists of five stages: (1) thaw and maintain hiPS cells, (2) differentiate hiPS cell cardiomyocytes, (3) load differentiated cells into OoCs, (4) maintain and characterize loaded cells, and (5) evaluate and utilize cardiac OoCs. Execution of the entire protocol takes ~40 days. The required skills to carry out the protocol are experience with sterile techniques, mammalian cell culture and maintaining hiPS cells in a pluripotent state.
Collapse
Affiliation(s)
- M Iveth Garcia
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA.
| | - Keri Dame
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Verena Charwat
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA, USA
| | - Brian A Siemons
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA, USA
| | - Henrik Finsberg
- Department of Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | - Bhavya Bhardwaj
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Ryosuke Yokosawa
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Ishan Goswami
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA, USA
| | - Dylan Bruckner
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Samuel T Wall
- Department of Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | - Kevin A Ford
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Kevin E Healy
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA, USA
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, CA, USA
| | - Alexandre J S Ribeiro
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
3
|
Xia X, Hu M, Zhou W, Jin Y, Yao X. Engineering cardiology with miniature hearts. Mater Today Bio 2025; 31:101505. [PMID: 39911371 PMCID: PMC11795835 DOI: 10.1016/j.mtbio.2025.101505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/28/2024] [Accepted: 01/18/2025] [Indexed: 02/07/2025] Open
Abstract
Cardiac organoids offer sophisticated 3D structures that emulate key aspects of human heart development and function. This review traces the evolution of cardiac organoid technology, from early stem cell differentiation protocols to advanced bioengineering approaches. We discuss the methodologies for creating cardiac organoids, including self-organization techniques, biomaterial-based scaffolds, 3D bioprinting, and organ-on-chip platforms, which have significantly enhanced the structural complexity and physiological relevance of in vitro cardiac models. We examine their applications in fundamental research and medical innovations, highlighting their potential to transform our understanding of cardiac biology and pathology. The integration of multiple cell types, vascularization strategies, and maturation protocols has led to more faithful representations of the adult human heart. However, challenges remain in achieving full functional maturity and scalability. We critically assess the current limitations and outline future directions for advancing cardiac organoid technology. By providing a comprehensive analysis of the field, this review aims to catalyze further innovation in cardiac tissue engineering and facilitate its translation to clinical applications.
Collapse
Affiliation(s)
- Xiaojun Xia
- Department of Cardiology, Center of Regenerative and Aging Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Miner Hu
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310000, China
| | - Wenyan Zhou
- School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Yunpeng Jin
- Department of Cardiology, Center of Regenerative and Aging Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Xudong Yao
- Department of Cardiology, Center of Regenerative and Aging Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| |
Collapse
|
4
|
Zhang X, Wang Y, Han J, Zhao W, Zhang W, Li X, Chen J, Song W, Wang L. Cardiac-Focused Multi-Organ Chips: Advanced Disease Modeling, Drug Testing, and Inter-Organ Communication. Adv Biol (Weinh) 2025; 9:e2400512. [PMID: 39913111 DOI: 10.1002/adbi.202400512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/18/2024] [Indexed: 02/07/2025]
Abstract
Heart disease remains a leading cause of mortality worldwide, posing a significant challenge to global healthcare systems. Traditional animal models and cell culture techniques are instrumental in advancing the understanding of cardiac pathophysiology. However, these methods are limited in their ability to fully replicate the heart's intricate functions. This underscores the need for a deeper investigation into the fundamental mechanisms of heart disease. Notably, cardiac pathology is often influenced by systemic factors, with conditions in other organs contributing to disease onset and progression. Cardiac-focused multi-organ chip technology has emerged to better elucidate these complex inter-organ communications and address the limitations of current in vitro models. This technology offers a novel approach by recreating the cardiac microenvironment and integrating it with other organ systems, thereby enabling more precise disease modeling and drug toxicity assessment. This review provides a comprehensive overview of the heart's structure and function, explores the advancements in cardiac organ chip development, and highlights the applications of cardiac-focused multi-organ chips in medical research. Finally, the future potential of this technology in enhancing disease modeling and therapeutic evaluation is discussed.
Collapse
Affiliation(s)
- Xiaolong Zhang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250 353, China
- Shandong Institute of Mechanical Design and Research, Jinan, 250 353, China
| | - Yushen Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250 353, China
- Shandong Institute of Mechanical Design and Research, Jinan, 250 353, China
| | - Junlei Han
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250 353, China
- Shandong Institute of Mechanical Design and Research, Jinan, 250 353, China
| | - Weilong Zhao
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250 353, China
- Shandong Institute of Mechanical Design and Research, Jinan, 250 353, China
| | - Wenhong Zhang
- College of Mechanical Engineering, Donghua University, Shanghai, 201 620, China
| | - Xinyu Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250 021, China
| | - Jun Chen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250 353, China
- Shandong Institute of Mechanical Design and Research, Jinan, 250 353, China
| | - Wei Song
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250 021, China
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250 353, China
- Shandong Institute of Mechanical Design and Research, Jinan, 250 353, China
| |
Collapse
|
5
|
Liu J, Wu G, Wu D, Wu L, Sun C, Zhang W, Du Q, Lu Q, Hu W, Meng H, Luo Z, Liu G, Hu B, Hu H, Wang S. Microfluidic organoid-slice-on-a-chip system for studying anti-cholangiocarcinoma drug efficacy and hepatorenal toxicity. LAB ON A CHIP 2025. [PMID: 40152597 DOI: 10.1039/d4lc00902a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Organ-chip technology, in contrast to cell culture and animal models, offers a promising platform for accelerating drug development. However, current chip designs simulate human organ functions and there is a lack of multi-organ chip designs that can simultaneously study drug efficacy and hepatorenal toxicity. Here, we developed a novel microfluidic multi-organ chip that integrated cholangiocarcinoma organoids (CCOs) with recellularized liver slices (RLS) and recellularized kidney slices (RKS), to simultaneously assess anti-cholangiocarcinoma drug efficacy and hepatorenal toxicity. Co-culture of patient-derived CCOs with RLS and RKS was successfully achieved for 7 days under flow conditions with enhanced liver and renal cell functions. Furthermore, an in vitro biomimetic model showed IC50 values of trastuzumab emtansine (T-DM1) of around 6.42 ± 7.34 μg mL-1 in four clinical cases, with one outlier of 77.77 μg mL-1 due to patient variability. Post-treatment, RLS and RKS cell viability remained high at 75.67% and 81.03%, respectively, suggesting low hepatorenal toxicity of T-DM1 for treating cholangiocarcinoma. Our study demonstrates the use of an organoid-slice-on-a-chip (OSOC) platform for personalized drug efficacy and toxicity assessment, particularly aiming at leveraging anticancer drugs for off-label use to save patient lives.
Collapse
Affiliation(s)
- Jie Liu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China.
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Guohua Wu
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Di Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Lin Wu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China.
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Chenwei Sun
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China.
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Wenlong Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China.
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Qijun Du
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China.
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Qinrui Lu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China.
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Wenqi Hu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China.
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Hongyu Meng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Zhi Luo
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Guangzhi Liu
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Bangchuan Hu
- Emergency and Critical Care Center, ICU, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Shangtang Road 158, Hangzhou 310014, China.
| | - Haijie Hu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Shuqi Wang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China.
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610065, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 641400, China
| |
Collapse
|
6
|
Jin L, Hwang B, Rezapourdamanab S, Sridhar V, Nandwani R, Amoli MS, Serpooshan V. Bioengineering Approaches to In Vitro Modeling of Genetic and Acquired Cardiac Diseases. Curr Cardiol Rep 2025; 27:72. [PMID: 40111543 PMCID: PMC11926001 DOI: 10.1007/s11886-025-02218-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2025] [Indexed: 03/22/2025]
Abstract
PURPOSE OF REVIEW This review aims to explore recent advancements in bioengineering approaches used in developing and testing in vitro cardiac disease models. It seeks to find out how these tools can address the limitations of traditional in vitro models and be applied to improve our understanding of cardiac disease mechanisms, facilitate preclinical drug screening, and equip the development of personalized therapeutics. RECENT FINDINGS Human induced pluripotent stem cells have enabled the generation of diverse cardiac cell types and patient-specific models. Techniques like 3D tissue engineering, heart-on-a-chip platforms, biomechanical conditioning, and CRISPR-based gene editing have enabled faithful recreation of complex cardiac microenvironments and disease conditions. These models have advanced the study of both genetic and acquired cardiac disorders. Bioengineered in vitro models are transforming the basic science and clinical research in cardiovascular disease by improving the biomimicry and complexity of tissue analogues, increasing throughput and reproducibility of screening platforms, as well as offering patient and disease specificity. Despite challenges in scalability and functional maturity, integrating multiple bioengineering techniques with advanced analytical tools in in vitro modeling platforms holds promise for future precision and personalized medicine and therapeutic innovations.
Collapse
Affiliation(s)
- Linqi Jin
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Boeun Hwang
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Sarah Rezapourdamanab
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Vani Sridhar
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Roshni Nandwani
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Mehdi Salar Amoli
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Children's Healthcare of Atlanta, 1075 Haygood Dr., Suite N425, Atlanta, GA, 30322, USA.
| |
Collapse
|
7
|
Haim IR, Gruber A, Kazma N, Bashai C, Lichtig Kinsbruner H, Caspi O. Modeling Heart Failure With Preserved Ejection Fraction Using Human Induced Pluripotent Stem Cell-Derived Cardiac Organoids. Circ Heart Fail 2025; 18:e011690. [PMID: 39873109 DOI: 10.1161/circheartfailure.124.011690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND The therapeutic armamentarium for heart failure with preserved ejection fraction (HFpEF) remains notably constrained. A factor contributing to this problem could be the scarcity of in vitro models for HFpEF, which hinders progress in developing new therapeutic strategies. Here, we aimed at developing a novel, comorbidity-inspired, human, in vitro model for HFpEF. METHODS Human induced pluripotent stem cells-derived cardiomyocytes were used to produce cardiac organoids. The generated organoids were then subjected to HFpEF-associated, comorbidity-inspired conditions, such as hypertension, diabetes, and obesity-related inflammation. To assess the development of HFpEF pathophysiological features, organoids were thoroughly evaluated for their structural, functional, electrophysiological, and metabolic properties. RESULTS Exposure to the combination of all comorbidity-mimicking conditions resulted in the largest cellular volume of 1692±52 versus 1346±84 µm3 in RPMI (Roswell Park Memorial Institute medium) control group (P=0.003), while lower in obesity, hypertension, and diabetes groups: 1059±40 µm3 (P=0.014), 1276±35 µm3 (P=0.940), and 1575±70 µm3 (P=0.146), respectively. Similarly, ultrastructural fibrosis was most significantly observed after exposure to the combination of all HFpEF-inducing conditions 14.6±1.2% compared with single condition exposure 5.2±1.3% (obesity), 6.7±3.5% (hypertension), and 9.0±1.1% (diabetes; P<0.001). Moreover, HFpEF-related conditions led to an increase in passive force compared with control (7.52±1.08 versus 2.33±0.46 mN/mm, P<0.001), whereas no significant alterations were noted in active contractile forces. Relaxation constant τ was significantly prolonged after exposure to HFpEF conditions showing a prolongation of 95.9 ms (36.4-106.4; P=0.028) compared with a shortening of 35.6 ms (43.3-67.3; P=0.80) in the control. Finally, organoid exposure to HFpEF conditions led to a significant increase in oxidative stress levels and a significant decline in oxygen consumption rate. CONCLUSIONS We established a novel, human, in vitro model for HFpEF, based on comorbidity-inspired conditions. The model faithfully recapitulated the structural, functional, and mechanistic features of HFpEF. This model holds the potential to provide mechanistic insights and facilitate the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Idan Refael Haim
- Bruce Rapport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel (I.R.H., N.K., C.B., O.C.)
- The Clinical Research Institute at Rambam, Haifa, Israel (I.R.H., A.G., N.K., C.B., H.L.K., O.C.)
| | - Amit Gruber
- The Clinical Research Institute at Rambam, Haifa, Israel (I.R.H., A.G., N.K., C.B., H.L.K., O.C.)
- The Heart Failure Unit, Department of Cardiology, Rambam Health Care Campus, Haifa, Israel (A.G., H.L.K., O.C.)
| | - Noam Kazma
- Bruce Rapport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel (I.R.H., N.K., C.B., O.C.)
- The Clinical Research Institute at Rambam, Haifa, Israel (I.R.H., A.G., N.K., C.B., H.L.K., O.C.)
| | - Caroline Bashai
- Bruce Rapport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel (I.R.H., N.K., C.B., O.C.)
- The Clinical Research Institute at Rambam, Haifa, Israel (I.R.H., A.G., N.K., C.B., H.L.K., O.C.)
| | - Hava Lichtig Kinsbruner
- The Clinical Research Institute at Rambam, Haifa, Israel (I.R.H., A.G., N.K., C.B., H.L.K., O.C.)
- The Heart Failure Unit, Department of Cardiology, Rambam Health Care Campus, Haifa, Israel (A.G., H.L.K., O.C.)
| | - Oren Caspi
- Bruce Rapport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel (I.R.H., N.K., C.B., O.C.)
- The Clinical Research Institute at Rambam, Haifa, Israel (I.R.H., A.G., N.K., C.B., H.L.K., O.C.)
- The Heart Failure Unit, Department of Cardiology, Rambam Health Care Campus, Haifa, Israel (A.G., H.L.K., O.C.)
| |
Collapse
|
8
|
An L, Liu Y, Liu Y. Organ-on-a-Chip Applications in Microfluidic Platforms. MICROMACHINES 2025; 16:201. [PMID: 40047688 PMCID: PMC11857120 DOI: 10.3390/mi16020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 03/09/2025]
Abstract
Microfluidic technology plays a crucial role in organ-on-a-chip (OoC) systems by replicating human physiological processes and disease states, significantly advancing biomedical research and drug discovery. This article reviews the design and fabrication processes of microfluidic devices. It also explores how these technologies are integrated into OoC platforms to simulate human physiological environments, highlighting key principles, technological advances, and diverse applications. Through case studies involving the simulation of multiple organs such as the heart, liver, and lungs, the article evaluates the impact of OoC systems' integrated microfluidic technology on drug screening, toxicity assessment, and personalized medicine. In addition, this article considers technical challenges, ethical issues, and future directions, and looks ahead to further optimizing the functionality and biomimetic precision of OoCs through innovation, emphasizing its critical role in promoting personalized medicine and precision treatment strategies.
Collapse
Affiliation(s)
- Ling An
- School of Engineering, Dali University, Dali 671003, China;
| | - Yi Liu
- School of Engineering, Dali University, Dali 671003, China;
| | - Yaling Liu
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
9
|
Tirgar P, Vikstrom A, Sepúlveda JMR, Srivastava LK, Amini A, Tabata T, Higo S, Bub G, Ehrlicher A. Heart-on-a-Miniscope: A Miniaturized Solution for Electrophysiological Drug Screening in Cardiac Organoids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409571. [PMID: 39937454 DOI: 10.1002/smll.202409571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/04/2024] [Indexed: 02/13/2025]
Abstract
Cardiovascular toxicity remains a primary concern in drug development, accounting for a significant portion of post-market drug withdrawals due to adverse reactions such as arrhythmias. Traditional preclinical models, predominantly based on animal cells, often fail to replicate human cardiac physiology accurately, complicating the prediction of drug-induced effects. Although human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) provide a more genetically relevant system, their use in 2D, static cultures does not sufficiently mimic the dynamic, 3D environment of the human heart. 3D cardiac organoids made from human iPSC-CMs can potentially bridge this gap. However, most traditional electrophysiology assays, developed for single cells or 2D monolayers, are not readily adaptable to 3D organoids. This study uses optical calcium analysis of human organoids combined with miniaturized fluorescence microscopy (miniscope) and heart-on-a-chip technology. This simple, inexpensive, and efficient platform provides robust on-chip calcium imaging of human cardiac organoids. The versatility of the system is demonstrated through cardiotoxicity assay of drugs known to impact cardiac electrophysiology, including dofetilide, quinidine, and thapsigargin. The platform promises to advance drug testing by providing a more reliable and physiologically relevant assessment of cardiovascular toxicity, potentially reducing drug-related adverse effects in clinical settings.
Collapse
Affiliation(s)
- Pouria Tirgar
- Department of Bioengineering, McGill University, Montreal, H3A 2B4, Canada
- Center for Structural Biology, McGill University, Montreal, H3G 0B1, Canada
| | - Abigail Vikstrom
- Department of Bioengineering, McGill University, Montreal, H3A 2B4, Canada
| | | | | | - Ali Amini
- Department of Bioengineering, McGill University, Montreal, H3A 2B4, Canada
- Department of Mechanical Engineering, McGill University, Montreal, H3A 0C3, Canada
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Tomoka Tabata
- Department of Cardiovascular Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Shuichiro Higo
- Department of Cardiovascular Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Gil Bub
- Department of Physiology, McGill University, Montreal, H3G 1Y6, Canada
| | - Allen Ehrlicher
- Department of Bioengineering, McGill University, Montreal, H3A 2B4, Canada
- Center for Structural Biology, McGill University, Montreal, H3G 0B1, Canada
- Department of Mechanical Engineering, McGill University, Montreal, H3A 0C3, Canada
| |
Collapse
|
10
|
Li J, Li Y, Song G, Wang H, Zhang Q, Wang M, Zhao M, Wang B, Zhu H, Ranzhi L, Wang Q, Xiong Y. Revolutionizing cardiovascular research: Human organoids as a Beacon of hope for understanding and treating cardiovascular diseases. Mater Today Bio 2025; 30:101396. [PMID: 39802826 PMCID: PMC11719415 DOI: 10.1016/j.mtbio.2024.101396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Organoids, exhibiting the capability to undergo differentiation in specific in vitro growth environments, have garnered significant attention in recent years due to their capacity to recapitulate human organs with resemblant in vivo structures and physiological functions. This groundbreaking technology offers a unique opportunity to study human diseases and address the limitations of traditional animal models. Cardiovascular diseases (CVDs), a leading cause of mortality worldwide, have spurred an increasing number of researchers to explore the great potential of human cardiovascular organoids for cardiovascular research. This review initiates by elaborating on the development and manufacture of human cardiovascular organoids, including cardiac organoids and blood vessel organoids. Next, we provide a comprehensive overview of their applications in modeling various cardiovascular disorders. Furthermore, we shed light on the prospects of cardiovascular organoids in CVDs therapy, and unfold an in-depth discussion of the current challenges of human cardiovascular organoids in the development and application for understanding and treating CVDs.
Collapse
Affiliation(s)
- Jinli Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
- Department of Orthopaedics, Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Guangming Road, Shenmu, China
| | - Yang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Guangtao Song
- Department of Orthopaedics, Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Guangming Road, Shenmu, China
| | - Haiying Wang
- Department of Science and Education, Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Shenmu, China
| | - Qing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Min Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Muxue Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Bei Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - HuiGuo Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Liu Ranzhi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Qiang Wang
- Department of Orthopaedics, Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Guangming Road, Shenmu, China
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| |
Collapse
|
11
|
Liu B, Wang S, Ma H, Deng Y, Du J, Zhao Y, Chen Y. Heart-on-a-chip: a revolutionary organ-on-chip platform for cardiovascular disease modeling. J Transl Med 2025; 23:132. [PMID: 39885522 PMCID: PMC11780825 DOI: 10.1186/s12967-024-05986-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/13/2024] [Indexed: 02/01/2025] Open
Abstract
Heart-on-a-chip (HoC) devices have emerged as a powerful tool for studying the human heart's intricate functions and dysfunctions in vitro. Traditional preclinical models, such as 2D cell cultures model and animal model, have limitations in accurately predicting human response to cardiovascular diseases and treatments. The HoC approach addresses these shortcomings by recapitulating the microscale anatomy, physiology, and biomechanics of the heart, thereby providing a more clinically relevant platform for drug testing, disease modeling, and personalized therapy. Recent years have seen significant strides in HoC technology, driven by advancements in biomaterials, bioelectronics, and tissue engineering. Here, we first review the construction and on-chip detection in HoC. Then we introduce the current proceedings of in vitro models for studying cardiovascular diseases (CVD) based on the HoC platform, including ischemia and myocardial infarction, cardiac fibrosis, cardiac scar, myocardial hypertrophy and other CVD models. Finally, we discuss the future directions of HoC and related emerging technologies.
Collapse
Affiliation(s)
- Beiqin Liu
- Aerospace Medical Center, Aerospace Center Hospital, Beijing, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Shuyue Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Hong Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Yulin Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Jichen Du
- Aerospace Medical Center, Aerospace Center Hospital, Beijing, China
- Aerospace School of Clinical Medicine, Peking University, Beijing, China
| | - Yimeng Zhao
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| | - Yu Chen
- Aerospace Medical Center, Aerospace Center Hospital, Beijing, China.
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
12
|
Huang Z, Jia K, Tan Y, Yu Y, Xiao W, Zhou X, Yi J, Zhang C. Advances in cardiac organoid research: implications for cardiovascular disease treatment. Cardiovasc Diabetol 2025; 24:25. [PMID: 39827092 PMCID: PMC11743075 DOI: 10.1186/s12933-025-02598-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Globally, cardiovascular diseases remain among the leading causes of mortality, highlighting the urgent need for innovative research models. Consequently, the development of accurate models that simulate cardiac function holds significant scientific and clinical value for both disease research and therapeutic interventions. Cardiac organoids, which are three-dimensional structures derived from the induced differentiation of stem cells, are particularly promising. These organoids not only replicate the autonomous beating and essential electrophysiological properties of the heart but are also widely employed in studies related to cardiac diseases, drug efficacy testing, and regenerative medicine. This review comprehensively surveys the various fabrication techniques used to create cardiac organoids and their diverse applications in modeling a range of cardiac diseases. We emphasize the role of advanced technologies in enhancing the maturation and functionality of cardiac cells, ensuring that these models closely resemble native cardiac tissue. Furthermore, we discuss monitoring techniques and evaluation parameters critical for assessing the performance of cardiac organoids, considering the complex interactions within multi-organ systems. This approach is vital for enhancing precision and efficiency in drug development, allowing for more effective therapeutic strategies. Ultimately, this review aims to provide a thorough and innovative perspective on both fundamental research and clinical treatment of cardiovascular diseases, offering insights that could pave the way for future advancements in understanding and addressing these prevalent health challenges.
Collapse
Affiliation(s)
- Ziteng Huang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Keran Jia
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yadan Tan
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yang Yu
- Department of Cardiology, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Wudian Xiao
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiangyu Zhou
- Department of Thyroid Surgery, The Affiliated Hospital, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Jingyan Yi
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Chunxiang Zhang
- Department of Cardiology, The Affiliated Hospital, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
13
|
Ohno M, Tani H, Tohyama S. Development and application of 3D cardiac tissues derived from human pluripotent stem cells. Drug Metab Pharmacokinet 2025; 60:101049. [PMID: 39847979 DOI: 10.1016/j.dmpk.2024.101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/25/2025]
Abstract
Recently human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have become an attractive platform to evaluate drug responses for cardiotoxicity testing and disease modeling. Moreover, three-dimensional (3D) cardiac models, such as engineered heart tissues (EHTs) developed by bioengineering approaches, and cardiac spheroids (CSs) formed by spherical aggregation of hPSC-CMs, have been established as useful tools for drug discovery and transplantation. These 3D models overcome many of the shortcomings of conventional 2D hPSC-CMs, such as immaturity of the cells. Cardiac organoids (COs), like other organs, have also been studied to reproduce structures that resemble a heart in vivo more closely and optimize various culture conditions. Heart-on-a-chip (HoC) developed by a microfluidic chip-based technology that enables real-time monitoring of contraction and electrical activity, provides multifaceted information that is essential for capturing natural tissue development in vivo. Recently, 3D experimental systems have been developed to study organ interactions in vitro. This review aims to discuss the developments and advancements of hPSC-CMs and 3D cardiac tissues.
Collapse
Affiliation(s)
- Masatoshi Ohno
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center Tokyo, Fujita Health University, Tokyo, Japan; Department of Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hidenori Tani
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center Tokyo, Fujita Health University, Tokyo, Japan; Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Department of Prevention Center, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center Tokyo, Fujita Health University, Tokyo, Japan; Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
14
|
van Doorn ECH, Amesz JH, Manintveld OC, de Groot NMS, Essers J, Shin SR, Taverne YJHJ. Advancing 3D Engineered In Vitro Models for Heart Failure Research: Key Features and Considerations. Bioengineering (Basel) 2024; 11:1220. [PMID: 39768038 PMCID: PMC11673263 DOI: 10.3390/bioengineering11121220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/06/2025] Open
Abstract
Heart failure is characterized by intricate myocardial remodeling that impairs the heart's pumping and/or relaxation capacity, ultimately reducing cardiac output. It represents a major public health burden, given its high prevalence and associated morbidity and mortality rates, which continue to challenge healthcare systems worldwide. Despite advancements in medical science, there are no treatments that address the disease at its core. The development of three-dimensional engineered in vitro models that closely mimic the (patho)physiology and drug responses of the myocardium has the potential to revolutionize our insights and uncover new therapeutic avenues. Key aspects of these models include the precise replication of the extracellular matrix structure, cell composition, micro-architecture, mechanical and electrical properties, and relevant physiological and pathological stimuli, such as fluid flow, mechanical load, electrical signal propagation, and biochemical cues. Additionally, to fully capture heart failure and its diversity in vivo, it is crucial to consider factors such as age, gender, interactions with other organ systems and external influences-thereby recapitulating unique patient and disease phenotypes. This review details these model features and their significance in heart failure research, with the aim of enhancing future platforms that will deepen our understanding of the disease and facilitate the development of novel, effective therapies.
Collapse
Affiliation(s)
- Elisa C. H. van Doorn
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (E.C.H.v.D.); (J.H.A.)
- Department of Cardiology, Cardiovascular Institute, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (O.C.M.); (N.M.S.d.G.)
| | - Jorik H. Amesz
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (E.C.H.v.D.); (J.H.A.)
- Department of Cardiology, Cardiovascular Institute, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (O.C.M.); (N.M.S.d.G.)
| | - Olivier C. Manintveld
- Department of Cardiology, Cardiovascular Institute, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (O.C.M.); (N.M.S.d.G.)
| | - Natasja M. S. de Groot
- Department of Cardiology, Cardiovascular Institute, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (O.C.M.); (N.M.S.d.G.)
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus Medical Centre, 3015 GD Rotterdam, The Netherlands;
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA;
| | - Yannick J. H. J. Taverne
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (E.C.H.v.D.); (J.H.A.)
| |
Collapse
|
15
|
Wu X, Swanson K, Yildirim Z, Liu W, Liao R, Wu JC. Clinical trials in-a-dish for cardiovascular medicine. Eur Heart J 2024; 45:4275-4290. [PMID: 39270727 PMCID: PMC11491156 DOI: 10.1093/eurheartj/ehae519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 07/29/2024] [Indexed: 09/15/2024] Open
Abstract
Cardiovascular diseases persist as a global health challenge that requires methodological innovation for effective drug development. Conventional pipelines relying on animal models suffer from high failure rates due to significant interspecies variation between humans and animal models. In response, the recently enacted Food and Drug Administration Modernization Act 2.0 encourages alternative approaches including induced pluripotent stem cells (iPSCs). Human iPSCs provide a patient-specific, precise, and screenable platform for drug testing, paving the way for cardiovascular precision medicine. This review discusses milestones in iPSC differentiation and their applications from disease modelling to drug discovery in cardiovascular medicine. It then explores challenges and emerging opportunities for the implementation of 'clinical trials in-a-dish'. Concluding, this review proposes a framework for future clinical trial design with strategic incorporations of iPSC technology, microphysiological systems, clinical pan-omics, and artificial intelligence to improve success rates and advance cardiovascular healthcare.
Collapse
Affiliation(s)
- Xuekun Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kyle Swanson
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Greenstone Biosciences, Palo Alto, CA, USA
| | - Zehra Yildirim
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wenqiang Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ronglih Liao
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
16
|
Shang Y, Xu D, Sun L, Zhao Y, Sun L. A Biomimetic Optical Cardiac Fibrosis-on-a-Chip for High-Throughput Anti-Fibrotic Drug Screening. RESEARCH (WASHINGTON, D.C.) 2024; 7:0471. [PMID: 39268502 PMCID: PMC11391215 DOI: 10.34133/research.0471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 09/15/2024]
Abstract
Cardiac fibrosis has emerged as the primary cause of morbidity, disability, and even mortality in numerous nations. In light of the advancements in precision medicine strategies, substantial attention has been directed toward the development of a practical and precise drug screening platform customized for individual patients. In this study, we introduce a biomimetic cardiac fibrosis-on-a-chip incorporating structural color hydrogels (SCHs) to enable optical high-throughput drug screening. By cocultivating a substantial proportion of cardiac fibroblasts (CFBs) with cardiomyocytes on the SCH, this biomimetic fibrotic microtissue successfully replicates the structural components and biomechanical properties associated with cardiac fibrosis. More importantly, the structural color shift observed in the SCH can be indicative of cardiac contraction and relaxation, making it a valuable tool for evaluating fibrosis progression. By incorporating such fibrotic microtissue into a microfluidic gradient chip, we develop a biomimetic optical cardiac fibrosis-on-a-chip platform that accurately and efficiently screens potential anti-fibrotic drugs. These characteristics suggest that this microphysiological platform possesses the capability to establish a preclinical framework for screening cardiac drugs, and may even contribute to the advancement of precision medicine.
Collapse
Affiliation(s)
- Yixuan Shang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Dongyu Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lingyu Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| |
Collapse
|
17
|
Logotheti S, Pavlopoulou A, Rudsari HK, Galow AM, Kafalı Y, Kyrodimos E, Giotakis AI, Marquardt S, Velalopoulou A, Verginadis II, Koumenis C, Stiewe T, Zoidakis J, Balasingham I, David R, Georgakilas AG. Intercellular pathways of cancer treatment-related cardiotoxicity and their therapeutic implications: the paradigm of radiotherapy. Pharmacol Ther 2024; 260:108670. [PMID: 38823489 DOI: 10.1016/j.pharmthera.2024.108670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/16/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Advances in cancer therapeutics have improved patient survival rates. However, cancer survivors may suffer from adverse events either at the time of therapy or later in life. Cardiovascular diseases (CVD) represent a clinically important, but mechanistically understudied complication, which interfere with the continuation of best-possible care, induce life-threatening risks, and/or lead to long-term morbidity. These concerns are exacerbated by the fact that targeted therapies and immunotherapies are frequently combined with radiotherapy, which induces durable inflammatory and immunogenic responses, thereby providing a fertile ground for the development of CVDs. Stressed and dying irradiated cells produce 'danger' signals including, but not limited to, major histocompatibility complexes, cell-adhesion molecules, proinflammatory cytokines, and damage-associated molecular patterns. These factors activate intercellular signaling pathways which have potentially detrimental effects on the heart tissue homeostasis. Herein, we present the clinical crosstalk between cancer and heart diseases, describe how it is potentiated by cancer therapies, and highlight the multifactorial nature of the underlying mechanisms. We particularly focus on radiotherapy, as a case known to often induce cardiovascular complications even decades after treatment. We provide evidence that the secretome of irradiated tumors entails factors that exert systemic, remote effects on the cardiac tissue, potentially predisposing it to CVDs. We suggest how diverse disciplines can utilize pertinent state-of-the-art methods in feasible experimental workflows, to shed light on the molecular mechanisms of radiotherapy-related cardiotoxicity at the organismal level and untangle the desirable immunogenic properties of cancer therapies from their detrimental effects on heart tissue. Results of such highly collaborative efforts hold promise to be translated to next-generation regimens that maximize tumor control, minimize cardiovascular complications, and support quality of life in cancer survivors.
Collapse
Affiliation(s)
- Stella Logotheti
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780, Athens, Greece; Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | | | - Anne-Marie Galow
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Yağmur Kafalı
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Efthymios Kyrodimos
- First Department of Otorhinolaryngology, Head and Neck Surgery, Hippocrateion General Hospital Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Aris I Giotakis
- First Department of Otorhinolaryngology, Head and Neck Surgery, Hippocrateion General Hospital Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Stephan Marquardt
- Institute of Translational Medicine for Health Care Systems, Medical School Berlin, Hochschule Für Gesundheit Und Medizin, 14197 Berlin, Germany
| | - Anastasia Velalopoulou
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ioannis I Verginadis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Philipps-University, 35043 Marburg, Germany; German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), 35043 Marburg, Germany; Genomics Core Facility, Philipps-University, 35043 Marburg, Germany; Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
| | - Jerome Zoidakis
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece; Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Robert David
- Department of Cardiac Surgery, Rostock University Medical Center, 18057 Rostock, Germany; Department of Life, Light & Matter, Interdisciplinary Faculty, Rostock University, 18059 Rostock, Germany
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780, Athens, Greece.
| |
Collapse
|
18
|
Streutker EM, Devamoglu U, Vonk MC, Verdurmen WPR, Le Gac S. Fibrosis-on-Chip: A Guide to Recapitulate the Essential Features of Fibrotic Disease. Adv Healthc Mater 2024; 13:e2303991. [PMID: 38536053 DOI: 10.1002/adhm.202303991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/15/2024] [Indexed: 05/05/2024]
Abstract
Fibrosis, which is primarily marked by excessive extracellular matrix (ECM) deposition, is a pathophysiological process associated with many disorders, which ultimately leads to organ dysfunction and poor patient outcomes. Despite the high prevalence of fibrosis, currently there exist few therapeutic options, and importantly, there is a paucity of in vitro models to accurately study fibrosis. This review discusses the multifaceted nature of fibrosis from the viewpoint of developing organ-on-chip (OoC) disease models, focusing on five key features: the ECM component, inflammation, mechanical cues, hypoxia, and vascularization. The potential of OoC technology is explored for better modeling these features in the context of studying fibrotic diseases and the interplay between various key features is emphasized. This paper reviews how organ-specific fibrotic diseases are modeled in OoC platforms, which elements are included in these existing models, and the avenues for novel research directions are highlighted. Finally, this review concludes with a perspective on how to address the current gap with respect to the inclusion of multiple features to yield more sophisticated and relevant models of fibrotic diseases in an OoC format.
Collapse
Affiliation(s)
- Emma M Streutker
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
| | - Utku Devamoglu
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnoloygy and TechMed Centre, Organ-on-Chip Centre, University of Twente, Drienerlolaan 5, Enschede, 7522 NB, The Netherlands
| | - Madelon C Vonk
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Wouter P R Verdurmen
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
| | - Séverine Le Gac
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnoloygy and TechMed Centre, Organ-on-Chip Centre, University of Twente, Drienerlolaan 5, Enschede, 7522 NB, The Netherlands
| |
Collapse
|
19
|
Chen R, Zhang H, Tang B, Luo Y, Yang Y, Zhong X, Chen S, Xu X, Huang S, Liu C. Macrophages in cardiovascular diseases: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:130. [PMID: 38816371 PMCID: PMC11139930 DOI: 10.1038/s41392-024-01840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 06/01/2024] Open
Abstract
The immune response holds a pivotal role in cardiovascular disease development. As multifunctional cells of the innate immune system, macrophages play an essential role in initial inflammatory response that occurs following cardiovascular injury, thereby inducing subsequent damage while also facilitating recovery. Meanwhile, the diverse phenotypes and phenotypic alterations of macrophages strongly associate with distinct types and severity of cardiovascular diseases, including coronary heart disease, valvular disease, myocarditis, cardiomyopathy, heart failure, atherosclerosis and aneurysm, which underscores the importance of investigating macrophage regulatory mechanisms within the context of specific diseases. Besides, recent strides in single-cell sequencing technologies have revealed macrophage heterogeneity, cell-cell interactions, and downstream mechanisms of therapeutic targets at a higher resolution, which brings new perspectives into macrophage-mediated mechanisms and potential therapeutic targets in cardiovascular diseases. Remarkably, myocardial fibrosis, a prevalent characteristic in most cardiac diseases, remains a formidable clinical challenge, necessitating a profound investigation into the impact of macrophages on myocardial fibrosis within the context of cardiac diseases. In this review, we systematically summarize the diverse phenotypic and functional plasticity of macrophages in regulatory mechanisms of cardiovascular diseases and unprecedented insights introduced by single-cell sequencing technologies, with a focus on different causes and characteristics of diseases, especially the relationship between inflammation and fibrosis in cardiac diseases (myocardial infarction, pressure overload, myocarditis, dilated cardiomyopathy, diabetic cardiomyopathy and cardiac aging) and the relationship between inflammation and vascular injury in vascular diseases (atherosclerosis and aneurysm). Finally, we also highlight the preclinical/clinical macrophage targeting strategies and translational implications.
Collapse
Affiliation(s)
- Runkai Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Hongrui Zhang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Botao Tang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yukun Luo
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yufei Yang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Xin Zhong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Sifei Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Shengkang Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Canzhao Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China.
| |
Collapse
|
20
|
Gu B, Han K, Cao H, Huang X, Li X, Mao M, Zhu H, Cai H, Li D, He J. Heart-on-a-chip systems with tissue-specific functionalities for physiological, pathological, and pharmacological studies. Mater Today Bio 2024; 24:100914. [PMID: 38179431 PMCID: PMC10765251 DOI: 10.1016/j.mtbio.2023.100914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
Recent advances in heart-on-a-chip systems hold great promise to facilitate cardiac physiological, pathological, and pharmacological studies. This review focuses on the development of heart-on-a-chip systems with tissue-specific functionalities. For one thing, the strategies for developing cardiac microtissues on heart-on-a-chip systems that closely mimic the structures and behaviors of the native heart are analyzed, including the imitation of cardiac structural and functional characteristics. For another, the development of techniques for real-time monitoring of biophysical and biochemical signals from cardiac microtissues on heart-on-a-chip systems is introduced, incorporating cardiac electrophysiological signals, contractile activity, and biomarkers. Furthermore, the applications of heart-on-a-chip systems in intelligent cardiac studies are discussed regarding physiological/pathological research and pharmacological assessment. Finally, the future development of heart-on-a-chip toward a higher level of systematization, integration, and maturation is proposed.
Collapse
Affiliation(s)
- Bingsong Gu
- State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi’ an, 710049, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi’ an, 710049, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| | - Kang Han
- State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi’ an, 710049, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi’ an, 710049, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| | - Hanbo Cao
- Shaanxi Provincial Institute for Food and Drug Control, Xi’ an, 710065, China
| | - Xinxin Huang
- State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi’ an, 710049, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi’ an, 710049, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| | - Xiao Li
- State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi’ an, 710049, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi’ an, 710049, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| | - Mao Mao
- State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi’ an, 710049, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi’ an, 710049, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| | - Hui Zhu
- State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi’ an, 710049, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi’ an, 710049, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| | - Hu Cai
- Shaanxi Provincial Institute for Food and Drug Control, Xi’ an, 710065, China
| | - Dichen Li
- State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi’ an, 710049, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi’ an, 710049, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| | - Jiankang He
- State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi’ an, 710049, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi’ an, 710049, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| |
Collapse
|
21
|
Roland TJ, Song K. Advances in the Generation of Constructed Cardiac Tissue Derived from Induced Pluripotent Stem Cells for Disease Modeling and Therapeutic Discovery. Cells 2024; 13:250. [PMID: 38334642 PMCID: PMC10854966 DOI: 10.3390/cells13030250] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
The human heart lacks significant regenerative capacity; thus, the solution to heart failure (HF) remains organ donation, requiring surgery and immunosuppression. The demand for constructed cardiac tissues (CCTs) to model and treat disease continues to grow. Recent advances in induced pluripotent stem cell (iPSC) manipulation, CRISPR gene editing, and 3D tissue culture have enabled a boom in iPSC-derived CCTs (iPSC-CCTs) with diverse cell types and architecture. Compared with 2D-cultured cells, iPSC-CCTs better recapitulate heart biology, demonstrating the potential to advance organ modeling, drug discovery, and regenerative medicine, though iPSC-CCTs could benefit from better methods to faithfully mimic heart physiology and electrophysiology. Here, we summarize advances in iPSC-CCTs and future developments in the vascularization, immunization, and maturation of iPSC-CCTs for study and therapy.
Collapse
Affiliation(s)
- Truman J. Roland
- Heart Institute, University of South Florida, Tampa, FL 33602, USA;
- Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
- Center for Regenerative Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Kunhua Song
- Heart Institute, University of South Florida, Tampa, FL 33602, USA;
- Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
- Center for Regenerative Medicine, University of South Florida, Tampa, FL 33602, USA
| |
Collapse
|
22
|
Shang Y, Sun L, Gan J, Xu D, Zhao Y, Sun L. A Biomimetic Cardiac Fibrosis-on-a-Chip as a Visible Disease Model for Evaluating Mesenchymal Stem Cell-Derived Exosome Therapy. ACS NANO 2024; 18:829-838. [PMID: 38153966 DOI: 10.1021/acsnano.3c09368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Cardiac fibrosis acts as a serious worldwide health issue due to its prevalence in numerous forms of cardiac disease and its essential link to cardiac failure. Considering the efficiency of stem cell therapy for cardiac fibrosis, great efforts have been dedicated to developing accurate models for investigating their underlying therapeutic mechanisms. Herein we present an elaborate biomimetic cardiac fibrosis-on-a-chip based on Janus structural color film (SCF) to provide microphysiological visuals for stem cell therapeutic studies. By coculturing cardiomyocytes (CMs) and cardiac fibroblasts (FBs) on Janus SCF with fibrosis induction, the chip can recreate physiological intercellular crosstalk within the fibrotic microenvironment, elucidating the physiological alterations of fibrotic hearts. In particular, the Janus structural color film possesses superior perceptual capabilities for capturing and responding to a weak cardiac force, demonstrating synchronized structural color shifts. Based on these features, we have not only explored the dynamic relationship between color mapping and the evaluated disease phenotype but also demonstrated the self-reporting capacity of the cardiac fibrosis-on-a-chip for the assessment of mesenchymal stem cell-derived exosome therapy. These features suggest that such a chip can potentially facilitate the evolution of precision medicine strategies and create a protocol for preclinical cardiac drug screening.
Collapse
Affiliation(s)
- Yixuan Shang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Lingyu Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Jingjing Gan
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Dongyu Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| |
Collapse
|
23
|
Kesidou D, Bennett M, Monteiro JP, McCracken IR, Klimi E, Rodor J, Condie A, Cowan S, Caporali A, Wit JBM, Mountford JC, Brittan M, Beqqali A, Baker AH. Extracellular vesicles from differentiated stem cells contain novel proangiogenic miRNAs and induce angiogenic responses at low doses. Mol Ther 2024; 32:185-203. [PMID: 38096818 PMCID: PMC10787168 DOI: 10.1016/j.ymthe.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/10/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024] Open
Abstract
Extracellular vesicles (EVs) released from healthy endothelial cells (ECs) have shown potential for promoting angiogenesis, but their therapeutic efficacy remains poorly understood. We have previously shown that transplantation of a human embryonic stem cell-derived endothelial cell product (hESC-ECP), promotes new vessel formation in acute ischemic disease in mice, likely via paracrine mechanism(s). Here, we demonstrated that EVs from hESC-ECPs (hESC-eEVs) significantly increased EC tube formation and wound closure in vitro at ultralow doses, whereas higher doses were ineffective. More important, EVs isolated from the mesodermal stage of the differentiation (hESC-mEVs) had no effect. Small RNA sequencing revealed that hESC-eEVs have a unique transcriptomic profile and are enriched in known proangiogenic microRNAs (miRNAs, miRs). Moreover, an in silico analysis identified three novel hESC-eEV-miRNAs with potential proangiogenic function. Differential expression analysis suggested that two of those, miR-4496 and miR-4691-5p, are highly enriched in hESC-eEVs. Overexpression of miR-4496 or miR-4691-5p resulted in increased EC tube formation and wound closure in vitro, validating the novel proangiogenic function of these miRNAs. In summary, we demonstrated that hESC-eEVs are potent inducers of EC angiogenic response at ultralow doses and contain a unique EV-associated miRNA repertoire, including miR-4496 and miR-4691-5p, with novel proangiogenic function.
Collapse
Affiliation(s)
- Despoina Kesidou
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Matthew Bennett
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - João P Monteiro
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ian R McCracken
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK; Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX3 7TY, UK
| | - Eftychia Klimi
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Julie Rodor
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Alison Condie
- Scottish National Blood Transfusion Service, Edinburgh EH14 4BE, UK
| | - Scott Cowan
- Scottish National Blood Transfusion Service, Edinburgh EH14 4BE, UK
| | - Andrea Caporali
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Jan B M Wit
- Mirabilis Therapeutics BV, Maastricht, the Netherlands
| | | | - Mairi Brittan
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Abdelaziz Beqqali
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| | - Andrew H Baker
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK; CARIM Institute, University of Maastricht, Maastricht 6229HX, the Netherlands.
| |
Collapse
|
24
|
Thakar RG, Fenton KN. Bioethical implications of organ-on-a-chip on modernizing drug development. Artif Organs 2023; 47:1553-1558. [PMID: 37578206 PMCID: PMC10615722 DOI: 10.1111/aor.14620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Organ-on-chips are three-dimensional microdevices that emulate the structure, functionality, and behavior of specific tissues or organs using human cells. Combining organoids with microfabricated fluidic channels and microelectronics, these systems offer a promising platform for studying disease mechanisms, drug responses, and tissue performance. By replicating the in vivo microenvironment, these devices can recreate complex cell interactions in controlled conditions and facilitate research in various fields, including drug toxicity and efficacy studies, biochemical analysis, and disease pathogenesis. Integrating human induced pluripotent stem cells further enhances their applicability, thereby enabling patient-specific disease modeling for precision medicine. Although challenges like economy-of-scale, multichip integration, and regulatory compliance exist, advances in this modular technology show promise for lowering drug development costs, improving reproducibility, and reducing the reliance on animal testing. The ethical landscape surrounding organ-on-chip usage presents both benefits and concerns. While these chips offer an alternative to animal testing and potential cost savings, they raise ethical considerations related to community engagement, informed consent, and the need for standardized guidelines. Ensuring public acceptance and involvement in decision-making is vital to address misinformation and mistrust. Furthermore, personalized medicine models using patient-derived cells demand careful consideration of potential ethical dilemmas, such as modeling physiological functions of fetuses or brains and determining the extent of protection for these models. To achieve the full potential of organ-on-a-chip models, collaboration between scientists, ethicists, and regulators is essential to fulfil the promise of transforming drug development, advancing personalized medicine, and contributing to a more ethical and efficient biomedical research landscape.
Collapse
Affiliation(s)
- Rahul G. Thakar
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kathleen N. Fenton
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
- Department of Bioethics, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
25
|
Ravassa S, López B, Treibel TA, San José G, Losada-Fuentenebro B, Tapia L, Bayés-Genís A, Díez J, González A. Cardiac Fibrosis in heart failure: Focus on non-invasive diagnosis and emerging therapeutic strategies. Mol Aspects Med 2023; 93:101194. [PMID: 37384998 DOI: 10.1016/j.mam.2023.101194] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Heart failure is a leading cause of mortality and hospitalization worldwide. Cardiac fibrosis, resulting from the excessive deposition of collagen fibers, is a common feature across the spectrum of conditions converging in heart failure. Eventually, either reparative or reactive in nature, in the long-term cardiac fibrosis contributes to heart failure development and progression and is associated with poor clinical outcomes. Despite this, specific cardiac antifibrotic therapies are lacking, making cardiac fibrosis an urgent unmet medical need. In this context, a better patient phenotyping is needed to characterize the heterogenous features of cardiac fibrosis to advance toward its personalized management. In this review, we will describe the different phenotypes associated with cardiac fibrosis in heart failure and we will focus on the potential usefulness of imaging techniques and circulating biomarkers for the non-invasive characterization and phenotyping of this condition and for tracking its clinical impact. We will also recapitulate the cardiac antifibrotic effects of existing heart failure and non-heart failure drugs and we will discuss potential strategies under preclinical development targeting the activation of cardiac fibroblasts at different levels, as well as targeting additional extracardiac processes.
Collapse
Affiliation(s)
- Susana Ravassa
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Begoña López
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Thomas A Treibel
- Institute of Cardiovascular Science, University College London, UK; Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Gorka San José
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Blanca Losada-Fuentenebro
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Leire Tapia
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Antoni Bayés-Genís
- CIBERCV, Carlos III Institute of Health, Madrid, Spain; Servei de Cardiologia i Unitat d'Insuficiència Cardíaca, Hospital Universitari Germans Trias i Pujol, Badalona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain
| | - Javier Díez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain.
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain.
| |
Collapse
|
26
|
Reyat JS, di Maio A, Grygielska B, Pike J, Kemble S, Rodriguez-Romero A, Simoglou Karali C, Croft AP, Psaila B, Simões F, Rayes J, Khan AO. Modelling the pathology and treatment of cardiac fibrosis in vascularised atrial and ventricular cardiac microtissues. Front Cardiovasc Med 2023; 10:1156759. [PMID: 37727305 PMCID: PMC10506403 DOI: 10.3389/fcvm.2023.1156759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/09/2023] [Indexed: 09/21/2023] Open
Abstract
Introduction Recent advances in human cardiac 3D approaches have yielded progressively more complex and physiologically relevant culture systems. However, their application in the study of complex pathological processes, such as inflammation and fibrosis, and their utility as models for drug development have been thus far limited. Methods In this work, we report the development of chamber-specific, vascularised human induced pluripotent stem cell-derived cardiac microtissues, which allow for the multi-parametric assessment of cardiac fibrosis. Results We demonstrate the generation of a robust vascular system in the microtissues composed of endothelial cells, fibroblasts and atrial or ventricular cardiomyocytes that exhibit gene expression signatures, architectural, and electrophysiological resemblance to in vivo-derived anatomical cardiac tissues. Following pro-fibrotic stimulation using TGFβ, cardiac microtissues recapitulated hallmarks of cardiac fibrosis, including myofibroblast activation and collagen deposition. A study of Ca2+ dynamics in fibrotic microtissues using optical mapping revealed prolonged Ca2+ decay, reflecting cardiomyocyte dysfunction, which is linked to the severity of fibrosis. This phenotype could be reversed by TGFβ receptor inhibition or by using the BET bromodomain inhibitor, JQ1. Discussion In conclusion, we present a novel methodology for the generation of chamber-specific cardiac microtissues that is highly scalable and allows for the multi-parametric assessment of cardiac remodelling and pharmacological screening.
Collapse
Affiliation(s)
- Jasmeet S. Reyat
- College of Medical and Dental Sciences, Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Physiology, Anatomy and Genetics, Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, United Kingdom
| | - Alessandro di Maio
- The Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Birmingham, United Kingdom
| | - Beata Grygielska
- College of Medical and Dental Sciences, Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jeremy Pike
- College of Medical and Dental Sciences, Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- The Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Birmingham, United Kingdom
| | - Samuel Kemble
- Rheumatology Research Group, College of Medical and Dental Sciences, Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Antonio Rodriguez-Romero
- Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Christina Simoglou Karali
- Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Adam P. Croft
- Rheumatology Research Group, College of Medical and Dental Sciences, Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Bethan Psaila
- Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Cancer and Haematology Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Filipa Simões
- Department of Physiology, Anatomy and Genetics, Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, United Kingdom
| | - Julie Rayes
- College of Medical and Dental Sciences, Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- The Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Birmingham, United Kingdom
| | - Abdullah O. Khan
- College of Medical and Dental Sciences, Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Lother A, Kohl P. The heterocellular heart: identities, interactions, and implications for cardiology. Basic Res Cardiol 2023; 118:30. [PMID: 37495826 PMCID: PMC10371928 DOI: 10.1007/s00395-023-01000-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
The heterocellular nature of the heart has been receiving increasing attention in recent years. In addition to cardiomyocytes as the prototypical cell type of the heart, non-myocytes such as endothelial cells, fibroblasts, or immune cells are coming more into focus. The rise of single-cell sequencing technologies enables identification of ever more subtle differences and has reignited the question of what defines a cell's identity. Here we provide an overview of the major cardiac cell types, describe their roles in homeostasis, and outline recent findings on non-canonical functions that may be of relevance for cardiology. We highlight modes of biochemical and biophysical interactions between different cardiac cell types and discuss the potential implications of the heterocellular nature of the heart for basic research and therapeutic interventions.
Collapse
Affiliation(s)
- Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.
- Interdisciplinary Medical Intensive Care, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany.
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, Faculty of Medicine, University Heart Center, University of Freiburg, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
28
|
Affiliation(s)
- Cynthia St Hilaire
- Departments of Medicine and Bioengineering, Division of Cardiology, and the Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA
| |
Collapse
|